
KODAI MATH. SEM. REP
24 (1972). 315-330

SUBMANIFOLDS OF CODIMENSION 2

IN AN EVEN-DIMENSIONAL EUCLIDEAN SPACE

BY KENTARO YANO AND U-HANG KI

§ 0. Introduction.

A structure induced on a submanifold of codimension 2 of an almost Hermitian
manifold or on a hypersurface of an almost contact metric manifold, called an
(/, g, u, v, ^-structure, has been studied in [1, 5, 6, 7]. Okumura and one of the
present authors [7] proved

THEOREM 0.1. Let a complete differentiάble submanifold M of codimension 2
of an even-dimensional Euclidean space E be such that the connection induced in
the normal bundle of M is trivial. If the (/, g, u, v, λ)-structure induced on M is
normal, then M is a sphere, a plane or a product of a sphere and a plane, provided
that λ(l—λ2) is almost everywhere non-zero in M.

For an orientable hypersurface M of an odd-dimensional sphere S2n+1, we can
choose the first unit normal C in the direction opposite to that of the radius vector
of S2n+1 and hence the second unit normal D is automatically fixed. We denote
by H the second fundamental tensor with respect to C and by K that with respect
to D. Then H is the identity and the connection induced in the normal bundle of
M is trivial. Moreover, the normality of the (/, g, u, v, Λ)-structure induced on M
naturally is equivalent to the condition Kf—fK=0. Thus we can deduce, from
Theorem 0.1, the following

THEOREM 0. 2. If M is a complete orientable hypersurface of S2n+1 satisfying
fK—Kf=0 and Inconstant, then Mis [a sphere of radius l/\/l+a2, where a is
some constant determined by the embedding, provided that λ(l— λ2) is almost every-
where non-zero in M.

In [2], Blair, Ludden and one of the present authors proved:

THEOREM 0. 3. If Mis a complete orientable hypersurface of S2n+1 of constant
scalar curvature satisfying Kf+fK=0 and λ^constant, then M is a natural sphere
S2n or SnxSn, provided that n>2 and λ(l—λ2) is almost everywhere non-zero in M
(See also [3]).
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The main purpose of the present paper is to study complete orientable sub-
manifolds M of codimension 2 in an even-dimensional Euclidean space F which
satisfies the conditions Hf—fH=0 and Kf+fK=ΰ, the normal bundle of M being
locally trivial. Our main result will be stated in Theorem 3.1.

We would like to express here our sincere gratitude to Professor S. Ishihara
who gave us many suggestions to improve the first draft of the paper.

§1. Submanifolds of codimension 2 of an even-dimensional Euclidean space.

Let E be a (2^+2)-dimensional Euclidean space and X the position vector
starting from the origin of E and ending at a point P of E. The E being even-
dimensional, it can be regarded as a flat Kahlerian manifold with the numerical
structure tensor F: F2=—I> where / denotes the unit tensor and FY-FZ=Y Z for
arbitrary vector fields Y and Z, where the dot denotes the inner product of vectors
of E.

Let M be a 2/z-dimensional orientable manifold covered by a system of coordi-
nate neighborhoods {U; xh}, where here and in the sequel the indices h, i,j, ••• run
over the range {1,2, •••, 2n) and the summation convention will be used with
respect to these indices.

We assume that M is immersed in E by X: M-+E and put Xι=diX, di=djdx\
Then X% are 2n linearly independent local vector fields tangent to X(M) and
gji=XJ'Xi are local components of the tensor representing the Riemannian metric
induced on M from that of E.

We assume that we can take two globally defined mutually orthogonal unit
normals C and D to X(M) in such a way that Xl9 X2, •••, X2n, C> D give the
positive orientation of E. In the sequel we identify X(M) with M itself.

