K. YANO AND M. AKO
KODAI MATH. SEM. REP.
25 (1973), 63—94

ALMOST QUATERNION STRUCTURES OF THE SECOND
KIND AND ALMOST TANGENT STRUCTURES

By KENTARO YANO AND MITSUE AKO

Dedicated to Professor S. Ishihara on his fiftieth birthday

§0. Introduction.

A set of three tensor fields F, G and H of type (1,1) in a differentiable mani-
fold which satisfy

F=-1, G*=-1, H?=-1,
F=GH=-HG, G=HF=-FH, H=FG=-GF

is called an almost quaternion structure and a differentiable manifold with an
almost quaternion structure an almost quaternion manifold.

If there exists, in an almost quaternion manifold, a system of coordinate
neighborhoods with respect to which components of F,G and H are all constant,
then the almost quaternion structure is said to be integrable and the almost
quaternion manifold is called a quaternion manifold.

In a previous paper [8], the present authors studied integrability conditions
for almost quaternion structures.

A set of three tensor fields F,G and H of type (1,1) in a differentiable mani-
fold which satisfy

Fr=-1, G*=1, H?*=1,
F=—-GH=HG, G=HF=-FH, H=FG=-GF

is called an almost quaternion structure of the second kind and a differentiable
manifold with an almost quaternion structure of the second kind an almost
quaternion manifold of the second kind.

The main purpose of the present paper is first of all to study integrability
conditions for an almost quaternion structure of the second kind and then to

apply the results to the study of almost tangent structures and tangent struc-
tures.
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§1. Preliminaries.

Let P and @ be two tensor fields of type (1,1) in a differentiable manifold of
class C*. The expression

[P, QIX, Y)=[PX,QY]-P[QX, Y]-QI[X, PY]
L1 +[QX, PY]-Q[PX, Y]-P[X, QY]
+(PR+QP)X, Y],

X and Y being arbitrary vector fields, defines a tensor field of type (1,2) called
the Nijenhuis tensor or the torsion tensor of P and Q. We note that [P, QI(X, Y)
=—[P,QIY, X), [P,QIX, YV)=[Q,P}(X,Y) and if Q=+1 or —1, 1 denoting the
unit tensor, then [P, @] vanishes identically.

As in the previous paper [8], we need following definitions. and formulas. If
S is a tensor field of type (1,2) and N is a tensor field of type (1,1), then SAN
is defined to be

1.2) (SAN)X, Y)=S(NX, Y)+S(X, NY)
and NAS to be
(L.3) (NRS)X, Y)=NMS(X, Y))

for arbitrary vector fields X and Y. SAN and NAS are both of type (1, 2).
Then for three tensor fields, L, M and N of type (1,1), we have [2]

(1.4) [L, MN1+[M, LN]=[L, M]A N+ LA~[M, N]+ M~R[L, N]
and for a tensor field S of type (1,2) and tensor fields M, N of type (1,1),

(1.5) SAMYAN—(SAN)AM=SAMN—-SANM
and
(1.6) (MAS)AN=MR(SAN).

§2. The almost quaternion structure of the second kind.

We consider in this section an almost quaternion manifold of the second kind,
that is, a differentiable manifold in which there exist three tensor fields F, G and
H of type (1,1) satisfying

F*=-1, G*=1, H?=],
(2.1)
F=—-GH=HG, G=HF=-FH, H=FG=-GF.

We would like to study relations which exist between Nijenhuis tensors
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formed with F,G and H.

The following argument is quite similar to that used in the previous paper
[8], but since the difference from the previous one arising from the fact that
we have here G?=1, H?*=1 and F=—GH=HG instead of G?=-—1, H?=—1 and
F=GH=—HG in the previous case is so delicate that we repeat briefly the argu-
ment, similar to that used in [8].

We first put L=M=F, N=G in (1.4) and find

2.2 [H,F]=F7Y[F,G]+%[F,F]7YG.

We then put L=G, M=N=F in (1.4) and find
2.3) [H, F1=—[F,GIAF—FR[F,Gl—GRAIF, F).
From (2.2) and (2.3), we find

2.4) [H,F]=~%[F,G]7(F—%GK[F,FH%[F,F]KG
and
(2.5) [F, GIARF+2FRI[F, G1+GR[F, F]+%[F, FIRG=0.

We next put L=M=G, N=F in (1.4) and find
(2.6) [G, H]=—-GRKIF, G]——;—[G, GIRF.

We then put L=F, M=N=G in (1.4) and find
2.7 [G, Hl1=[F, GIAG+GRA[F,Gl+ FRIG, Gl.

From (2.6) and (2.7), we find

2.8) [G,H]:—;—[F,G]KG+%FK[G,G]—%[G,G]KF
and
2.9) [F, GIAG+2GR[F, Gl+ FRIG, G]+%[G, G]A F=0.

We put L=FG, M=F and N=G in (1.4) and find
(2.10) [H, H]=—F, F1+[H, FIAG+HRI[F, Gl + FRIG, H].

Equations (2.2)~(2.9) are all same as in the previous paper [8], but equation
(2.10) is a little different from (2.10) in the previous paper. We have the minus
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sign in front of [F, F]. The difference comes from the fact that G*=+1 instead
of G?=—1.
We then put L=FG, M=G and N=F in (1.4) and find

(2.11) [H, H]=[G, G]-|G, HIARF-HRI[F,Gl-GRIH, F].
Thus, from (2.10) and (2.11), we find

[Hm=%FmFHWﬁHWFMG

(2.12)
—GRAIH, F1—-I[G, HIAF+ FRIG, H]}
and
—[F, F1-[G,Gl1+[H, F1IAG+GK[H, F]
(2.13)

+[G, HIRF+FRIG, H|+2HRK[F, G1=0.

