ON THE NUMBER OF AUTOMORPHISMS OF A COMPACT BORDERED RIEMANN SURFACE

Βγ Τακάο Κάτο

1. Introduction. For nonnegative integers g and k $(2g+k-1\geq 2)$, let N(g, k) be the order of the largest group of conformal selfmappings (automorphisms) which a compact bordered Riemann surface of genus g and with k boundary components can admit. (If k=0 we understand the number N(g, k) for a compact Riemann surface of genus g.) Hurwitz [4] proved that $N(g, 0) \leq 84 (g-1)$. Accola [1] and Maclachlan [7] proved independently that $N(g, 0) \geq 8(g+1)$ for all g's. Furthermore, Macbeath [6] showed that N(g, 0)=84(g-1) for infinitely many values of g, and many other exact estimations for N(g, 0) were given by Accola [1], Maclachlan [7] and Kiley [5]. The problem seems, however, to remain still open for nfinitelyi many values of g.

On the other hand, for $k \ge 1$, Oikawa [8, 9] gave a general estimation such that $N(g, k) \le 12(g-1)+6k$, and he determined N(1, k) completely. Earlier than he, Heins [3] had determined N(0, k) (in this case naturally $k \ge 3$) completely. Tsuji [10] treated hyperelliptic Riemann surfaces, and determined N(2, k) exactly.

In this paper we shall prove the following results.

THEOREM 1.	N(g, 1) = 4g + 2,	for all $g \ge 1$.
THEOREM 2.	N(g, 2) = 8g,	for all $g \ge 1$.
Theorem 3.	N(g, 3) = 12g + 6,	if $g=0$ or $g=1$,
	N(g, 3) = 6g + 3,	if $g \neq 0$, $g \neq 1$ and $j^2+j+1 \equiv 0$ (mod $2g+1$) has a solution,
	N(g, 3) = 4g + 14,	if $g\equiv 1 \pmod{9}$ and $j^2+j+1\equiv 0$ (mod $2g+1$) does not have a solution,
	N(g, 3) = 4g + 6,	if $g \equiv 0 \pmod{3}$ and $j^2+j+1 \equiv 0$ (mod $2g+1$) does not have a solution,

$$N(g, 3) = \frac{24g + 12}{5}$$
, if $g=2$ or $g=7$,

and

$$N(g, 3) = 4g + 2,$$

otherwise.

Received May 10, 1971.

Let N'(g, k) be the order of the largest group of automorphisms of a k-times punctured compact Riemann surface of genus g. Oikawa [8, 9] has proved that N(g, k) = N'(g, k), therefore, it is sufficient to prove the theorems for N'(g, k).

2. Before proving these theorems we shall state some preparatory results. Let W be a Riemann surface and let G be a properly discontinuous group of automorphisms of W. For any subgroup H of G, we can regard W/H as a Riemann surface having a conformal structure which is induced from the conformal structure of W[2]. Let π be the natural projection of W onto W/H. Then we have

LEMMA. If H is a normal subgroup of G, then for each element f in G there is an automorphism h of W/H satisfying $\pi \circ f = h \circ \pi$.

Let W be a compact Riemann surface of genus g. We project all the branch points of W with respect to π into W/H and denote them by $\hat{p}_1, \dots, \hat{p}_r$. Noting that the ramification indices of all the points over $\hat{p}_i, i=1, \dots, r$, are the same, respectively, we denote the corresponding indices by ν_1-1, \dots, ν_r-1 . Then from the Riemann-Hurwitz relation [4] we have

(1)
$$\frac{2g-2}{\text{ord}(H)} = 2g_0 - 2 + \sum_{i=1}^r \left(1 - \frac{1}{\nu_i}\right),$$

where ord (H) denotes the order of H and g_0 denotes the genus of W/H. We shall also use the notation $\langle f_1, f_2, \cdots \rangle$ to denote the group generated by the elements f_1, f_2, \cdots .

