ON THE NUMBER OF AUTOMORPHISMS OF A COMPACT BORDERED RIEMANN SURFACE

BY TAKAO KATO

1. Introduction. For nonnegative integers g and k ($2q+k-1\geq 2$), let $N(q, k)$ be the order of the largest group of conformal selfmappings (automorphisms) which a compact bordered Riemann surface of genus *g* and with *k* boundary components can admit. (If $k=0$ we understand the number $N(q, k)$ for a compact Riemann surface of genus g.) Hurwitz [4] proved that $N(q, 0) \le 84 (q-1)$. Accola [1] and Maclachlan [7] proved independently that $N(q, 0) \ge 8 (q+1)$ for all g's. Furthermore, Macbeath [6] showed that $N(g, 0) = 84(g-1)$ for infinitely many values of g, Accola and Maclachlan showed independently that $N(q, 0) = 8(q+1)$ for infinitely many values of g , and many other exact estimations for $N(g, 0)$ were given by Accola [1], Maclachlan [7] and Kiley [5]. The problem seems, however, to remain still open for nfinitelyi many values of *g.*

On the other hand, for $k \ge 1$, Oikawa [8, 9] gave a general estimation such that $N(q, k) \leq 12(q-1)+6k$, and he determined $N(1, k)$ completely. Earlier than he, Heins [3] had determined $N(0, k)$ (in this case naturally $k \ge 3$) completely. Tsuji [10] treated hyperelliptic Riemann surfaces, and determined *N(2, k)* exactly.

In this paper we shall prove the following results.

$$
N(g, 3) = \frac{24g + 12}{5}, \quad \text{if} \quad g=2 \text{ or } g=7,
$$

and

$$
N(q, 3) = 4q + 2,
$$

otherwise.

Received May 10, 1971.

Let $N'(g, k)$ be the order of the largest group of automorphisms of a k-times punctured compact Riemann surface of genus *g.* Oikawa [8, 9] has proved that $N(q, k) = N'(q, k)$, therefore, it is sufficient to prove the theorems for $N'(q, k)$.

2. Before proving these theorems we shall state some preparatory results. Let *W* be a Riemann surface and let *G* be a properly discontinuous group of automorphisms of *W.* For any subgroup *H* of G, we can regard *W/Has* a Riemann surface having a conformal structure which is induced from the conformal structure of *W* [2]. Let π be the natural projection of *W* onto *W*/*H*. Then we have

LEMMA. *If H is a normal subgroup of* G, *then for each element f in G there is an automorphism h of WjH satisfying π°f=h°π.*

Let *W* be a compact Riemann surface of genus *g.* We project all the branch points of *W* with respect to π into *W*/*H* and denote them by $\hat{p}_1, \dots, \hat{p}_r$. Noting that the ramification indices of all the points over \hat{p}_i , $i=1, \dots, r$, are the same, respectively, we denote the corresponding indices by $v_1 - 1, \dots, v_r - 1$. Then from the Riemann-Hurwitz relation [4] we have

(1)
$$
\frac{2g-2}{\text{ord}(H)} = 2g_0 - 2 + \sum_{i=1}^r \left(1 - \frac{1}{\nu_i}\right),
$$

where $\mathrm{ord}\,(H)$ denotes the order of H and g_0 denotes the genus of W/H . We shall also use the notation $\langle f_1, f_2, \cdots \rangle$ to denote the group generated by the elements $f_1, f_2,$

3. Proof of theorem 1. Wiman $[11]^{1}$ proved the following: $4g+2$ is the order of the largest cyclic group of automorphisms which a compact Riemann surface of genus *g* can admit. From this fact we can easily conclude theorem 1. We shall, however, give a proof for the sake of completeness.

