KODAI MATH. SEM. REP
24 (1972), 315—330

SUBMANIFOLDS OF CODIMENSION 2
IN AN EVEN-DIMENSIONAL EUCLIDEAN SPACE

By KenTArRO YAaNO aND U-Hanc Ki

§0. Introduction.

A structure induced on a submanifold of codimension 2 of an almost Hermitian
manifold or on a hypersurface of an almost contact metric manifold, called an
(f, g, u, v, 2)-structure, has been studied in [1, 5, 6,7]. Okumura and one of the
present authors [7] proved

THEOREM 0. 1. Let a complete differentiable submanifold M of codimension 2
of an even-dimensional Euclidean space E be such that the connection induced in
the normal bundle of M is trivial. If the (f, g, u,v, A)-structure induced on M is
normal, then M is a sphere, a plane or a product of a sphere and a plane, provided
that A1—22) is almost everywhere non-zero in M.

For an orientable hypersurface M of an odd-dimensional sphere S***!, we can
choose the first unit normal C in the direction opposite to that of the radius vector
of S*+! and hence the second unit normal D is automatically fixed. We denote
by H the second fundamental tensor with respect to C and by K that with respect
to D. Then H is the identity and the connection induced in the normal bundle of
M is trivial. Moreover, the normality of the (f, g, %, v, 2)-structure induced on M
naturally is equivalent to the condition Kf—fK=0. Thus we can deduce, from
Theorem 0. 1, the following

THEOREM 0. 2. If M is a complete orientable hypersurface of S*"** satisfying
FK—Kf=0 and Axconstant, then M is ‘a sphere of radius 1 /M 14a?, where a is
some constant determined by the embedding, provided that A(1—2%) is almost every-
where non-zero in M.

In [2], Blair, Ludden and one of the present authors proved:

THEOREM 0. 3. If M is a complete orientable hypersurface of S*™*' of constant
scalar curvature satisfying Kf+fK=0 and 2=constant, then M is a natural sphere
S or S*XS*, provided that nw>2 and A(1—2A%) is almost everywhere non-zero in M
(See also [3)).
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The main purpose of the present paper is to study complete orientable sub-
manifolds M of codimension 2 in an even-dimensional Euclidean space F which
satisfies the conditions Hf—fH=0 and Kf+fK=0, the normal bundle of M being
locally trivial. Our main result will be stated in Theorem 3. 1.

We would like to express here our sincere gratitude to Professor S. Ishihara
who gave us many suggestions to improve the first draft of the paper.

§1. Submanifolds of codimension 2 of an even-dimensional Euclidean space.

Let £ be a (2n+2)-dimensional Euclidean space and X the position vector
starting from the origin of E and ending at a point P of E. The E being even-
dimensional, it can be regarded as a flat Kihlerian manifold with the numerical
structure tensor F: F?=—1I, where I denotes the unit tensor and FY-FZ=Y -Z for
arbitrary vector fields Y and Z, where the dot denotes the inner product of vectors
of F.

Let M be a 2n-dimensional orientable manifold covered by a system of coordi-
nate neighborhoods {U; z*}, where here and in the sequel the indices 4, 1¢,7, --- run
over the range {1, 2, ---, 2n} and the summation convention will be used with
respect to these indices.

We assume that M is immersed in £ by X: M—FE and put X,=0,X, 9;=0d/ox"
Then X, are 2n linearly independent local vector fields tangent to X (M) and
g;1=X;-X; are local components of the tensor representing the Riemannian metric
induced on M from that of E.

We assume that we can take two globally defined mutually orthogonal unit
normals C and D to X(M) in such a way that Xi, X3, ---, Xan, C, D give the
positive orientation of E. In the sequel we identify X (M) with M itself.

