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1. Statements and notations. Recently, Marden, Richards and Rodin [7] studied
analytic self-mappings of Riemann surfaces and proved a number of theorems related
to homotopy some of which involve Huber's results [4]. Jenkins and Suita [5] also
investigated this theory from the other point of view. In their paper they gave
an alternative proof of the result in [7]. As a counterpart of it they proved a
similar result related to homology only for plane regions. In the present paper
we shall extend their result to Riemann surfaces.

Throughout this paper if nothing otherwise is indicated we denote by W a
Riemann surface whose fundamental group is non-abelian, and by $f the Kerekjartό-
Stoϊlow compactification of W. Hι(W) denotes the 1-dimensional homology group of
W. Let / be an analytic self-mapping of W. It is known that / induces an
endomorphism Ef by the mapping c-+f(c} for czHι(W). Let fn denote the n-th
iteration of /. Then our main theorem is stated as follows:

THEOREM. Let H be a non-trivial subgroup of Hι(W) with finite rank. Suppose
that the restriction of the induced homomorphism Ef\H is an endomorphism. If the
kernel of the restriction Ef\H is trivial, f is either an automorphism of finite period
or {fn} tends to an isolated ideal boundary component of harmonic dimension one
uniformly on every compact subset of W. In the latter case H reduces to an infinite
cyclic group generated by a dividing cycle. Furthermore, if the ideal boundary com-
ponent is a non-planar boundary then Ef\H reduces to the identity mapping.

This theorem is also an extension of a theorem of Komatu and Mori [6]. The
authors express their heartiest thanks to Professor N. Suita for his encouragement
in preparing this paper.

2. Lemmas. It is convenient to give some preparatory lemmas. The follow-
ing lemma related to the iteration of analytic self-mappings is found in Heins [3].

LEMMA 1. Suppose that Kι and K2 are given compact subsets of W. If f
neither possesses a fixed point nor has finite period, then fn(Kι) lies in one and the
same component of W—K2 for n sufficiently large. If f has a fixed point and is
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not an automorphism then for any neighborhood N of the fixed point, fn(Kι)c.N for
n sufficiently large.

The following topological lemma is a counterpart of lemma 5 of Jenkins and
Suita [5].

LEMMA 2. Let S be a canonical subregion of W. Suppose that there exist con-
nected components Σ% (z=l, 2) of tff— S. If there exist cycles Ci (i=l, 2) in ΣτΓiW
respectively, satisfying Cι^c2^Q (reads Ci is homologous to c2 and not homologous
to zero), then ffl— (W\jΣί\jΣ2)=φ; i.e. W—Σί—Σz is of finite genus and with two
boundary components.

Proof. At first we assume that cλ is a nondividing cycle in W. Then so is
it in IΊn W. Hence, there exists a differential ω in Γco (2ΊΓΪ W} such that JClω^O
where as to ΓCO (Σ\ Π W} the reader will be referred to Ahlfors and Sario [1]. If
we set ω'=ω in Σ1ΠW,ωf=U in W-Σ1 we have ω'zΓc(W}. This implies JCl_cχ
=/Clω^O, which contradicts the fact Cι^c2. Therefore Ci and c2 must be dividing
cycles.

Assume that ^-(W\^Σl\jΣ2}^<f). There exists a canonical subregion Tof W
such that CιUc 2 UScΓand dTΓ\(W-Σί-Σ2)^φ. We can write dT=(J^=lγj where
γj (/=!, •••, n) are all the components of 3T. Furthermore we may assume γj<^W
~-Σί-Σ2 for /=!, •••, /, TvcIΊ fory=/+l, •••, m and rjdΣ2 for j=m+l, •••, n where
Q<Km<n. Giving appropriate orientations to γ3 (j=l, •••, n) we take ^ (;=2, •••, ^)
as a part of homology basis of W. Then there exist integers a} (;=/+!, " ,^)
satisfying Ci— Σ7=ι+ι^jϊj> ^^Σ^+ΛT^ This contradicts the fact c^c2.

In the following three lemmas we treat the boundary behavior of a special
analytic mapping.

LEMMA 3. Let a be an isolated ideal boundary component of W. Let c be a
dividing cycle which divides a from all the other ideal boundary components of W.
If f(c}^mc (c'-pO, w^pO) and {fn(c}} tends to a uniformly, then there exists a neigh-
borhood N of a such that f(N}c.N. Furthermore f(N) is also a neighborhood of a.

Proof. Let TV be a neighborhood of a. If /(JV)cJιA/" we shall consider two
cases, that is whether f(N)—N is compact or not.