3. Proof of theorem 1. Wiman $[11]^{1}$ proved the following: 4g+2 is the order of the largest cyclic group of automorphisms which a compact Riemann surface of genus g can admit. From this fact we can easily conclude theorem 1. We shall, however, give a proof for the sake of completeness.

Let W be a compact Riemann surface of genus $g (\geq 1)$. We take a point p on W and let G be the group of automorphisms of $W - \{p\}$. It is obvious that G is a cyclic group of finite order. Then from the formula (1) we have

$$\frac{2g - 2}{\text{ord }(G)} = 2g_0 - 2 + \sum_{i=1}^r \left(1 - \frac{1}{\nu_i}\right)$$

where g_0 denotes the genus of W/G, and ν_1, \dots, ν_r are as in paragraph 2. Without loss of generality we may assume that ν_1 corresponds to p and is equal to ord (G).

If $g_0 \ge 1$, then we have ord $(G) \le 2g-1$.

Assume that $g_0=0$ and $r \ge 4$, then we have

$$\frac{2g-2}{\operatorname{ord}(G)} = -2 + 1 - \frac{1}{\operatorname{ord}(G)} + \sum_{i=2}^{r} \left(1 - \frac{1}{\nu_i}\right)$$
$$\geq -1 - \frac{1}{\operatorname{ord}(G)} + \frac{3}{2}.$$

1) Unfortunately, the anthor could not see directly his paper.

This implies that ord $(G) \leq 4g-2$.

Assume that $g_0=0$ and r=3, then we have

$$\frac{2g-2}{\mathrm{ord}\,(G)} = 1 - \frac{1}{\mathrm{ord}\,(G)} - \frac{1}{\nu_2} - \frac{1}{\nu_3}.$$

Noting that ord (G) is the least common multiple of ν_2 and ν_3 , we have ord (G) $\leq 4g+2$.

Summing up these estimations we obtain $N(g, 1) \leq 4g+2$.

To show that N(g, 1)=4g+2 we shall give an example of a once-punctured compact Riemann surface of genus g which admits 4g+2 automorphisms. Let W be the compact Riemann surface of genus g defined by the algebraic equation

$$y^2 = x(x^{2g+1}-1).$$

Let p be the point on W which corresponds to x=0. Then

$$f: (x, y) \longrightarrow (e^{2\pi i/(2g+1)}x, e^{\pi i/(2g+1)}y)$$

is an automorphism of $W - \{p\}$. We conclude that $\operatorname{ord} (\langle f \rangle) = 4g + 2$. Therefore, we have N(g, 1) = 4g + 2.

4. Proof of theorem 2. Let W be a compact Riemann surface of genus $g (\geq 1)$. We distiguish two points p_1 and p_2 on W. Let G be the group of automorphisms of $W - \{p_1, p_2\}$, and let H be the group of automorphisms of W each of which fixes the points p_1 and p_2 . Obviously we have ord $(G) \leq 2$ ord (H). From the formula (1) we have

$$\frac{2g-2}{\text{ord}(H)} = 2g_0 - 2 + \sum_{i=1}^r \left(1 - \frac{1}{\nu_i}\right)$$

where g_0 denotes the genus of W/H. Hence H is a cyclic group, we may assume that $\nu_1 = \nu_2 = \text{ ord }(H)$ which correspond to p_1 and p_2 respectively.

If $g_0 \ge 1$ then ord $(H) \le g$.

If $g_0=0$ and r=2, then we have

$$\frac{2g-2}{\text{ord }(H)} = -2 + 2\left(1 - \frac{1}{\text{ ord }(H)}\right).$$

This implies that g=0 which is a contradiction.

