ON A PIECE OF SURFACE IN A FIBRED SPACE

By Mariko Konishi

In 1955 Heinz [1] proved the following
Theorem A. Let $z=z(x, y)$ be a 2-dimensional surface in a 3-dimensional Euclidean space defined over the disk $x^{2}+y^{2}<R^{2}$, where $z(x, y)$ is a C^{2}-class function. Let H and K denote its mean curvature and Gaussian curvature respectively.

If $|H| \leqq c>0$, then $R \leqq \frac{1}{c}$.
If $K \geqq c>0$, then $R \leqq\left(\frac{1}{c}\right)^{1 / 2}$.
If $K \leqq-c<0$, then $R \leqq e\left(\frac{3}{c}\right)^{1 / 2}$.
($c=$ constant in all cases.)
Generalizing this, in 1965 Chern [2] obtained
Theorem B. Let M^{n} be a compact piece of an oriented hypersuface (of dimension n) with smooth boundary ∂M^{n}, which is immersed in Euclidean space E^{n+1}. Suppose that the mean curvature $H_{1} \geqq c$ ($c=$ const.). Let a be a fixed unit vector which makes an angle $\leqq \pi / 2$ with all the normals of M^{n}. Then

$$
n c V_{a} \leqq L_{a}
$$

where V_{a} is the volume of the orthogonal projection of M^{n} and L_{a} that of ∂M^{n} on the hyperplane perpendicular to a. When M^{n} is defined by the equation

$$
z=z\left(x_{1}, \cdots, x_{n}\right), \quad x_{1}{ }^{2}+\cdots+x_{n}{ }^{2} \leqq R^{2},
$$

where x_{1}, \cdots, x_{n}, z are rectangular coordinates in the space E^{n+1} and $a=(0, \cdots, 0,1)$, then $c R \leqq 1$.

Katsurada [5] extended this theorem to a compact piece of a hypersurface in a Riemann manifold admitting a conformal killing vector field. The purpose of the present paper is to study this problem in a fibred space with some properties; that is, to prove Theorem 3.

Received March 17, 1971.

1. Fibred spaces. ${ }^{1)}$

The set $(\tilde{M}, M, \pi ; \tilde{E}, \tilde{G})$ is called a fibred space if it satisfies the following five conditions:

1) \tilde{M}, M are two differentiable manifolds of dimension $n+1$ and n respectively.
2) π is a differentiable mapping from \tilde{M} onto M and of maximum rank n.
3) The inverse image $\pi^{-1}(p)$ of a point $p \in M$ is a 1 -dimensional connected submanifold of \tilde{M}. We denote $\pi^{-1}(p)$ by F_{p} and call F_{p} the fiber over the point P.
4) \tilde{G} is a positive definite Riemannian metric.
5) \tilde{E} is a unit vector field in \tilde{M} tangent to the fiber everywhere.

Moreover, if $£ \tilde{G}=0$ (here and in the sequel $£$ denotes Lie derivation with respect to \tilde{E}), we call \tilde{G} an invariant metric. Let \tilde{U} be a coordinate neighborhood and $\left(x^{a}\right)=\left(x^{1}, \cdots, x^{n+1}\right)$ be local coordinates defined in \tilde{U}, where and in the sequel the indices α, β, \cdots run over the range $\{1,2, \cdots, n+1\}$. We denote the components of \tilde{E} and \tilde{G} with respect to these coordinates by E^{r} and $G_{r \hat{\beta}}$ respectively. If (ξ^{i}) $=\left(\xi^{1}, \cdots, \xi^{n}\right)$ are local coordinates in $\pi(\tilde{U}), \pi$ has a local expression

(1.1)

$$
\xi^{\imath}=f^{i}\left(x^{\alpha}\right),
$$

$f^{i}(i=1, \cdots, n)$ being certain functions, where and in the sequel, the indices i, j, k, \cdots run over the range $\{1,2, \cdots, n\}$. Then the differential of π has the local expression

$$
d \xi^{2}=E_{\alpha}{ }^{2} d x^{\alpha}
$$

where we have put $E_{\alpha}{ }^{2}=\partial_{\alpha} f^{i}, \partial_{\alpha}$ denoting the differential operator $\partial / \partial x^{\alpha}$. We see that the n local covector fields $\zeta^{i}=E_{\alpha}{ }^{2} d x^{\alpha}$ are linearly independent in \tilde{U}. Putting

$$
\begin{equation*}
E_{\beta}=G_{\gamma \beta} E^{\gamma}, \tag{1.2}
\end{equation*}
$$

we denote by $\tilde{\eta}$ the 1 -form whose components are E_{β} in \tilde{U}.
We now find

$$
E^{\alpha} E_{\alpha}{ }^{2}=0
$$

because the vector field \tilde{E} is tangent to fibers, i.e, $d \pi(\tilde{E})=0$. Consequently, the inverse of the matrix ($E_{\alpha}{ }^{2}, E_{\alpha}$) has the form

$$
\left(E_{\alpha^{2}}, E_{\alpha}\right)^{-1}=\binom{E^{\beta}{ }_{h}}{E^{\beta}}
$$

and thus for each fixed index $h, E^{\beta}{ }_{h}$ are components of a local vector field \tilde{A}_{h} in U.