In the former case we may assume f(N)Γ\N^φ. By lemma 1 there is an n0

such that

fn(f(N)-N)c:N

for all H^HO. Furthermore

fn+1(N) -fn(N] c

Therefore, we have
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)= U /"(#)= "u

where /° means the identity mapping. Then M is a neighborhood of a and /(M)
cM. The homological condition, lemma 1 and the fact /(M)cM imply that /(M)
is a neighborhood of a. This is a desired neighborhood.

If the latter case occurs we let M be a noncompact component off(N)—Nanά
N{ a noncompact component of the inverse image of Ni. Then there exists a
neighborhood M of α satisfying M.C.N and N(—M^φ. From lemma 1 we have

fn(c}c.M

for n sufficiently large. On the other hand, since f(c}^mc we have

Then we have

Mn/*+ 1

This is a contradiction.

In consequence of lemma 3 we have

LEMMA 4. α, c and f are as in lemma 3. If a sequence {pn} of points in W
tends to a, then the sequence {f(pn}} atso tends to a.

Proof. It is sufficient to show the existence of a dinning sequence {Ni} of a
such that Nz+1df(Nί)c:Nί and 3Ni+1c:Ni for each i. Let JVΊ be a neighborhood
in lemma 3. We take another neighborhood N' of a such that N/c.f(N1) and
dWc/Wi). If f(N'}dN' we take N*=N'. If /W)(tAP we take Nι=\J%.ύf*(N').
Then we have Nzdf(N1) and dΛ^cM Succesively we can take Ns, Nt, •••.

From lemma 3 and lemma 4 we have

LEMMA 5. Suppose that α, c, / <zw J w #f£ #s in lemma 3. 7%0n £A0r0 exists
a neighborhood N of a such that f(N] is included in N and the restriction of f to
N is a m\-to-one mapping of N onto f ( N ) .

Proof. Let M be a neighborhood of a satisfying /(M)cM,/|M the restriction
of / to M and vf\M(q) the valence function of f\M. By lemma 3 and lemma 4 we
can choose a neighborhood M of a such that f(Mf)c.M'c.f(M} and f(dM) is
included in the noncompact component of W— /(M7). For simlicity's sake we denote
f(M') by MI. By lemma 4 we have l^Vfw(q)<oo for every q in Mi. Fix a point
(7o of Mi and let E be the set of all the points q in MI satisfying vfix(q)=Uf\M(4o).
Evidently E is nonempty. We shall prove that E is both open and closed as a
subset of Mi.

First we show that E is open. If q is in E, there are points pl9 ~ypr in M
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such that f(pί) = q for i=l, •••, r and the total multiplicities sum to V/IM((?O). There
are disjoint neighborhoods Ui of pi such that/ maps each Ut exactly fe-to-one onto
a neighborhood of #, where kt denotes the multiplicity of / at pt. Therefore, for
each point <f in V= nί-ι/(E/i) we have v/,^(^)^^/ι^(ζ?o). If E is not open we may
suppose that there is a sequence {qn} of points in V which converges to q such
that qn=f(Pn) for some p'n in M— Uί=ιK. By lemma 4 {/>{,} has an accumulation
point PQ in M— Uί-iCΛ Therefore, we can find a subsequence {£'„ .} which converges

to PQ. Clearly p0 cannot be any of p{, i=l, •••, r. On the other hand

This is a contradiction.
Next we show that E is closed. Let {qn} be a sequence of points in E which

converges to a point # in MI. By the above argument there is a neighborhood of
q on which v/}Λ is equal to Vf\M(q} Since this neighborhood contains qn for suf-
ficiently large n we have y/|jr(0)=ιvιjrfo>)

Hence we conclude that E==MΊ. Let M be the inverse image of Mi with
respect to /|M. Then f(Nι)dNι and / maps JVΊ ^-to-one onto /(M) for a positive
integer β. Let M2 be the complement of the noncompact component of W— MI and
let JV be the inverse image of M2 with respect to f\M. Then TV coincides with
the complement of the noncompact component of W—Ni. Therefore we have
f(N)cN and / maps N Λ-to one onto f(N). Since W-N and W-f(N) are both
connected, we have dN—df(N)—c and f(dN}~~mdf(N) where the orientations of
dN and df(N) are given appropriately. Hence we conclude that k is equal to \m\.
Thus N is our desired neighborhood.

We remark that we can take our neighborhood N in the preceding lemma so
that W— N and W— f ( N ) are connected and df(N) is contained in N. The con-
nectedness has been proved in the lemma. We shall show the latter. Suppose that
the conclusion fails for two neighborhood Ni and N2 in lemma 5 such that W—Ni
and W— f(Nι] (i — 1, 2) are connected and 3Nzc:f(Nι). Then / is a |w[-to-one mapping

of Nι—N2 onto f(N^—f(Nz). Let μ be the harmonic measure of df(Nι) with respect

to f(Nι)—f(Nz). Since μofis the harmonic measure of 3JVΊ with respect to Nι — N2,
we have μof-μ^O in /(JVι)-JV2. Therefore, {/>|/J°/(/>)<l/2}U JV2 is a desired
neighborhood. Considering the direction of c we know that w is a positive integer.

