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0. Introduction.

It is now well known that submanifolds of codimension 2 of an almost
Hermitian manifold and hypersurfaces of an almost contact metric manifold admit
an (f, g, #,v, 2)-structure, that is, a set of a tensor field f of type (1, 1), a Rieman-
nian metric ¢, two 1-forms # and » and a function 2 satisfying

A X=—X+uX)U+v(X)V,
9(fX, fY)=¢(X, Y)—u(X)u(Y)—o(X)o(Y),
w(fX)=w(X), o(fX)=—u(X),

wU)=1-2, w(V)=0, oU)=0, »(V)=1-2

0.1)

for arbitrary vector fields X and Y, U and V being vector fields defined by
w(X)=¢g(U, X) and »(X)=¢(V, X) respectively. If the tensor defined by

0.2) SX, Y)=NX, Y)+(du)(X, Y)U+(do)(X, Y)V,

N(X, Y) being the Nijenhuis tensor formed with f, vanishes, the (f,g,#%,,2)-

structure is said to be normal.
In the sequel we assume that the dimension of the manifold denoted by M is

greater than 2.
Okumura and one of the present authors [8] proved

THEOREM 0.1. Let M be a complete differentiable manifold with normal
(f, g, u, v, A)-structure satisfying

du=2w, dv=2¢w0,

o being a 2-form defined by o(X,Y)=9(fX,Y) and ¢ a function on M. If
A(1—2%) is almost everywhere non-zero, then M is isometric to an even-dimensional
sphere.
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The present authors [6] proved

THEOREM 0.2. Let M be a complete diffeventiable manifold with normal
(f, g, u, v, A)-structure satisfying

Lovg=—2ckg or dv=>2co,

Ly denoting the Lie derivation with rvespect to the vector field U and ¢ a non-zero
constant. If A(1—2%) is almost everywhere non-zero, then M is isometric to an even-
dimensional sphere.

Okumura and one of the present authors [9] proved

THEOREM 0.3. Let a complete differentiable submanifold M of codimension 2
of an even-dimensional Euclidean space E be such that the comnection induced in
the normal bundle of M is trivial. If the (f,g,u,v,)-structure induced on M is
normal, 2A(1—22) being almost everywhere non-zevo, then M is a spheve, a plane, ov
a product of a spheve and a plane.

A typical example of an even-dimensional differentiable manifold with a
normal (f, g, %, v, A)-structure is an even-dimensional sphere S?7.

S"xS™ is also a typical example of an even-dimensional differentiable mani-
fold which admits an (f, g, #, v, 2)-structure, but the structure is not normal. Blair,
Ludden and one of the present authors [1, 2] proved

THEOREM 0.4. If M is a complete orientable hypersurface of S*™™*' of con-
stant scalar curvaturve satisfying fK+Kf=0, K being the Weingarten tensor and
Axconstant, A(1—22) being almost everywheve non-zero, then M is a natural spherve
S gy S"XS™.

The (f,g,#,v,2)-structure induced on an orientable hypersurface of S?"+!(1)
with induced metric tensor g; and the second fundamental tensor %j; satisfies

0.3) P, fit= — g+t — i+ ey,
0.4) Vini=1 3.~ Akji,

0.5) Vivi=—kj S+ 29,

(0.6) Vid=ku—v,,

where f.*, u;, v; and 2 are components of f, #, v and 2 respectively, F, being the
operator of covariant differentiation with respect to ¢g;. Here and in the sequel,
the indices 4,1i,7, &, --- run over the range {1, 2, ---, 2un}.

One of the present authors [4] proved

THEOREM 0.5. Suppose that a complete ovientable 2n-dimensional diffeventiable
manifold M?™ is immersed in S**'(1) as a hypersurface. If (f,g,u,v,2)-structure
induced om this hypersurface is such that Axconst. and A(1—2%) is almost every-



50 KENTARO YANO AND U-HANG KI

where non-zero and if it satisfies V;id=cv;, ¢ being a non-zero constant, then ¢ must
be —1 or —2 and w@n c=—1, M® is isometric to S**(1) and when c=-—2, M?*"
is isometric to SM1/V2)XSY1/V2).