[^0]If we assume that \tilde{G} satisfies the condition

$$
\begin{equation*}
\mathcal{L}^{\left(G_{\gamma \beta} E^{r}{ }_{j} E_{i}{ }_{i}\right)=0, ~} \tag{1.3}
\end{equation*}
$$

then we can induce a metric g on M whose components are $g_{j i}=G_{\gamma_{\beta}} E^{\gamma}{ }_{j} E^{\beta}{ }_{i}$ in U. In this sense, when a Riemannian metric \tilde{G} satisfies (1. 3), \tilde{G} is called a projectable metric and g is called the induced metric in M from \tilde{G}. In the sequel, a fibred space ($\tilde{M}, M, \pi ; \tilde{E}, \tilde{G}$) is called, for simplicity, a fibred space with projectable (resp. invariant) metric when \tilde{G} is projectable (resp. invariant) metric.

2. A piece of hypersurface in a fibred space.

Let $(\tilde{M}, M, \pi ; \tilde{E}, \tilde{G})$ be a fibred space with projectale metric \tilde{G}. Consider a compact piece \tilde{M}^{n} of an orientable hypersurface of dimension n in \tilde{M} and denote by $\partial \tilde{M}^{n}$ the boundary of the compact piece \tilde{M}^{n}. We suppose that \tilde{M}^{n} meets at most once each fiber. For simplicity, we say that such a piece \tilde{M}^{n} of a hypersurface is a simple covering of the projection $M^{n}=\pi\left(\tilde{M}^{n}\right)$.

We now assume that $\widetilde{\widetilde{M}}^{n}$ has a local expression

$$
\begin{equation*}
x^{r}=x^{r}\left(u^{j}\right), \tag{2.1}
\end{equation*}
$$

where $\left(u^{j}\right)=\left(u^{1}, \cdots, u^{n}\right)$ are local parameters of \tilde{M}^{n}, and that the boundary $\partial \tilde{M}^{n}$ has a local expression

$$
u^{j}=u^{j}\left(r^{a}\right),
$$

where $\left(r^{a}\right)=\left(r^{1}, \cdots, r^{n-1}\right)$ are local parameters of $\partial \tilde{M}^{n}$. The indices a, b, c, \cdots run over the range $\{1,2, \cdots, n-1\}$.

If we put

$$
B_{j}{ }^{r}=\frac{\partial x^{\gamma}}{\partial u^{j}},
$$

then $\tilde{B}_{j}=\left(B_{j}{ }^{r}\right)$ are vectors tangent to \tilde{M}^{n}. We choose a unit vector \tilde{C} normal to \tilde{M}^{n} in such a way that the determinant of the matrix $\left(C^{\gamma}, B_{J}{ }^{r}\right)$ is positive, C^{r} being the components of \tilde{C}. We put

$$
\begin{equation*}
E^{\beta}=v^{j} B_{j}^{\beta}+\alpha C^{\beta} \tag{2.2}
\end{equation*}
$$

on the compact piece \tilde{M}^{n}. Denoting by $\tilde{g}_{j i}=B_{\gamma}{ }^{\gamma} B_{i}{ }^{\beta} G_{\gamma \beta}$ the metric tensor on \tilde{M}^{n} induced from \tilde{G} and setting

$$
v_{i}=\tilde{g}_{j i} v^{j}
$$

we have

$$
\begin{equation*}
v_{i}=B_{i}{ }^{r} E_{r} \tag{2.3}
\end{equation*}
$$

because of (1.2) and (2.2). Hence we have

$$
\begin{equation*}
\nabla_{j} v_{i}=\alpha h_{j i}+B_{j}{ }^{\tau} B_{i}{ }^{\beta} \nabla_{r} E_{\beta} \tag{2.4}
\end{equation*}
$$

along \tilde{M}^{n}, where $h_{j i}$ denotes the second fundamental tensor of \tilde{M}^{n}. Transvecting (2.3) with $\tilde{g}^{j i}$, we get