Let *W* be a compact Riemann surface of genus $g \geq 1$. We take a point *p* on *W* and let G be the group of automorphisms of $W - \{p\}$. It is obvious that G is a cyclic group of finite order. Then from the formula (1) we have

$$
\frac{2g-2}{\text{ord}(G)} = 2g_0 - 2 + \sum_{i=1}^r \left(1 - \frac{1}{\nu_i}\right)
$$

where g_0 denotes the genus of W/G , and v_1, \dots, v_r are as in paragraph 2. Without loss of generality we may assume that ν_1 corresponds to p and is equal to ord (G).

If $g_0 \geq 1$, then we have ord $(G) \leq 2g-1$.

Assume that $g_0=0$ and $r\geq 4$, then we have

$$
\frac{2g-2}{\text{ord}(G)} = -2 + 1 - \frac{1}{\text{ord}(G)} + \sum_{i=2}^{r} \left(1 - \frac{1}{\nu_i}\right)
$$

$$
\geq -1 - \frac{1}{\text{ord}(G)} + \frac{3}{2}.
$$

1) Unfortunately, the anthor could not see directly his paper.

This implies that ord $(G) \leq 4g-2$.

Assume that $g_0=0$ and $r=3$, then we have

$$
\frac{2g-2}{\text{ord}(G)} = 1 - \frac{1}{\text{ord}(G)} - \frac{1}{\nu_2} - \frac{1}{\nu_3}.
$$

Noting that ord (G) is the least common multiple of ν_2 and ν_3 , we have ord (G) $\leq 4g+2$.

Summing up these estimations we obtain $N(q, 1) \leq 4q + 2$.

To show that $N(g, 1)=4g+2$ we shall give an example of a once-punctured compact Riemann surface of genus *g* which admits 4g+2 automorphisms. Let *W* be the compact Riemann surface of genus *g* defined by the algebraic equation

$$
y^2 = x(x^{2g+1} - 1).
$$

Let p be the point on W which corresponds to $x=0$. Then

$$
f\colon (x, y) \longrightarrow (e^{i\pi i/(2g+1)}x, e^{\pi i/(2g+1)}y)
$$

is an automorphism of $W-\{p\}$. We conclude that ord $\langle \langle f \rangle \rangle = 4g+2$. Therefore, we have $N(g, 1)=4g+2$.

4. Proof of theorem 2. Let *W* be a compact Riemann surface of genus $g\ (\geq1)$. We distiguish two points p_1 and p_2 on W. Let G be the group of auto morphisms of $W-\lbrace p_1, p_2 \rbrace$, and let *H* be the group of automorphisms of *W* each of which fixes the points p_1 and p_2 . Obviously we have ord $(G) \leq 2$ ord (H) . From the formula (1) we have

$$
\frac{2g-2}{\text{ord}(H)} = 2g_0 - 2 + \sum_{i=1}^r \left(1 - \frac{1}{\nu_i}\right)
$$

where g_0 denotes the genus of W/H . Hence H is a cyclic group, we may assume that $\nu_1 = \nu_2 = \text{ord}(H)$ which correspond to p_1 and p_2 respectively.

If $g_0 \geq 1$ then ord $(H) \leq g$.

If $g_0=0$ and $r=2$, then we have

$$
\frac{2g-2}{\operatorname{ord}(H)} = -2 + 2\left(1 - \frac{1}{\operatorname{ord}(H)}\right).
$$

This implies that $g=0$ which is a contradiction.

Therefore, if $g_0=0$, then $r\geq 3$. In this case we have

$$
\frac{2g-2}{\operatorname{ord}(H)} = -2 + 2\left(1 - \frac{1}{\operatorname{ord}(H)}\right) + \sum_{i=3}^{r} \left(1 - \frac{1}{\nu_i}\right)
$$

$$
\geq -\frac{2}{\operatorname{ord}(H)} + \frac{1}{2}.
$$

This implies that ord $(H) \leq 4g$. Therefore, we have ord $(G) \leq 2$ ord $(H) \leq 8g$. Conse-

quently, we conclude that $N(q, 2) \leq 8q$.

