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§ 0. Introduction.

A set of three tensor fields F, G and H of type (1, 1) in a differentiate mani-
fold which satisfy

F2=-l, G2=-l, H2=-l,

F=GH=--HG, G=HF=-FH, H=FG=-GF

is called an almost quaternion structure and a differentiate manifold with an
almost quaternion structure an almost quaternion manifold.

If there exists, in an almost quaternion manifold, a system of coordinate
neighborhoods with respect to which components of F, G and H are all constant,
then the almost quaternion structure is said to be integrable and the almost
quaternion manifold is called a quaternion manifold.

In a previous paper [8], the present authors studied integrability conditions
for almost quaternion structures.

A set of three tensor fields F, G and PI of type (1, 1) in a differentiate mani-
fold which satisfy

H=FG=-GF

is called an almost quaternion structure of the second kind and a differentiate
manifold with an almost quaternion structure of the second kind an almost
quaternion manifold of the second kind.

The main purpose of the present paper is first of all to study integrability
conditions for an almost quaternion structure of the second kind and then to
apply the results to the study of almost tangent structures and tangent struc-
tures.
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§ 1. Preliminaries.

Let P and Q be two tensor fields of type (1, 1) in a differentiable manifold of
class C°°. The expression

[P,Q](X, Y) = [PX,QY]-P[QX, Y]-Q[X,PY]

(1. 1) +IQX, PY]-Q[PX, Y]-P[X, QY]

+ (PQ+QP)[X, Y],

X and Y being arbitrary vector fields, defines a tensor field of type (1, 2) called
the Nijenhuis tensor or the torsion tensor of P and Q. We note that [P, Q](X, Y)
= -[P,Q](Y,X), [P,Q](X,Y) = [Q,P](X,Y) and if Q=+l or -1,1 denoting the
unit tensor, then [P,Q] vanishes identically.

As in the previous paper [8], we need following definitions and formulas. If
S is a tensor field of type (1,2) and N is a tensor field of type (1,1), then ST\N
is defined to be

(1. 2) (SKN)(X, Y)=S(NX, Y)+S(X, NY)

and Nτ\S to be

(1.3)

for arbitrary vector fields X and Y. S?\N and Nτ\S are both of type (1,2).
Then for three tensor fields, L, M and N of type (1, 1), we have [2]

(1. 4) [L, MN] + [M, LN] = [L, M] πN+Lπ[M, N]+Mτ\[L, N]

and for a tensor field S of type (1, 2) and tensor fields M, N of type (1, 1),

(1. 5) (S7\M)7\N-(S7\N)7\M=SπMN-S7\NM

and

(1. 6) (Mτ\S)7\N=M7\(S7\N).

% 2. The almost quaternion structure of the second kind.

We consider in this section an almost quaternion manifold of the second kind,
that is, a differentiable manifold in which there exist three tensor fields F, G and
H of type (1, 1) satisfying

F2=-l, G2=l, ffa=l,
(2.1)

F /~\ TT rr/~t /~\= — (jrlΊ^ΓlU , {j

We would like to study relations which exist between Nijenhuis tensors
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formed with F, G and H.
The following argument is quite similar to that used in the previous paper

[8], but since the difference from the previous one arising from the fact that
we have here G2-l, H2=l and F=-GH=HG instead of G2=-l, H2=-l and
F=GH=—HG in the previous case is so delicate that we repeat briefly the argu-
ment, similar to that used in [8].

We first put L=M=F, N=G in (1.4) and find

(2. 2) [H, F] -FA [F, G] + ~ [F, F] AG.

We then put L-G, M=N=F in (1.4) and find

(2. 3) [H, F]- -[F, G] AF-FA[F, G]-GA[F, F].

From (2. 2) and (2. 3), we find

(2.4) lH,F] = -±lF,G]πF-±Gπ[F,F]+±[F,F]πG

and

(2. 5) [F, G] AF+2FA[F, G] + GA[F, F]+^-[F, F] AG=0.

We next put L=M=G, N=F in (1.4) and find

(2.6) [G,//]--GA[F,G]--ί[G,G]AF.

We then put L=F, M=N=G in (1.4) and find

(2.7) [G,#] =

From (2. 6) and (2. 7), we find

(2.8) [G,^]--ί[

and

(2. 9) [F, G] AG+2GA[F, G] + FA[G, G]+ - [ G , G] AF-0.

We put L-FG, M=F and Λ^-G in (1.4) and find

(2. 10) [H, H] = - [F, F] + [H, FJ AG+//A [F, G] + FA [G, //].

Equations (2.2)^(2.9) are all same as in the previous paper [8], but equation
(2. 10) is a little different from (2. 10) in the previous paper. We have the minus
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sign in front of [F, F]. The difference comes from the fact that G2=+l instead
of G2=-l.

We then put L=FG, M=G and N=F in (1.4) and find

(2. 11) [H, H] = [G, G]-[G, H]7\F-Hτ\[F, G]-G7\[H, F].

Thus, from (2. 10) and (2. 11), we find

, -

(2.12)
-G7\[H,F]-[G,H]7\F+F7\[G,H]}

and

-[F,F]-[G,G] + [ff,F]7\G+G7\[H,F]
(2.13)

+ [G, H] A F+ FA [G, ff] + 2#Λ [F, G] - 0.

