ON A PIECE OF SURFACE IN A FIBRED SPACE

By Mariko Konishi

In 1955 Heinz [1] proved the following

THEOREM A. Let z=z(x, y) be a 2-dimensional surface in a 3-dimensional Euclidean space defined over the disk $x^2+y^2 < R^2$, where z(x, y) is a C²-class function. Let H and K denote its mean curvature and Gaussian curvature respectively.

If
$$|H| \leq c > 0$$
, then $R \leq \frac{1}{c}$.
If $K \geq c > 0$, then $R \leq \left(\frac{1}{c}\right)^{1/2}$.
If $K \leq -c < 0$, then $R \leq e\left(\frac{3}{c}\right)^{1/2}$

(c=constant in all cases.)

Generalizing this, in 1965 Chern [2] obtained

THEOREM B. Let M^n be a compact piece of an oriented hypersuface (of dimension n) with smooth boundary ∂M^n , which is immersed in Euclidean space E^{n+1} . Suppose that the mean curvature $H_1 \ge c$ (c = const.). Let a be a fixed unit vector which makes an angle $\le \pi/2$ with all the normals of M^n . Then

 $ncV_a \leq L_a$

where V_a is the volume of the orthogonal projection of M^n and L_a that of ∂M^n on the hyperplane perpendicular to a. When M^n is defined by the equation

 $z = z(x_1, \dots, x_n), \qquad x_1^2 + \dots + x_n^2 \leq R^2,$

where x_1, \dots, x_n , z are rectangular coordinates in the space E^{n+1} and $a=(0, \dots, 0, 1)$, then $cR \leq 1$.

Katsurada [5] extended this theorem to a compact piece of a hypersurface in a Riemann manifold admitting a conformal killing vector field. The purpose of the present paper is to study this problem in a fibred space with some properties; that is, to prove Theorem 3.

Received March 17, 1971.

1. Fibred spaces.¹⁾

The set $(\tilde{M}, M, \pi; \tilde{E}, \tilde{G})$ is called a *fibred space* if it satisfies the following five conditions:

- 1) \widetilde{M} , M are two differentiable manifolds of dimension n+1 and n respectively.
- 2) π is a differentiable mapping from \widetilde{M} onto M and of maximum rank n.
- The inverse image π⁻¹(p) of a point p∈M is a 1-dimensional connected submanifold of M̃. We denote π⁻¹(p) by F_p and call F_p the fiber over the point P.
- 4) \tilde{G} is a positive definite Riemannian metric.
- 5) \tilde{E} is a unit vector field in \tilde{M} tangent to the fiber everywhere.

Moreover, if $\mathcal{L}\widetilde{G}=0$ (here and in the sequel \mathcal{L} denotes Lie derivation with respect to \widetilde{E}), we call \widetilde{G} an *invariant metric*. Let \widetilde{U} be a coordinate neighborhood and $(x^{\alpha})=(x^1, \dots, x^{n+1})$ be local coordinates defined in \widetilde{U} , where and in the sequel the indices α, β, \dots run over the range $\{1, 2, \dots, n+1\}$. We denote the components of \widetilde{E} and \widetilde{G} with respect to these coordinates by E^{γ} and $G_{\gamma\beta}$ respectively. If (ξ^i) $=(\xi^1, \dots, \xi^n)$ are local coordinates in $\pi(\widetilde{U}), \pi$ has a local expression

$$(1.1) \qquad \qquad \xi^i = f^i(x^{\alpha}),$$

 f^i (i=1, ..., n) being certain functions, where and in the sequel, the indices i, j, k, ... run over the range $\{1, 2, ..., n\}$. Then the differential of π has the local expression

$$d\xi^{\imath} = E_{\alpha}{}^{\imath} dx^{\alpha}$$

where we have put $E_{\alpha}{}^{i} = \partial_{\alpha} f^{i}$, ∂_{α} denoting the differential operator $\partial/\partial x^{\alpha}$. We see that the *n* local covector fields $\zeta^{i} = E_{\alpha}{}^{i} dx^{\alpha}$ are linearly independent in \tilde{U} . Putting

$$(1.2) E_{\beta} = G_{\gamma\beta} E^{\gamma},$$

we denote by $\tilde{\eta}$ the 1-form whose components are E_{β} in \tilde{U} .

We now find

 $E^{\alpha}E_{\alpha}^{\imath}=0$

because the vector field \tilde{E} is tangent to fibers, i.e. $d\pi(\tilde{E})=0$. Consequently, the inverse of the matrix (E_{α}, E_{α}) has the form

$$(E_{\alpha}{}^{\imath}, E_{\alpha})^{-1} = \begin{pmatrix} E^{\beta}{}_{h} \\ E^{\beta} \end{pmatrix}$$

and thus for each fixed index h, $E^{\beta}{}_{h}$ are components of a local vector field \widetilde{A}_{h} in U.

¹⁾ As to notations and the definitions of fibred spaces we follow [7] and [8].

If we assume that \widetilde{G} satisfies the condition

(1.3)
$$\pounds(G_{\tau\theta}E^{\tau}{}_{j}E^{\theta}{}_{i})=0,$$

then we can induce a metric g on M whose components are $g_{ji}=G_{r\theta}E^r{}_{j}E^{\theta}{}_{i}$ in U. In this sense, when a Riemannian metric \tilde{G} satisfies (1.3), \tilde{G} is called a *projectable metric* and g is called the *induced metric* in M from \tilde{G} . In the sequel, a fibred space $(\tilde{M}, M, \pi; \tilde{E}, \tilde{G})$ is called, for simplicity, a *fibred space with projectable (resp. invariant) metric* when \tilde{G} is projectable (resp. invariant) metric.

2. A piece of hypersurface in a fibred space.

Let $(\tilde{M}, M, \pi; \tilde{E}, \tilde{G})$ be a fibred space with projectale metric \tilde{G} . Consider a compact piece \tilde{M}^n of an orientable hypersurface of dimension n in \tilde{M} and denote by $\partial \tilde{M}^n$ the boundary of the compact piece \tilde{M}^n . We suppose that \tilde{M}^n meets at most once each fiber. For simplicity, we say that such a piece \tilde{M}^n of a hypersurface is a simple covering of the projection $M^n = \pi(\tilde{M}^n)$.

We now assume that \widetilde{M}^n has a local expression

$$(2.1) x^r = x^r(u^j),$$

where $(u^j) = (u^1, \dots, u^n)$ are local parameters of \widetilde{M}^n , and that the boundary $\partial \widetilde{M}^n$ has a local expression

$$u^j = u^j(r^a),$$

where $(r^a) = (r^1, \dots, r^{n-1})$ are local parameters of $\partial \tilde{M}^n$. The indices a, b, c, \dots run over the range $\{1, 2, \dots, n-1\}$.