The transforms FX, of X, by F can be expressed as linear combinations of
X, C and D, that is, we have equations of the form

1.1) FX,=f*Xp+u,C+v;D,

where f,* are components of a tensor field of type (1, 1) and u, v; are those of
1-forms of M, all globally defined on M. The transforms FC and FD of Cand D
by F can be expressed as

1.2) FC=—u"X,+2D,
1. 3) FD=—v"X,—1C
respectively, where #"=uwu;g**, v*=v,9** and 2 is a function on M, because
X FC=FX;-F*C=—FX;-C=—u,
X FD=FX; - F?D=—-FX;-D=—u;,
FC-D=F*C-FD=—C-FD.
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Applying F to (1.1), (1. 2) and (1. 3) and using F?=—1, (1. 1), (1. 2) and (1. 3),
we find

flfi = — o+ ua vt

wfl=+2w;,  fluw=—w"
1.4
v filt=—2u;,  fiv'=+aut,

U =v0t=1—22, uv*=0
(cf. [7]). We also have, from (L. 1),
(1.5) Qesf 3 S =g — i —v0;

by virtue of FX;-FX,=X; X,=g¢;. We can easily see that f;;=f,'g,; is skew-
symmetric in lower indices j and .

The structure defined on M by such a set of a tensor field f of type (1, 1), a
Riemannian metric g, two 1-forms # and » and a function 2 satisfying (1. 4) and
(1. 5) is called an (f, g, #, v, A)-structure (cf. [6]).

We denote by {,*;} the Christoffel symbols formed with ¢; and by F, the
operator of covariant differentiation with respect to {,*;}. Then equations of Gauss
are

h
(1. 6) VX, =0,X;— {j i}Xh=hﬁC+kﬁD,
where A;; and kj; are components of the second fundamental tensors with respect
to C and D respectively, and equations of Weingarten are

VjC=6‘]-C= —;’L]hXh'l'ljD,
1.7
V;D=08;D=—Fk,"X,—I,C,

where 4,* and k&, are given respectively by Z&,*=#h;g"* and k,*=Fk;g'*, and [, are
components of the third fundamental tensor, i.e., components of the connection
induced on the normal bundle.

Now, differentiating (1.1) covariantly and taking account of F;F=0 and of
equations of Gauss and Weingarten, we obtain

(1. 8) V,f;h= —hﬁu"+h/‘ui——kﬁv"+k]"vi,
(1.9) Viwi=—huft —Akji+1505,
(1. 10) Vj’l)i= —kj;f,5+lkj,;—lju,;.

Similarly we have, from (1. 2),
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(1' 11) Vj];= __hjin_l_kjiuz.
Now we put
1.12) Sy =Ny + (Vo — Viwj)u™ + (V0 — Vv )o",

where Nj* is the Nijenhuis tensor formed with f;%, ie.,
Njih= JLthzh _ftLVLf]h_(VJf‘Lb_Vijt).fth-

If the tensor S;* vanishes, the (f, g, #, v, 2)-structure is said to be zormal. Substi-
tuting (1. 8), (1. 9) and (1. 10) into (1.12), we find

S =(f b — bt [ Vs — (fEh —hi ),
(1.13) +(f k" =k i~ (iR — kit fi)v;
+ (lﬂ)i - livj)u" - (l;u,, —-l.iuj)v".

In the sequel, we need the structure equations of the submanifold A, that is,
the following equations of Gauss

1.14) K jin="hinhji— bjnhis+ Renk ji — B jnkea,

where Ky, are covariant components of the curvature tensor of M, and equations
of Codazzi and Ricci

(1.15) Vihji—Vihws— ek +1ike, =0,
(1.16) Vikji—Vikii+ ek — ki, =0,
(1. 17) lei—z;lj—["hjgkic—hukjt=0.

§2. The case in which f and H commute and £ and K anticommute.

We suppose that f and H commute, i.e.,

2.1 [t —h,t =0,

which is equivalent to

2.2) b+ f' =0,

that is, %;.f.t is skew-symmetric. We suppose also that f and K anticommute, i.e.,
2.3) Rk =0,

which is equivalent to

249 kjfit —kuf)' =0,
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that is, k;f,' is symmetric. We first prove

ProposiTiON 2.1. Let X(M) be a submanifold of codimension 2 of E such
that (2. 3) is satisfied and the function 2 is almost everywhere non-zero in M. Then

(2.5) k=0,

that is, the mean curvature vector is in the direction of C if it does not vanish.
Proof. Transvecting (2. 4) with w/v*, we find A(kju'u +kyw'0*)=0, from which

2. 6) kil u + kyvivt=0.