Therefore, if $g_0=0$, then $r \ge 3$. In this case we have

$$\begin{aligned} \frac{2g-2}{\operatorname{ord}(H)} &= -2 + 2\left(1 - \frac{1}{\operatorname{ord}(H)}\right) + \sum_{i=3}^{r} \left(1 - \frac{1}{\nu_i}\right) \\ &\geq -\frac{2}{\operatorname{ord}(H)} + \frac{1}{2}. \end{aligned}$$

This implies that $\operatorname{ord}(H) \leq 4g$. Therefore, we have $\operatorname{ord}(G) \leq 2 \operatorname{ord}(H) \leq 8g$. Conse-

quently, we conclude that $N(g, 2) \leq 8g$.

An example shows that N(g, 2) = 8g. Let W be the compact Riemann surface of genus g which is defined by the algebraic equation

$$y^2 = x(x^{2g} - 1).$$

Let p_1 and p_2 be the points on W which correspond to x=0 and $x=\infty$ respectively. Then

and

$$f_1: (x, y) \longrightarrow (e^{\pi i/g}x, e^{\pi i/2g}y)$$
$$f_2: (x, y) \longrightarrow (1/x, iy/x^{g+1})$$

are automorphisms of $W - \{p_1, p_2\}$, and we see that $\operatorname{ord}(\langle f_1, f_2 \rangle) \geq 8g$. Therefore, we conclude that N(g, 2) = 8g.

5. Proof of theorem 3. In the first place for each $g (\geq 1)$ we shall show an example which assures that N(g, 3) is greater than or equal to 4g+2. Let W be the compact Riemann surface of genus g defined by the equation

$$y^2 = x(x^{2g+1}-1)$$

Let p_1 be the point on W which corresponds to x=0, and p_2 , p_3 the points corresponding to $x=\infty$. From the proof of theorem 1 we conclude that $\operatorname{ord}(\langle f \rangle)=4g+2$ which assures that $N(g, 3) \ge 4g+2$. For g=0 Heins [3] showed that N(0, 3)=6. Henceforth, we shall omit the case g=0 from our consideration.

6. Let W be a compact Riemann surface of genus g and we distinguish three points p_1, p_2 and p_3 on W. Let G be the group of automorphisms of $W - \{p_1, p_2, p_3\}$. Hence, every member of G can be extended to an automorphism of W, we also denote the group which consists of them by G. Let f_1 denote a generator of the cyclic subgroup of G which consists of all the elements of G that fix the points p_1, p_2 and p_3 . For simplicity's sake we shall denote ord $(\langle f_1 \rangle)$ by n. Let f_2 denote an element of G such that $f_2(p_1) = p_2, f_2(p_2) = p_3$ and $f_2(p_3) = p_1$ and let f_3 denote an element of G such that $f_3(p_1) = p_1, f_3(p_2) = p_3$ and $f_3(p_3) = p_2$.

It is easy to see that ord (G) does not exceed 6n regardless of the existence of f_2 or f_3 . More precisely, ord $(G) \leq 6n$ if $G = \langle f_1, f_2, f_3 \rangle$, ord $(G) \leq 3n$ if $G = \langle f_1, f_2 \rangle$, ord $(G) \leq 2n$ if $G = \langle f_1, f_3 \rangle$, ord (G) = n if $G = \langle f_1 \rangle$ and ord $(G) \leq 6$ otherwise.

If the genus of $W/\langle f_1 \rangle$, denoted by g_0 , is positive, then by the formula (1) we have

$$\operatorname{ord}(G) \leq 6n \leq 4g+2.$$

Indeed, without loss of generality we may assume that $\nu_1 = \nu_2 = \nu_3 = n$, and therefore we have

$$\frac{2g-2}{n} \ge 3\left(1-\frac{1}{n}\right).$$

ΤΑΚΑΟ ΚΑΤΟ

Therefore, we may assume that g_0 is equal to zero. In this case from the formula (1) we have

 $n \leq 2g+1.$

Hence, $2n \leq 4g+2$, it is to be observed only when $G = \langle f_1, f_2, f_3 \rangle$ and $G = \langle f_1, f_2 \rangle$.