Equations (2. 12) and (2. 13) are also different from those in the previous
paper [8].

Finally putting L=M=N=F, G or H in (1.4), we find

(2.14) [F,F]ΛF=-2FΛ[F,F],

(2.15) [G,G]ΛG=-2GΛ[G,G],

(2. 16) [H, H] 7\H= -2H7\ \H, H].

In a previous paper, we proved a series of theorems which hold for an
almost quaternion structure of the first kind. The formulas used to prove these
theorems differ from (2. 3)~(2. 16) above only by the sign of the term [F, F] in
(2. 10), (2. 12) and (2. 13) and consequently the theorems in the previous paper [8]
having [F, F]=0 in the assumptions are also valid for the almost quaternion
structure of the second kind. Thus Theorems 3. 1~3. 4 in the previous paper [8]
are all valid also for an almost quaternion structure of the second kind.

Theorem 3.5 in the previous paper [8] which says that if [F,G]=0, [F,#]=0,
then [F, FJ=0 is also valid. Because to prove this, we have only to use (2.3).
From the assumptions and (2.3), we have GΛ[F, FJ = 0, from which, using
G2=+l, we have [F,F]=0.

Since Theorems 3.6^3.8 in the previous paper [8J are also valid for an
almost quaternion structure of the second kind, we have

THEOREM 2. 1. For an almost quaternion structure (F, G, H) of the second
kind, if tivo of six Nijenhuis tensors

\F,F], \G,G], [H,H], \G,H\, [H,F], [F,G]

vanish, then 'the others vanish too.
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§3. Affine connections in an almost quaternion manifold of the second kind.

As in the previous paper [8], we discuss here affine connections in an almost
quaternion manifold of the second kind.

It is well known that, when a tensor field G of type (1,1) satisfying G2 = ~L is
given, there exists an affine connection ^ such that &G=Q and its torsion tensor
is proportional to the Nijenhuis tensor [G, G] formed with G (see [7]). Indeed, if
we introduce first of all a symmetric affine connection V in the manifold and
define an affine connection v by its coefficients of connection

(3. 1) hi=fyi +

then we have

(3.2)

[G,G]jih being components of the Nijenhuis tensor [G, G], where here and in the
sequel Roman indices a, b, c, --,h, i,j, ••• run over the range {1,2, • • ,2m}, 2m being
the dimension of the manifold. The second equation of (3. 2) shows that the
connection fr is symmetric if and only if [G, G]=0.

We now prove

THEOREM 3. 1. In order that there exists, in an almost quaternion manifold
of the second kind with structure tensors F, G and PI, a symmetric affine connec-
tion F such that

PF=0, FG=0, F//=0,

it is necessary and sufficient that

[F,F\=Q, [G,G]=0.

Proof. We put

(3.3) n^fy + Tji*,

where th
jt are given by (3. 1) and Tj f1 are defined by

Tj *= - j{K'fcF/ + (^^

(3.4)

which also can be written as
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Tjih= - y ΛF^- 1̂ ^

Now, denoting by V3 the operator of covariant differentiation with respect to
ΓJt, we see that

W = to + TtϊGt - ϊy GΛ
that is,

by virtue of ^G<Λ=0.
By a computation similar to that used in [8], we have

using FG=#, GH=-F, HF=G instead of FG=#, G#=F, flF=G in [8J.
On the other hand, we have

(3. 5) F,F*Λ - }F,Λ + Γ, W - TV FΛ

We substitute (3. 4) into (3. 5), then by a straightforward computation, we find

We know that if we assume that [G, G]=0, then v is a symmetric affine con-
nection and consequently from (3.3) we have in this case

rvz, rv& _ ηr H T hL ji~~L ιj— J jί — J ij

On the other hand, we have from (3.4)

Thus, if we assume that [F,F]=0 in addition to [G,G]=0, then by Theorem 2.1
we have

and consequently V is a symmetric affine connection such that

and hence

The converse being evident, the proof of the theorem is completed.

Combining Theorems 2. 1 and 3. 1, we have
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THEOREM 3. 2. In order that there exists, in an almost quaternion manifold of
the second kind with structure tensors F, G and H, a symmetric affine connection F
such that

FF=0, PG=0, Pff=0,

it is necessary and sufficient that two of the Nijenhuis tensors

[F,F], [G,G], [H,H], [G,H], [H,F], [F,G\

vanish.

In the proof of Theorem 3. 1, we have put

where Tjf- are given by (3.4). We shall now compute the torsion tensor of F
assuming not necessarily [F, F]=0, [G, G]=0. Denoting by

(3.6) S,«Λ=Γ5«-Γ5,

the torsion tensor of F, we have from (3.2) and (3.3)

(3. 7) Sy*
Λ= - [G, G]y,

Λ

o

On the other hand, a straightforward computation shows that

7/ί* - ϊ1,/ = -ί I [F, F]/,* - [G, G]/,* - [F,
o I

-2(ff Λ[F,

Thus we have

(3.8) S=-

where S is a tensor field of type (1, 2) with components
On the other hand, we have from (2.6)

and consequently

Thus substituting this into (3.8), we find
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(3. 9) S= -i {[F, F]-2[G, G] - [H, H]+Fτ\ [G, H] -tf Λ [F, G]}.
O