Transvecting next (2. 4) with f7, we find 2k;(—¢" +utu’ +0v'7)=0, which implies
k=0 by virtue of (2.6). But the mean curvature vector of X(M) is given by

L e

1 . 1
—gJt = — 2 t =
2.7 oY VX, on (h!C+ kD) o

and consequently, we see that the mean curvature vector is in the direction of C
if it does not vanish.
We next prove

ProprosiTION 2.2. Let X(M) be a submanifold of codimension 2 of E such
that (2. 1) is satisfied and the function A(1—2%) is almost everywhere non-zero in M.
Then we have

(1 —_ Xz)hji%t = (htsutus)uh
@. 8)
(1 — /‘(Z)h ,-ivi = (htsvtvs)vj s

where hsutu®=hp'v® and consequently, at every point at which 1—2%x0,
2.9 Ryt =puty, hjvt=po,,
p being given by

_ hsutut 'yt
1-2  1-2"

Proof. Transvecting (2. 2) with wu?, we find A(—A;u/v' — hyu'v®) =0, from which
(2.10) hjiuvt=0.
Transvecting (2. 2) with #’v*, we obtain A(%;u'u’—h;wv*)=0, from which
(2.11) bt =h 070"

Transvecting (2. 2) with f,7, we find
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hes b Sn® + has(— 35 + untet + 040" =0,
or equivalently
(2.12) has 2! fn® — han+ (Rt Yo + (a0 =0,
from which, taking the skew-symmetric part,
(Baca®)eun, — (Fongts®)oas + (Pigv"Yor, — ()0, =0.
Transvecting this with #*, we find
A =20t = sttt u®)u; + (hustatv®)v;,
from which, using (2. 10),
A= 22)hst8’ = (Postau®) 4.
Similarly, we can get
(1 =22t = (hsv'v®);.
Thus we have (2.9). Consequently, Proposition 2. 2 is proved.
From (2.9), (2.11) and (2.12), we have
2.13) Rin=Pus ' Fn® +p(wwsthr, +v:01).
We also have

ProrosiTiON 2.3. Let X(M) be a submanifold of codimension 2 of E such
that (2. 3) is satisfied and the function A(1—22)is almost everywhere non-zero in M.
Then

(L =)k jiut = (ostt'u®Yu+ (kests™*);,
2.14)
(A= 2)kivt = (Restitv®)u;+ (Best'o®)0,,

where kisutu®+kisv'v° =0, and consequently, at every point at which 1—22x0, we have
(2 15) kﬁui=auj+ﬁvj, kﬂv‘=‘8uj—avj,
a and B being given respectively by

_ kt'u® Rt p= kst'v®
S T T R Ti-r

Proof. Transvecting (2. 4) with «/»¢, we find A(kju?u’+ ki v'0t)=0, from which
kyut+ k070 =0. Transvecting (2. 4) with £/, we find

ksl S —Buy(— 0% +unut +0v,01) =0,
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or equivalently
(2.16) Ros o 11 + Rin — (Rytt ), — (Rav")vr =0,
from which, taking the skew-symmetric part,

(Bieet®)un, — (Bngtt®)ot; + (R0 )on, — (Rnev®)v; =0.

Transvecting this with #", we find

(L =25ksut = (Restttos® ot + (Rysttto®)v;.
Similarly we can get

(1 =28kt = (Bisutv®)oe; + (Bes'v®)0;.

Thus, taking account of kju'u*+k;v'v*=0, we get (2.15). Consequently, Proposi-
tion 2. 3 is proved.

From (2.14) and (2. 16), we have
2.17) kin=— ks [ 15+ a(wn —v08) + B(b:01+ unvs).
We next prove

ProrosiTioN 2.4. Let X(M) be a submanifold of codimension 2 of E such
that the global unit normals C and D are parallel in the normal bundle. Assume
that (2.1) and (2.3) are satisfied and the function A(1—2%) is almost everywhere
non-zero in M. Then

(2.18) ht=constant,

that is, the mean curvature of X(M) is constant.