An example shows that $N(g, 2)=8g$. Let W be the compact Riemann surface of genus *g* which is defined by the algebraic equation

$$
y^2 = x(x^{2g} - 1).
$$

Let p_1 and p_2 be the points on *W* which correspond to $x=0$ and $x=\infty$ respectively. Then

and

$$
f_1: (x, y) \longrightarrow (e^{\pi i/g}, e^{\pi i/2g}y)
$$

$$
f_2: (x, y) \longrightarrow (1/x, iy/x^{g+1})
$$

are automorphisms of $W-\{p_1, p_2\}$, and we see that ord $\langle \langle f_1, f_2 \rangle \rangle \geq 8g$. Therefore, we conclude that $N(q, 2)=8q$.

5. Proof of theorem 3. In the first place for each $g \geq 1$) we shall show an example which assures that $N(q, 3)$ is greater than or equal to $4g+2$. Let W be the compact Riemann surface of genus *g* defined by the equation

$$
y^2 = x(x^{2g+1} - 1).
$$

Let p_1 be the point on W which corresponds to $x=0$, and p_2 , p_3 the points corres ponding to $x = \infty$. From the proof of theorem 1 we conclude that ord $\langle \langle f \rangle \rangle = 4g + 2$ which assures that $N(g, 3) \ge 4g+2$. For $g=0$ Heins [3] showed that $N(0, 3) = 6$. Henceforth, we shall omit the case $g=0$ from our consideration.

6. Let *W* be a compact Riemann surface of genus *g* and we distinguish three points p_1, p_2 and p_3 on *W*. Let *G* be the group of automorphisms of $W-\{p_1, p_2, p_3\}$. Hence, every member of *G* can be extended to an automorphism of *W,* we also denote the group which consists of them by G . Let f_1 denote a generator of the cyclic subgroup of G which consists of all the elements of G that fix the points p_1, p_2 and p_3 . For simplicity's sake we shall denote ord $(\langle f_1 \rangle)$ by *n*. Let f_2 denote an element of G such that $f_2(p_1) = p_2$, $f_2(p_2) = p_3$ and $f_2(p_3) = p_1$ and let f_3 denote an element of G such that $f_3(p_1) = p_1, f_3(p_2) = p_3$ and $f_3(p_3) = p_2$.

It is easy to see that ord (G) does not exceed *6n* regardless of the existence of f_2 or f_3 . More precisely, ord $(G) \leq 6n$ if $G = \langle f_1, f_2, f_3 \rangle$, ord $(G) \leq 3n$ if $G = \langle f_1, f_2 \rangle$, *ord* $(G) \leq 2n$ if $G = \langle f_1, f_3 \rangle$, ord $(G)=n$ if $G = \langle f_1 \rangle$ and ord $(G) \leq 6$ otherwise.

If the genus of $W/\langle f_1 \rangle$, denoted by g_0 , is positive, then by the formula (1) we have

$$
ord(G) \leq 6n \leq 4g+2.
$$

Indeed, without loss of generality we may assume that $\nu_1 = \nu_2 = \nu_3 = n$, and therefore we have

$$
\frac{2g-2}{n} \ge 3\left(1-\frac{1}{n}\right).
$$

228 TAKAO KATO

Therefore, we may assume that g_0 is equal to zero. In this case from the formula (1) we have

 $n \leq 2q+1$.

Hence, $2n \leq 4g+2$, it is to be observed only when $G = \langle f_1, f_2, f_3 \rangle$ and $G = \langle f_1, f_2 \rangle$.

7. We shall observe the following five cases. During the discussion of these cases we assume that $\nu_1 = \nu_2 = \nu_3 = n$ in the formula (1).

Case (A): $r=3$ in the formula (1).