THEOREM 0.6. If M*®™ is a complete ovientable hypersurface of S2+\(1) satisfying
fi"R+RME=0 and K(y)=const., where fi* is the tensor field of type (1,1) defining
the (f,9,u,v, 2)-structure induced on M?*, A(1—2%) being almost everywhere non-zero,
ki the second fundamental tensor of the hypersurface and K(y) the sectional curva-
ture of M with respect to the section y spanned by u" and v, then M?** is
isometric to a natural sphere S**(1) or to S*(1/V 2)xS*(1/V2).

THEOREM 0.7. Assume that a complete 2n-dimensional differentiable manifold
M*™ admits an (f,q,u,v, A)-structure such that 2A(1—22) is almost everywhere non-
zero, and

V,ui—ViuJ=2f,~i, Vi1=—v,-
or
Vjui-—Viu,=2fﬁ, V;Z=—21)1,

At a point at which 2150, we define a tensor field ky of type (0,2) by
Vi +Viny=—22kj;
and assume that w; satisfies
ViV s = — gicjobs+ gritt;— ki Vs + Rt j+ 201k ji.

Then M*®*® is isometric to S*(1) if Vid=—v; and isometric to STV 2)xXSY1/V 2)
l:f Vil—": _21/'i~

We note here that Theorems 0.3~0.6 state properties of (f,g, %, v, 2)-struc-
tures induced on submanifolds of codimension 2 of a Euclidean space E?**% or on
hypersurfaces of a sphere S?*+!(1), while Theorems 0.1, 0.2 and 0.7 state intrinsic
properties of (f,g, %, v, A)-structures of manifolds themselves.

In the present paper we first of all show that for an (f,g,#, v, 2)-structure
induced on a hypersurface of S?***+!(1) the conditions

0.7 TR+ RP=0
and
(0. 8) St =20 (V" — 26%) — 2v,(V o™ — A0%)

are equivalent.

Since the commutativity of f and K and the condition S=0 are equivalent
for a hypersurface of S*»*(1) and an (f, g, %, v, 2)-structure satisfying S=0 is said
to be normal, we say that an (f,g,#,v, A)-structure satisfying (0.7) or (0.8) is
antinormal. (See [2], [3], [4], [5)).
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We study in the present paper properties of (f,g,#,v, A)-structures which are
antinormal in this sense.

1. A necessary and sufficient condition to be fK-+Kf=0.
We prove in this section

THEOREM 1.1. In an orientable hypersurface M with an (f, g, u, v, )-Structure
of S*™+(1) (or of a Sasakian manifold) such that 21— is almost everywhere
non-zero, the conditions (0.7) and (0.8) are equivalent.

Proof. We know that the (f,g,#,v,2)-structure induced on an orientable
hypersurface of S?***}(1) or of a Sasakian manifold satisfies (0. 3)~(0. 6).
We substitute these into

sfih =ththih "fthijh_ (ijzt - szf)fth
+(Vjsbs— Vi p)u + (Vo — Viw jyo

(1.1)

and find
Sjin=—0kufu' +knf ) +vilkjeS/n' +knf )
or, using (0. 5),
1.2 Sjin=0;(Vivn~+ Vivi—22gin) — 0V 00+ Vav; —22g 1),

where Sjih':sjitgth.
Suppose now that (0.7) is satisfied. Then we have

(1- 3) kjtfz‘—~kuff=0
and consequently, we have, from (0. 5),
Vi, —Vw,=0.