Now we let F, —H,G play the roles of F, G, H respectively in the discussion
above, then we obtain an affine connection 'V such that

'PF=0, 'PH=Q, 'FG=0

and that the torsion tensor 'S of 'F is given by

(3.10) 'S={[F9F]-[G9G]

Next, we let iG, iF9 H (i2 = - 1) play the roles of F,G,H respectively in the
same discussion above. By the definition of F, its coefficients Γh

jt are still real
even if iG, iF9 H play the roles of F, G, H in (3. 1), (3. 3) and (3. 4). We thus
obtain an affine connection "V such that

"FG=0, "FF=0, -"Fff=0

and that

(3. 11) "S= - {2[F, F] - [G, G] - [F, H] -G A [F, H] +tf Λ [F, G]}.
o

Thus if we define an affine connection by

rrh

jt and "Γhji being respectively components of the affine connections 'F and 7/F,
the covariant derivatives of F, G and H with respect to this connection vanish
and the torsion tensor of this affine connection is given by

^{[F,F]-[G9G]-[H9H]}.

§4. Integrability conditions.

We say that an almost quaternion structure (F,G,.fiΓ) of the second kind is
integrable if the manifold M admitting ( F 9 G 9 H ) can be covered by a system of
coordinate neighborhoods in which components of F, G and H are all constant.

If we put

Λ=~(/-G), 5=-ί

then from FG+GF=^Q, we have FA=BF which shows that r(A)=r(B), r denoting



ALMOST QUATERNION STRUCTURES AND ALMOST TANGENT STRUCTURES 71

the rank. On the other hand, since A+B=I, AB--=Q we have r(A)+r(B)=2m.
Thus we see that

r(Λ)=r(B)=m.

Assume that [G, G]=0, then there exists a coordinate system with respect to
which G has components of the form

IE 0
(4.1) G =

\ 0 -E

where E is the mXm unit matrix (see [3]).
We represent components of the tensor field F with respect to this coordinate

system by

where F11F2,FB and F4 are mXm matrices. Then from FG+GF=Q, we find

F!=O, F4-0

and from F2=-l

FzF%—F^Fz — — E.

Thus F has the form

0 F'
(4.2) F=(

\ F" 0

where

(4.3) F'F" = F"F' =

We now consider the condition

(4.4) [F,F]=0.

If we represent components of F by

/ 0 FI

then (4.3) can be written as

(4.6) ίy/Y = -«, Ffl

and (4.4) as
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W-w=o,
(4.7)

dβFϊ-dιFβ'=0,

dμ and dβ denoting dldxμ and d[dxβ respectively, where here and in the sequel
Greek indices κ,λ,μ, run over the range {1,2, ••-,#&} and K, I, μ, ••• the range

+2, -,2m}.
We have

PROPOSITION 4. 1. 7%0 symmetric affine connection appearing in Theorem 3. 2
Λ<2S the following components with respect to a coordinate system in which G has
components (4. 1):

(4.8)

/^0 others being zero.

Proof. From (4.1) and

we find that Γh

}i are all zero except Γ*μl and Γ .̂ On the other hand, from
(4. 5) and

we find

from which, using (4.3),

Thus the proposition is proved.
We denote by

the curvature tensor of Γ%, then we have

PROPOSITION 4. 2. The curvature tensor R of V appearing in Theorem 3. 2 has
the following components with respect to a coordinate system in which G has com-
ponents (4. 1):

(4.9)
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all the others being zero.

Proof. From Proposition 4.1 and the definition of Rkjih, we have

from which, substituting (4.7),

RVμλ — — (dvdμFf^Fs* ~~ (dμF"}(dvF&

κ)

+ (3 AW " + (WXW) + (3,

-(W)F/(

from which, using (4.3),

or again using (4. 3),

#,,/=0.

Similarly we have

£,̂ =0.

Also from Proposition 4. 1 and the definition of Rknh, we can easily see that

all the other Rkji

h being zero. Thus the Proposition is proved.

We now prove

THEOREM 4. 1. A necessary and sufficient condition that an almost quaternion
structure (F, G, H] of the second kind be integrable is that

[F,F]=Q, [G,G]=0, Λ=0,

where R is the curvature tensor of the symmetric afftne connection appearing
in Theorem 3. 2.

Proof. The necessity being evident, we shall prove the sufficiency. Follow-
ing the assumption [F, F]=0, [G, G]=0, we can choose a coordinate system in
which the tensor field G has components (4. 1) and consequently the tensor field
F has components (4. 2).

We are now going to find a coordinate system {yh} in which the components
Gf of G in {yh} are still given by
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« 0
(4.10)

,0 -%

and the components Ff of F in {yh} are given by

0
(4.11)

/ 0

where C's are constants satisfying

(4.12) CfCf = -«, Cf C/= -flf.