Proof. Since C and D are parallel in the normal bundle, the third fundamental
tensor /, vanishes identically. Then, differentiating the first equation of (2.9)
covariantly, we find, by using (1. 9) with /;=0,

(2.19) (Vihit Yo+ b (= hys fof — Akje) = (7, pYus~+p(— by fof — Ak s),
from which, using equation (1.15) of Codazzi with /,=0, we have
(2. 20) 21,0 fos= (7, pyus— (Vo p)uj— 2 phyi [

Transvecting this with #?, we find (1—2%)F,p=(u'V,p)u;. In the same way, we can
prove, from the second equation of (2.9), 1—43)F,p='F,p)v,. The last two equa-
tions imply that 7,p=0, from which we have

(2. 21) p=const.
Thus (2. 20) becomes &,k fo=phifst, or btk fis=ph;f.!, from which, transvecting
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with f3f, we find
Rt b (— gsn+ tsttn +v50n) = phji( — 04+ untd +or0").
Therefore, using (2. 9), we have
(2. 22) hjhnt=phjn,  or  hih=ph".

Denote by p an eigenvalue of #* and by w" the corresponding eigenvector.
Then we have 4w = pw?, from which, applying %,* and using (2. 22), ph"w*= phlw?,

po=p?, that is,
(2. 23) 0=0 or o=p.

Thus the second fundamental tensor %;* has only two constant eigenvalues. Let
m be the multiplicity of the eigenvalue p, p being assumed to be non-zero, then
m is constant, and we have

(2. 24) hit=mp,
which is a constant. But the mean curvature is given by

1., 1

o= o ™

and consequently is a constant too. Therefore Proposition 2.4 is proved.
We can prove

ProposiTION 2.5. Under the same assumptions as stated in Proposition 2.4,
we have

(2. 25) Vihji=0.
Proof. Differentiating (2. 22) covariantly, we find
(2. 26) (Pehje)hnt +(Vuhnt) hjo= pVikijn.

Thus, using ik, ="F;hw, which is a direct consequence of (1.15) with /,=0, we
have from (2. 26)

(Pehn®)hje— (Vihn") e =0,
and, interchanging the indices % and &,
2.27) (PuhaitYhje— (V ihi") e =0.
Adding (2. 26) and (2. 27), we find
(2. 28) 2(VihntYhge=pVihjn.
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Transvecting (2. 28) with %7 and using (2. 22), we have
Rt (Pihnt) =0.
Thus, (2. 28) implies that
(2.29) DVihin=0.

Since p is constant, (2.29) implies that Fik;=0, if p50. On the other hand, from
(2. 22), we have h;hit=ph'. Thus, if p=0, we have ;=0 and hence Vi%;;=0.
Therefore, in any case, we have Fk;=0. This completes the proof of the
proposition.

We are now going to prove formulas (2. 39) and (2.40) which will be useful
in the sequel. Substituting (2.9) and (2. 15) into (1. 11), we have

(2. 30) Vid=au;+(B—D)v;.
Differentiating (2. 30) covariantly, we find

ViV2=(V0)ui+ aVjui+(V;B)s+(B—p)V s,
and, hence, using (1. 9) and (1. 10),
(2.31) ViVid=ie)u;+a(—hj fot — Ak i)+ (ViBYvs 4+ (B— DX — ks fur + A i),
from which, taking the skew-symmetric part,
(2.32) 0=(Va)u;— (Via)uw;—2ach i f.0 4+ (V; B)vs — (V3 8)v,.
Transvecting (2. 32) with #*, we find
(2.33) A =2V a) = (' Ve)r;+ (Vi f—20A )0,
Transvecting (2. 32) with ¢+, we find
(2. 34) A=22;8) ='W+ 2ad p)u;j+ (@' V. B)v,;.

Multiplying (2. 32) by 1—2% and subsituting (2.33) and (2.34) in the equation
obtained, we find

(2. 35) 2a(1— 2k [t = — (' V,p—vVia —dad p)(u0;— uvy),

from which, transvecting with #', —2aip=u'V,f—v'V;a—4alp, or equivalently
(2. 36) uV,p—v'Va=2a2p.