7. We shall observe the following five cases. During the discussion of these cases we assume that $\nu_1 = \nu_2 = \nu_3 = n$ in the formula (1).

Case (A): r=3 in the formula (1).

In this case we have

$$\frac{2g-2}{n} = -2 + 3\left(1 - \frac{1}{n}\right).$$

Then we see that $\operatorname{ord}(G) \leq 12g+6$ if $G = \langle f_1, f_2, f_3 \rangle$ and $\operatorname{ord}(G) \leq 6g+3$ if $G = \langle f_1, f_2 \rangle$. We shall discuss this case in detail in the following paragraph.

Case (B): r=4 in (1).

In this case we have

$$\frac{2g-2}{n} = -2 + 3\left(1 - \frac{1}{n}\right) + \left(1 - \frac{1}{\nu_4}\right)$$
$$\geq 1 - \frac{3}{n} + \frac{1}{2}.$$

Therefore, we obtain $n \leq (4g+2)/3$. In this case $G = \langle f_1, f_2, f_3 \rangle$ cannot occur by virtue of lemma. If $G = \langle f_1, f_2 \rangle$, we have ord $(G) \leq 4g+2$. In the case (B) there is nothing more to do.

Case (C): r=5 in (1).

In this case we have

$$\frac{2g-2}{n} = -2 + 3\left(1 - \frac{1}{n}\right) + \left(1 - \frac{1}{\nu_4}\right) + \left(1 - \frac{1}{\nu_5}\right).$$

If $G = \langle f_1, f_2 \rangle$, we obtain $\operatorname{ord}(G) \leq 3(2g+1)/2 < 4g+2$. This may be omitted. If $G = \langle f_1, f_2, f_3 \rangle$ occurs, we have $\nu_4 = \nu_5 = m$ by lemma, and *m* divides *n*. Then we obtain

$$\operatorname{ord}(G) \leq 6n = 4g + 2 + \frac{4n}{m}.$$

This case shall be treated in detail later on.

Case (D): r=6 in (1).

In this case we have

AUTOMORPHISMS OF A RIEMANN SURFACE

$$\frac{2g-2}{n} = -2 + 3\left(1 - \frac{1}{n}\right) + \sum_{i=4}^{6} \left(1 - \frac{1}{\nu_i}\right).$$

If $G = \langle f_1, f_2 \rangle$, we have $\operatorname{ord}(G) \leq 6(2g+1)/5 < 4g+2$. There is nothing more to do. If $G = \langle f_1, f_2, f_3 \rangle$ occurs, by lemma we have $\nu_4 = \nu_5 = \nu_6 = m$, and *m* divides *n*. If m=2, we have n = (4g+2)/5. Therefore, *g* must satisfy $2g+1\equiv 0 \pmod{5}$ and $\operatorname{ord}(G) \leq (24g+12)/5$. This is to be treated later on. If $m \geq 3$, we have $\operatorname{ord}(G) \leq 6n \leq 4g+2$. This may be omitted.

Case (E): $r \ge 7$ in (1).

In this case we have

$$\frac{2g-2}{n} = -2 + 3\left(1 - \frac{1}{n}\right) + \sum_{i=4}^{r} \left(1 - \frac{1}{\nu_i}\right)$$
$$\geq 1 - \frac{3}{n} + 2.$$

Therefore, we obtain $\operatorname{ord}(G) \leq 6n \leq 4g+2$. In this case there is nothing to do.