Equations (2.12) and (2.13) are also different from those in the previous

paper [8].

Finally putting L=M=N=F, G or H in (1.4), we find
2.14) [F, FIRF=—-2FR[F, F],
(2.15) [G,GIRG=-2GRKI[G, G],
(2.16) [H, HIAH=—-2HRAR[H, H].

In a previous paper, we proved a series of theorems which hold for an
almost quaternion structure of the first kind. The formulas used to prove these
theorems differ from (2.3)~(2.16) above only by the sign of the term [F, F] in
(2.10), (2.12) and (2.13) and consequently the theorems in the previous paper [8]
having [F, F]1=0 in the assumptions are also valid for the almost quaternion
structure of the second kind. Thus Theorems 3.1~3.4 in the previous paper [8]
are all valid also for an almost quaternion structure of the second kind.

Theorem 3.5 in the previous paper [8] which says that if [F, G]=0, [F, H]=0,
then [F,F]=0 is also valid. Because to prove this, we have only to use (2.3).
From the assumptions and (2.3), we have GA[F, F]=0, from which, using
G*=+1, we have [F, F]=0.

Since Theorems 3.6~3.8 in the previous paper [8] are also valid for an
almost quaternion structure of the second kind, we have

THEOREM 2.1. For an almost quaternion structure (F,G,H) of the second
kind, if two of six Nijenkuis tensors

[F, F], |G, G], [H, H], |G, H], [H, F], [F,G]

vanish, then the others vanish too.
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§3. Affine connections in an almost quaternion manifold of the second kind.

As in the previous paper [8], we discuss here affine connections in an almost
quaternion manifold of the second kind.

It is well known that, when a tensor field G of type (1,1) satisfying G?=1 is
given, there exists an affine connection P such that PFG=0 and its torsion tensor
is proportional to the Nijenhuis tensor [G, G] formed with G (see [7]). Indeed, if
we introduce first of all a symmetric affine connection F in the manifold and
define an affine connection F by its coefficients of connection

@3.1) =LYt - (PG PG — 3 (PG PG MG,

then we have

V,Gi=0,
(3.2)

1
= 'h:"g[G, Gl
[G, G];* being components of the Nijenhuis tensor [G,G], where here and in the
sequel Roman indices «, b,¢c, -+, 4, 1,7, -+ Tun over the range {1,2, ---, 2m}, 2m being
the dimension of the manifold. The second equation of (3.2) shows that the

connection ¥ is symmetric if and only if [G, G]=0.
We now prove

THEOREM 3.1. In ovder that there exists, in an almost quaternion manifold
of the second kind with structure tensors F,G and H, a symmetric affine connec-
tion V such that

FF=0, FG=0, VH=0,
it is necessary and sufficient that
[F, F]=0, [G,G]=0.
Proof. We put
3.3) =1+ Ty,
where z*;i are given by (3.1) and 7" are defined by

Tyt=— %{FMF,M (P, F)Fr— HAVH P+ (VHL H )

(3.4)
+ %(GmF]t—GshF]SW— i—(hF,tﬂL VFYER,

which also can be written as
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Tyh=—~ %(%Ffw— %{(hFj‘)E"+E‘ZFj”—(Gi”fL"ZFf—lﬁth")}.
Now, denoting by F, the operator of covariant differentiation with respect to
", we see that
V,Gr=V,Git+ TGt — TG,
that is,
VG = TG — TG,

by virtue of l’jGi"=0.
By a computation similar to that used in [8], we have

VjGi"=0

using FG=H, GH=—F, HF=G instead of FG=H, GH=F, HF=G in [8].
On the other hand, we have

(3.5) VFir= %-Fi” + Ty Ft— Ty Fyr.
We substitute (3.4) into (3.5), then by a straightforward computation, we find
V;Fi=0.

We know that if we assume that [G, G]=0, then Vis a symmetric affine con-
nection and consequently from (3.3) we have in this case

= Iy= Ty~ Toft

On the other hand, we have from (3.4)
Ty T, = (I, Fly~[H, Hl b ~20F, Gl HM,

Thus, if we assume that [F, F]=0 in addition to [G,G]=0, then by Theorem 2.1
we have

Ty"—T,#=0
and consequently F is a symmetric affine connection such that
FF=0, PVG=0
and hence
VH=V(FG)=0.
The converse being evident, the proof of the theorem is completed.

Combining Theorems 2.1 and 3.1, we have
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THEOREM 3.2. In order that there exists, in an almost quaternion manifold of
the second kind with structure tensors F,G and H, a symmetric affine connection V
such that

VF=0, VG=0, VH=0,
it is mecessary and sufficient that two of the Nijenhuis tensors
[F, F], [G,G), [H, H], [G, H], [H,F], [F,G]
vanish.
In the proof of Theorem 3.1, we have put
Iy=I"%+Ty"

where Ty are given by (3.4). We shall now compute the torsion tensor of F
assuming not necessarily [F, F1=0, [G, G]=0. Denoting by

(3.6) Sit=I"y—1I"

the torsion tensor of F, we have from (3.2) and (3.3)
3.7 Sjit=— % [G, Gl + T3 — To i
On the other hand, a straightforward computation shows that

Tyt =T, =g | UF, P11~ 16, Glst [, )

—2(HRIF, G]);*— %(FK G, G]KF)ﬁ”].
Thus we have
3.8 S= % {[F, F1-2[G,Gl-[H, H]-2HR[F, G]— %FK[G, G]KF},

where S is a tensor field of type (1,2) with components S;;".
On the other hand, we have from (2.6)

— 116, GIRF=IG, HI+ G AIF, G)
and consequently
_ %FK[G, GIx F=FR[G, H]+H~IF,G.