Thus (2. 35) becomes

2.37) a(l—22h ft=ad p(uv;—uw;),

from which, transvecting with f3?, a(1—22)%;(—0f+untt’ +vp0") = —a2® p(wsjun+v;0n),
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or equivalently
(2. 38) a(l—=2B)hjn=ca p(vjttn+0,00).

Transvecting (2. 38) with ¢’*, we find a(l—2®)A!=2ap(1—2%), from which, using
(2. 24),

2. 39) a(m—2)p=0.
Thus, since m and p are constant, we have
(2. 40) (m—=2)p=0 or a=0.

We shall consider three cases, that is, Case I where m=2, p=0, Case II where
m=2 and Case III where p=0. These cases with some additional assumptions
will be discussed in § 3.

In the next step, we prove

ProrosiTION 2. 6. Under the same assumptions as stated in Proposition 2.4,
we have

(2.41) (L—=22) (ke s+ Bl i) =+ BB+ D)) (s 0as +v0:).
Proof. Differentiating the second equation of (2. 15) covariantly, we find
Wikt + k' (—Rys f18+ Ahjr)
=B+ B(—hyufit — ki) — (Vio)oi— a( — ko o + 2z0).

Taking the skew-symmetric part and using Fik;;=V;ks;, which is a direct conse-
quence of (1.16) with /,=0, we find

2k, ki’ fis=(ViPyus — (ViPu — (Vjo)vi 4 (Vic)v; — 280 1

Multiplying this equation by 1—2% and substituting (2. 33) and (2. 34) into the
equation obtained, we find

21 =22k, ks frs= — (Vi + 0"V, B) (w505 — w00 5) — 2(L — 22 Bheji
or equivalently
(2. 42) 2L =20k, ke fis= — (U Va+0' Vi) (v —uiv;) — 21— 2%) SRy 1,
from which, transvecting with #’»* and using (2. 9) and (2. 15),
(2. 43) wa+v',f=—22[*+ B(B+D)].
Thus (2. 42) becomes
(A =22k, ke’ frs=Ala® + B(B+ D)) (05— wivg) — (1 =A%) Bhju f .

Transvecting this with f3*, we find
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(1= 22k, k*(— gon+ stin +050p) = — 22[a+ BB+ D)) (s 0n+ v 0n) — (1 — 22) s — Of + unuet +vp?),

from which, using (2.9) and (2. 15),

(A= 22) (k) e+ Bhyn) = —[@® 4+ B(B+ D) jun~+v;0n),
which proves proposition 2. 6.
We have, from equation (1. 14) of Gauss,

(2. 44) Kii=hithgi— hhi —kukd,

from which, using (2. 22),

(2. 45) K= —p)hji—kikit.

From (2. 41) and (2. 45), we find

(2. 46) A=) Kji=1 =25~ =D+ Bhji—[a® + BB+ D) (ujui+v50:),

from which, transvecting with ¢%,

2. 47) 97 Kji=(h' —p+ ks’ —2[a®+ p(B+D)],

which gives the scalar curvature of M.

§3. Complete submanifolds with constant scalar curvature.

We assume, here and in the sequel, that the submanifold M is complete and
the scalar curvature ¢/*K;; of M is constant. We have mentioned in §2 three
Cases I, IT and III. First we consider Case I where m=2 and px0. We find
a=0 from (2.39) with (m—2)px0. The scalar curvature ¢*K; being constant,
we see from (2. 47) that g is constant. Thus (2. 43) implies 28(8+p)=0, that is,

3.1) p=0 or B=—p.
Then (2. 41) becomes
3.2) kjikst = — phji,

because a=0 and p(f+p)=0. Differentiating (3. 2) covariantly and taking account
of (2.25), we find

3.3) (Trkjn)kit + kj(Vikit) =0,

from which, using equation (1.16) of Codazzi ‘with 1,=0. kj(Vekit) — kiu(V;k:4) =0,
or equivalently

3.4 kj(Viker") — k(P ki) =0.
Adding (3.3) and (3.4), we have k;(Fik!)=0. Transvecting this with &,’ and



326 KENTARO YANO AND U-HANG KI
using (3. 2), we obtain
(3. 5) ‘tht(kau)_—‘O

Since g is constant, (3.5) implies Z'(Fiki)=0 if B30. On the other hand, taking
account of (3.2), we have trivially Z:‘(Piki)=0 if B=0. Therefore, in any case,
we have

(3. 6) hht(kau) = 0.