Thus (1.2) gives (0. 8).
Conversely suppose that (0.8) is satisfied. Then substituting (0.3)~(0.6) into
(0. 8), we find

1.4) Os(kisn' —knifi*) —vilkjfu' — knif51) =0.
Transvecting 7 to (1.4), we find
=2k fn' — ko fi£) =viexn,
where

an=kufnt—kunf; 0,
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from which
vian+ora; =0
and consequently a;=0. Thus we have
(L= (kS n'—kn /1) =0,
from which
ki fn'—knfi¢=0,
and we have (0.7). Thus the theorem is proved.
Combining Theorems 0.6 and 1.1, we have

THEOREM 1.2. If M® is a complete orientable hypersurface of S**Y(1) with
antinormal (f, g, u,v, 2)-structure and with K(y)=const. A(1—2%) being almost every-
where non-zevo, wheve K(y) is the sectional curvature with vespect to the section
v spanned by w" and v*, them M?® is isometric to the umit sphere S*(1) or to

SrA/VZ)XSMANVZ).

2. Lemmas.

The present authors [6] proved following general formulas which an (f, g, %, v, 2)-
structure satisfies, that is,

Sjih - (f jtfm:n —f itftjh)

@b = —(f1VnSe—FiVn 1)+ wi(Vin) — wi(V jun) + 0 j(Vivn) — vs(V jon)
and
{Ssin—(f{ frn—Ffi o)t
2.2) =Vyun+ Vitts) — wi(Vyten + Vser)t + 2 oL (Pyon + Vroe)
— 2(Vser,— Vi) — A i +vits’ ) Veon — Vave),
where
2.3) Fin=V,fin+Vifnj+Vnf s

We now prove a series of lemmas.

LemMA 2.1. Assume that a differentiable manifold admits an (f,g,u,v,2)-
structure such that A(1—2%) is almost everywhere non-zero,

2.4) Viwi—Viry=2f i

and
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(2.5) Syt =20 (Vo — 20%) — 20,(V o™ — 2%).

At a point at which 20, we define a tensor field ki of type (0,2) by

(2.6) Viwi+Viu,= —22kj ;.
Then we have

2.7 Viui=f 3s— Akji,
2.8) Vipi=—kjuft+2g;
and

2.9 ViA=kjut—uv,.

Proof. Equation (2.7) follows from (2.4) and (2.6). Transvecting #* to (2.7)
and using wut=1-2%, we find

— AV A=2v;— k0,

from which (2.9) follows.
Differentiating (2.4) covariantly, we find

ViV s — ViV, =2 f s,
from which
(2.10) Freii=Vefji+V, fix+Vfr;=0.
Thus substituting (2.5), (2.7) and (2.10) into (2.2), we obtain
—20:(Von— 29 jn)u?
= —22kin+ 200kt + A f L (Vo + Vavy)
— 2% 10— AL (Pon— Vo) —0i(Pon — Vhvi)udt,

from which

— 22k 200kttt + 22 Vv, — 22%f i

+vi(utVwn) — vi(Proe,)vt — 2400, =0,
or

— 22k + 22wkt + 22 11 Vv, — 223 i
(2.11)

+0(uV0n) + Wikt — A =0,

by virtue of (2.7).
Transvecting (2.11) with o%, we find
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— 2Bt + 2220 Vv, — 203U,
+ A —22)(4Vwn) + 21— 22 kvt — AL — 22)un =0,
from which, using #‘Fuv,= —0"(Pputs) = — V*(frs — Abns) = Atk + A v*
(2.12) W00 =tun+ k")
Substituting (2.12) into (2.11), we find
— 22k i+ 220kttt 4+ 22 V00, — 223 in + 22050 =0,
or
[ Vhve=Rin+ A fin— uikntd' —vikn??,
from which, transvecting with f?,
(— o0t + urte + 00"V p0,
=kne f1' + A(— grn + Urthn +0:0n) — Wrken 1t + Aurkint,
or, using (2.7) and (2.9),
— Vntr—(fre— Akne)0 — 201 (Rnstd” — 1)
=R S5t — Agkn + Axttn + 00 — Akttt + Ak,
from which,
Vivr=—knefi'+2gne
which proves (2. 8).
Substituting (2. 8) into (2.12), we find
w'(— ks’ +2gen) = A(n+ken®),
or
(2.13) kusttfn + 2k =0,
from which, transvecting v,
(2.14) kjlur+ k000 =0.
LeMMA 2.2. Under the same assumptions as those in Lemma 2.1, we have
(2.15) kufit—kif,t=0
and

(2 16) kajzz '"glcjuq;-I-gki%j‘—kkjvi+kkiv1~
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Proof. Substituting (2.5) and (2.10) into (2.1), we find

f]chfm' —leVhft]
=wu;(Viun) —uiVyun) — v (Vivn —22gin) + vi(V jor.— 22 j1.).