Thus substituting this into (3.8), we find
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3.9 S= %{[F, F1-2[G,Gl—|[H, H1+ FRIG, H]|-HRKIF, Gl}.

Now we let F, —H, G play the roles of F, G, H respectively in the discussion
above, then we obtain an affine connection ’F such that

'WF=0, 'PH=0, 'FG=0

and that the torsion tensor ‘S of 'V is given by
(3.10) ’S= %{[F, F1-[G,G]-2[H, H| - FRI[G, HI+GK[F, H]}.

Next, we let G, iF, H (i*=—1) play the roles of F, G, H respectively in the
same discussion above. By the definition of F, its coefficients I%; are still real
even if iG,iF, H play the roles of F,G, H in (3.1), (3.3) and (3.4). We thus
obtain an affine connection ’/F such that

"PG=0, "PF=0, 'FH=0

and that
(3.11) "S:%{Z[F, F1-I[G,Gl—-I[H, H]-GR[F, Hl+HRI[F, G]}.
Thus if we define an affine connection by
1 I"h 7 7h 17 h
g( st LG+ Fji)y

T and /I'%; being respectively components of the affine connections 'V and ’'F,
the covariant derivatives of F, G and H with respect to this connection vanish
and the torsion tensor of this affine connection is given by

%{[F, F1-[G, G]~[H, H]).

§4. Integrability conditions.

We say that an almost quaternion structure (F,G,H) of the second kind is
integrable if the manifold M admitting (F,G,H) can be covered by a system of
coordinate neighborhoods in which components of F, G and H are all constant.

If we put

1 1

then from FG+GF=0, we have FA=BF which shows that »(A)=#(B), r denoting
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the rank. On the other hand, since A+B=I, AB=0 we have 7(A)+7(B)=2m.
Thus we see that

r(A)=r(B)=m.

Assume that [G,G]=0, then there exists a coordinate system with respect to
which G has components of the form

E 0
“.1) G=( )
0 -E

where E is the mXm unit matrix (see [3]).
We represent components of the tensor field F* with respect to this coordinate

system by
F F,
F= ,
F; F,
where Fy, F,, F; and F, are mXm matrices. Then from FG+GF=0, we find
F,=0, F,=0
and from F?=-1
F2F3=F3Fz= —E.
Thus F has the form
0o F
4.2) = ,
F’7 0
where
4.3) F'F'=F"F'=—FE.
We now consider the condition
4.4) [F, F1=0.
If we represent components of F' by
0 FY
4.5) F= ) ,
Ff 0
then (4.3) can be written as
(4.6) FiFf=—-8, FFi=-5
and (4.4) as
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0, —,F =0,
4.7)
8,1}7{ —ajFlj‘ =O,

d, and 0; denoting d/ox* and 0/dx” respectively, where here and in the sequel
Greek indices «,2,p, -+ run over the range {1,2,--,m} and &1, , - the range
{m+1, m+2, -+, 2m}.

We have

ProrosiTiON 4.1. The symmetric affine comnection appearing in Theovem 3.2
has the following components with respect to a coordinate system in which G has
components (4.1):

n=—0,FNF
4.8) i )
1= — 0,
all the others being zevo.
Proof. From (4.1) and
PiG=0,Git+ I'yG i — TG =0,

we find that I are all zero except I';; and [%. On the other hand, from
(4.5) and

ViFr=0;Fr+ T F—T%,Fih =0,
we find
077 —I'aF: =0,
0, F =TI FF=0,
from which, using (4. 3),
Pu=—0FOF,  Ia=—(0F)F"

Thus the proposition is proved.
We denote by

Ry =0ul " — 0l + Tl — T,
the curvature tensor of I'%, then we have

ProrosiTION 4.2. The curvature temsor R of V appearing in Theovem 3.2 has
the following components with respect to a coordinate system in which G has com-
ponents (4.1):

R;px‘ = R,ual‘ :aﬁF;b
(4.9)

Rvﬁii = Rﬁvii = avrfﬂy
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all the others being zero.
Proof. From Proposition 4.1 and the definition of Ry;", we have
R, =00 =0, + 10— 50,
from which, substituting (4.7),
R, =—0.0,F N —0,FF)0.F%)
+©@,8,FHF +(0.F7)0,F:) +@0.F5)F@,F:PFg*
— @ FF 0.FA)F;",
from which, using (4.3),
R, =—0.F5)0,F5)+0.F:)(0,F%)
— FS@.F)0FH)F5* + F50,F0.F)F;,
or again using (4.3),
R,."=0.
Similarly we have
R;:#=0.
Also from Proposition 4.1 and the definition of Ry;", we can easily see that
R =—R:" =005,
R =—Rpif=0.I%,
all the other Ry;* being zero. Thus the Proposition is proved.
We now prove

THEOREM 4.1. A necessary and sufficient condition that an almost quaternion
structure (F, G, H) of the second kind be integrable is that

[F:F]=0’ [G,G]=O; R=O)

where R is the curvature temsor of the symmetric affine commection appearing
in Theorem 3.2.

Proof. The necessity being evident, we shall prove the sufficiency. Follow-
ing the assumption [F, F]1=0, [G,G]=0, we can choose a coordinate system in
which the tensor field G has components (4.1) and consequently the tensor field
F has components (4. 2).