If we put

$$B_{j}^{r} = \frac{\partial x^{r}}{\partial u^{j}},$$

then $\tilde{B}_j = (B_j^r)$ are vectors tangent to \tilde{M}^n . We choose a unit vector \tilde{C} normal to \tilde{M}^n in such a way that the determinant of the matrix (C^r, B_j^r) is positive, C^r being the components of \tilde{C} . We put

$$(2.2) E^{\beta} = v^{j} B_{j}^{\beta} + \alpha C^{\beta}$$

on the compact piece \tilde{M}^n . Denoting by $\tilde{g}_{ji} = B_j^{\ r} B_i^{\ \beta} G_{\tau\beta}$ the metric tensor on \tilde{M}^n induced from \tilde{G} and setting

$$v_i = \tilde{g}_{ji} v^j$$

we have

$$(2.3) v_i = B_i{}^r E_r,$$

because of (1.2) and (2.2). Hence we have

(2.4)
$$\nabla_j v_i = \alpha h_{ji} + B_j^{\gamma} B_i^{\beta} \nabla_{\gamma} E_{\beta}$$

along \widetilde{M}^n , where h_{ji} denotes the second fundamental tensor of \widetilde{M}^n . Transvecting (2.3) with \tilde{g}^{ji} , we get

(2.5)
$$\tilde{g}^{ji} \nabla_j v_i = \alpha (nH_1) + \frac{1}{2} \tilde{g}^{ji} B_j^{\ \gamma} B_i^{\ \beta} \pounds G_{\gamma\beta},$$

where H_1 is the mean curvature of \tilde{M}^n , i.e. $H_1 = (1/n)\tilde{g}^{ji}h_{ji}$. Integrating both sides of (2.5) over \tilde{M}^n and applying Stokes' theorem, we have

(2. 6)
$$\int_{\partial \widetilde{M}^n} v_j D^j d\widetilde{\sigma} = n \int_{\widetilde{M}^n} H_1 \alpha \, d\widetilde{V} + \frac{1}{2} \int_{\widetilde{M}^n} \widetilde{g}^{ji} B_j^{\ r} B_i^{\ \beta} \pounds G_{\gamma\beta} \, d\widetilde{V},$$

 $\tilde{D} = (D^j)$ being the unit vector field normal to \tilde{C} and to the boundary $\partial \tilde{M}^n$. In the integral formula (2. 6) $d\tilde{\sigma}$ and $d\tilde{V}$ denote the volume elements of $\partial \tilde{M}^n$ and \tilde{M}^n respectively, that is,

$$\begin{split} d\tilde{\sigma} &= \sqrt{\det \tilde{g}} \, dr^1 \wedge \cdots \wedge dr^{n-1}, \\ d\tilde{V} &= \sqrt{\det \tilde{g}} \, du^1 \wedge \cdots \wedge du^n, \end{split}$$

where we have put

$$\bar{B}_a = (\bar{B}_a{}^j) = \left(\frac{\partial u^j}{\partial r^a}\right), \qquad \bar{g}_{cb} = \tilde{g}(\bar{B}_c, \bar{B}_b),$$

det \tilde{g} and det \tilde{g} denoting the determinants formed with (\tilde{g}_{cb}) and (\tilde{g}_{ji}) respectively.

From the definitions of \tilde{g} and \tilde{C} , we have

(2.7)
$$\sqrt{\det \widetilde{G}} \det (\widetilde{C}, \widetilde{B}_j) = \sqrt{\det \widetilde{g}}.$$

Here and in the sequel det $(\widetilde{C}, \widetilde{B}_j)$ denotes the determinant of the matrix $(C^{\alpha}, B_j^{\alpha})$.

On the other hand, since the Riemannian metric g induced on the base space M from \widetilde{G} has the components

$$g_{ji} = \widetilde{G}(\widetilde{A}_j, \widetilde{A}_i),$$

we have

(2.8)
$$\det \widetilde{G} \{\det (\widetilde{E}, \widetilde{A}_j)\}^2 = \det g.$$

Since \tilde{M}^n is nowhere tangent to fibres, we can choose $(\xi^j) = (\xi^1, \dots, \xi^n)$ as the local parameters of \tilde{M}^n . If we substitute the local expression (2.1) with $u^j = \xi^j$ in (1.1), we have the identity

$$\xi^j = f^j(x^{\alpha}(\xi^k)).$$

Then, differentiating the equation above, we have

$$(2.9) \qquad \qquad \delta_i{}^j = E_{\alpha}{}^j B_i{}^c$$

and consequently

(2. 10) $\widetilde{B}_i = \widetilde{A}_i + \widetilde{\eta}(\widetilde{B}_i)\widetilde{E}, \qquad \widetilde{\eta}(\widetilde{B}_i) = v_i$

in \widetilde{U} .

Taking account of (2.2) and (2.10), we get

(2. 11)
$$\det (\tilde{E}, \tilde{B}_j) = \det (v^i \tilde{B}_i + \alpha \tilde{C}, \tilde{B}_j) = \alpha \det (\tilde{C}, \tilde{B}_j),$$
$$\det (\tilde{E}, \tilde{A}_j) = \det (\tilde{E}, \tilde{B}_j - v_j \tilde{E}) = \det (\tilde{E}, \tilde{B}_j).$$

Consequently, if we assume $\alpha > 0$, we have from (2.7), (2.8) and (2.11)

(2. 12)
$$|\alpha| \sqrt{\det \tilde{g}} = \sqrt{\det g}.$$

The metric \bar{g} of $\partial \widetilde{M}^n$ induced from \tilde{g} being defined by

$$\bar{g}_{cb} = \widetilde{G}(\widetilde{BB}_c, \widetilde{BB}_b)$$

we have

(2. 13)
$$(\det \widetilde{G}) \{\det (\widetilde{C}, \widetilde{BB}_c, \widetilde{BB}_b)\}^2 = \det \overline{g},$$

where $(\widetilde{BD})^r = B_j^r D^j$ and $(\widetilde{BB}_b)^r = B_j^r B_b^j$. On the other hand, denoting by *g the metric induced on $\pi(\partial \widetilde{M}^n)$ from the induced metric g of M, we have

(2. 14)
$$\sqrt{\det \widetilde{G}} \det (\widetilde{AN}, \widetilde{E}, \widetilde{AB}_b) = \sqrt{\det *g},$$

where $N=(N^{j})$ denotes the unit normal to $\pi(\partial \widetilde{M}^{n})$, and $(\widetilde{AN})^{r}=E^{r}{}_{j}N^{j}$ is such that the determinant of the matrix $(\widetilde{AN}, \widetilde{E}, \widetilde{AB}_{b})$ is positive. The unit vector \widetilde{C} normal to \widetilde{M}^{n} is a linear combination of \widetilde{AN} , \widetilde{E} , and \widetilde{AB}_{d} , i.e.,