2.17)

We compute the first member of (2.17) as follows.
FitVafes—FtPnfes
=Vn(f1)+ 21 Vnf s
=V(—gj+uui+00)+2 V0 f s
= (Pnt )b+ 205(Vntti) + (To0 )0i 0 5(Pn03) + 2100 f e
Thus (2.17) becomes
21V f o= ;(Vsttr, — Vnats) — s(V joun + Vnae;)
—0;(Pion+Vnvs—22gin) + 0V on — Va0 — 22q n).
Substituting (2.7) and (2. 8) into this, we find
210V S =20, fin+ 220k jn— 05— ks b — Bnu 1)
F ol —kufnt+ kS, —229m),
from which, transvecting f3, we obtain
2(— oL+ urxtd + 00" )n f 12
2.18) =20/ — grn+ Unthn,+vi01) + 2220k
+0 ks [ 1° + Bni(— 05+ uitet + vx08)y — Avsr(Bne f 1 — R g ot — 229 in).-
We compute the first member of (2.18) as follows:
2(— 0L+t + 00" Wn f e
= — 2P0 f i+ 20l Va(f006") — 5 (Pnae)} + 2064 V(£ 30°) — 1 5*(Vno)}
= =20 f ju+ 2ud (Pa2)v s+ AP0 ) — f o (Pnte)} — 201 {(Pn )+ AV nat )+, (Prove)}s
or, using (2.7), (2.8) and (2.9),
2(— oL+ uxtt' + 00" )Wn f i1
= — 2P0 fix+ 20n{(Bnctt® —0n)0 5+ 2(— ki f st + Agnj)
—(9jn—wjun—001— Ane 4"}
— 20i{(Bnetst — 0105+ A(frj— Aken;)
+ (Bnj— knitt vt ;— ka0 4 2 )}
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= — 20 f i+ 2010 jRnste’ — 2(1 — 22 ung jn + 2060 041,
~+ 2050 0 — 2(1 — 22)vikn j+ 2050 kst
Thus (2.18) becomes
— 200 f i+ 20810 jEontet — 2(1 — 22)atrg s+ 20tn0t 041,
+ 20500500 — 2(1 — 22)viken j+ 2010 iRt
=20 {(— g+ urttn +x0n) + 2201k 1
+ 0 ke f5n° 4 Bn — 0+ wrrt +0i0)}
—2u(Fene f 5t — RS u' —22g 1),
or
20 fix =200 5910 — 2029 jn.— 20kkn 4V iknk
(2.19) + %10 iR n ittt + 010 Rt
— ik [0’ + Aur(bni f3t — R fnb).

Taking the skew-symmetric part of (2.19) with respect to 2 and % and using
Vifiu—=Vefin=—V, en, we find

- ZVJfkh = z(ukgjh - uhgjlc) - 2(l’kkh]’ — vhkkj) + Uj(%kkmut — unkrodd
+0rkn’ —vnkr?) + 2u(kne f ) — R e f18) — 2un(Bre £ — Ry f51)-

(2. 20)

Now, transvecting #’ to (2.19) and taking account of (2.13), we find
(2.21) w'l, fin=_~1—2%)g jn— t6 jun— VR 04",

On the other hand, transvecting #* to (2.20) and taking account of (2.13),
we find

—2u'V, fin=—2(1—2%)g jn.+ 20 juun+ 200k jurt®
(2.22) F 0 {(L— ) kntt* — unkistt' v’ — viakyste'v®}
+AA =2 (kniS 5t —E juSfr)-
Adding twice of (2.21) and (2.22), we find
(2.23) (1 =2t — unkisuw'sn® — vpkystt v’y + AL — 22 (Bne /5 — Rje f21) =0,
from which, taking the symmetric part,
VAL = 2B R et — kst — vp kst v}