We are now going to find a coordinate system {y*} in which the components

~

G of G in {y*} are still given by
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o o5 0
(4.10) Gh=
0 —é&
and the components £ of F in {y*} are given by
o 0 CYf
(4.11) Fpr= ,
Cé/ 0
where C’s are constants satisfying
4.12) CiCS=—0;, CifCri=-—¢.
If we put
(4.13) yr=y"(x?),
then we have from (4.1) and (4.10)
W o O
2 OF' = a7 GO
which are equivalent to
oy oy
ozt dxt

and consequently the coordinate transformation (4.13) must be of the form
(4.14) V=), =@,

On the other hand, we have from (4.5) and (4.11)

oyt ., oyt s
o O = G TV

which are equivalent to

aya K __ ay‘ a
Py Gt = ox" B,

(4.15) s ot
Ve 0V
Pt O = gaE T
or to
W ~:_ O o,
(4.16) S Ci=s o

by virtue of (4.6) and (4.12).
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To eliminate constants C’s, we differentiate (4.16) partially with respect to z*
and take account of (4.14), then we obtain

82

i ay 2
ax"ax C (a,uFX ))

from which, transvecting with C;* and using (4.12),
A P z
~ = (32 &) 0
or, using the first equation of (4.15),

*y” 6

Thus we have obtained a system of differential equations

oyt ay .
oxtoxt ~ 0x" ks

4.17)

where I'%; are given by (4.8). Similarly, we have

oyt 0
dxfoxt  oxt  F 8

(4.18)

where I'%; are given by (4.8).
But we assumed that R=0, which means that

oI's=0, 3,l%=0

and consequently that I, are functions of z* only and I'% functions of 2° only.
Moreover we have

vallxzaur/l —0 Fvl-l_[" P F F»x—

Roptt =0, 53— 0l 51+ Iial 5 — 5l 5=0,
which show that (4.17) and (4.18) are both completely integrable and admit solu-
tions y*=y*(z%), ¥*=v*(«®) such that
o
ox?

ﬁFO’ a_gi,

aljFO

respectively.
Using these solutions, we effect a coordinate transformation. Then it is
easily seen that the tensor G has components given by (4.10). Denoting by

(4.19) ﬁih=(fl_ i )
fz‘ fii
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the components of the tensor field ¥ in {y"}, we have

oy* _ oy
(4. 20) ¥ fit = -7 Fy,
from which we have
4.21) =0,  fi¥=0
and

a £

(4.22) o W e S P

W i O na
(4. 23) P fof = P FZ&.

Since F;* satisfies (4.6), fi* satisfies
(4 24) fzafa‘ =—a; fiafa-‘: _557 .

We prove that the functions f; and f;f are constant.
Differentiating (4. 22) partially with respect to 2" and taking account of (4.14),
we have

0 0? oy* «
yaﬂfa“‘ ygaFi yaa,uFl',

from which, substituting (4.8) and (4.17),

ay

& a 5
O fi = = QPR F + a0, Fi=0

and consequently
a#f&‘ = 0.

Differentiating (4.22) partially with respect to = and taking account of (4.14),
we find

aZ,y&

e, O o «
Wfa +’a?aﬁf& =W(aﬁFi )y

from which, substituting (4.8) and (4.18),
3 g «
e o OaFO)FF s+ a W ot = Z (@:F5"),

or, using (4.23),
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y®
9t

a ® a, 3 £ a - a
— S FHORF) S+ 5 Oa e = v OaFY),

and consequently
oy* .
Wapfa =0,
that is

a,;f,;‘=0.

Thus we see that f;* are constant.

We can similarly prove that f,f are also constant. Thus the theorem is
proved.

Combining Theorems 2.1 and 4.1, we have

THEOREM 4.2. A mecessary and sufficient condition for an almost quaternion
structure (F,G,H) of the second kind to be integrable is that two of Nijenhuis
tensors

[F, F], [G,G], [H, H], [G,H], [H,F], [F,H]

vanish and R=0.

§5. Concomitants of nilpotent tensors of type (1,1).
We consider, in this section, two tensor fields P and @ of type (1, 1) satisfying
(5.1) P:=0, @*=0, PQR+QP=L
Putting L=M=P, N=Q in (1.4), we have
[P, PQI+[P, PQ]=[P, PIAQ+PR[P, Q1+ PRI[F,Ql,

or
6.2 [P, PQI=PRIP, Q1+ + [P, PIxQ,

and putting L=N=P, M=Q in (1.4),

[P, QP]1+[Q, P*1=[P, Q1A P+ PA[Q, P1+QRI[P, P],
or
(5.3) [P, QP]=[P, QA P+PK[P,QI+QKIP, P].

Since we have, from the third equation of (5.1),
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(5.4) [P, PQ1+[P, QP]=0,
we have, from (5.2) and (5. 3),

6.5) [P, PQI=— +[P,QIA P~ L QALP, P1+ P, PIAQ
and
5.6) [P, QIR P+2PRIP, QI+ QRIP, P+ [P, PIRQ=0.

Interchanging P and @ in (5.2), (5.3), (5.4), (6.5) and (5.6) above, we have
respectively

6.7 [Q, QPI=QAIP, Q1+ [0, QIR P,

6.9 [, PQI=1P, QIAQ+QAIP, Q1+ PAIQ, A,
(5.9) [Q, PQI+[Q, QP1=0,

6.10) [, PQl= 5 [P, QIRQ+ + PRIQ Q- 5 [Q, QIR P
and

.10 [P, QIRQ+2QRIP, Q1+ PAIQ, Q1+ -+ [Q, QIR P=0.