 $\widetilde{C} = a(\widetilde{AN}) + b^{d}(\widetilde{AB_{d}}) + \alpha \widetilde{E}$

a, b^d being certain functions where $|a| \leq 1$. Thus we have

(2. 15)
$$\det (\widetilde{C}, \widetilde{E}, \widetilde{AB_b}) = |a| \det (\widetilde{AN}, \widetilde{E}, \widetilde{AB_b}).$$

If we put

$$\tilde{E} = (v_j D^j) \widetilde{BD} + d^a (\widetilde{BB}_a) + \alpha \widetilde{C}$$

for certain functions d^a , we have

(2. 16)
$$\det(\widetilde{C}, \widetilde{E}, \widetilde{AB}_b) = \det(\widetilde{C}, \widetilde{E}, \widetilde{BB}_b)$$
$$= v_j D^j \det(\widetilde{C}, \widetilde{BD}, \widetilde{BB}_b),$$

by virtue of (2.8) and (2.10).

Now we suppose that \widetilde{D} is chosen in such a way that det $(\widetilde{C}, \widetilde{BD}, \widetilde{BB}_b) > 0$. Then we have $v_j D^j \ge 0$ and

(2. 17)
$$(v_j D^j) \sqrt{\det \bar{g}} = |a| \sqrt{\det *g}$$

because of $(2.13) \sim (2.16)$.

Returning to the integral formula (2.5) and taking account of (2.12) and

(2.17), we get

$$\int_{\partial \widetilde{M}^n} |a| \sqrt{\det *g} \, dr^1 \wedge \cdots \wedge dr^{n-1} = n \int_{\widetilde{M}^n} H_1 \sqrt{\det g} \, du^1 \wedge \cdots du^n + \int_{\widetilde{M}^n} G^{*r_\beta} \pounds G_{r_\beta} \, d\widetilde{V}$$

and hence by virtue of $|a| \leq 1$

$$(2.18) \quad \int_{\partial \tilde{M}^n} \sqrt{\det *g} \, dr^1 \wedge \cdots \wedge dr^{n-1} = n \int_{\tilde{M}^n} H_1 \sqrt{\det g} \, du^1 \wedge \cdots du^n + \int_{\tilde{M}^n} G^{*r\beta} \pounds G_{r\beta} \, d\tilde{V},$$

where we have put $G^{*r_{\beta}} = \tilde{g}^{ji} B_j^{\ r} B_i^{\ \beta}$.

If we assume that $H_1 \ge c > 0$ (c: constant), $\alpha > 0$ and

$$\int_{\tilde{M}^n} G^{*r_\beta} \pounds G_{r^\beta} d\tilde{V} \ge 0,$$

then we get

$$\int_{\pi(\partial \widetilde{M}^n)} d\sigma \ge nc \int_{\pi(\widetilde{M}^n)} dV,$$

where $d\sigma$ and dV are the volume elements of $\pi(\partial \tilde{M}^n)$ and $\pi(\tilde{M}^n)$ respectively. Therefore we obtain

THEOREM 1. Let $(\tilde{M}, M, \pi : \tilde{E}, \tilde{G})$ be a fibred space with projectable metric \tilde{G} . Let \tilde{M}^n be a compact piece of an oriented hypersurface in \tilde{M} with compact smooth boudary $\partial \tilde{M}^n$, which covers simply the projection $\pi(\tilde{M}^n)$. Suppose that its mean curvature H_1 satisfies the condition $H_1 \ge c > 0$ (c: constant) and that \tilde{E} makes an angle $\le \pi/2$ with the normals of \tilde{M}^n at each point. If the condition

(2. 19)
$$\int_{\widetilde{M}^n} G^{*r\beta} \pounds G_{r\beta} d\widetilde{V} \ge 0$$

holds, then the inequality

$$(2.20) ncV \leq L$$

holds, where V and L denote the volume of the projection of \tilde{M}^n and $\partial \tilde{M}^n$ respectively.

REMARK 1. When \tilde{M}^n is a compact hypersurface, $\partial \tilde{M}^n$ is empty. Thus taking account of (2.18), we see that there is no compact hypersurface satisfying the conditions mentioned in Theorem 1. In other words we can say that if \tilde{M}^n is a compact hypersurface of constant mean curvature, then \tilde{M}^n must be minimal.

REMARK 2. When $(\tilde{M}, M, \pi; \tilde{E}, \tilde{G})$ is a fibred space with invariant Riemanian metric, the condition (2.19) mentioned in Theorem 1 obviously holds.

For a projectable metric \tilde{G} , if we put

$$\pounds E_r = \phi_j E_r^j$$

for certain functions ϕ_j , then we have

 $G_{r\beta} = \phi_j (E_r^j E_\beta + E_r E_\beta^j)$

by virtue of $\pounds \tilde{E}=0$. Hence we have

$$G^{*\tau\rho} \pounds G_{\tau\rho} = g^{ji} B_j^{\tau} B_i^{\rho} \phi_k (E_\tau^{k} E_\rho + E_\tau E_\rho^{k})$$
$$= 2\tilde{g}^{ji} v_j \phi_i$$

by virtue of (2.3) and (2.8). Thus we get

$$G^{*r_{\beta}} \pounds G_{r_{\beta}} = 2v^{i}\phi_{i} = 2v^{i}B_{i}^{r} \pounds E_{r}$$
$$= 2(E^{r} - \alpha C^{r})\pounds E_{r} = -2\alpha C^{r}\pounds E_{r}.$$

We note the above obtained results in the following remark.

REMARK 3. The condition (2.19) is equivalent to the condition

$$\int_{\widetilde{M}^n} C^r \pounds E_r \, d\widetilde{V} \leq 0.$$

3. A piece of submanifold of co-dimension 2.

In this section we discuss a compact piece \tilde{M}^{n-1} of (n-1)-dimensional orientable submanifold of co-dimension 2 in a fibred space $(\tilde{M}, M, \pi : \tilde{E}, \tilde{G})$. We also suppose that \tilde{M}^{n-1} is a simple covering of the projection $M^{n-1} = \pi(\tilde{M}^{n-1})$ in the above mentioned sense.

We now assume that \widetilde{M}^{n-1} has a local expression

$$(3. 1) x^{\alpha} = x^{\alpha}(u^{j}),$$

 $(u^{j})^{2_{j}} = (u^{1}, \dots, u^{n-1})$ being local parameters of \widetilde{M}^{n-1} , and that the boundary $\partial \widetilde{M}^{n-1}$ has a local expression

$$u^{j}=u^{j}(r^{\bar{a}}),$$

 $(r^{\bar{n}})^{3} = (r^1, \dots, r^{n-2})$ being local parameters of $\partial \widetilde{M}^{n-1}$. If we put

$$B_{j}^{\alpha} = \frac{\partial x^{\alpha}}{\partial u^{j}},$$

then we have n-1 linearly independent vectors $\widetilde{D}_j = (B_j^{\alpha})$ tangent to \widetilde{M}^{n-1} .