In this case we have

$$
\frac{2g-2}{n}=-2+3\left(1-\frac{1}{n}\right).
$$

Then we see that ord $(G) \le 12g+6$ if $G = \langle f_1, f_2, f_3 \rangle$ and ord $(G) \le 6g+3$ if $G = \langle f_1, f_2 \rangle$. We shall discuss this case in detail in the following paragraph.

Case (B): $r=4$ in (1).

In this case we have

$$
\frac{2g-2}{n} = -2 + 3\left(1 - \frac{1}{n}\right) + \left(1 - \frac{1}{\nu_4}\right)
$$

$$
\geq 1 - \frac{3}{n} + \frac{1}{2}.
$$

Therefore, we obtain $n \leq (4g+2)/3$. In this case $G = \langle f_1, f_2, f_3 \rangle$ cannot occur by virtue of lemma. If $G = \langle f_1, f_2 \rangle$, we have ord $(G) \leq 4g+2$. In the case (B) there is nothing more to do.

Case (C): $r=5$ in (1).

In this case we have

$$
\frac{2g-2}{n} = -2 + 3\left(1 - \frac{1}{n}\right) + \left(1 - \frac{1}{\nu_4}\right) + \left(1 - \frac{1}{\nu_5}\right).
$$

If $G = \langle f_1, f_2 \rangle$, we obtain ord $(G) \leq 3(2g+1)/2 < 4g+2$. This may be omitted. If $G = \langle f_1, f_2, f_3 \rangle$ occurs, we have $\nu_4 = \nu_5 = m$ by lemma, and m divides n. Then we obtain

$$
\text{ord}\,(G) \leq 6n = 4g + 2 + \frac{4n}{m}.
$$

This case shall be treated in detail later on.

Case (D): $r=6$ in (1).

In this case we have

AUTOMORPHISMS OF A RIEMANN SURFACE 229

$$
\frac{2g-2}{n} = -2 + 3\left(1 - \frac{1}{n}\right) + \sum_{i=4}^{6} \left(1 - \frac{1}{\nu_i}\right).
$$

If $G = \langle f_1, f_2 \rangle$, we have ord $(G) \leq 6(2g+1)/5 < 4g+2$. There is nothing more to do. If $G = \langle f_1, f_2, f_3 \rangle$ occurs, by lemma we have $\nu_4 = \nu_5 = \nu_6 = m$, and m divides n. If $m=2$, we have $n=(4g+2)/5$. Therefore, g must satisfy $2g+1\equiv 0 \pmod{5}$ and ord(G) $\leq (24g+12)/5$. This is to be treated later on. If $m \geq 3$, we have ord $(G) \leq 6n \leq 4g+2$. This may be omitted.

Case (E): $r \ge 7$ in (1).

In this case we have

$$
\frac{2g-2}{n} = -2 + 3\left(1 - \frac{1}{n}\right) + \sum_{i=4}^{r} \left(1 - \frac{1}{\nu_i}\right)
$$

$$
\geq 1 - \frac{3}{n} + 2.
$$

Therefore, we obtain ord $(G) \leq 6n \leq 4g+2$. In this case there is nothing to do.

8. **The case** (A). In this case we may assume that f_2^s is equal to the identity and that f_3^2 is equal to the identity, where f^j denotes the *j*-th iteration of f. Fur thermore, we may assume that f_2 has a fixed point which we denote by q_1 . Let π be the natural projection mapping of *W* onto $W/\langle f_1 \rangle$ and let γ_1 be a simple curve starting and ending at $q = \pi(q_1)$, which is freely homotopic in $W/\langle f_1 \rangle - \langle \pi(p_1), \pi(p_2),$ *π*(p_3)}, to an arbitrary small circle centered at $π(p_1)$. Let $γ_2 = π \circ f_2 \circ π^{-1}(γ_1)$ and let $\gamma_3 = \pi \circ f_2^2 \circ \pi^{-1}(\gamma_1)$. By lemma these are uniquely determined regardless of a choice of a branch of π^{-1} . Let q_{i+1} be the terminal point of the lift of γ_1 starting at q_i $(i=1, \dots, 2g+1)$. Henceforth, we consider the suffixes of q 's by mod $2g+1$. If we set q_{1+j} the terminal point of the lift of γ_2 starting at q_1 , then by the monodromy theorem we establish that $q_{1+i,j}$ is the terminal point of the lift of γ_2 starting at $q_{1+(i-1)j}$ (i=1, \cdots , 2g+1). This assures that $f_2(q_{1+i})=q_{1+i}$. Then we have