Now, putting L=M=N=P in (1.4), we find
(5.12) [P, PR P=—-2PKI[P, P]
and putting L=M=N=@Q, we find

(5.13) [Q,QIAQ=—-2QRA[Q, Q.
Also, putting L=PQ, M=P, N=Q in (1.4) and using @*=0, we find
(5.14) [PQ, PQ]=[P, PQIRQ+PA[PQ, Q1+ PQARI[P,Q]

and putting L=QP, M=Q, N=P, we find
(5.15) [QP, QP]=[Q, QP1R P+QRI[QP, P1+QPAK[P, Q.
On the other hand, we have, from the third equation of (5.1),
[PQ, PQI=[I-QP, [-QP]=[QP,QP]

and consequently, we have, from (5.14) and (5. 15),
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[PQ, PRI=[QP,QP]

(5.16) - %{[P, PQIRQ—QRIP, PQI+[Q, QPI R P
—PRIQ, QP1+[P, Ql}

and

5.17) [P, PQIRQ+QR[P, PQl+PKI[Q, PQ1+[Q, PQIAP

+2PQR[P, Q1-[P, Q]=0.
Now we have from (5.1)
(PRQP=PQ, (@P)=QP, (PQQP)=@QP)(PQ)=0,
PQ+QP=1,

which show that PQ and QP are complementary projection operators and con-
sequently define two complementary distributions. We call the distribution defined
by the projection operator PQ the horizontal distribution and that defined by the
projection operator QP the vertical distvibution.

A vector X in the horizontal distribution, that is, a vector X satisfying
PQX=X, or QPX=0 is said to be hAorizontal and a vector Y in the vertical
distribution, that is, a vector Y satisfying QPY=Y, or PQY=0 said to be
vertical.

Since QP(PX)=0 and P(PQRX)=0 for an arbitrary vector X, the operator P
transforms a vector into a horizontal vector and a horizontal vector into a zero
vector.

Since PQQRX)=0 and QQPX)=0 for an arbitrary vector X, the operator @
transforms a vector into a vertical vector and a vertical vector into a zero vector.

We here show that if two 2m X 2m matrices P and Q satisfy (5.1), then the
rank 7(P) of P and that »(Q) of @ are both equal to .

First of all if we put F=P—@, then we have

PF=—-PQ, FP=-QP, FQ=PQ
and F?=-1, from which we see that F' is regular. Thus we have

1(P)=r(PRQ)=rQP)=7Q).

Denoting by V?*™ a 2m-dimensional vector space, we put
II,={VeV*™ PQV=V]},
IL={VeV*™QPV =V}

Then, since PQ+QP=1, we have
fm=Jl+11, (direct sum)
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and consequently we have
2m=dim II,4-dim ITI,,

that is

7(PQ)+rQP)=2m,
from which, using #(PQ)=r(QP),

1 PQ)=r(QP)=m.
Thus

7(P)=r@)=m.

We assume throughout this section that [@,Q]=0. The reason why we use
terminologies above and this assumption will appear in §7.

THEOREM 5.1. If [Q,Q1=0, then the vector field
[QP,QPYX,Y) or [PQ PQIXY)
is vertical for arbitrary vector fields X and Y.
Proof. First of all we have from the assumption [, Q]=0 and (5.7)
[Q, QP]=QRKI[P,Q],
from which
PQRIQ, QP1=0.
On the other hand, from (5.15) we find
PQRARIQP,QP1=PQA(IQ, QP1AP)=(PQAIQ,QP))A P
by virtue of (1.6), from which
PQA[QP,QP]=0.

Thus PQ[QP,QP)(X, Y)=0, which shows that [QP, QP](X,Y) is a vertical vector
field. Since [QP, QP1=[PQ, PQl, [PQ, PRI(X, Y) is also vertical.

CororLARY 1. If [Q, Q1=0, then the vertical distribution is integrable.

Proof. Let X and Y be arbitrary vector fields, then we have, by the defini-
tion of the Nijenhuis tensor,

[QPX,QPY]= %[QP, QPI(X, Y)+QPIQPX, Y]+QP[X,QPY]-QP[X, Y].
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Since [QP,QPY(X,Y) is vertical by Theorem 5.1, the equation above shows
that [QPX,QPY] is vertical and consequently the vertical distribution is in-
tegrable.

CorOLLARY 2. If [Q,Q]=0, @ necessary and sufficient condition for the hori-
zontal distribution to be integrable is that

[PQ, PQ]=0.

Proof. A necessary and sufficient condition for the horizontal distribution to
be integrable is that [PQX, PQY] is horizontal for arbitrary vector fields X and
Y. But, we have, from the definition of the Nijenhuis tensor

[PRX, PQY]=%[PQ, PQIX, Y)+PQIPQX, Y]+ PQLX, PRY]-PQLX, Y].

Since [PQ, PQI(X,Y) is always vertical by Theorem 5.1, a necessary and
sufficient condition for [PQX, PQY] to be horizontal is the vanishing of
[PQ, PQI(X,Y) for arbitrary vector fields X and Y. Thus the corollary is
proved.

THEOREM 5.2. If [P, Q]=0 and [Q, Q]=0, then [PQ, PQ]=0.

Proof. We have, from the assumption and (5.7),

(5.18) [Q, QP]=0,
and from (5.3)
(5.19) [P, QP]=QRI[P, P].

Substituting (5.18) and (5.19) into (5.15), we find
[PQ, PQI=[QP,QP]
=QAR@RIP, P)
=@Q*R[P, P]
=0,
which proves the theorem.

Combining Theorem 5.2 and Corollary 2 to Theorem 5.1, we have

CoroLLARY 1. If [P,Q1=0 and [Q,Q]1=0, then the horizontal distvibution is
integrable.