3. Proof of theorem. During the discussion of this paragraph we suppose
that / is not an automorphism of finite period. From lemma 1, since the kernel
of Ef\H is trivial, fn tends to an ideal boundary component of FT for every compact
subset of W.

First we assume that there exists a cycle c(-^O) satisfying f(c}—mc for an
integer m^O. Let {Rn} be a canonical exhaustion of W such that cc.R0. For
nf>n each component of Rn, — Rn is a canonical subregion of W. Then there exist
HI, mi such that /Wl(c) is contained in a component of Rmι — R0 by lemma 1. We
denote this component by Si. Next we take nz, m2 such that n$>nι, mz>mι and
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fU2(c) is contained in a component of Rmz—Rmι which we denote by S2 Evidently
we may assume that S2 is contained in the component of W— R0 which contains
Si. Successively, we take ^3<^4< , w3<w4< and S3, S4, •••. Since fn(c)~mnc
for all n, by lemma 2 S< is of finite genus and with two boundary components for
each i. Therefore, Ui=1S» is of finite genus and with two boundary components.
From this we conclude that for every compact subset of W, fn tends to the isolated
ideal boundary component a which is determined by a defining sequence { Δk] where

4b=ur-fc St.
Secondly, we shall consider the general case. Let {d} be a system of generators

of H and let R be a canonical subregion of W which contains this system. Then we
have

fn(R)c.W-R

for sufficiently large n. For every c in H, fn(c) is homologous to some linear com-
bination of the cycles of H which are contained in R. This shows that fn(c) is
homologous to a multiple of a dividing cycle in H by the same reason as in the
first step of the proof of lemma 2.

To prove the rest of theorem we take a sequence {Nn} of neighborhoods of a
such that W-Nn, W-f(Nn) are connected, dNn+1df(Nn\df(Nn)c:Nnίf(Nn)'-Nn+ί

is connected and / maps Nn exactly m-to-one onto f(Nn) for each n, where m is a
positive integer. The existence of this sequence is guaranteed by lemma 5 and
the following remark. Let tn denote the number of the relative boundary com-
ponents of Nn and sn the number of the relative boundary components of f(Nn).
Since we cannot know whether Nn—f(Nn) is connected or not, we denote the
number of the connected components of Nn—f(Nn)by kn and the total sum of the
genera of these components by gn. Let hn denote the genus of f(Nn)—Nn+ι. Since
/ is an w-to-one mapping of Nn—Nn+ι onto f(Nn)—f(Nn+ι), from the Riemann-
Hurwitz relation we have

(1)

Since wsw=^ni^Sn =&«=!, if w>l we have

Therefore, there is an n0 such that

(2) gn

for all n^n0. Since gn^0 and sn^kn we have gn—0 and sn=kn. By (1) if 0n=
and sn=kn we have
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Here, equality occurs only for tn+ι=sn+1=2. In this case from (1) and (2) we have

which is a contradiction. Therefore, there is an HI such that gn=Q and tn=sn

=kn=l for all n~^n\. Then we have easily hn=0 for all H^HI.

Thus fn+1(c) is freely homotopic to mfn(c) for sufficiently large n provided
m>l. Hence we conclude that a is an isolated pointlike boundary component (cf.
[5, 7]). Therefore a is trivially of harmonic dimension one.

If m=l, f maps N one-to-one onto f(N). Then by the discussion of Komatu
and Mori [6] which uses a criterion of Heins [2], we conclude that a is of harmonic
dimension one. This completes the proof.

4. Remarks.

REMARK 1. The conclusion in lemma 5 is merely the local property: Let
= {\z -1/2} and

- 3 — 1 \ T O
/(*) = - - (w>0, an integer).

Then f(c}^mc and fn(c) tends to z=Q uniformly, but/ is not an m-to-one mapping
globaly.

REMARK 2. Huber [4] and Marden, Richards and Rodin [7] showed that if
f ( c ) is freely homotopic to — c then /2 is the identity mapping. But the following
example shows that this fact does not hold for the homological condition: Let W
be the Riemann surface of genus one and with four boundary components defined
by the equation

τ/2=^4-l, r<\x\<l/r (0<r<l).

Let c be a cycle which consists of two closed curves corresponding |#|=r' (r <r'<l),
where the orientation of two curves are the same in the ^-plane. Let / be a con-
formal mapping of W onto itself defined by

Then f(c)^—c but /2 is not the identity mapping.
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