$$
q_2 = f_2^3(q_2) = f_2^2(q_{1+j}) = f_2(q_{1+j^2}) = q_{1+j^3}.
$$

Therefore we have

$$
j^3 - 1 \equiv 0 \quad (\text{mod } 2g + 1).
$$

If there exists f_3 , we may also assume that f_3 has a fixed point which is dif ferent from p_1 , and we denote it by q'_1 . Let γ'_2 be a simple curve starting and ending at $q' = \pi(q'_1)$, which is freely homotopic in $W/\langle f_1 \rangle - \{\pi(p_1), \pi(p_2), \pi(p_3)\}\$, to a small circle centered at $\pi(p_2)$, and let $\gamma'_3 = \pi \circ f_3 \circ \pi^{-1}(\gamma'_2)$. Let q'_{i+1} be the terminal point of the lift of γ'_2 starting at q'_i (*i*=1, ···, 2*g*+1), and set q'_{i+j} the terminal point of the lift of γ'_3 starting at q'_1 . Then we have

$$
q_2' = f_3^2(q_2') = f_3(q_{1+j}') = q_{1+j}'^2.
$$

Therefore, we have

$$
j^2 - 1 \equiv 0 \qquad \pmod{2g+1}.
$$

Consequently, if the case $G = \langle f_1, f_2, f_3 \rangle$ occurs, $j^3 - 1 \equiv 0 \pmod{2g+1}$ and $j^2 - 1$ $\equiv 0 \pmod{2g+1}$ has a common solution, i.e. $j=1$. Then we continue a branch of *π*⁻¹(*q*) along *γ*₁, *γ*₂ and *γ*₃ successively. Hence, there is no branch point in *W* but p_1, p_2 and p_3 , we have $2g+1=3$. Therefore, this case does not occur except for $g=1.$

If the case $G = \langle f_1, f_2 \rangle$ occurs, $j^2 + j + 1 \equiv 0 \pmod{2g+1}$ has a solution.

9. **The case** (C) **and the case** (D). In these cases we consider an intermediate covering surface $W/\langle f_1^{n/m} \rangle$ of $W/\langle f_1 \rangle$. The natural projection mapping $W/\langle f_1^{n/m} \rangle$ onto $W/\langle f_1 \rangle$ does not ramify but $\pi(p_1), \pi(p_2)$ and $\pi(p_3)$. Hence, we can apply the discussion in paragraph 8 to $W/\langle f_1^{n/m} \rangle$, we may conclude that if the case G $=\langle f_1, f_2, f_3 \rangle$ occurs, $n=m$ or $n=3m$. The former corresponds to $g'=0$ and the latter to $g' = 1$, where g' denotes the genus of $W/\langle f_1^{n/m} \rangle$.

In the case (C), if the case $n=m$ occurs, we establish that $3n=2g+3$ which implies that $g \equiv 0 \pmod{3}$ and if the case $n=3m$ occurs, we establish that $9m=2g$ +7 which implies that $g \equiv 1 \pmod{9}$.

In the case (D), if $n=m=2$ then $g=2$ and if $n=3m=6$ then $g=7$.