Let $\tilde{C}_1 = (C_1^{\alpha})$, $\tilde{C}_2 = (C_2^{\alpha})$ be mutually orthogonal unit vectors normal to \tilde{M}^{n-1} and $\tilde{h}_1 = (h_{(1)ji})$, $\tilde{h}_2 = (h_{(2)ji})$ be the second fundamental tensors with respect to \tilde{C}_1 , \tilde{C}_2 , reespectively. A vector field $\tilde{H} = (H^{\alpha})$ defined by

$$H^{\alpha} = \frac{1}{n-1} (h_{(1)ji} C_{1}^{\alpha} + h_{(2)ji} C_{2}^{\alpha}) \tilde{g}^{ji}$$

2) The indicies i, j, \dots run over the range $\{1, \dots, n-1\}$.

³⁾ The indicies \bar{a}, \bar{b}, \cdots run over the range $\{1, \cdots, n-2\}$.

is independent of the choice of $(\tilde{C}_1, \tilde{C}_2)$, and we call \tilde{H} the mean curvature vector field of \tilde{M}^{n-1} . The magnitude H_1 of the mean curvature vector field is called the mean curvature of \tilde{M}^{n-1} , i.e.,

$$H_1 = \frac{1}{n-1} (\tilde{g}^{ji} h_{(1)ji} + \tilde{g}^{ji} h_{(2)ji}).$$

If H_1 is positive, we can take the first unit normal \tilde{C}_1 in the direction of the mean curvature vector field H. In this case we see that

(3.2)
$$\tilde{g}^{ji}h_{(2)ji}=0$$
 and $\frac{1}{n-1}\tilde{g}^{ji}h_{(1)ji}=H_1$.

We put

(3.3)
$$E^{r} = v^{j} B_{j}^{r} + \alpha C_{1}^{r} + \beta C_{2}^{r}$$

on the compact piece \tilde{M}^{n-1} . Putting

$$v_i = \tilde{g}_{j\bar{\imath}} v^j$$

we have

$$(3. 4) v_i = B_i^{r} E_r,$$

because of (1.2) and (3.3). Hence we have

$$(3.5) \nabla_j v_i = \alpha h_{ji} + \beta k_{ji} + B_j^{\ r} B_i^{\ \rho} \nabla_r E_{\rho}$$

along \widetilde{M}^{n-1} . Transvecting (3. 4) with \tilde{g}^{ji} , we get

(3. 6)
$$\tilde{g}^{ji} \nabla_j v_i = \alpha (nH_1) + \frac{1}{2} \tilde{g}^{ji} B_j^{\ r} B_i \pounds G_{r_i}$$

by virtue of (3.2). Integrating both sides of (3.6) over \tilde{M}^{n-1} and applying Stokes' theorem, we have

(3.7)
$$\int_{\partial \widetilde{M}^{n-1}} v_j D^j d\widetilde{\sigma} = n \int_{\widetilde{M}^{n-1}} H_1 \alpha \, d\widetilde{V} + \frac{1}{2} \int_{\widetilde{M}^{n-1}} \widetilde{g}^{j_i} B_j^{\tau} B_i^{\beta} \pounds G_{\tau\beta} \, d\widetilde{V},$$

where $\tilde{D} = (D^{j})$ is the unit vector field normal to \tilde{C}_{1} , \tilde{C}_{2} and to the boundary $\partial \tilde{M}^{n-1}$, and $d\tilde{\sigma}$, $d\tilde{V}$ denote the volume elements of $\partial \tilde{M}^{n-1}$, \tilde{M}^{n-1} respectively. Next we will compare $d\tilde{V}$ with the volume element of $\pi(\tilde{M}^{n-1})$. Since \tilde{M}^{n-1} is nowhere tangent to fibres, we can choose $(u^{j}) = (u^{1}, \dots, u^{n-1})$ as the local parameters of the projection M^{n-1} that is, M^{n-1} has the local expression

$$\xi^i = \xi^i(u^j),$$

and by virtue of (1.1), we have the identity

$$\xi^{i}(u^{j}) = f^{i}(x^{\alpha}(u^{j})).$$

Then, differentiating the equation above, we have

$$\frac{\partial \xi^i}{\partial u^j} = E_{\alpha}{}^i B_j{}^c$$

and consequently, if we set

$$B_j = (B_j^i) = \left(\frac{\partial \xi^i}{\partial u^j}\right),$$

 $\widetilde{AB_j} = (E_i^{\alpha} B_j^i),$

then we have

(3. 9) $\widetilde{AB_j} = \widetilde{B_j} - v_j \widetilde{E}$

in \widetilde{U} . From the definition of \widetilde{C}_1 , \widetilde{C}_2 and \widetilde{g} , we have

$$\sqrt{\det \widetilde{G}} \det (\widetilde{C}_1, \widetilde{C}_2, \widetilde{B}_j) = \sqrt{\det \widetilde{g}}.$$

On the other hand, denoting by g the metric induced on $\pi(\widetilde{M}^{n-1})$ from the induced metric of M, we have

$$\det \widetilde{G} \{\det (\widetilde{E}, \widetilde{AN_1}, \widetilde{AB_j})\}^2 = \det g$$

where $N_1 = (N_1^i)$ denotes the unit normal to $\pi(\widetilde{M}^{n-1})$, and $(\widetilde{AN}_1)^r = E^r{}_j N_1^j$. If we suppose that $\widetilde{AN} = \widetilde{C}_2$ or equivalently $\beta = 0$ in (3.3), then we have

$$\det (\tilde{E}, \widetilde{AN}_1, \widetilde{AB}_j) = \det (\tilde{E}, \widetilde{C}_2, \widetilde{AB}_j) = \alpha \det (\widetilde{C}_1, \widetilde{C}_2, \widetilde{B}_j)$$

by virtue of (3.3) and (3.8). Thus we obtain the relation

$$|\alpha| \sqrt{\det \tilde{g}} = \sqrt{\det g}$$

Henceforth we assume that $\alpha > 0$, and then we have

$$\alpha d\tilde{V} = dV.$$

If we denote by \bar{g} the induced metric on $\partial \widetilde{M}^{n-1}$ from \tilde{g} , \bar{g} is given by

$$\bar{g}_{\bar{c}\bar{b}} = \tilde{G}(BB_{\bar{c}}BB_{\bar{b}})$$

and det \bar{g} by

(3. 10)
$$\det \widetilde{G} \{\det (\widetilde{C}_1, \widetilde{C}_2, \widetilde{BD}, \widetilde{BB}_{\overline{b}})\}^2 = \det \overline{g},$$

where $(\widetilde{BB}_{\overline{b}})^r = B_j^r B_{\overline{b}}^{j}$ and $(\widetilde{BD})^r = B_j^r D^j$. On the other hand, as for the metric *g on $\pi(\partial \widetilde{M}^{n-1})$ induced from the metric g of $\pi(\widetilde{M}^{n-1})$, we have