8. The case (A). In this case we may assume that f_2^3 is equal to the identity and that f_3^2 is equal to the identity, where f^j denotes the *j*-th iteration of *f*. Furthermore, we may assume that f_2 has a fixed point which we denote by q_1 . Let π be the natural projection mapping of *W* onto $W/\langle f_1 \rangle$ and let γ_1 be a simple curve starting and ending at $q = \pi(q_1)$, which is freely homotopic in $W/\langle f_1 \rangle - \{\pi(p_1), \pi(p_2), \pi(p_3)\}$, to an arbitrary small circle centered at $\pi(p_1)$. Let $\gamma_2 = \pi \circ f_2 \circ \pi^{-1}(\gamma_1)$ and let $\gamma_3 = \pi \circ f_2^2 \circ \pi^{-1}(\gamma_1)$. By lemma these are uniquely determined regardless of a choice of a branch of π^{-1} . Let q_{i+1} be the terminal point of the lift of γ_1 starting at q_i $(i=1, \dots, 2g+1)$. Henceforth, we consider the suffixes of *q*'s by mod 2g+1. If we set q_{1+j} the terminal point of the lift of γ_2 starting at q_1 , then by the monodromy theorem we establish that q_{1+ij} is the terminal point of the lift of γ_2 starting at $q_{1+(i-1)j}$ $(i=1, \dots, 2g+1)$. This assures that $f_2(q_{1+i}) = q_{1+ij}$. Then we have

$$q_2 = f_2^3(q_2) = f_2^2(q_{1+j}) = f_2(q_{1+j^2}) = q_{1+j^3}.$$

Therefore we have

$$j^3 - 1 \equiv 0 \qquad (\operatorname{mod} 2g + 1).$$

If there exists f_3 , we may also assume that f_3 has a fixed point which is different from p_1 , and we denote it by q'_1 . Let γ'_2 be a simple curve starting and ending at $q' = \pi(q'_1)$, which is freely homotopic in $W/\langle f_1 \rangle - \{\pi(p_1), \pi(p_2), \pi(p_3)\}$, to a small circle centered at $\pi(p_2)$, and let $\gamma'_3 = \pi \circ f_3 \circ \pi^{-1}(\gamma'_2)$. Let q'_{i+1} be the terminal point of the lift of γ'_2 starting at q'_i $(i=1, \dots, 2g+1)$, and set q'_{1+j} the terminal point of the lift of γ'_3 starting at q'_i . Then we have

$$q'_2 = f_3^2(q'_2) = f_3(q'_{1+j}) = q'_{1+j^2}.$$

Therefore, we have

$$j^2 - 1 \equiv 0 \qquad (\mod 2g + 1).$$

Consequently, if the case $G = \langle f_1, f_2, f_3 \rangle$ occurs, $j^3 - 1 \equiv 0 \pmod{2g+1}$ and $j^2 - 1 \equiv 0 \pmod{2g+1}$ has a common solution, i.e. j=1. Then we continue a branch of $\pi^{-1}(q)$ along γ_1, γ_2 and γ_3 successively. Hence, there is no branch point in W but p_1, p_2 and p_3 , we have 2g+1=3. Therefore, this case does not occur except for g=1.

If the case $G = \langle f_1, f_2 \rangle$ occurs, $j^2 + j + 1 \equiv 0 \pmod{2g+1}$ has a solution.

9. The case (C) and the case (D). In these cases we consider an intermediate covering surface $W/\langle f_1^{n,m} \rangle$ of $W/\langle f_1 \rangle$. The natural projection mapping $W/\langle f_1^{n,m} \rangle$ onto $W/\langle f_1 \rangle$ does not ramify but $\pi(p_1), \pi(p_2)$ and $\pi(p_3)$. Hence, we can apply the discussion in paragraph 8 to $W/\langle f_1^{n,m} \rangle$, we may conclude that if the case $G = \langle f_1, f_2, f_3 \rangle$ occurs, n=m or n=3m. The former corresponds to g'=0 and the latter to g'=1, where g' denotes the genus of $W/\langle f_1^{n,m} \rangle$.

In the case (C), if the case n=m occurs, we establish that 3n=2g+3 which implies that $g\equiv 0 \pmod{3}$ and if the case n=3m occurs, we establish that 9m=2g +7 which implies that $g\equiv 1 \pmod{9}$.

In the case (D), if n=m=2 then g=2 and if n=3m=6 then g=7.