If we put

(4.13) ιΛ=ϊΛ(**),

then we have from (4.1) and (4.10)

which are equivalent to

dy* Λ dy" Λ—j- ~(), =u

and consequently the coordinate transformation (4.13) must be of the form

On the other hand, we have from (4.5) and (4.11)

which are equivalent to

Λ J α — O a
OX OX

(4.15)

or to

(4-16) W C I W
dxλ oxa

by virtue of (4.6) and (4.12).
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To eliminate constants C's, we differentiate (4.16) partially with respect to χμ

and take account of (4. 14), then we obtain

from which, transvecting with C* and using (4. 12),

aV l*f r-\(*jr*\
— ~ »n , = I -r-r-C; (<VM>

oxμdxλ \ dxa /

or, using the first equation of (4. 15),

JV_-_.3wl -'
Λ # Λ i ^ v \u I*-1- λ )± a
OX OX OX

Thus we have obtained a system of differential equations

(4.17) 3V = dyκ

dxμdxλ dxa μ '

where Γa

μλ are given by (4.8). Similarly, we have

(A ION aV ^ Γ5
^ L°) " n ga Γ ~ ~=ΓF ^ ?ί»dxμoxλ όxa

where Γ|ι are given by (4. 8).
But we assumed that R=Q, which means that

and consequently that Γκ

μλ are functions of xv only and Γjj functions of x* only.
Moreover we have

Rvμ* = 0vΓ;λ - dμΓ
κ

vλ + rv*βr;2 - Γ Λ = 0,

which show that (4.17) and (4.18) are both completely integrable and admit solu-
tions yκ = yκ(xa), y*=y*(x5) such that

dyκ

respectively.
Using these solutions, we effect a coordinate transformation. Then it is

easily seen that the tensor G has components given by (4.10). Denoting by

(4.19)
ff ff
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the components of the tensor field F in {yh}, we have

(4-20) V//=|ζ.
ox1 dxj

from which we have

(4.21) //=0, /i =0

and

(4.22) V// V F Λ

Since F4

Λ satisfies (4. 6), /4

ft satisfies

(4. 24) ΛW= -«,

We prove that the functions ff and // are constant.
Differentiating (4. 22) partially with respect to xμ and taking account of (4. 14),

we have

from which, substituting (4.8) and (4.17),

and consequently

Differentiating (4. 22) partially with respect to yf and taking account of (4. 14),
we find

from which, substituting (4.8) and (4.18),

or, using (4.23),
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and consequently

that is

Thus we see that // are constant.
We can similarly prove that fa* are also constant. Thus the theorem is

proved.

Combining Theorems 2. 1 and 4. 1, we have

THEOREM 4. 2. A necessary and sufficient condition for an almost quaternion
structure (F, G, H) of the second kind to be integrable is that two of Nijenhuis
tensors

[F,F], [G,G], [H,H], [G,H]9 [H,F], [F,H]

vanish and R=Q.

% 5. Concomitants of nilpotent tensors of type (1, 1).

We consider, in this section, two tensor fields P and Q of type (1, 1) satisfying

(5.1) P2=0, Q2=0, PQ+QP=1.

Putting L=M=P, N=Q in (1.4), we have

or

(5. 2) [P, PQ] =PΛ [P, Q] + - [P, P] AQ,

and putting L=N=P, M=Q in (1.4),

or

(5.3) [P,QP] = [P,Q]AP+PA[P,Q]+QAfP,P].

Since we have, from the third equation of (5. 1),
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(5.4) [P,PQ] + [P,QP]=Q,

we have, from (5.2) and (5.3),

(5. 5) [P, PQ\ = -lP, Q] 7\P- QA[P, P] + [P, P]7\Q

and

(5. 6) [P, Q] AP+2PA[P, Q]+Q7\[P, P] + [P, P] A(?=0.

Interchanging P and Q in (5.2), (5.3), (5.4), (5.5) and (5.6) above, we have
respectively

(5.7)

(5. 8) [Q, PQ]=[P, Q] AQ+Q ALP, QI+PALQ, Q],
(5.9) [Q,PQ] + IQ,QP]=0,

(5.10) [

and

(5.11) [

Now, putting L=M=N=P in (1.4), we find

(5.12) [P,P]AP=-2PA[P,P]

and putting L=M=N=Q, we find

(5.13) [Q,Q]A<2=-2QA[Q,(?].

Also, putting L=PQ, M=P, N=Q in (1.4) and using Q2=0, we find

(5. 14) [PQ, PQ] = [P, PQ] AQ+PA[PQ, Q] +PQ7\ {P, Q]

and putting L=QP, M=Q, N=P, we find

(5. 15) [QP, QP] = [Q, QP] AP+QΛ [QP, P] +QPA [P, Q].

On the other hand, we have, from the third equation of (5. 1),

[PQ, PQ] = [I-QP, I-QP] = [QP, QP]

and consequently, we have, from (5. 14) and (5. 15),
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[PQ,PQ] = [QP,QP]

(5.16) = ^{[P,PQ]AQ-QA[P,PQ] + [Q,QP]AP

-PA[Q,QP] + [P,Q]}

and

[P,PQ]AQ+QA[P,PQ]+PA[Q,PQ] + [Q,PQ]AP
(5.17)

+2PQA[P,Q]-[P,Q]=0.

Now we have from (5. 1)

(PQ)2=PQ, (QP)2=QP, (PQ)(QP) = (QP)(PQ)=0,

PQ+QP=1,

which show that PQ and QP are complementary projection operators and con-
sequently define two complementary distributions. We call the distribution defined
by the projection operator PQ the horizontal distribution and that defined by the
projection operator QP the vertical distribution.