The transforms FXt of X% by F can be expressed as linear combinations of
Xht C and D, that is, we have equations of the form

(1.1) FXz=fι

hXh+uiC+vίD,

where f%

h are components of a tensor field of type (1,1) and ut, Vι are those of
1-forms of M, all globally defined on M. The transforms FC and FD of C and D
by F can be expressed as

(1.2) FC=-uhXh+ffl,

(1.3) FD=-vhXh-λC

respectively, where uh=Uigih, vh=Vίgίh and λ is a function on M, because

Xi FC=FXi>F2C=-FXi'C=-uι,

Xi>FD=FXi-F2D=-FXrD=-Vi,

FC D=F2C-FD= -C-FD.
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Applying F to (1. 1), (1. 2) and (1. 3) and using F2=-I, (I. 1), (1. 2) and (1. 3),
we find

(1.4)
vtf* = - λuu Λ V = + λuh,

UiU%=ViV1=1 - λ2, UiV1=0

(cf. [7]). We also have, from (1.1),

(1.5) gtsfjtfzs=gjί-ujUi-vjVi

by virtue of FXj'FX%=Xj Xι=gμ. We can easily see that fjί=f3

tgtί is skew-
symmetric in lower indices j and L

The structure defined on M by such a set of a tensor field / of type (1,1), a
Riemannian metric g, two 1-forms u and v and a function λ satisfying (1. 4) and
(1. 5) is called an (/, g, u, v, ^-structure (cf. [6]).

We denote by {/*} the Christoffel symbols formed with gjt and by Vx the
operator of covariant differentiation with respect to {/*}. Then equations of Gauss
are

(1. 6) FjX% =djXi- J .*. 1 Xh=hjiC+kjtD,

where hμ and kμ are components of the second fundamental tensors with respect
to C and D respectively, and equations of Weingarten are

FjC=djC=-hjhXh+ljD,

(1.7)

where h3

h and k3

h are given respectively by hjh=hμgih and kjh=kμgίh, and l3 are
components of the third fundamental tensor, i.e., components of the connection
induced on the normal bundle.

Now, differentiating (1.1) covariantly and taking account of F3F=0 and of
equations of Gauss and Weingarten, we obtain

(1. 8) F,/»Λ= -

(1. 9) FjUi= -

(1.10) FjVi= -

Similarly we have, from (1. 2),
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(1.11) Fdλ= -hjiV'+kjiU1.

Now we put

(1.12) Sjih=Njih + (FjUi - PiUj)uh + (Pjvt - PiVj)v\

where Njih is the Nijenhuis tensor formed with ft

h, i.e.,

If the tensor S#Λ vanishes, the (/, g, u, v, ̂ -structure is said to be normal. Substi-
tuting (1. 8), (1. 9) and (1.10) into (1.12), we find

Sjih = (fj%h - h/ft

h)ui - (f%%h - himu,

(1.13) +(fj%h-k/ftηvί-(fι%h--ki

tft

h)vj

In the sequel, we need the structure equations of the submanifold M, that is,
the following equations of Gauss

(1.14) Kkjih=hkhhji-hjhhki+kkhkji-kjhkki,

where Kujm are covariant components of the curvature tensor of M, and equations
of Codazzi and Ricci

(1.15) Pkhji-Pjhki-lkkji+ljkkι=O,

(1.16)

(1.17)

% 2. The case in which f and H commute and f and K anticommute.

We suppose that / and H commute, i.e.,

(2.1) f/ht

h-h/ft

h=0,

which is equivalent to

(2.2) hjtrt+hufj^O,

that is, hjtf-ί is skew-symmetric. We suppose also that / and K anticommute, i.e.,

(2.3) / / & * + * / / ; * = (>,

which is equivalent to

(2.4) kjtfS-kitf/^0,
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that is, kjtfx is symmetric. We first prove

PROPOSITION 2.1. Let X(M) be a submanifold of codimension 2 of E such
that (2. 3) is satisfied and the function λ is almost everywhere non-zero in M. Then

(2.5) # = 0 ,

that isy the mean curvature vector is in the direction of C if it does not vanish.