Fon{(L— 22k e’ — w jlersts' s’ — v kestt'v’} =0,
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Transvecting this with ¢/, we find
(2.24) (L —22)kpett* = Rystibtt* sy, + Bostt™v*vy,.
Substituting (2.24) into (2.23), we find
(2. 25) kjefut—knf;=0,

which proves (2.15).
From (2.13), we have

(1= 2)kestufn’ + AL~ 22) ko' =0.
Substituting (2. 24) into this equation, we find
ARt vy, — Akttt 0 U+ A1 — 22 Byt =0,
from which,
(2. 26) A= 22)kjvt = kst v’ ;— kot e’ .
Substituting (2. 24), (2.25) and (2.26) into (2.20)x(1—2%), we find
20 =2, frn=2(1 — 2)(eerg jn— wng ) + 2(1L — 2*)Wiken; — vukry),
which proves (2. 16).

LEMMA 2.3. Under the same assumplions as those in Lemma 2.1, we have,
at a point at which 1—2*x0,

(2.27) k=0,
(2.28) Ryt =po,,
(2.29) k0t =pu,,
(2.30) Via=(p—"1L,,
where

1 .
‘B= —1_71@3%‘0 .

Proof. Differentiating (2.9) covariantly and using (2.7) and (2.8), we find
ViV 2= (Vikejo)ut + k' (f e — ARie) + ke f 3 — 2915,
from which,
(2.31) ik yi—Vikr)ui=0.
From (2.24) and (2.26), we have
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(2.32) kjut=au;+ po,
and
(2.33) kvt =pu;—av,

respectively, where

a= —1__7 ktsu‘u’.

Differentiating (2.32) covariantly and using (2.7) and (2. 8), we find
(Pl je)t* + ke s*(fre— Ales)
=(Vka)uj+a(fig—krs) +(VeB)vs+ B(— ke Sy + A0xs),
from which, taking the skew-symmetric part and using (2.31),
(2.34) (Teayus— (Vo) + (VeB)v;— (ViB)vi+2a fr;=0.
Transvecting «/ to (2.34), we see that Fia is written in the form
Vva=auy+bog,
and transvecting v’ to (2.34), we see that Fx8 is written in the form
Vip=cur+dos.
Substituting these into (2. 34), we have
(b—c)(vir;j—urv;) +2a fi,=0,

from which, we have a=0. This proves (2.28) and (2.29).
Transvecting f3* to (2.25), we find

kj(— 0L+ urrdt +vi0") — Bes f541° =0,
or using (2.28) and (2. 29),
—k e+ Ptvr+ ;) — ks [, =0,
from which, transvecting g¢7%,
— kit —kus(g" — utu — ') =0,

that is, k/=0 and (2.27) is proved.
Finally, from (2.9) and (2.28), we have

le=kﬂu‘—v,=(ﬁ—1)vj

which proves (2. 30).
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3. Theorems on (f, g, u, v, A)-structures.

In this section we first prove

THEOREM 3.1. Suppose that a complete differentiable manifold M admits an
(f, 9, #, v, A)-structure such that A1 —22) is almost everywhere non-zevo,

(3. 1) Vjui—-—ViuJ =2f_71,
and
3.2) S it =20, (P — 20%) — 20,(V 0 — 20%).

At a point at which 20, we define a tensor field kj; of type (0,2) by
(3. 3) Vjui+l7iu] = —Zlkﬂ
If u* and Ry satisfy

(3.4) wVju;=0
and
(3.5) Vikeji—Vikr, =0,

then the manifold is isometric to S™(1]V2)xS™(1/V2).