A vector X in the horizontal distribution, that is, a vector X satisfying
PQX=X, or QPX=Q is said to be horizontal and a vector Y in the vertical
distribution, that is, a vector Y satisfying QPF= F, or PQF^O said to be
vertical.

Since QP(PX)=Q and P(PQX)=0 for an arbitrary vector X, the operator P
transforms a vector into a horizontal vector and a horizontal vector into a zero
vector.

Since PQ(QX)=Q and Q(QPX)=Q for an arbitrary vector X, the operator Q
transforms a vector into a vertical vector and a vertical vector into a zero vector.

We here show that if two 2mx2m matrices P and Q satisfy (5.1), then the
rank r(P) of P and that r(Q) of Q are both equal to m.

First of all if we put F— P— Q, then we have

PF=-PQ, FP=-QP, FQ=PQ

and F2=— 1, from which we see that F is regular. Thus we have

Denoting by F2m a 2m-dimensional vector space, we put

772-{F€F2m|QPF=F}.

Then, since PQ+QP=1, we have

V2m=Πί+Π2 (direct sum)
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and consequently we have

2m=dim 77ι+dim Π2,

that is

r(PQ)+r(QP)=2m,

from which, using r(PQ)=r(QP),

r(PQ)=r(QP)=m.

Thus

r(P)=r(Q)=m.

We assume throughout this section that [Q, Q]=0. The reason why we use
terminologies above and this assumption will appear in §7.

THEOREM 5.1. // [Q,Q]=0, then the vector field

[QP, QP](X, Y) or [PQ, PQ](X, Y)

is vertical for arbitrary vector fields X and Y.

Proof. First of all we have from the assumption [Q,Q]=0 and (5.7)

[Q,QP]=QΛ[P,Q],

from which

PQΛ[Q,QP]=0.

On the other hand, from (5.15) we find

PQΛ[QP,QP]=PQτ:([Q,QP]ΛP)=(PQΛ[0,QP])AP

by virtue of (1.6), from which

PQΛ[QP,QP]=0.

Thus PQ[QP, QP](X, F)=0, which shows that [QPyQP](X, Y) is a vertical vector
field. Since [QP,QP] = [PQ,PQ], [PQ,PQ](Jζ F) is also vertical.

COROLLARY 1. If [Q, Q]=0, then the vertical distribution is integrable.

Proof. Let X and F be arbitrary vector fields, then we have, by the defini-
tion of the Nijenhuis tensor,

, Y)+QP[QPX, F]+QPKQPF]-QPK F].
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Since [QP, QP](X, Y) is vertical by Theorem 5.1, the equation above shows
that [QPX, QPY] is vertical and consequently the vertical distribution is in-
tegrable.

COROLLARY 2. If [Q, Q]=0, a necessary and sufficient condition for the hori-
zontal distribution to be integrable is that

[PQ,PQ]=Q.

Proof. A necessary and sufficient condition for the horizontal distribution to
be integrable is that [PQX, PQY] is horizontal for arbitrary vector fields X and
F. But, we have, from the definition of the Nijenhuis tensor

[PQ^Γ,PQF] = -ί[PO,PO]( ,̂ Y)+PQ[PQX, Y}+PQ{X,PQY}-PQ[X, F].

Since [PQ, PQ](X, F) is always vertical by Theorem 5. 1, a necessary and
sufficient condition for [PQX, PQF] to be horizontal is the vanishing of
[PQ, PQ](X, F) for arbitrary vector fields X and F. Thus the corollary is
proved.

THEOREM 5.2. // [P,Q]=0 and [Q,Q]=0, then [PQ,PQ]=Q.

Proof. We have, from the assumption and (5. 7),

(5.18) [Q,QP]=0,

and from (5.3)

(5.19) [P,QP]=Qπ[P,P].

Substituting (5. 18) and (5. 19) into (5. 15), we find

-Q2A[P,P]

-0,

which proves the theorem.

Combining Theorem 5. 2 and Corollary 2 to Theorem 5. 1, we have

COROLLARY 1. If [P, Q]=0 and [Q, Q]=0, then the horizontal distribution is
integrable.

We have also

THEOREM 5.3. // [P,P]=0 and [Q,Q]=0, then we have [P,Q]=0.
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Proof. From (5.6) and [P,P]=0, we have

(5. 20) [P, Q] A P= - 2P A [P, Q]

and from (5.11) and [Q,Q]=0

(5.21) [P,Q]AQ=-2QA[P,Q].

We find, from (5.2) and [P,P]=0,

(5.22)

and, from (5.2) and [P,P]=0,

=PA([P,Q]A<2)

and consequently using (5.21)

(5.23) [P,PQ]AQ=-2PQA[P,Q].

Similarly, we have, from (5.7) and [Q, Q]=0,

Pπ[Q,QP]=PQπ[P,Q]

or

(5.24) PA[Q,PQ] = -PQA[P,Q]

and

[Q,QP]AP=(QA[P,Q])AP

=QA([P,Q]AP)

or using (5.20)

[Q,QP]AP=-2QPA[P,Q],
(5. 25)

[Q,PQ]AP=2QPA[P,Q].