We see, from (1.17) with [,=0, that A" and k;* are commutative, that is,
hik,t— kiR, =0. Thus, using (2.5), (2. 22) and (3. 2), we see that the second funda-
mental tensors %;* and k;* have at each point of M respectively the forms

7D ()= b R

..............................

with respect to a suitable orthonormal frame, because of (3. 1), where g=p if g=—p
and ¢=0 if =0. Thus, we can choose in any coordinate neighborhood of M, since
dim M=2n, a field of frames {ew,, €, ***, ¢cany} Such that

hihez(r) =peh(r)’ (T=1’ 2» ) m)y
(3' 8) kihez(p) =qen(,u)) (ﬂ=1’ 27 tty m/2),
ke, =—qe" ., (v=m2+1, ---, m).

If we denote by 9@ the distribution spanned by ey, e, -+, and ewmy, then @ is a
global dirtribution because p50. We denote by & the orthogonal complement of
@. The distribution @ is locally spanned by ewm+w, *** Cm-. Since Fph,»=0 and
p=0, the distribution @ is integrable and the integral manifolds of @ are totally
geodesic in M. Thus & is also integrable and the integral manifolds of § are
totally geodesic in M.

If we denote by V an arbitrary maximal integral submanifold of &, then we
see, taking account of (3.7), that V is totally geodesic in E**+. On the other
hand, V is complete because V is totally geodesic in M which is complete. Thus,
V is a plane E?®-m in E?n+2,

Let V be the maximal integral submanifold of ¢ passing through a point P
of M. Then we see that V is complete and lies on an (m+2)-dimensional plane
E™ which is orthogonal to V passing through P, where V is a (2n—m)-dimen-
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sional plane E**-™. Hence, taking account of (3.7), we see that thg submagifold
V, which is immersed in £™*2, has the second fundamental tensors %,* and ky* of
the forms

b q
? q
_ b 0 _
3.9) (h*) = » (ko) = q 0
., q
. ‘-.p q,
0 —.q

with respect to the local frame {ew), @), ***s €my} and the unit normals C and D,

where C and D are contained in £™*% along V, the indices «, b, ¢, --- running over
the range {1, 2, ---, m}.

According to (3.1), we first consider the case where f=—p, which implies
g=p. If we take account of (3.6), we see that the distributions 4* spanned by
{ecwy, e, ++y €msn} and 4~ spanned by {em,211, -+, emy} are both parallel along V.
Consequently, since V is complete, we can easily verify the following fact: the
submanifold V is congruent in £™+2 to the submanifold S™2(1/a/ 2[p|) x S™*(1/a/2]p|),
which is natually imbedded in £™+2 (cf. Yano and Ishihara [4]). Next, we consider
the case where =0, which implies ¢=0, then we see, using (3.9) with ¢=0, that
V is totally umbilical in £™+* and complete. Thus, in this case, V is congruent
to S™(1/|pl) in E™*?, which is natually imbedded in E™+2,

Summing up the arguments developed above, we can conclude that in Case I,
the submanifold M is congruent in E?"*% to S™(») X E2"~™ or S™*(r) X S™*(r) x E2"—m,
v being a positive number, which is natually imbedded in E?"*?, where S*(r)
denotes a k-dimensional sphere of radius 7.

In the next step, we consider Case II where m=2. In this case we see that
px0. From (2.24), we find that

(3.10) hi=2p,

which implies that

(3. 11) (1 — 22)hjo=p(uejus +0,05),

by virtue of (2.9). Taking account of (3.10), we have, from (2. 46),
(3.12) 0" K =2(p*—a®— ).