Proof. Since the assumptions of Lemma 2.1 are satisfied, the conclusions of
Lemmas 2.1, 2.2 and 2.3 are all valid.
From (2.7), (2.28) and (3.4), we have

0=w/Vu;=—2v;—2pv;= — 21+ B)v;,
from which g=-1. Thus, (2.28), (2.29) and (2.30) become respectively

3.6) kju'=—v,,
(3. 7) kjﬂ)t=—‘u],
(3 8) Vj2=—21)1

Differentiating (3.7) covariantly and substituting (2.7) and (2.8), we find
(Vs Yoe+ Ry (—Ries o + Agne) = ARicj— S g
from which, taking the skew-symmetric part and using (3.5),
kRS is=1
or, using (2.15),
(3.9) Ry R s =T
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Transvecting (3.9) with £.%, we find
Rtk (— gus+ wits +0i05) = — g 55+ w500, 40305,
or, using (3.6) and (3.7),
(3.10) kiku=0;.
Differentiating (3.10) covariantly, we have
(3.11) (ke Y Rei+ R (Pikis) =0.
Since Pxky is symmetric in all indices, (3.11) can be written as
(3.12) ki (Viker) + kit (P keer) =0,

which shows that k(%) is skew-symmetric in j and 4.

Now, from (3.11), we have, taking the skew-symmetric part with respect to
k and j,

k) (Pike) — kit (V k) =0,
or
(3.13) k) (Piekers) =0,
from which, using (3.10),
(3.14) Viky=0.

On the other hand, differentiating (2.7) covariantly and using (2.15), (3.8)
and (3.14), we obtain

(3.15) ViV s = — grjtbi+ gritt;— Ric s+ R0 s+ 201k 3.
Thus the theorem follows from Theorem 0.7.

THEOREM 3.2. Assume that a complete diffeventiable manifold M admits an
(f, 9, u, v, A)-structure such that A1—2%) is almost everywhere nonm-zero, and (3.1),
(3.2) hold. At a point at which 20, we define kj; by (3.3).

If the sectional curvature K(y) with respect to the section y spanned by u* and
v* is comstant and

(3.16) Pk ji—V k=0,
then the manifold is isometric to a spheve S*(1) or to S™(1/V2)xS*1/V2).

Proof. In this case also, the conclusions of Lemmas 2.1, 2.2 and 2.3 are
all valid.

Differentiating (2.7) covariantly and using (2.9), (2.15) and (2.28), we find
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3.17) ViV jthi= — grejthi + grstt— R v+ kit s+ (L — Bosk i — Ak ji,
from which, using the Ricci identity,

— Kji"tn=grithj— ¢ jitb+ Raivj— R jsvi+ (1 — B)(wik js— v jkws),

Ky being the curvature tensor and consequently

kg dayioh
(3.18) K()=— M_ —1—p.

Since we have assumed that K(y) is constant, 8 must be also constant.

From (2.29), we have
Rjtve=Bu,.
Differentiating this covariantly and using (2.7) and (2.8), we find
(Pl Yve+ Ryt (— ks i 4+ 2gue) = B(fuj— ki),
from which, taking the skew-symmetric part and using (3.16),
kikisfi=—pSrs
or, using (2.16),
(3.19) kiR fis=—BSrs
Transvecting «/ to (3.19) and using (2.28) and (2.29), we find
2Bvi=—2Bvx,
from which, using S=const.
(3. 20) =0 or p=-1
Transvecting fi* to (3.19), we find
kiki*(— gis+uiths +005) = — B(— i+ 5+ 0,305),
or, using (2.28) and (2.29)

—kyky+ B (ujui+00:) = B i — w0 —v501),

that is,
(3.21) kitky=— Py i+ BB+ 1) (e u:+v,05).

Thus, if =0, then k;=0 and in this case we have, from (2. 30),
(3.22) Pa=—o;

and (3.17) becomes

61



62 KENTARO YANO AND U-HANG KI

(3.23) ViV juti= — grjues+ grins;.
If p=-1, then
(3.24) kitky=gjs,

and in this case we have, from (2. 30)
(3. 25) Vj = —201.

In the proof of Theorem 3.1, we found that (3.16) and (3.24) imply Fik;;=0.
Thus (3.17) gives

(3. 26) Vil iuti= — grjtbs+ gritj— R j0s+ Rriv j+ 201k ;.
Equations (3.22), (3.23), (3.25), (3.26) and Theorem 0.7 prove the theorem.
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