Substituting (5. 22), (5. 23), (5. 24) and (5. 25) into (5. 17), we find

-2PQ A[P, Q]+QPA[P, Q]-PQA[P, Q]+2QPA[P, Q]+2PQA[P, Q]-[P, Q]=0,

that is, using QP-l=-PQ,

PQΛ[P,Q]-QPA[P,Q]=0,

from which, using (PQ)2=PQ, (QP)2=QP, (PQ)(QP)=(QP)(PQ)=0, we find

,Q]=0, QPA[P,Q]=0.
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Thus, adding these equations and remembering PQ+QP=l, we have [P, ζ?]=0,
which proves the theorem.

Thus combining Corollary 1 to Theorem 5. 2 and this theorem, we have

COROLLARY. If [P, P]— 0 and [Q, ζ?]=0, then the horizontal distribution is
integrable.

We also have

THEOREM 5. 4. // [P, Q] is vertical, that is, [P, Q](X, F) is vertical for arbitrary
vector fields X and Y, and [Q, Q]=0, then we have

[PQ,PQ]=2[P,Q].

Proof. Since [P, Q](X, Y) is vertical for arbitrary vector fields, we have
[P,Q] = (QP)A[P,Q]. Substituting this and [Q,Q]=0 into (5.7), we find

(5.26) K?,QP]=0.

On the other hand, from (5.2) and [P,Q] = (QP)Λ[P,Q], we have

(5.27)

and from (5.6)

or, using [P,Q]=(QP)A[P,Q],

(5.28) QA[P,P]AQ=-4[P,Q].

From (5. 27) and (5. 28), we find

(5.29) QA[P,PQ]--[P,Q]

From QPΛ[P,Q] = [P,Q], (5.15) and (5.26), we have

or using (5.29)

[PQ,PQ]=2[P,Q],

which proves the theorem.
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§ 6. Relations between (F, G, H) and (P, Q).

We first suppose that there are given, in a differentiable manifold, two tensor
fields P and Q of type (1,1) satisfying (5.1). Then we can easily verify that
tensor fields F, G, H of type (1,1) defined by

(6.1) F=P-Q, G=P+Q, H=FG=PQ-QP

satisfy (2.1) and consequently define an almost quaternion structure of the second
kind.

By a straightforward computation, we have

(6.2) [F, F] = [P, P] -2[P, Q] + [Q, Q],

(6.3) [G, G] = [P, P] +2[P, Q] + [Q, Q],

(6.4) [F,G] = [P,P]-[Q,Q],

(6.5) [F, ff] =2[P, PQ] +2[Q, QP],

(6.6) [G,fl]=2[P,PQ]-2[Q,QP],

(6.7) [£Γ,£Π=4[PQ,PQ].

From Corollary 2 to Theorem 5.1 and (6.7), we have

THEOREM 6.1. // [Q, Q]=0, 0 necessary and sufficient condition for the hori-
zontal distribution to be integrable is that [H,H]=Q.

We now prove

THEOREM 6.2. A necessary and sufficient condition for the almost quaternion
structure (F, G,H) of the second kind defined by (6.1) to be integrable is that

[P,P]=0, [P,Q]=0, [QfQ]=0,

and R=Q, R being the curvature tensor appearing in Theorem 4.1.

Proof. Suppose first that the almost quaternion structure (F,G,H) of the
second kind defined by (6.1) is integrable, then we have

[F,F]=0, [F,G]=0, [G,G]=0

and consequently, we have, from (6.2), (6.3) and (6.4),

[P,P]=0, [P,Q]=0, [Q,Q]=0.

Conversely, if these equations are satisfied, then (6.2) and (6.3) show that
[F, F]=0 and [G, G]=0. Thus by Theorem 4.1, the almost quaternion structure
(F, G, H) of the second kind is integrable.
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Combining Theorems β. 1 and β. 2, we have

COROLLARY. If the almost quaternion structure (F, G, H) of the second kind
defined by (6.1) is integrable, then the horizontal distribution is integrable.

We next suppose that there is given, in a differentiable manifold, an almost
quaternion structure (F,G,H) of the second kind. Then we can easily see that
tensor fields P and Q of type (1,1) defined by

(β. 8) P= y(F+G), Q- - -ί(F-G)

satisfy (5.1). Thus P and Q define two complementary projection operators PQ
and QP which are given by

(6.9) PQ= -ί(l-ff), QP= γd+#).

Using (6.8) and (6. 9), we find

(6.10) [P, P] = 1 {[F, F]+2[F, G] + [G, G]},

(6.11) [P, Q] = - j {[F, F] - [G, G]},

(6.12) [Q, Q] = 1 {[F, F]-2[F, G] + [G, G]},

(6.13) [P, PQ] = -1 {[G, F] + [F, F]},

(6.14) [Q, QP] = -ί {[G, H] - [H, F]},

(6.15)

In the remaining part of this section we assume that [Q, Q]=0. We first
have

THEOREM 6.3. Under the assumption [Q,Q]=0, [F,F]=0 implies [H,H]=0.

Proof. From (6.2), [Q,Q]=0 and [F,F]=0, we have

[P,P]=2[P,Q]

and consequently, from (6.3) and (6.4), we find

[G,G]=2[P,P] and [F,G]-[P,P]
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respectively, from which

(6.16) [G,G]=2[F,G].

Thus from (2.5) and (6.16), we have, using [F,F]=Q,

(6. 17) [G, G] 7\F= -2FΛ [G, G].