10. Examples. To show the exactness it is sufficient to construct some examples.

EXAMPLE 1. For $g=1$, let *W* be the Riemann surface defined by the equation

$$
y^3 = x^3 - 1.
$$

Let p_1 , p_2 and p_3 be the points corresponding to $x=1$, $e^{2\pi i/3}$ and $e^{4\pi i/3}$ respectively. Set

$$
f_1: (x, y) \longrightarrow (x, e^{2\pi i/3}y),
$$

$$
f_2: (x, y) \longrightarrow (e^{2\pi i/3}x, y)
$$

and

$$
f_3: (x, y) \longrightarrow (1/x, -y/x).
$$

Then we have

 $N(q, 3)=12q+6.$

EXAMPLE 2. For g such that $j^2+j+1\equiv 0 \pmod{2g+1}$ has a solution and $g \ne 1$, let *W* be the Riemann surface defined by the equation

$$
y^{2g+1} = (x-1)(x-e^{2\pi i/3})^j(x-e^{4\pi i/3})^{j^2}
$$

where *j* is a solution of $j^2 + j + 1 \equiv 0 \pmod{2g+1}$. Let p_1, p_2 and p_3 be the points corresponding to $x=1$, $e^{2\pi i/3}$ and $e^{4\pi i/3}$ respectively. Set

$$
f_1: (x, y) \longrightarrow (x, e^{2\pi i/(2g+1)}y)
$$

and

$$
f_2
$$
: $(x, y) \longrightarrow \left(e^{2\pi i/3}x, \frac{e^{2\pi (1+j+1/2)\pi/3 (2g+1)}y^j}{(x-e^{4\pi i/3})(j^3-1)/(2g+1)}\right).$

Then we have

 $N(g, 3) = 6g + 3.$

EXAMPLE 3. For g such that $j^2+j+1\equiv 0 \pmod{2g+1}$ does not have a solution and $g \equiv 1 \pmod{9}$, let *W* be the Riemann surface defined by the equation

$$
y^{(2g+7)/3} = x^{(g-1)/3}(x^3-1).
$$

Let p_1, p_2 and p_3 be the points corresponding to $x=1$, $e^{2\pi i/3}$ and $e^{4\pi i/3}$ respectively. Set

$$
f_1: (x, y) \longrightarrow (x, e^{6\pi i/(2g+7)}y),
$$

$$
f_2: (x, y) \longrightarrow (e^{2\pi i/4}x, y)
$$

and

 $f_3: (x, y) \longrightarrow (1/x, -y/x)$

Then we have

 $N(q, 3)=4q+14$.

EXAMPLE 4. For g such that $j^2+j+1\equiv 0 \pmod{2g+1}$ does not have a solution and $g \equiv 0 \pmod{3}$, let *W* be the Riemann surface defined by the equation

 $y^{(2g+3)/3} = x^{(g-3)/3}(x^3-1).$

Let p_1, p_2 and p_3 be the points corresponding to $x=1$, $e^{2\pi i/3}$ and $e^{4\pi i/3}$ respectively. Set

$$
f_1: (x, y) \longrightarrow (x, e^{6\pi i/(2g+3)}y),
$$

$$
f_2: (x, y) \longrightarrow (e^{2\pi i/3}x, e^{4\pi i/3}y)
$$

and

$$
f_{3}: (x, y) \longrightarrow (1/x, -y/x).
$$

Then we have

$$
N(q, 3)=4q+6.
$$

EXAMPLE 5. For $g=2$ or 7, let *W* be the Riemann surface defined by the equation

$$
y^{(4g+2)/5} = (x^3-1)(x^3+1)^{(2g+1)/5}.
$$

Let p_1 , p_2 and p_3 be the points corresponding to $x=1$, $e^{2\pi i/3}$ and $e^{4\pi i/3}$ respectively. Set

232 TAKAO KATO

$$
f_1: (x, y) \longrightarrow (x, e^{5\pi i/(2g+1)}y),
$$

$$
f_2: (x, y) \longrightarrow (e^{2\pi i/3}x, y)
$$

and

$$
f_3
$$
: $(x, y) \longrightarrow (1/x, e^{\pi i/2}y/x^{3(g+3)/(2g+1)})$.