(3. 11)
$$\det \widetilde{G} \{\det (\widetilde{AN}, \widetilde{E}, \widetilde{AN}_2, \widetilde{AB}_{\overline{b}})\}^2 = \det *g,$$

where $N_2 = (N_2^j)$ denotes the unit normal to $\pi(\partial \widetilde{M}^{n-1})$, $(\widetilde{AN}_2)^r = E^r{}_j B_i{}^j N_2{}^i$ and $(\widetilde{AB}_{\overline{b}})^r = E^r{}_j B_i{}^j B_{\overline{b}}{}^i$.

The unit vector \tilde{C}_1 normal to \tilde{M}^{n-1} is a linear combination of \widetilde{AN}_1 , \widetilde{AN}_2 , \tilde{E} and \widetilde{AB}_d , i.e.

184

(3.8)

$$\widetilde{C}_1 = a(\widetilde{AN}_1) + b(\widetilde{AN}_2) + c^d(\widetilde{AB}_{\overline{d}}) + \alpha \widetilde{E},$$

a, b, c^d being certain functions $|a| \leq 1$, $|b| \leq 1$. Therefore we have

(3. 12)
$$\det (\tilde{E}, \tilde{C}_1, \tilde{AN}_1, \tilde{AB}_{\overline{b}}) = |b| \det (\tilde{E}, \tilde{AN}_2, \tilde{AN}_1, \tilde{AB}_{\overline{b}})$$

-

Putting

$$\widetilde{E} = (v_j D^j) \widetilde{BD} + d^a (\widetilde{BB}_{\bar{a}}) + \alpha \widetilde{C}_1 + \beta \widetilde{C}_2$$

for certain functions d^a , and taking account of

$$\widetilde{AB}_{\overline{b}} = \widetilde{BB}_{\overline{b}} - (v_j B_{\overline{b}}^{\ j}) \widetilde{E}$$

obtained from (3.9), we have

(3. 13)
$$\det (\tilde{E}, \tilde{C}_1 \widetilde{AN}_1, \widetilde{AB}_{\overline{b}}) = (v_j D^j) \det (\widetilde{BD}, \tilde{C}_1, \tilde{C}_2, \widetilde{BB}_{\overline{b}}) = (v_j D^j) \det (\tilde{C}_1, \tilde{C}_2, \widetilde{BD}, \widetilde{BB}_{\overline{b}}).$$

As a result of $(3.10) \sim (3.13)$, we get

$$|v_j D^j| \sqrt{\det \bar{g}} = |b| \sqrt{\det *g}$$
.

We can choose D in such a way that $v_j D^j \ge 0$, and we finally get

$$v_j D^j \sqrt{\det \bar{g}} = |b| \sqrt{\det *g}$$
.

Returning to the integral formula (3.7), we get

$$\int_{\pi(\widehat{g}\widetilde{M}^{n-1})} \sqrt{\det^* g} \, dr^1 \wedge \cdots \wedge dr^{n-1} \ge n \int_{\widetilde{M}^{n-1}} H_1 \alpha \sqrt{\det^* g} \, du^1 \wedge \cdots \wedge du^{n-1} + \int_{\widetilde{M}^{n-1}} G^{*r_\beta} \mathscr{L}G_{r_\beta} \, d\widetilde{V},$$

where we have put $G^{*r_{\beta}} = \tilde{g}^{j_{i}} B_{j}{}^{r} E_{i}{}^{\beta}$.

If we assume that $H_1 \ge c > 0$ (c: const) and

$$\int_{\tilde{M}^{n-1}} G^{*r\beta} \pounds G_{r\beta} \, d\widetilde{V} \ge 0,$$

then we get

$$\int_{\pi(\partial \tilde{M}^{n-1})} d\sigma \ge nc \int_{\pi(\tilde{M}^{n-1})} dV,$$

where $d\sigma$ and dV are the volume elements of $\pi(\partial \widetilde{M}^{n-1})$ and $\pi(\widetilde{M}^{n-1})$ respectively. Summarizing, we obtain

THEOREM 2. Let $(\tilde{M}, M, \pi; \tilde{E}, \tilde{G})$ be a fibred space with projectable metric \tilde{G} . Let \widetilde{M}^{n-1} be a compact piece of an oriented submanifold of co-dimension 2 in \widetilde{M} with compact smooth boundary $\partial \widetilde{M}^{n-1}$, which covers simply the projection $\pi(\widetilde{M}^{n-1})$. Suppose that at each point, the mean curvature vetor \tilde{H} is spanned by $B_{\tilde{i}}, \dots, B_{\tilde{n-1}}$ and \tilde{E} , and that \tilde{H} makes an angle $\langle \pi/2 \rangle$ with \tilde{E} . If we assume that the mean curvature satisfies the condition $H_1 \geq c > 0$, c being a constant, and

$$\int_{\tilde{M}^{n-1}} G^{*r_{\beta}} \pounds G_{r_{\beta}} d\tilde{V} \ge 0,$$

then the inequality

 $ncV \ge L$

holds, where V and L denote the volume of the projection of \tilde{M}^{n-1} and $\partial \tilde{M}^{n-1}$, respectively.

4. Special cases.

In this section we shall prove theorem 3 which is a generalization of Heinz's theorem. For this purpose we need some lemmas, which will be proved by devices similar to those developed in [1] and [3].

Let M be an n-dimensional Riemannian manifold. Let γ be a geodesic starting at $m \in M$ and parametrized by arc-length t,

$$\gamma(t) = \exp_m \rho(t), \qquad \gamma(0) = m,$$

where $\rho(t)$, is a ray in the tangent space M_m of M at the point m. Now a Jacobi field along a geodesic γ is defined by

DEFINITION. If a vector field Y given along a geodesic γ satisfies the differential equation

$$Y'' + R(Y, \dot{\gamma})\dot{\gamma} = 0,$$

the prime denoting covariant differentiation along γ , Y is called a *Jacobi field* along γ , where R is the curvature tensor, that is,

$$R(X, Y) = [\mathcal{V}_X, \mathcal{V}_Y] - \mathcal{V}_{[X, Y]}.$$

As is well known, we have (cf. [1] p. 172)

LEMMA 1. Let A be a constant field along the ray ρ in the tangent space M_m , then

$$Y(t) = d \exp_m tA$$

is a Jacobi field along γ .