10. Examples. To show the exactness it is sufficient to construct some examples.

EXAMPLE 1. For g=1, let W be the Riemann surface defined by the equation

$$y^{3} = x^{3} - 1.$$

Let p_1 , p_2 and p_3 be the points corresponding to x=1, $e^{2\pi i/3}$ and $e^{4\pi i/3}$ respectively. Set

$$\begin{split} f_1 &: (x, y) \longrightarrow (x, e^{2\pi i/3}y), \\ f_2 &: (x, y) \longrightarrow (e^{2\pi i/3}x, y) \end{split}$$

and

$$f_3: (x, y) \longrightarrow (1/x, -y/x).$$

Then we have

N(g, 3) = 12g + 6.

EXAMPLE 2. For g such that $j^2+j+1\equiv 0 \pmod{2g+1}$ has a solution and $g \neq 1$, let W be the Riemann surface defined by the equation

$$y^{2g+1} = (x-1) (x - e^{2\pi i/3})^j (x - e^{4\pi i/3})^{j^2}$$

where j is a solution of $j^2+j+1\equiv 0 \pmod{2g+1}$. Let p_1, p_2 and p_3 be the points corresponding to $x=1, e^{2\pi i/3}$ and $e^{4\pi i/3}$ respectively. Set

$$f_1: (x, y) \longrightarrow (x, e^{2\pi i/(2g+1)}y)$$

and

$$f_2: (x, y) \longrightarrow \left(e^{2\pi i/3} x, \frac{e^{2\pi (1+j+j^2)i/3(2g+1)} y^j}{(x-e^{4\pi i/3})^{(j^3-1)/(2g+1)}} \right).$$

Then we have

N(g, 3) = 6g + 3.

EXAMPLE 3. For g such that $j^2+j+1\equiv 0 \pmod{2g+1}$ does not have a solution and $g\equiv 1 \pmod{9}$, let W be the Riemann surface defined by the equation

$$y^{(2g+7)/3} = x^{(g-1)/3}(x^3-1).$$

Let p_1, p_2 and p_3 be the points corresponding to $x=1, e^{2\pi i/3}$ and $e^{4\pi i/3}$ respectively. Set

$$f_1: (x, y) \longrightarrow (x, e^{6\pi i/(2g+7)}y),$$
$$f_2: (x, y) \longrightarrow (e^{2\pi i/3}x, y)$$

and

 $f_3: (x, y) \longrightarrow (1/x, -y/x)$

Then we have

N(g, 3) = 4g + 14.

EXAMPLE 4. For g such that $j^2+j+1\equiv 0 \pmod{2g+1}$ does not have a solution and $g\equiv 0 \pmod{3}$, let W be the Riemann surface defined by the equation

 $y^{(2g+3)/3} = x^{(g-3)/3}(x^3-1).$

Let p_1, p_2 and p_3 be the points corresponding to x=1, $e^{2\pi i/3}$ and $e^{4\pi i/3}$ respectively. Set

$$f_1: (x, y) \longrightarrow (x, e^{6\pi i/(2g+3)}y),$$

$$f_2: (x, y) \longrightarrow (e^{2\pi i/3}x, e^{4\pi i/3}y)$$

and

$$f_{\mathfrak{s}}: (x, y) \longrightarrow (1/x, -y/x).$$

Then we have

$$N(g, 3) = 4g + 6.$$

EXAMPLE 5. For g=2 or 7, let W be the Riemann surface defined by the equation

$$y^{(4g+2)/5} = (x^3 - 1)(x^3 + 1)^{(2g+1)/5}.$$

Let p_1, p_2 and p_3 be the points corresponding to $x=1, e^{2\pi i/3}$ and $e^{4\pi i/3}$ respectively. Set ΤΑΚΑΟ ΚΑΤΟ

$$f_1: (x, y) \longrightarrow (x, e^{5\pi i/(2g+1)}y),$$
$$f_2: (x, y) \longrightarrow (e^{2\pi i/3}x, y)$$

and

$$f_3: (x, y) \longrightarrow (1/x, e^{\pi i/2}y/x^{3(g+3)/(2g+1)}).$$

Then we have

$$N(g, 3) = \frac{24g + 12}{5}$$
.