Then we have

$$
N(q, 3) = \frac{24g + 12}{5}.
$$

Summing up, we have concluded our theorem 3.

11. Some criteria for the solubility of the congruence $j^2+j+1\equiv 0 \pmod{2g+1}$. If *p* is a prime number, then the following congruence holds for every integer *j* (Fermat's theorem):

$$
j^p - j \equiv 0 \qquad (\text{mod } p).
$$

Suppose that $q \equiv 0 \pmod{3}$ and that $2q+1$ is prime, we have

$$
j^{2g+1} - j = (j^2 + j + 1) P(j)
$$

where $P(j)$ is a polynomial of degree $2g-1$ with integral coefficients. The congruence $P(j) \equiv 0 \pmod{2g+1}$ has at most $2g-1$ solutions while the congruence $j^{2g+1}-j\equiv 0 \pmod{2g+1}$ has $2g+1$ solutions, and consequently, the congruence j^2+j+1 $\equiv 0 \pmod{2g+1}$ has two solutions.

Suppose that $g \equiv 2 \pmod{3}$ and that $2g+1$ is prime, we have

$$
j^{2g+1}-j = (j^2+j+1)P(j) - (2j+1)
$$

where $P(j)$ is a polynomial of degree $2g-1$ with integral coefficients. If the congruence $j^2+j+1 \equiv 0 \pmod{2g+1}$ has a solution, then the congruence $2j+1 \equiv 0$ (mod $2g+1$) must have the same solution. This is impossible.

It is obvious that if the congruence $j^2+j+1\equiv 0 \pmod{p}$ is unsoluble then for every multiple of ϕ , denoted by q, the congruence $j^2 + j + 1 \equiv 0 \pmod{q}$ is unsoluble, and it is easily seen that every number of the form *6m*+5 is divisible by a prime number of the form $6m'+5$.

Thus we conclude that if $g \equiv 2 \pmod{3}$ then the congruence $j^2 + j + 1 \equiv 0 \pmod{3}$ $2q+1$) is unsoluble.

REFERENCES

- [1] Accola, R. D. M., On the number of automorphisms of a closed Riemann surface. Trans. Amer. Math. Soc. 131 (1968), 398-408.
- [2] AHLFORS, L. V., AND L. SARIO, Riemann surfaces. Princeton Univ. Press, Princeton (1960).
- [3] HEINS, M., On the number of 1-1 directly conformal maps which a multiplyconnected plane region of finite connectivity p ($>$ 2) admits onto itself. Bull.

Amer. Math. Soc. 52 (1946), 454-457.

- [4] HURWITZ, A., Uber algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41 (1893), 403-442.
- [5] KILEY, W. T., Automorphism groups on compact Riemann surfaces. Trans. Amer. Math. Soc. 150 (1970), 557-563.
- [6] MACBEATH, A. M., On a theorem of Hurwitz. Proc. Glasgow Math. Assoc. 5 (1961), 90-96.
- [7] MACLACHLAN, C, A bound for the number of automorphisms of a compact Riemann surface. J. London Math. Soc. 44 (1969), 265-272.
- [8] OIKAWA, K., Note on conformal mappings of a Riemann surface onto itself. Kόdai Math. Sem. Rep. 8 (1956), 23-30.
- [9] OIKAWA, K., A supplement to "Note on conformal mappings of a Riemann surface onto itself". Kδdai Math. Sem. Rep. 8 (1956), 115-116.
- [10] TSUJI, R., On conformal mapping of a hyperelliptic Riemann surface onto itself. Kδdai Math. Sem. Rep. 10 (1958), 127-136.
- [11] WIMAN, A., Uber die hyperelliptishen Curven und diejenigen vom Geschlechte *p=3* welche eindeutigen Transformationen in sich zulassen. Bihang Till. Kongl. Svenska Veienskaps-Akademiens Hadlingar 21 (1895-6), 1-23.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.