We have also

THEOREM 5.3. If [P, P]1=0 and [Q, Q]1=0, then we have [P, Q]=0.
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Proof. From (5.6) and [P, P]=0, we have

(5. 20) [P, Q1A P=—2PA[P, Q]

and from (5.11) and [Q, Q]=0

(5.21) [P, QIRQ=—2QK[P, Q]
We find, from (5.2) and [P, P]=0,

(5.22) QR[P, PQI=QPRI[P, Q]

and, from (5.2) and [P, P]=0,
[P, PRIAQ=(PA[P, QD AQ
=PA([P,QIAQ)
and consequently using (5.21)
(5. 23) [P, PRIRQ=—-2PQRI[P,Q].
Similarly, we have, from (5.7) and [Q, Q1=0,
PRIQ,QP]=PQRI[PF, Q]
or
(5.24) PRIQ, PQl=—PQRIP, Q]
and
[Q,QPIAP=@QRAI[P,QDAP
=QK([P,QIRP)
or using (5.20)
[Q, QP1RP=—-2QPK[P,Q],
[Q, PRIAP=2QPR[P,Q].
Substituting (5. 22), (5.23), (5.24) and (5.25) into (5.17), we find

(5.25)

—2PQRI[P, Q1+QPRKI[P, Q- PQRI[P, Q1+2QPAI[P, Q1+2PQKI[P, Q- [P, Q1=0,
that is, using QP—1=—PQ,
PQRIP,Q1-QPRI[P,Q]=0,
from which, using (PQ)*=PQ, (QP)*=QP, (PQ)QP)=@QP)PQ)=0, we find
PQX[P,Q1=0, QPRI[P,Q]=0.



ALMOST QUATERNION STRUCTURES AND ALMOST TANGENT STRUCTURES 83

Thus, adding these equations and remembering PQ+QP=1, we have [P, Q]=0,
which proves the theorem.

Thus combining Corollary 1 to Theorem 5.2 and this theorem, we have

CoRrROLLARY. If [P,P]=0 and [Q,Q1=0, then the horizontal distribution is
integrable.

We also have

THEOREM 5.4. If [P, Q) is vertical, that is, [P,QX, Y) is vertical for arbitrary
vector fields X and Y, and [Q, Q]=0, then we have

[PQ, PRI=2[P, Q].

Proof. Since [P,QI(X,Y) is vertical for arbitrary vector fields, we have
[P, Q1=(QP)A~[P, Q). Substituting this and [@, Q]=0 into (5.7), we find

(5.26) [Q, QP]=0.
On the other hand, from (5.2) and [P, Q1=(QP)A[P,Q], we have

.21) QAIP, PQI=IP, Q1+ 5 QA(P, PIAQ)

and from (5. 6)
QR(P, QIR P)+2QPAIE, Q1+ 5 QA(P, PIRQ)=0,
@AIP, Q)R P+21 - PQTIP, Q1+ QFIP, PIRQ=0,

or, using [P, Q1=(QP)A[P,Q],

(5.28) QALP, PIAQ=—4[P, Q.
From (5.27) and (5. 28), we find
(5.29) QALP, PQI=—[F Q]

From QPA[P,Ql=[P,Q], (5.15) and (5.26), we have
[PQ, PQI=[QP, QP]
=QR[QP, P1+[P, ]
or using (5.29)
[PQ, PQI=2[P, ],

which proves the theorem.
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§6. Relations between (F, G, H) and (P, Q).

We first suppose that there are given, in a differentiable manifold, two tensor
fields P and @ of type (1,1) satisfying (5.1). Then we can easily verify that
tensor fields F, G, H of type (1,1) defined by

6.1) F=P-Q, G=P+Q, H=FG=PQ-QP

satisfy (2.1) and consequently define an almost quaternion structure of the second
kind.
By a straightforward computation, we have

(6.2) (£, Fl=[P, P]-2[P, QI +[Q, @I,
(6.3) [G, GI=I[P, P]+2[P, Q]+[Q, @],
(6.4) [F, G]=[P, P]-[Q, @,

(6.5) [F, H]=2[P, PQ]+2[Q, QP],
(6.6) (G, H]=2[P, PQ]-2[Q, QP],
(6.7) [H, H]=4[PQ, PQ).

From Corollary 2 to Theorem 5.1 and (6.7), we have

THEOREM 6.1. If [Q,Q]1=0, a necessary and sufficient condition for the hori-
zontal distribution to be integrable is that [H, H]=0.

We now prove

THEOREM 6.2. A mnecessary and sufficient condition for the almost quaternion
structure (F,G, H) of the second kind defined by (6.1) to be integrable is that

[P, P1=0, [PQ]=0, [Q,Q]=0,
and R=0, R being the curvature tensor appearing in Theorem 4.1.

Proof. Suppose first that the almost quaternion structure (F,G,H) of the
second kind defined by (6.1) is integrable, then we have

[F,F]=0, [FG]=0, [G,G]=0
and consequently, we have, from (6.2), (6.3) and (6.4),
[P, P1=0, [P,Q]=0, [Q,Q]=0.

Conversely, if these equations are satisfied, then (6.2) and (6.3) show that
[F, F1=0 and [G,G]=0. Thus by Theorem 4.1, the almost quaternion structure
(F, G, H) of the second kind is integrable.
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Combining Theorems 6.1 and 6.2, we have

COROLLARY. If the almost quaternion structure (F,G,H) of the second kind
defined by (6.1) is integrable, then the horizontal distribution is integrable.

We next suppose that there is given, in a differentiable manifold, an almost
quaternion structure (F,G,H) of the second kind. Then we can easily see that
tensor fields P and @ of type (1,1) defined by

(6.8) P=%(F+G), Q=—-%(F—~G)

satisfy (5.1). Thus P and @ define two complementary projection operators P
and QP which are given by

6.9) PQ=J(~H), QP=5(l+H).

Using (6.8) and (6.9), we find

(6.10) [P, P]=%{[F, F1+2[F, G1+IG, G},
(6.1) [P, Q1= 7, FI-[G, Gl),

(6.12) [Q, Q1= (IF, FI-2IF, GI+I6, G
(6.13) [P, PQI=— {IG, HI+IH, T,

(6.14) [Q, QP1= 5 (G, H1~I1, F1),

(6.1 (PQ, PQI= [, H].