Summing up, we have concluded our theorem 3.

11. Some criteria for the solubility of the congruence $j^2+j+1\equiv 0 \pmod{2g+1}$. If p is a prime number, then the following congruence holds for every integer j (Fermat's theorem):

$$j^p - j \equiv 0 \pmod{p}$$
.

Suppose that $g \equiv 0 \pmod{3}$ and that 2g+1 is prime, we have

$$j^{2g+1}-j=(j^2+j+1)P(j)$$

where P(j) is a polynomial of degree 2g-1 with integral coefficients. The congruence $P(j)\equiv 0 \pmod{2g+1}$ has at most 2g-1 solutions while the congruence $j^{2g+1}-j\equiv 0 \pmod{2g+1}$ has 2g+1 solutions, and consequently, the congruence j^2+j+1 $\equiv 0 \pmod{2g+1}$ has two solutions.

Suppose that $g \equiv 2 \pmod{3}$ and that 2g+1 is prime, we have

$$j^{2g+1}-j=(j^2+j+1)P(j)-(2j+1)$$

where P(j) is a polynomial of degree 2g-1 with integral coefficients. If the congruence $j^2+j+1\equiv 0 \pmod{2g+1}$ has a solution, then the congruence $2j+1\equiv 0 \pmod{2g+1}$ must have the same solution. This is impossible.

It is obvious that if the congruence $j^2+j+1\equiv 0 \pmod{p}$ is unsoluble then for every multiple of p, denoted by q, the congruence $j^2+j+1\equiv 0 \pmod{q}$ is unsoluble, and it is easily seen that every number of the form 6m+5 is divisible by a prime number of the form 6m'+5.

Thus we conclude that if $g \equiv 2 \pmod{3}$ then the congruence $j^2+j+1 \equiv 0 \pmod{2g+1}$ is unsoluble.

References

- [1] ACCOLA, R. D. M., On the number of automorphisms of a closed Riemann surface. Trans. Amer. Math. Soc. 131 (1968), 398-408.
- [2] AHLFORS, L. V., AND L. SARIO, Riemann surfaces. Princeton Univ. Press, Princeton (1960).
- [3] HEINS, M., On the number of 1-1 directly conformal maps which a multiplyconnected plane region of finite connectivity p (>2) admits onto itself. Bull.

Amer. Math. Soc. 52 (1946), 454-457.

- [4] HURWITZ, A., Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41 (1893), 403-442.
- [5] KILEY, W. T., Automorphism groups on compact Riemann surfaces. Trans. Amer. Math. Soc. 150 (1970), 557–563.
- [6] MACBEATH, A. M., On a theorem of Hurwitz. Proc. Glasgow Math. Assoc. 5 (1961), 90-96.
- [7] MACLACHLAN, C., A bound for the number of automorphisms of a compact Riemann surface. J. London Math. Soc. 44 (1969), 265-272.
- [8] OIKAWA, K., Note on conformal mappings of a Riemann surface onto itself. Kodai Math. Sem. Rep. 8 (1956), 23-30.
- [9] OIKAWA, K., A supplement to "Note on conformal mappings of a Riemann surface onto itself". Kodai Math. Sem. Rep. 8 (1956), 115-116.
- [10] TSUJI, R., On conformal mapping of a hyperelliptic Riemann surface onto itself. Kodai Math. Sem. Rep. 10 (1958), 127-136.
- [11] WIMAN, A., Über die hyperelliptishen Curven und diejenigen vom Geschlechte *p*=3 welche eindeutigen Transformationen in sich zulassen. Bihang Till. Kongl. Svenska Veienskaps-Akademiens Hadlingar 21 (1895-6), 1-23.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.