Proof. Transvecting (2.4) with uJv%, we find λ(kjtu
Jut+kuVίvt)=0, from which

(2.6) kjtuW+kjiVfv^O.

Transvecting next (2.4) with fj\ we find 2kjt(—gtJ+utu:f+vtvj)=0} which implies
kt

ι=0 by virtue of (2. 6). But the mean curvature vector of X(M) is given by

(2.7) 4 ^ ^

and consequently, we see that the mean curvature vector is in the direction of C
if it does not vanish.

We next prove

PROPOSITION 2.2. Let X(M) be a submanifold of codimension 2 of E such
that (2.1) is satisfied and the function λ(l—λ2) is almost everywhere non-zero in M.
Then we have

(2.8)

where htsu
tus=htsv

tvs and consequently, at every point at which 1—Λ

(2.9) hjiύ1 =puj, hjiV1 =pVj,

p being given by

P~~ 1-λ2 1-λ2 '

Proof. Transvecting (2.2) with u3u%, we find λ(—hjtu
jvt—huuivt)=θf from which

(2.10) Ay<«V=0.

Transvecting (2.2) with uJvι, we obtain λ(hjtu
J'ut—hjtv

J'vt)=Of from which

(2.11) hjiu
Juί=hjiV

jv\

Transvecting (2. 2) with fh

3\ we find
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or equivalently

(2.12) AίβΛ
ί/Λf

from which, taking the skew-symmetric part,

(hitU^Uh - (hhtu^ut+(huv
ι)vh - (hutV^Vi=0.

Transvecting this with uh, we find

(1 -λ^huu1=(ht,u?u*)Ui + (htsU^Vi,

from which, using (2.10),

Similarly, we can get

Thus we have (2. 9). Consequently, Proposition 2. 2 is proved.

From (2. 9), (2.11) and (2.12), we have

(2.13) A , Λ = U W + # W f o + ^ Λ )

We also have

PROPOSITION 2. 3. Let X(M) be a submanifold of codimension 2 of E such
that (2. 3) is satisfied and the function λ(l—λ2) is almost everywhere non-zero in M.
Then

(1 - λ2)kj{U* = (kt»U?U')

(2.14)

(1 - X2)kHVl = (ktsU^

where &,«*«*+&ίstfV=0, and consequently, at every point at which 1—Λ2^F0, we have

(2.15) &##*=α#y+βvj,

a and β being given respectively by

l-λ2 1-λ2 ' β 1-λ2 '

Proof Transvecting (2.4) with ujvi

J we find λ(kjtu3ut+kuv
ίvt)=θ, from which

kjiUJui-\-kjiV
Jvl=0. Transvecting (2.4) with fh

j

f we find

kttfϊtt -kui-dlΛ- uhu
ι+vhv

ι)=0,
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or equivalently

(2.16) ftί.Λ
ίΛ +ftiΛ-(*««ί)«A-(*«»ί)»Λ=O,

from which, taking the skew-symmetric part,

(kuU^Uh - {khtUl)Ui + {kuV^Vh - (khtV^Vi = 0.

Transvecting this with «Λ, we find

(1 - X2)kUUl = (ktstt'u

Similarly we can get

Thus, taking account of kjiUJuι+kjiVJvι=0, we get (2.15). Consequently, Proposi-
tion 2. 3 is proved.

From (2.14) and (2.16), we have

(2. 17) kih = - ktsfSfh'+α(«i«Λ - WΛ) + β(UiVh + «Λ»i).

We next prove

PROPOSITION 2. 4. Let X(M) be a submanifold of codimension 2 of E such
that the global unit normals C and D are parallel in the normal bundle. Assume
that (2.1) and (2.3) are satisfied and the function λ(l—λ2) is almost everywhere
non-zero in M. Then

(2.18) hi- constant,

that is, the mean curvature of X(M) is constant.