Substituting (3. 11) into (2. 41) and using p=0, we find

(3.13) Rtk = —117— (@®+ i

In Case I, we found that (3.2) with B=const. implies (3.6). The scalar cur-
vature ¢/*Kj; being constant, we see from (3. 12) that a®+4? is constant. Thus, in
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the same way as developed in Case I, we can prove that (3. 13) implies %! (Viki) =0.
Since 4;* and k;* are commutative, using (2.5), (2.22) and (3. 13), we see that
the second fundamental tensors %;* and k;* have at each point of M the form

? q

3. 14) () = , (k)=

with respect to a suitable orthonormal frame, where g=A/a®+ B is constant. Thus
we can choose in any coordinate neighborhood of M, where dim M=2#x, a field of
frames {equy, €@, ***y €cany} such that

hite* iy =pew, hie' @ =pe” o,
(3.15)

kite'ay =qe" wy, ke’ = —qe" .

As in Case I, by using Z.!(Feki)=0, (3.13), (3.14) and (3.15), we can prove
that, when ¢=0, the submanifold M is congruent in E?"+? to S%(1/|p|)x E?*-?%, and
when ¢x0, to S'(1/a/2¢)x S'(1/a/2¢) X E*»-2. Therefore, we can conclude that in
Case II, the submanifold M is congruent to S:(r)X E*~% or S'(r)XS'(r)xX E*%, r
being a positive number, which is naturally imbedded in E?**+2,

Finally, we consider Case III where p=0. In this case (2.22) implies %;=0.
Thus, the submanifold M lies on hypersurface E?"! of E?"+2, Taking account of
h;=0 and /,=0, we can write (2. 41) and (2. 46) as

(3.16) (1 =2%)k, by = (0 + B*) (w25 +0,05),
3.17) ¢ K= —2(a®+ %,

respectively, where a*+ % is constant because of ¢7*K;=const. The tensor k;* is
the second fundamental tensor of M immersed in the hypersurface E?"*! with
respect to the normal D. We now suppose that a®+p2x0 and restrict ourselves
to the open set M, (CM) where 1—2%=0. Then, taking account of (2. 5) and (3. 16),
we see that k;* has at each point of M, the form

q 0

(3.18) B oo b, N

with respect to a suitable orthonormal frame. Therefore we can choose in any
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coordinate neighborhood of M, a field of frames {eq, e, **» en}, With respect to
which (3. 8) holds, where e, and e are linear combinations of #* and »*. On
the other hand, we can easily see, by using (1. 9) and (1. 10) with /4;=0 and /,=0,
that the distribution spanned in M, by #"* and »* is integrable and totally geodesic
in M,. Thus, the distribution spanned in M, by e, and e, is also integrable and
its integral manifolds are totally geodesic in M,. Therefore, according to the same
arguments developed in discussing the Cases I and II, we can conclude the fact:
In Case III, the open submanifold M, is locally isometric to S'(7)xS'(r)x E?"-2,
which is locally flat. Thus the scalar curvature ¢’*Kj; of M vanishes identically
in M, and hence in M because of the continuity of ¢*Kj. Since ¢*K;=0 in M,
(3.17) implies a®+ p?=0, which contradicts the assumption that a®*+g%20. Conse-
quently, we see that a®+4p?=0 in Case IIl. Therefore we find, from (3. 16), that
k;;=0 holds identically in M. Thus, M is totally geodesic in the hyperplane E?**+!
and consequently is congruent to a plane E** (C E*+lcC E?*"+?),
Summing up the conclusions obtained in Cases I, II and III, we have

THEOREM 3.1. Let M be a complete submanifold of codimension 2 in an even-
dimensional FEuclidean space E*™*% such that the scalar curvature of M is comstant
and there are global unit normals C and D to M which are parallel in the normal
bundle. If fH=Hf and fK=—Kf hold, where H and K are the second funda-
mental tensors of M respectively with respect to C and D, f being the temsor field
of type (1,1) appearing in the induced structure (f, g, u,v,2) of M, then M is in
E*+2 provided that A(1—2%) is non-zero almost everywhere in M, congruent to one
of the following submanifolds:

EZn, SZn(r)’ S"(T)XS"(V), Sl(r)xEZn—l (l=1, 2’ ey 2%—1),
S¥(r) x S(r) x B2 (=1, 2, .-, n—1),
where S¥(r) denotes a k-dimensional sphere of radius r (>0) imbedded natrually in
E2n+2.
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