LEMMA 2. Assume that M is a space of constant curvature k. Let γ be a geodesic in M having no conjugate point of $\gamma(0)$ and E_1, E_2, \dots, E_n be a parallel orthonormal basis along γ . If hE_i $(i=1, 2, \dots, n)$ is Jacobi field with the conditions $h(0)=0, h(r)=1,^{4}$ then h satisfies one of the following conditions:

⁴⁾ See Appendix I.

1)
$$h(t) = \frac{\sin bt}{\sin br}$$
, if $k = b^2$;

2)
$$h(t) = \frac{t}{r}$$
, if $k = 0$;

3) $h(t) = \frac{\sinh bt}{\sinh br}$ if $k = -b^2$.

Proof. If hE_i is a Jacobi field along γ with the conditions h(0)=0, h(r)=1, then h is a solution of the differential equation

$$\frac{d^2h}{dt^2} + kh = 0$$

with the conditions h(0)=0, h(r)=1. Thus we have Lemma 2.

If X and Y are vector fields along γ and orthogonal to γ , the index form of the pair (X, Y) on (0, r) is given by

$$I(X,Y) = \int_0^r \{\langle X',Y' \rangle - \langle R(\dot{r},X)\dot{r},Y \rangle\}_t dt,$$

where \langle , \rangle denotes the Riemannian metric in *M*. For a Jacobi field *Y*, *I*(*X*, *Y*) reduces to

$$I(X, Y) = \langle X, Y' \rangle|_0^r$$

LEMMA 3. Let γ be a geodesic and have no conjugate point of $m = \gamma(0)$. Let Y be an orthogonal Jacobi field along γ and X be any field orthogonal to γ with X(0) = Y(0), X(r) = Y(r). Then $I(X, X) \ge I(Y, Y)$ and the equality occurs only when X = Y.

Proof. If $X \neq Y$, then $X - Y \neq 0$. Since I(X, Y) is positive definite,⁵⁾

$$\begin{split} 0 &< I(X - Y, X - Y) = I(X, X) - 2I_{0}(X, Y) + I(Y, Y) \\ &= I(X, X) - 2\langle X, Y' \rangle |_{0}^{r} + \langle Y, Y' \rangle |_{0}^{r} \\ &= I(X, X) - \langle Y, Y' \rangle |_{0}^{r} = I(X, X) - I(Y, Y), \end{split}$$

which proves Lemma 3.

Next we consider the Jacobian determinant of the exponential mapping \exp_m at a point $\rho(t)$ and its relation with Jacobi fields. In the sequel $R_i(X)$ and K(X, Y) denote the Ricci curvature with respect to X and the sectional curvature with respect to X and Y, i.e.,

$$K(X, Y) = \frac{\langle R(X, Y)Y, X \rangle}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2},$$

5) See Appendix II.

$$R_{i}(X) = \frac{1}{n-1} \sum_{i=1}^{n} K(X_{i}, X)$$

 X_i being an orthonormal frame at m.

LEMMA 4. Let γ be a geodesic starting at m in M and j(t) the Jacobian determinant of \exp_m at a point $\rho(t)$. Then j(t) satisfies one of the following conditions:

1)
$$\left\{\frac{\sin bt}{bt}\right\}^{n-1} \ge j(t) \ge \left\{\frac{\sin at}{at}\right\}^{n-1}$$

at least out to the first conjugate point of m along γ , if $R_i(X) \ge a^2 > 0$, and $0 < K(X, Y) \le b^2$ for arbitrary X and Y;

2) j(t)=1, if K(X, Y)=0 for any X and Y;

3)
$$1 \leq j(t) \leq \left\{\frac{\sinh at}{at}\right\}^{n-1},$$

if $R_i(X) \ge -a^2$, and $K(X, Y) \le 0$ for any X and Y.

Proof. We first note that j(t) is given by

$$j(t) = \frac{||d \exp_m s_1 \cdots d \exp_m s_{n-1}||}{||s_1 \cdots s_{n-1}||}$$

for any linearly independent (n-1)-vectors s_1, \dots, s_{n-1} which are orthogonal to ρ at $\rho(t)$ (cf. [1]), where

$$||Y_1\cdots Y_{n-1}|| = \det(\langle Y_i, Y_j \rangle).$$

Let A_i be constant fields along ρ , and assume that $d \exp_m (rA_i) = F_i(r)$, where $\{F_1, \dots, F_{n-1}\}$ is a parallel orthonormal basis along γ . Put $Y_i(t) = d \exp_m (tA_i)$, then by virtue of Lemma 1, Y_1, \dots, Y_{n-1} are Jacobi fields along γ which are linearly independent. Then we have

$$j(t) = \frac{||Y_1 \cdots Y_n||}{t^{n-1}A},$$

where $A = ||A_1 \cdots A_{n-1}||$ is constant. Since $Y_1(r), \cdots, Y_{n-1}(r)$ are orthonormal, we have

$$\frac{d}{dt}||Y_1\cdots Y_{n-1}||^2(r)=2\sum_{i=1}^{n-1}\langle Y_i(r), Y_i'(r)\rangle,$$

and therefore

(4.1)
$$\frac{j'(r)}{j(r)} = \sum_{i=1}^{n-1} \langle Y_i(r), Y_i'(r) \rangle - \frac{n-1}{r}.$$

For the first case 1), using the assumption, we have

(4. 2)
$$\langle Y_{i}(r), Y_{i}'(r) \rangle = \int_{0}^{r} \{ ||Y_{i}'||^{2} - K(\dot{r}, Y_{i})||Y_{i}||^{2} \}_{t} dt$$
$$= \int_{0}^{r} \{ ||Y_{i}'||^{2} - b^{2}||Y_{i}||^{2} \}_{t} dt.$$

On the other hand, if we consider a Jacobi field $\overline{Y}_i = h(t)E_i(t)$ along a geodesic \overline{r} on the space S of constant curvature $b^2(\overline{r}(t) = \overline{\exp}_{\overline{m}}(t), \overline{\exp}_{\overline{m}}: S_{\overline{m}} \to S) E_i$ denoting orthonormal vector fields given in Lemma 2, we have

(4.3)
$$\langle h(r)E_i(r), \dot{h}(r)E_i(r) \rangle = \langle \bar{Y}_i(r), \bar{Y}_i'(r) \rangle = \int_0^r \{ ||\bar{Y}_i'||^2 - b^2 ||\bar{Y}_i||^2 \}_t dt$$

by means of Lemma 2.