Proof. Since C and D are parallel in the normal bundle, the third fundamental
tensor l3 vanishes identically. Then, differentiating the first equation of (2.9)
covariantly, we find, by using (1. 9) with lj=0,

(2.19)

from which, using equation (1.15) of Codazzi with lj=0, we have

(2.20)

Transvecting this with u\ we find (l-λ2)Pjp=(uΨzp)uj. In the same way, we can
prove, from the second equation of (2. 9), (l-λ2)FJp=(vΨιp)vJ. The last two equa-
tions imply that Fjp=0, from which we have

(2. 21) p=const.

Thus (2.20) becomes hJ

thi'fst=ρhjtfιt, or hjtht

sfιs=phjtfι

t

) from which, transvecting
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with /Λ*, we find

h/ht

s( - gsh+usuh+vsvh) =phjt{- <5£+u hu ι+v hv l).

Therefore, using (2. 9), we have

(2.22) hjthtΐ=phjh, or hfht^ph?.

Denote by p an eigenvalue of hf and by wn the corresponding eigenvector.
Then we have hiw% — ρw\ from which, applying ht

h and using (2. 22), phί

hwι=ρht

hwt

y

pp=ρ2, that is,

(2.23) p=0 or p=p.

Thus the second fundamental tensor h/1 has only two constant eigenvalues. Let
m be the multiplicity of the eigenvalue p, p being assumed to be non-zero, then
m is constant, and we have

(2.24) ht=mp,

which is a constant. But the mean curvature is given by

and consequently is a constant too. Therefore Proposition 2. 4 is proved.

We can prove

PROPOSITION 2. 5. Under the same assumptions as stated in Proposition 2. 4,
we have

(2.25) F*A/4=0.

Proof, Differentiating (2. 22) covariantly, we find

(2.26)

Thus, using Vkhjh = Vjhkhy which is a direct consequence of (1.15) with /j=0, we
have from (2. 26)

and, interchanging the indices h and &,

(2.27) (F/ΛΛΛyί

Adding (2. 26) and (2. 27), we find

(2.28) 2(Fkhh

t)hjt=pFkhJh.
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Transvecting (2. 28) with hi3 and using (2. 22), we have

Thus, (2. 28) implies that

(2.29) pPkhjh=0.

Since p is constant, (2. 29) implies that Fkhji=0, if p*0. On the other hand, from
(2.22), we have hjih

jί=pht

t. Thus, if p=0, we have hji=O and hence Fkhji=0.
Therefore, in any case, we have Fkhji=0. This completes the proof of the
proposition.

We are now going to prove formulas (2. 39) and (2. 40) which will be useful
in the sequel. Substituting (2. 9) and (2.15) into (1.11), we have

(2.30) Fiλ=aui+(β-p)vί.

Differentiating (2. 30) covariantly, we find

PjPiλ = (Pjφi+aFjUi + (Pjβ)Vi + (β -p)PjVi,

and, hence, using (1. 9) and (1.10),

(2.31) W = ( F y α ) ^ + α ( - ^

from which, taking the skew-symmetric part,

(2. 32) 0=(Fja)Ui-(Piά)uj-2ahjtf%

t + (Fjβ)vt-{Fφ)v3.

Transvecting (2. 32) with uι, we find

(2.33) (l-

Transvecting (2. 32) with v%, we find

(2.34) (l-

Multiplying (2.32) by 1-λ2 and subsituting (2.33) and (2.34) in the equation
obtained, we find

(2. 35)

from which, transvecting with «% —2aλp=utFtβ—vtFta—4aλpt or equivalently

(2. 36) uΨtβ - vΨta=2aλp.

Thus (2. 35) becomes

(2.37) ail-ληhjtf^aλpiujVi-UiVj),

from which, transvecting with fh

ι, a(l—λ2)hjt{—dl+uhu
t-\-vhv

t)=— aλ2p(UjUh+VjVh),



324 KENTARO YANO AND U-HANG KI

or equivalently

(2.38) aQ.-λ*)hih=ap(UjUh+VjVh).

Transvecting (2.38) with g'\ we find a(l-λ2)ht

t=2ap{l-λ2), from which, using
(2. 24),

(2.39) α(w-2)/>=0.