Also, from (2.2) and (6.16), we have, using [F,F]=0,

(6.18) [ff,F]=-

and, from (2. 6) and (6. 16),

or, using (6.17),

(6.19) [G,tf] = -

Substituting [F,F]=0, (6.16), (6.18) and (6.19) into (2.10), we find

or, using (2.15),

(6. 20) [H, H] = -Hτ\ [G, G] - [G, G].

Since HZ=I, we have, from (6.20),

(6.21)

But, from H=PQ-QP and PQ+QP=l, we have H=2PQ-l and conse-
quently substituting this into (6.21), we find

(6. 22) PQ A [PQ, PQ] = [PQ, PQ].

On the other hand, following Theorem 5.1, under the assumption [Q, Q]=0,
the vector [PQ, PQ](X, Y) is vertical for arbitrary vector fields X and Y and
consequently

thus, from (6.22) we have [PQ, PQ]=0, which proves the theorem,
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Combining Corollary 2 to Theorem 5. 1 and Theorem 6. 3, we have

COROLLARY 1. Under the assumption [Qy Q]=Q> a necessary and sufficient con-
dition for the horizontal distribution to be integrable is that [F, F]=0.

We also have, from Theorems 4. 1 and 6. 3,

COROLLARY 2. Under the assumption [Q, Q]= 0, in order for the almost qua-
ternion structure (F, G, H) of the second kind defined by (6. 1) to be integrable, it
is necessary and sufficient that [F, F]— 0 and R—0.

Theorem 6. 2 and this corollary give

COROLLARY 3. Under the assumption [Q, Q] = 0, [F, F] = 0 is equivalent to
[P,P]=0, [P,Q]=0.

We further prove

THEOREM 6.4. // [P,Q]=0 and K?,Q]=0, then [F,F]=0.

Proof. From the assumptions, (6.2), (6.3) and (6.4), we have

(6.23) [F,F] = [G,G] = [F,G].

Substituting this into (2.2), we find

or using (2. 15)

[#,F] = FA[F,F]-GA[G,G].

Similarly we have, from (2.6) and (2.14),

[G,#] = -GA[G,G]-~[F,F]AF,

this is,

[G,F]=FA[F,F]-GA[G,G],

and consequently we have

(6.24) [tf,F] = [G,tf]-FA[F,F]-GA[G,G].

Substituting (6. 23) and (6. 24) into (2. 13), we find

-[F,F]-[G,G]+FΛ[G,G]AG-GA[G,G]AG

+GFΛ[F,F]-[G,G]+FΛ[F,F]AF-GA[F,F]ΛF

-[F,F]-FGA[G,G]+2#A[F,F]=0,
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from which, using (2.14) and (2.15),

-[F, F]-[G, G]-2Hτ\[G, G]+2[G, G]

-H7\[F,F]-[G,G]+2[F,F]-2H7\[F,F]

- [F, F] - H7\ [G, G] + 2Hτ\ [F, F] = 0,

from which

Hπ[F,F]=0.

But, since /72 = 1, we have from this equation

[F,F]=0.

Equation (6.2) and this theorem give

COROLLARY 1. // [P,Q]=0 and [Q,Q]=0, then [P,P]=Q.

From Theorem 5.3 and this corollary, we have

COROLLARY 2. Under the assumption [Q, Q] = 0, [P, P] = 0 is equivalent to
[P,Q]=0.

§ 7. Tangent bundles.

Suppose now that the manifold is the tangent bundle T(M) of an ^-dimen-
sional differentiable manifold M of class C°°. It is well known that there exists a
tensor field 0 of type (1,1) which has components of the form

/ O 0
(7.1) Q=

\E 0

with respect to the so-called induced coordinate system [5, 6, 9,10], E being the
unit matrix and Q satisfies Q2=0.

We first prove

THEOREM 7.1. If there exists in T(M) a tensor field P of type (1,1)
such that

P2 = 0, PQ+QP=I,

then P has components of the form

Γ E
(7.2) P=

' -Γ2 -Γ

with respect to the induced coordinate system, Γ being an nXn matrix.
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Conversely, tensor fields P and Q in T(M) having components of the form

I Γ E \ 7 0 0
(7.3) P= , Q=(

\-Γ* -ΓJ \E 0

with respect to the induced coordinate system respectively satisfy

P2=0, Q2=0, PQ+QP=l.

Proof. We put

/A Γ2
P=(

\ Λ Γ4

where Γl9 Γ2, Λ and Γ4 are nXn matrices. Then from PQ-j-QP=l, that is,

:

Γr Π \ / Λ Λ \ / Π Λ X / Γ 1 Π \ / 7 ?/ i ι 2 \ / U U \ / U U \ / i i ^ 2 \ / ^

7~» 7 ~ ' / \ C 1 Π / x T T 1 Π / \ 7^ T*1 I \ (\IB i4/\Jb u / \/s υ / \ y 3 ^ 4 / \ υ

we have

Γ2 0 \ /E1 0 N

^4+Λ Γ 2/ \ 0 j

from which

Γ Z71 T"1 7"*
2 = Δ, 1 4=—J i

Thus P must be of the form

/Γ £t^
P=

yr 7 -r

where Γ and Γ7 are nXn matrices.
From P2=0, we have

Γ2+Γ; 0 \ / O 0

,Γ'Γ-ΓΓ' Γ2+Γ'/ \ 0 0

from which we have

Γ2 i p/ Λ Tf Γ1 T Tf

-J-Z —U, / L L L —

that is, Γ/=—Γ2, and consequently P is of the form

7~T ~Γ^

-Γ2 -Γ
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The converse is easy to check.