Since \overline{Y}_i are Jacobi fields, we have, from Lemma 3,

(4. 4)
$$\int_0^r \{||Y_{\iota}'||^2 - b^2||Y_{\iota}||^2\}_t dt \ge \int_0^r \{||\bar{Y}_{\iota}'||^2 - b^2||\bar{Y}_{\iota}||^2\}_t dt.$$

Combining (3. 2), (3. 3) and (3. 4), we have

(4.5)
$$\langle Y_i(r), Y_i'(r) \rangle \ge \cot br$$

by virtue of Lemma 2.

Next, taking account of Lemma 3, we have

(4.6)
$$\langle Y_i(r), Y_i'(r) \rangle = I(Y_i, Y_i) = I(hF_i, hF_i) = \int_0^r \{h'^2 - K(\dot{r}, F_i)h^2\} dt$$

Taking sum with respect to *i* and taking account of the inequality $R_i(\dot{r}) \ge a^2 > 0$ and (4.1), we find

(4.7)
$$\frac{j'(r)}{j(r)} \leq (n-1) \int_0^r \{(h')^2 - a^2 h^2\} dt - \frac{n-1}{r}$$

which implies together with (4.2)

$$(n-1)\left(\cot ar - \frac{1}{r}\right) \ge \frac{j'(r)}{j(r)} \ge (n-1)\left(\cot br - \frac{1}{r}\right).$$

Integrating each side of this inequality from s to t, $(s \in (0, t))$, we get

$$\left(\frac{\sin at}{at}\right)^{n-1} \left(\frac{as}{\sin as}\right)^{n-1} \ge \frac{j(t)}{j(s)} \ge \left(\frac{\sin bt}{bt}\right)^{n-1} \left(\frac{bs}{\sin bs}\right)^{n-1}.$$

Taking the limit as $s \rightarrow 0$, we have

$$\left(\frac{\sin at}{at}\right)^{n-1} \ge j(t) \ge \left(\frac{\sin bt}{bt}\right)^{n-1}$$

by virtue of j(0)=1.

For the second case 2), j'(r)/j(r) being zero, we have j(t)=1. For the last case 3), (4. 2) reduces to

$$\langle Y_i(r), Y_i'(r) \rangle \ge \int_0^r ||Y_i'||^2 dt \ge \frac{1}{r}$$

by means of Lemmas 2 and 3. Moreover (4.7) reduces to

$$0 \leq \frac{j'(r)}{j(r)} \leq (n-1) \int_0^r \{(h')^2 + a^2 h^2\} dt - \frac{n-1}{r},$$

where $h(t) = \sinh at / \sinh ar$. Thus we get

$$1 \leq j(t) \leq \left(\frac{\sinh at}{at}\right)^{n-1}.$$

Consequently, Lemma 4 has been proved completely.

We are now going to prove

THEOEM 3. Let $(\tilde{M}, M, \pi; \tilde{E}, \hat{G})$ be a fibred space with projectable metric and \tilde{M}^n a compact piece of an oriented hypersurface in \tilde{M} with properties stated in Theorem 2. Assume that the projection M^n of \tilde{M}^n to M is a Riemannian sphere with radius R lying in a normal coordinate neighborhood. Then R satisfies one of the following inequalities:

1) $nc\left(\frac{a}{b}\right)^{n-1}\int_{0}^{R}\left(\frac{\sin bt}{\sin aR}\right)^{n-1}dt \le 1$, if $R_{i}(X) \ge a^{2} > 0$, and $0 < K(X, Y) \le b^{2}$ on M^{n} ; 2) $cR \le 1$, if K(X, Y) = 0; 3) $cR \le \left(\frac{\sinh aR}{a}\right)^{n-1}$, if $R_{i}(X) \ge -a^{2}$ and K(X, Y) < 0,

where c is the constant appearing in Theorem 2.

Proof. If *m* is the origin of the Riemannian sphere M^n , M^n is the image of *R*-ball B(R) in the tangent space M_m^n under the exponential mapping and its boundary ∂M^n is the image of (n-1)-dimensional sphere $S^{n-1}(R)$ with radius *R*. Let γ be a geodesic in M^n orthogonal to ∂M^n and j(t) be the Jacobian determinant of exp_m at $\rho(t)$. If dB and dS are the volume elements of B(R) and the unit sphere $S^{n-1}(1)$ respectively, the volume element dV of M^n is given by

$$dV = j(t) dB = j(t)t^{n-1} dt dS.$$

Thus we get

volume
$$M^n \ge \int_{B(R)} j(t) \, dB = \int_0^R \int_{S^{n-1}} j(t) t^{n-1} \, dt \, dB.$$

Taking account of Lemma 4, we have for the case 1)

volume
$$M^{n} \ge (\text{volume } S^{n-1}) \int_{0}^{R} \left(\frac{\sin bt}{b}\right)^{n-1} dt$$

$$\ge (\text{volume } \partial M^{n}) \left(\frac{a}{b}\right)^{n-1} \int_{0}^{R} \left(\frac{\sin bt}{\sin aR}\right)^{n-1} dt$$

On the other hand, we have already in Theorem 2 the inequality

nc volume $M^n \leq \text{volume } \partial M^n$.

Thus, summing up, we obtain the following required inequality

$$nc\left(\frac{a}{b}\right)^{n-1}\int_0^R \left(\frac{\sin bt}{\sin aR}\right)^{n-1} dt \leq 1.$$

For the cases 2) and 3) we reach the corresponding inequalities in the same way.

As a special case, we consider a fibred space $(S^{n+1}, CP(l), \pi; \tilde{E}, \tilde{G})$, where S^{n+1} is a unit sphere with natural metric \tilde{G} induced from E^{n+2} and CP(l) is the complex projective space of complex dimension l (2l=n). We shall prove

THEOREM 4. Let \tilde{M}^n be a compact piece of an oriented hypersurface of S^{n+1} with properties stated in Theorem 2. Assume that the projection M^n of \tilde{M}^n to CP(l) is a Riemannian sphere with radius $R < \pi/2$. Then R satisfies the following inequality

$$2c \tan \frac{R}{2} \leq 1$$

where c is the constant appearing in Theorem 2.