Thus, since m and p are constant, we have

(2.40) (m-2)p=0 or a=0.

We shall consider three cases, that is, Case I where m*r2,p^0, Case II where
m=2 and Case III where p—0. These cases with some additional assumptions
will be discussed in §3.

In the next step, we prove

PROPOSITION 2. 6. Under the same assumptions as stated in Proposition 2. 4,
we have

(2.41) (l-ληikf

Proof. Differentiating the second equation of (2.15) covariantly, we find

Taking the skew-symmetric part and using Vkkji — Vjku> which is a direct conse-
quence of (1.16) with lj—0, we find

2kj%sfts = (FyjS)** - (Fφ)Uj - ( F » i + (Fta)ϋj - 2βhjtfS.

Multiplying this equation by 1—λ2 and substituting (2.33) and (2.34) into the
equation obtained, we find

2(1 - λ2)k/kisfts = - {uΨta+vΨφXujVi - tuvj) - 2(1 - λ2)βhύtfι\

or equivalently

(2. 42) 2(l-λ2)k/kt

sfis= -(uΨta+vΨtβXuJvi-uίVj)-2a--λ2)βhjtfz

from which, transvecting with uJ'vί and using (2. 9) and (2.15),

(2. 43) uΨta+vΨtβ= -2λ[a2+β(β+p)].

Thus (2. 42) becomes

(1 -λ2)k/kt

sfis=λ[a2+ftβ+p)](jUjVi - UtVf) - (1 -λ2)βhjtf%K

Transvecting this with fh

%, we find



SUBMANIFOLDS IN EUCLIDEAN SPACE 325

1 - λ2)kj%s( - gsh+usuh+vsvh) = -λ2 [a2+β(β +p)] (ujUh+VjVh) - (1 - λ2)βhjt{ - δι

h+uhu
ι

from which, using (2. 9) and (2.15),

(1 - λ2)(k/kth+βhjh) = - [α2

which proves proposition 2. 6.

We have, from equation (1.14) of Gauss,

(2.44) Kj

from which, using (2. 22),

(2.45) K

From (2. 41) and (2. 45), we find

(2.46) ( l - J a ) / f y = ( l - ; W - i + i 8 ^

from which, transvecting with g ̂ ,

(2.47) gfiKj^W-p+βW^lat + βiβ+p)],

which gives the scalar curvature of M.

§3. Complete submanif olds with constant scalar curvature.

We assume, here and in the sequel, that the submanifold M is complete and
the scalar curvature gjiKji of M is constant. We have mentioned in §2 three
Cases I, II and III. First we consider Case I where m^2 and p^O. We find
a=0 from (2.39) with (m—2)p^0. The scalar curvature gjiKji being constant,
we see from (2. 47) that β is constant. Thus (2. 43) implies λβ(β+p)=O, that is,

(3.1) /3=0 or β=-p.

Then (2. 41) becomes

(3.2) kjtk^-βhju

because a=0 and β(β+p)=O. Differentiating (3.2) covariantly and taking account
of (2. 25), we find

(3.3) (Γ t * y ί )*t ί +M'W)=0,

from which, using equation (1.16) of Codazzi with /,=(). kjt{Vkki) —
or equivalently

(3.4)

Adding (3.3) and (3,4), we have &/ί(JW)=0, Transvecting this with V
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using (3. 2), we obtain

(3.5) βl

Since β is constant, (3. 5) implies hh

t(Pkku)=0 if β^O. On the other hand, taking
account of (3.2), we have trivially hh\Vkku)—0 if /3=0. Therefore, in any case,
we have

(3.6) hht(Pkkit)=0.