If the manifold M admits a linear connection or a non-linear connection [4],
we can construct P given in Theorem 7.1 and P and Q satisfy P2=0, Q2=0,
PQ+QP=1. Moreover the tensor field Q satisfies [Q,Q]=0. This is the reason
why we have assumed [Q, Q]=0 in §5 and §6. Theorems in §5 and §6 we
proved under the assumption [Q, Q]=0 are consequently valid in this section too.

It might be interesting to give the integrability condition of the horizontal
distribution in terms of the induced coordinate system.

We first note that the complementary projection operators PQ and QP dis-
cussed in §5 have components of the form

7 E 0\ 70 0
(7.4) PQ=( and QP=\

\-Γ O / \Γ E

respectively. Let a vector X in T(M) have components

χ=i

with respect to an induced coordinate system (xh, xn), where here and in the
sequel the indices h,i,j,k,~ run over the range {1,2, ••-,«} and the indices
h, ϊ, J, k, ••• the range {n+l,n+2,—,2n}. If X is a horizontal vector, that is, a
vector in the horizontal distribution, then we have

70 0\(Xh

QPX=( =0,
\Γ

that is

Γh

% being components of Γ. Thus a horizontal vector X has components of the
form

(7.4)

Let a vector Y in T(M) have components

IYh

Y=

with respect to the induced coordinate system. If Y is a vertical vector, that is,
a vector in the vertical distribution, then we have
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IE 0 \ / F f t \
PQY=( =0,

\Γ O / V F * /

that is, FΛ=0. Thus a vertical vector F has components of the form

0
(7.5) F="

We have, for a general vector X,

I Γ E \ίXh \ I X*+Γ*X* \
P\-r* - I\ *}\-r*x* r* * r

which shows that the operator P transforms a vector into a horizontal vector and
a horizontal vector into a zero vector, the fact which we stated in §5.

Also, we have, for a general vector F,

O 0 F M 0

Yh

which shows that the operator Q transforms a vector into a vertical vector and a
vertical vector into a zero vector, the fact which we also stated in § 5.

Since the horizontal distribution is given by

(7.5) daϊ+Γ'jdx>=Q

in terms of the induced coordinate system (xh, xϊl}, the integrability condition of
the horizontal distribution is given by [4]

(7.6) Λt/=0,

where

(7. 7) Rkf^tΓf-djΓt+ΓkΓS-ΓjtΓ,?

and

We have

THEOREM 7. 2. The vector field

is vertical for arbitrary vector fields X and Y and
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is equivalent to

Proof. The theorem follows from Theorem 5.1, Corollaries 1 and 2, but we
shall give here a proof in terms of induced coordinate system.

Putting

XIί

X= , Y=

and using (Pζ))2=PQ, we have

[PQ, PQ](X, Y)

= [PQX,PQY]-PQ[PQX, Y]-PQ[X, PQY]+PQ[X, Y]

X* \ I Yh \1 / E 0\|7 Xh \ / Y i

-Γ

E Q\[/Xh\ I Yh \1 / E 0 \ Γ / X Λ \ / F Λ

k-Γ

from which, by a straightforward computation,

[PQ, PQ}(X, Y)=

which proves the theorem.
We have proved in § 5 (see, Corollary 1 to Theorem 5.2 and Corollary to

Theorem 5.3) that [P,P]=0, [Q,Q]=0, or [P,Q]=0, [Q,Q]-0 are sufficient condi-
tions for the horizontal distribution to be integrable, but they are not necessary
in general. The next theorem gives an explanation of this situation.

THEOREM 7.3. The vector field [P, Q](X, Y) is vertical for arbitrary vector
fields X and Y if and only if

(7.8) Γ^-Γ^O

and vanishes if and only if

(7.9) r%-r^=0 and P*/=0.

Proof. Putting

X=[ I, Y=
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and using PQ+QP=l, we have

, Y)=[PX, QY]-P[QX, Y]-Q[X, PY]

+ [QX, PY]-Q[PX, Y]-P[X,QY] + [X, Y]

0 i / Γ E \|7 0

o / x *
o

0 0

E θ -Γt

r E χ i l ° ^Λ γh

from which, by a straightforward computation,

IP,Q](X,Y)
(7.10)

= | -RtfXΎi+StfπXΎ' + Γt'StfXΎ' \,

where

which proves the theorem.

From Corollary 2 to Theorem 6. 4 and Theorem 7. 3, we have

THEOREM 7.4. In the tangent bundle, [P, P]— 0 and [P, Q]= 0 are equivalent
and they are equivalent to (7. 9).

Combining Corollary 3 to Theorem 6. 3 and Theorem 7. 3, we have

THEOREM 7. 5. The almost complex structure F induced in the tangent bundle
T(M) of a differentiable manifold M by F=P—Q is integrable if and only if (7.9)
holds [1,4,6,9].
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