In the remaining part of this section we assume that [Q, Q]=0. We first
have

THEOREM 6.3. Under the assumption [Q,Q1=0, [F, F1=0 implies [H, H]=0.
Proof. From (6.2), [Q,Q]=0 and [F, F]=0, we have
[P, P1=2[P, Q]
and consequently, from (6.3) and (6.4), we find
[G,G]=2[P,P] and [F,G]=[P, P]
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respectively, from which

(6.16) [G, G1=2[F, G].

Thus from (2.5) and (6.16), we have, using [F, F]=0,

(6.17) [G, GIARF=—-2FRI[G, G].
Also, from (2.2) and (6.16), we have, using [F, F]=0,

(6.18) I, Fl= 5 FRIG, G,
and, from (2.6) and (6.16),
1 1
(G, H]=—7GK[G, G]—glG, GIRF,
or, using (6.17),
(6.19) [G,H]=-—%G7§[G, Gl+FRIG,Gl.
Substituting [F, F]=0, (6.16), (6.18) and (6.19) into (2.10), we find

Vi H]=%F7([G, G]KG+—12—H7([G, Gl

~ 3 FGRIG,G1-IG, G},

or, using (2.15),

(6.20) [H, Hl=—-HRI[G, G]-I[G, Gl
Since H?=1, we have, from (6. 20),

(6.21) HR[H, H1=[H, H].

But, from H=PQ—-QP and PQ-+QP=1, we have H=2PQ-—1 and conse-
quently substituting this into (6.21), we find

(6.22) PQR[PQ, PQI=[PQ, PQ].

On the other hand, following Theorem 5.1, under the assumption [Q, @]=0,
the vector [PQ, PQI(X,Y) is vertical for arbitrary vector fields X and Y and
consequently

PQA[PQ, PQI=0,
thus, from (6.22) we have [PQ, PQ]=0, which proves the theorem,
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Combining Corollary 2 to Theorem 5.1 and Theorem 6.3, we have

COROLLARY 1. Under the assumption [Q, Ql=0, a necessary and sufficient con-
dition for the horizontal distribution to be integrable is that [F, F]=0.

We also have, from Theorems 4.1 and 6.3,

COROLLARY 2. Under the assumption [Q,Q)=0, in order for the almost qua-
ternion structure (F,G,H) of the second kind defined by (6.1) to be integrable, it
is necessary and sufficient that [F, F1=0 and R=0.

Theorem 6.2 and this corollary give

COROLLARY 3. Under the assumption [Q,Q1=0, [F,F]1=0 is equivalent to
[P, P1=0, [P, Q]1=0.

We further prove

THEOREM 6.4. If [P,Q]=0 and [Q, Q1=0, then [F, F]1=0.

Proof. From the assumptions, (6.2), (6.3) and (6.4), we have
(6.23) [F, F1=I[G, G]1=I[F, Gl.

Substituting this into (2.2), we find

[H, F1=FRI[F, F]+—;—[G, GIRG,
or using (2.15)
[H, F1=FAX[F, F1-GKIG,GI.

Similarly we have, from (2.6) and (2.14),

[, H]= ~GRIC, Gl 5 [F, FIF,
this is,
[G, HI=FRI[F, F]-GRIG, G],
and consequently we have
(6.24) [H, F1=I[G, HI=FR[F, F1-GRIG, G].
Substituting (6.23) and (6.24) into (2.13), we find
—[F, F1-[G,GI+FRXI[G,GIRG-GRKIG,GIRG
+GFRIF, F1—[G,Gl+FAR[F, FIRF-GAR[F, FIRF
—[F, F1-FGRIG, G]+2HRK[F, F]=0,



88 KENTARO YANO AND MITSUE AKO
from which, using (2.14) and (2.15),
—[F, F1-[G, G1-2HR|G, G1+2[G, G]
—HRAIF, F1-[G, G1+2[F, F1-2HRI[F, F]
—[F, F1-HRAIG, G1+2HRXIF, F]1=0,
from which
HRI[F, F1=0.
But, since H*=1, we have from this equation
[F, F]1=0.
Equation (6.2) and this theorem give
CoroLLARY 1. If [P, Q]=0 and [Q, Q]=0, then [P, P]=0.
From Theorem 5.3 and this corollary, we have
CoROLLARY 2. Under the assumption [Q,Q1=0, [P,P1=0 is equivalent to
[P, Q]=0.
§7. Tangent bundles.

Suppose now that the manifold is the tangent bundle T(M) of an n-dimen-
sional differentiable manifold M of class C*. It is well known that there exists a
tensor field @ of type (1,1) which has components of the form

0 0
(7.1) Q=< ),
E 0

with respect to the so-called induced coordinate system [5, 6, 9, 10], £ being the
unit matrix and @ satisfies Q*=0.
We first prove

THEOREM 7.1. If there exists in T(M) a tensor field P of type (1,1)
such that

P*=0, PQ+QP=1,

then P has components of the form

r E
7.2) P:( )
-I* -T

with respect to the induced coordinate system, I' being an nXn matrix.
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Conversely, tensor fields P and Q in T(M) having components of the form

r E 0 0
I G R
~-Ir* -r E 0

with respect to the induced coordinate system respectively satisfy

P2=0, @Q°=0, PQR+QP=L

(1)
P= ,
r, T,

where I'y, I's, I's and I'y are »X#» matrices. Then from PQ+QP=1, that is,
(I’l I’2>(0 0) (0 0)(1’, [‘2> (E 0)
+ = ’
FS F4 E O E 0 Fg F4 0 E
rer ) \o E/
F2=E, F,,:~l"',

[ )
P= ,
I -r

where I" and [ are »Xn matrices.
From P?=0, we have

r+r 0 0 0)
rr—rre re+rt) \o o/

I*+1'=0, Ir'r—-rr’=o,

Proof. We put

we have

from which

Thus P must be of the form

from which we have

that is, I”=—1I", and consequently P is of the form

r E
P= .
—-I* -r
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The converse is easy to check.