We see, from (1.17) with /,=(), that hj1 and kί1 are commutative, that is,
htik3

t-kt

ih3

t=§. Thus, using (2. 5), (2. 22) and (3. 2), we see that the second funda-
mental tensors hιh and kth have at each point of M respectively the forms

/ P

(3.7)

\ q
q

0

q
-q

-q

0

0

\

\

with respect to a suitable orthonormal frame, because of (3.1), where q=p if β=— P
and q=0 if β=0. Thus, we can choose in any coordinate neighborhood of M, since
dim M—2n, a field of frames {g(1), ^ ( 2 ), •••, ^(2n)} such that

(μ=l,2,-,ml2),

—, w).

(3.8)

If we denote by iP the distribution spanned by £ α ) , ^ ( 2), •••, and g(m), then 3) is a
global dirtribution because ^ 0 . We denote by S) the orthogonal complement of
£). The distribution ^ is locally spanned by e<:m+Ό, •••, e(2W). Since Fjchjh=O and
ji>^0, the distribution ^) is integrable and the integral manifolds of ££) are totally
geodesic in M. Thus J is also integrable and the integral manifolds of <D are
totally geodesic in M.

If we denote by V an arbitrary maximal integral submanifold of ®, then we
see, taking account of (3. 7), that V is totally geodesic in E2n+2. On the other
hand, V is complete because V is totally geodesic in M which is complete. Thus,
V is a plane E2n~m in E 2 w + 2 .

Let V be the maximal integral submanifold of <& passing through a point P
of M. Then we see that V is complete and lies on an (m+2)-dimensional plane
gm+2 ^ j ς h j s orthogonal to V passing through P, where V is a (2n—m)-dimen-
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sional plane E2n~m. Hence, taking account of (3. 7), we see that the submanifold
F, which is immersed in Em+2, has the second fundamental tensors hb

a and kb

a of
the forms

(3.9)

\ 0 P/

Q

\ 0 -q I

with respect to the local frame {eCΌ, eC2), •••, 0(m)} and the unit normals C and D,
where C and D are contained in Em+2 along F, the indices a, b, c, ••• running over
the range {1, 2, •••, m\.

According to (3.1), we first consider the case where β— —p, which implies
q=p. If we take account of (3. 6), we see that the distributions Δ+ spanned by
Ki), <?C2), •••> <?cm/2)} and Δ~ spanned by {ecm/2+Ό, •••, e^) are both parallel along F.
Consequently, since F is complete, we can easily verify the following fact: the
submanifold Fi s congruent in Em+2 to the submanifold Sm/2{ll^~2\p\)xSm/2(ll*/2\p\),
which is natually imbedded in Em+2 (cf. Yano and Ishihara [4]). Next, we consider
the case where β=0, which implies q=0, then we see, using (3. 9) with q=0, that
F is totally umbilical in Em+2 and complete. Thus, in this case, F is congruent
to Sm(ll\p\) in Em+2, which is natually imbedded in Em+2.

Summing up the arguments developed above, we can conclude that in Case I,
the submanifold M is congruent in E2n+2 to Sm(f)xE2n-m or Sm/2(r)xSm/2(r)xE2n~m,
r being a positive number, which is natually imbedded in E2n+2, where Sk(r)
denotes a ^-dimensional sphere of radius r.

In the next step, we consider Case II where m—2. In this case we see that
p^O. From (2. 24), we find that

(3.10) htt=2pt

which implies that

(3.11) (1 - λ2)hμ =p(ujUi+vjVi),

by virtue of (2. 9). Taking account of (3.10), we have, from (2. 46),

(3.12) g^ίKji = 2(p2-a2-β2).

Substituting (3.11) into (2. 41) and using p^O, we find

1
(3.13) kJ

tkti=—r-(oί +/3 )hji*
P

In Case I, we found that (3. 2) with β=const, implies (3. 6). The scalar cur-
vature gjiKjί being constant, we see from (3.12) that a2+β2 is constant. Thus, in
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the same way as developed in Case I, we can prove that (3.13) implies h^iyjzii)—^.
Since hf and kf are commutative, using (2. 5), (2. 22) and (3.13), we see that

the second fundamental tensors hf and kf have at each point of M the form

(3.14) (AiΛ) =

( p

0
\

P °

0
j

1

\

q

0

•q
0

0
/

with respect to a suitable orthonormal frame, where q=\/a2+β2 is constant. Thus
we can choose in any coordinate neighborhood of M, where dim M=2n, a field of
frames {eα), <?(2), •••, e^nλ such that

(3.15)

(2).