Proof. Let *m* be the origin of the Riemannian sphere. A holomorphic sectional curvature on CP(l) being constant (=1), the curvature tensor is given by

$$\langle R(X, Y)Z, W \rangle = \frac{1}{4} \{ \langle X, W \rangle \langle Y, Z \rangle - \langle X, Z \rangle \langle Y, W \rangle \\ + \langle JX, W \rangle \langle JY, Z \rangle - \langle JY, W \rangle \langle JX, Z \rangle - 2 \langle JX, Y \rangle \langle JZ, W \rangle \},$$

where J is the complex structure in CP(l). Let γ be a geodesic starting at m and orthogonal to ∂M^n . We choose a parallel orthonormal basis along $\dot{\gamma}$, E_1 , E_{1*} , \cdots , E_l , E_{l*} in such a way that

$$E_1 = \dot{\gamma}, \qquad E_{\alpha^*} = JE_{\alpha} \qquad (\alpha = 1, \dots, l).$$

If $h_i E_i$ (*i*: not summed $i=1, 1^*, \dots, l, l^*$) is a Jacobi field along γ with the conditions h(0)=0 and h(r)=1, then $h_i(t)$ satisfies

(4.9)
$$h_{1*}(t) = \frac{\sin t}{\sin r}, \quad h_i(t) = \frac{\sin (t/2)}{\sin (r/2)} \quad (i=2, 2^*, \dots, l, l^*).$$

In fact, h_{i} and h_{i} satisfy the differential equations

$$\frac{d^2 h_{1*}}{dt^2} + h_{1*} = 0, \qquad h_{1*}(0) = 0, \qquad h_{1*}(r) = 1;$$
$$\frac{d^2 h_i}{dt^2} + \frac{1}{4} h_i = 0, \qquad h_i(0) = 0, \qquad h_i(r) = 1.$$

Next we have an estimation of the Jacobian determinant j(t) of exp_m, that is,

(4.10)
$$j(t) = \frac{1}{t^{n-1}} \left(2\sin\frac{t}{2} \right)^{n-1} \cos\frac{t}{2}$$

at least out to the first conjugate point of m along γ . In fact, taking n-1 Jacobi fields Y_1, \dots, Y_{n-1} in the same way as in proof of Theorem 3, we have again

$$\frac{j'(r)}{j(r)} = \sum_{i=1}^{n-1} \langle Y_i(r), Y_i'(r) \rangle - \frac{n-1}{r}.$$

If $h_i E_i$ (*i*: not summed) is a Jacobi field along γ such that $h_i(0)=0$, $h_i(r)=1$, then we have

$$\langle Y_i(r), Y_i'(r) \rangle = h_i(r)\dot{h}_i(r) = \begin{cases} \cot r, & i=1^*, \\ \frac{1}{2} \cot \frac{r}{2}, & i \neq 1^*. \end{cases}$$

Therefore we obtain

$$\frac{j'(r)}{j(r)} = \frac{n-2}{2} \cot \frac{r}{2} + \cot r - \frac{n-1}{r}.$$

Integrating this from s to t ($s \in (0, t)$), we get

$$\frac{j(t)}{j(s)} = \frac{s^{n-1}(2\sin(t/2))^{n-2}\sin t}{t^{n-1}(2\sin(s/2))^{n-2}\sin s}.$$

Now taking the limit as $s \rightarrow 0$, we have

$$j(t) = \frac{1}{t^{n-1}} \left(2\sin\frac{t}{2} \right)^{n-2} \sin t$$

by virtue of j(0)=1.

Denoting by dS the volume element of the unit sphere S^{n-1} , we have

volume
$$M^n = \int_0^R \int_{S^{n-1}} j(t) t^{n-1} dt dS$$

=(volume S^{n-1}) $\int_0^R \left(2\sin\frac{t}{2}\right)^{n-1}\cos\frac{t}{2} dt$
= 2^n (volume S^{n-1}) $\int_0^{\sin(R/2)} u^{n-1} du \quad \left(u = \sin\frac{t}{2}\right)$

A PIECE OF SURFACE IN A FIBRED SPECA

$$= \frac{1}{n} \left(2 \sin \frac{R}{2} \right)^{n} (\text{volume } S^{n-1})$$
$$= \frac{2}{n} \tan \frac{R}{2} j(R) R^{n-1} (\text{volume } S^{n-1})$$
$$= \frac{2}{n} \tan \frac{R}{2} (\text{volume } \partial M^{n})$$

by virtue of (4.3). Since $(S^{n+1}, CP(l), \pi: \tilde{E}, \tilde{G})$ is a fibred space with invariant metric, the inequality

nc (volume M^n) \leq volume ∂M^n

has been established. Thus we obtain the required inequality

$$2c \tan \frac{R}{2} \leq 1.$$

5. Appendix (cf. [1] or [6]).

We give here the definition of conjugate points and properties which our argument requires.

Let $\gamma: [0, l] \rightarrow M$ be a geodesic starting at *m* and parametrized by arc length *t*;

$$\gamma(t) = \exp_m \rho(t), \qquad \gamma(0) = m$$

We call t_0 a conjugate point to 0 along γ if $d \exp_m$ is singular at $\rho(t_0)$ and call $\gamma(t_0)$ a conjugate point to $\gamma(0) = m$ along γ .

I) The uniqueness of Jacobi field.

Let r be a non-conjugate point to 0 along γ and $v \in M_m$ and $w \in M_{\gamma(r)}$. Then there exists exactly one Jacobi field Y along γ such that Y(0) = v and Y(r) = w.

II) The relation to the index form.

The following two propositions are equivalent:

- 1) γ has no conjugate point.
- 2) I(X, X) > 0 for any $X \neq 0$ such that X(0) = X(l) = 0.
- III) Theorem of Morse-Schoenberg:
 - 1) If $K(X, Y) \leq k$ and $l < \pi/\sqrt{k}$, then γ has no conjugate point,
 - 1)' if $K(X, Y) \leq 0$, then γ has no conjugate point,
 - 2) if $0 \le k < K(X, Y)$, there exists at least one conjugate point along γ at distance at most π/\sqrt{k} ,

where k is a constant,

BIBLIGRAPHY

- BISHOP, R. L., AND R. L. CRITTENDAN, Geometry of manifolds. Academic Press, New York (1964), 253-255.
- [2] CHERN, S. S., On the curvature of a piece of hypersurface in Euclidean space. Sem. Univ. Hamburg 29 (1965), 77-91.
- [3] GROSSMAN, N., The volume of a totally-geodesic hypersurface in a pinched manifold. Pacific J. 23 (1967), 257-262.
- [4] HEINZ, E., Über Flächen mit eindeutiger Projektion auf eine Ebene, deren Krümmungen durch Ungleichungen eingeschränkt sind. Math. Ann. 129 (1955), 451– 454.
- [5] KATSURADA, Y., On a piece of hypersurface in a Riemannian manifold with mean curvature bounded away from zero. Trans. Amer. Math. Soc. 129 (1967), 447-457.
- [6] TSUKAMOTO, Y., Curvature, geodesics and topological structures of Riemannian manifolds. Publications of the study group of geometry 2 (1966).
- [7] YANO, K., AND S. ISHIHARA, Fibred spaces with invariant Riemannian metric. Kōdai Math. Sem. Rep. 19 (1967), 317-360.
- [8] YANO, K., AND S. ISHIHARA, Fibred spaces with projectable Riemannian metric. Jonrnal of Differential Geometry 1 (1967), 71-86.

Department of Mathematics, Tokyo Institute of Technology.