If the manifold M admits a linear connection or a non-linear connection [4],
we can construct P given in Theorem 7.1 and P and @ satisfy P?=0, Q*=0,
PQ+QP=1. Moreover the tensor field @ satisfies [Q,@]=0. This is the reason
why we have assumed [Q,Q]=0 in §5 and §6. Theorems in §5 and §6 we
proved under the assumption [Q, Q]1=0 are consequently valid in this section too.

It might be interesting to give the integrability condition of the horizontal
distribution in terms of the induced coordinate system.

We first note that the complementary projection operators PQ and QP dis-
cussed in §5 have components of the form

E 0 0 0
(7.4) PQz( ) and QP—_-( )
- 0 r FE

respectively. Let a vector X in T'(M) have components

Xh,

X%
with respect to an induced coordinate system (z*, z"), where here and in the
sequel the indices 4,i,4, k, -+ run over the range {l,2,.--,#} and the indices

h,i, 3,k - the range {n+1,n+2, -,2n). If X is a horizontal vector, that is, a
vector in the horizontal distribution, then we have

0 0\/X*
r FEJ\X*

XA mXi=0,

that is

I'* being components of I'. Thus a horizontal vector X has components of the
form

Xn
(7.4) X:( )
I X

Let a vector Y in T(M) have components

Yh
Y=
Y=
with respect to the induced coordinate system. If Y is a vertical vector, that is,
a vector in the vertical distribution, then we have
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E 0\/ ¥
(o))
rooj\vs

that is, Y*=0. Thus a vertical vector Y has components of the form

0
(7.5) y:( ] )
Yh

We have, for a general vector X,

r E \/ X" XiyreXi
PX= = ,
-r: —-rj\x» — ' XF4-TEX1)
which shows that the operator P transforms a vector into a horizontal vector and

a horizontal vector into a zero vector, the fact which we stated in §5.
Also, we have, for a general vector Y,

0 0\/Y*» 0
QY= = ’
E 0/\Y*" Vg
which shows that the operator @ transforms a vector into a vertical vector and a

vertical vector into a zero vector, the fact which we also stated in §5.
Since the horizontal distribution is given by

(7.5) dx*+I"dz? =0

in terms of the induced coordinate system (z", 2"), the integrability condition of
the horizontal distribution is given by [4]

(7.6) Re=0,
where

7.7 Rufr=ul =0, Tl st =TT st
and

Iy=0;%  0x=0[dx*,  0;=0/oxt.
We have
THEOREM 7.2. The vector field
[PQ, PRIX, Y)
is vertical for arbitrary vector fields X and Y and

[PQ, PQ]=0



92 KENTARO YANO AND MITSUE AKO
is equivalent to
Rif=0.

Proof. The theorem follows from Theorem 5.1, Corollaries 1 and 2, but we
shall give here a proof in terms of induced coordinate system.

Putting
Xn Yy*
Xn Yk

and using (PQ)*=PQ, we have
[PQ, PQIX, Y)
[PRX, PQY]-PQIPQX, Y]-PQIX, PQY]+PQIX, Y]

[ (e | S (|
L ol ol b (il

from which, by a straightforward computation,

Il

Il

0
[PQ, PQIX, Y)=( ),
—Re* X*Y7

which proves the theorem.

We have proved in §5 (see, Corollary 1 to Theorem 5.2 and Corollary to
Theorem 5.3) that [P, P]=0, [Q, Q]=0, or [P,Q]=0, [Q, Q]=0 are sufficient condi-
tions for the horizontal distribution to be integrable, but they are not necessary
in general. The next theorem gives an explanation of this situation.

THEOREM 7.3. The vector field [P,QNX,Y) is vertical for arbitrary vector
fields X and Y if and only if

(7.8) I, —TI"=0

and vanishes if and only if

(7.9) n—=I"=0 and Ri*=0.
Proof. Putting
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and using PQ+QP=1, we have
[P, QIX, Y)=[PX, QY1-P[QX, Y]-QIX, PY]
+[QX, PY]-QI[PX, Y]-P[X, QY]+[X, Y]

XEy Xk 0 r E 0 yn»
=[( —r?<Xf+erk>)’ ( y )] _( - —F)[( x# ) ( y* ﬂ
0 0 X YiyI Yo
_(E 0)[<Xﬁ>’(—rﬁ<w+r;¥0ﬂ
0 VAL pYd
¥ [( Xt ) ( —IY(Yi4T,Y9) )}
0 0 Xty I Xk Yy»
_(E 0)[(—m<xf+rktxw>’ (Yﬁ )}

Y (9 0] SO |

from which, by a straightforward computation,

[P, QIX, Y)
(7.10)
—Si, X*YJ
=| —Rp"X*Y ISt I X*eY I+ IfS, " X*Y 7
— TS X Y148t X* Y7 =S r XEY 7
where

Seft=I%—I",
which proves the theorem.
From Corollary 2 to Theorem 6.4 and Theorem 7.3, we have

THEOREM 7.4. In the tangent bundle, [P, P1=0 and [P,Q1=0 are equivalent
and they are equivalent to (7.9).

Combining Corollary 3 to Theorem 6.3 and Theorem 7.3, we have
THEOREM 7.5. The almost complex structure F induced in the tangent bundle

T(M) of a differentiable manifold M by F=P—Q is integrable if and only if (7.9)
holds [1, 4, 6, 9].
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