As in Case I, by using hh(Pkkit)=O, (3.13), (3.14) and (3.15), we can prove
that, when q=0, the submanifold M is congruent in E2n+2 to S2(l/\p\)xE2n-2, and
when q^O, to S\ll*/2q)xS\lj^/2q)x E2n~2. Therefore, we can conclude that in
Case II, the submanifold M i s congruent to S\r)xE2n~2 or S\r)xS\r)xE2n-2

y r
being a positive number, which is naturally imbedded in E2n+2.

Finally, we consider Case III where p=0. In this case (2.22) implies hji=0.
Thus, the submanifold M lies on hypersurface E2n+1 of E2n+2. Taking account of
hji=0 and ̂  = 0, we can write (2. 41) and (2. 46) as

(3.16) (l-Λa)*/*« = (αa + i9ϊ

(3.17) g^Kji=-2(a2

respectively, where a2-\-β2 is constant because of gjiKji=cor\st. The tensor kih is
the second fundamental tensor of M immersed in the hypersurface E2n+1 with
respect to the normal D. We now suppose that a2+β2^0 and restrict ourselves
to the open set Mo (cM) where 1-Λ 2^F0. Then, taking account of (2. 5) and (3.16),
we see that kj1 has at each point of Mo the form

(3.18)

' q

0

\
0

0

-q

\
0

0
j

with respect to a suitable orthonormal frame. Therefore we can choose in any



SUBMANIFOLDS IN EUCLIDEAN SPACE 329

coordinate neighborhood of Mo a field of frames {̂ α), £(2), •••, e^}, with respect to
which (3. 8) holds, where e^ and e^ are linear combinations of uh and vh. On
the other hand, we can easily see, by using (1. 9) and (1.10) with A#=0 and /,=(),
that the distribution spanned in Mo by uh and vh is integrable and totally geodesic
in Mo. Thus, the distribution spanned in Mo by e α ) and e^ is also integrable and
its integral manifolds are totally geodesic in Mo. Therefore, according to the same
arguments developed in discussing the Cases I and II, we can conclude the fact:
In Case III, the open submanifold Mo is locally isometric to S^ήxS^ήx E2n~2,
which is locally flat. Thus the scalar curvature gJiKji of M vanishes identically
in Mo and hence in M because of the continuity of gjiKji. Since gJίKji=0 in M,
(3.17) implies α 2 +β 2 =0, which contradicts the assumption that α 2 + β 2 ^ 0 . Conse-
quently, we see that a2+β2=0 in Case III. Therefore we find, from (3.16), that
kji=O holds identically in M. Thus, M is totally geodesic in the hyperplane E2n+1

and consequently is congruent to a plane E2n (c.E2n+1(zE2n+2).
Summing up the conclusions obtained in Cases I, II and III, we have

THEOREM 3.1. Let M be a complete submanifold of codimension 2 in an even-
dimensional Euclidean space E2n+2 such that the scalar curvature of M is constant
and there are global unit normals C and D to M which are parallel in the normal
bundle. If fH=Hf and fK——Kf hold, where H and K are the second funda-
mental tensors of M respectively with respect to C and D, f being the tensor field
of type (1,1) appearing in the induced structure (/, g, u> v, X) of M, then M is in
E2n+2, provided that λ(l —λ2) is non-zero almost everywhere in M, congruent to one
of the following submanifolds'.

E2n, S2n(r), S%r)xSn(r), Sι(r)xE2n~ι (1=1, 2, -., 2»-l),

S*(r)xS*(r)x£2w-a* (ft=l, 2, - , n-\\

where Sk(r) denotes a k-dimensional sphere of radius r (>0) imbedded natrually in
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