$$
\begin{equation*}
\tilde{g}^{j i} \nabla_{j} v_{i}=\alpha\left(n H_{1}\right)+\frac{1}{2} \tilde{g}^{j i} B_{j}{ }^{\gamma} B_{i}{ }^{\beta} £ G_{\gamma \beta}, \tag{2.5}
\end{equation*}
$$

where H_{1} is the mean curvature of \tilde{M}^{n}, i.e. $H_{1}=(1 / n) \tilde{g}^{j i} h_{j i}$. Integrating both sides of (2.5) over \tilde{M}^{n} and applying Stokes' theorem, we have

$$
\begin{equation*}
\int_{\partial \tilde{M} n} v_{j} D^{j} d \tilde{\sigma}=n \int_{\tilde{M} n} H_{1} \alpha d \tilde{V}+\frac{1}{2} \int_{\tilde{M} n} \tilde{g}^{j i} B_{j}{ }^{\gamma} B_{i}{ }^{\beta} £ G_{\gamma^{\beta}} d \tilde{V}, \tag{2.6}
\end{equation*}
$$

$\tilde{D}=\left(D^{j}\right)$ being the unit vector field normal to \tilde{C} and to the boundary $\partial \tilde{M}^{n}$. In the integral formula (2.6) $d \tilde{\sigma}$ and $d \tilde{V}$ denote the volume elements of $\partial \tilde{M}^{n}$ and \tilde{M}^{n} respectively, that is,

$$
\begin{aligned}
& d \tilde{o}=\sqrt{\operatorname{det} \bar{g}} d r^{1} \wedge \cdots \wedge d r^{n-1}, \\
& d \tilde{V}=\sqrt{\operatorname{det} \tilde{g}} d u^{1} \wedge \cdots \wedge d u^{n}
\end{aligned}
$$

where we have put

$$
\bar{B}_{a}=\left(\bar{B}_{a}^{j}\right)=\left(\frac{\partial u^{j}}{\partial r^{a}}\right), \quad \bar{g}_{c b}=\tilde{g}\left(\bar{B}_{c}, \bar{B}_{b}\right),
$$

$\operatorname{det} \bar{g}$ and $\operatorname{det} \tilde{g}$ denoting the determinants formed with ($\bar{g}_{c b}$) and ($\tilde{g}_{j i}$) respectively.
From the definitions of \tilde{g} and \tilde{C}, we have

$$
\begin{equation*}
\sqrt{\operatorname{det} \tilde{G}} \operatorname{det}\left(\tilde{C}, \tilde{B}_{j}\right)=\sqrt{\operatorname{det} \tilde{g}} \tag{2.7}
\end{equation*}
$$

Here and in the sequel $\operatorname{det}\left(\tilde{C}, \widetilde{B}_{j}\right)$ denotes the determinant of the matrix $\left(C^{\alpha}, B{ }_{j}{ }^{\alpha}\right)$.
On the other hand, since the Riemannian metric g induced on the base space M from \widetilde{G} has the components

$$
g_{j i}=\tilde{G}\left(\tilde{A}_{j}, \tilde{A}_{i}\right)
$$

we have

$$
\begin{equation*}
\operatorname{det} \tilde{G}\left\{\operatorname{det}\left(\tilde{E}, \tilde{A}_{j}\right)\right\}^{2}=\operatorname{det} g . \tag{2.8}
\end{equation*}
$$

Since \tilde{M}^{n} is nowhere tangent to fibres, we can choose $\left(\xi^{j}\right)=\left(\xi^{1}, \cdots, \xi^{n}\right)$ as the local parameters of \tilde{M}^{n}. If we substitute the local expression (2.1) with $u^{j}=\xi^{j}$ in (1.1), we have the identity

$$
\xi^{j}=f^{j}\left(x^{\alpha}\left(\xi^{k}\right)\right) .
$$

Then, differentiating the equation above, we have

$$
\begin{equation*}
\delta_{i}{ }^{j}=E_{\alpha}{ }^{j} B_{i}{ }^{\alpha} \tag{2.9}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\tilde{B}_{i}=\tilde{A}_{i}+\tilde{\eta}\left(\tilde{B}_{i}\right) \tilde{E}, \quad \tilde{\eta}\left(\tilde{B}_{i}\right)=v_{i} \tag{2.10}
\end{equation*}
$$

in \tilde{U}.
Taking account of (2.2) and (2.10), we get

$$
\begin{align*}
& \operatorname{det}\left(\tilde{E}, \tilde{B}_{j}\right)=\operatorname{det}\left(v^{i} \tilde{B}_{i}+\alpha \tilde{C}, \tilde{B}_{j}\right)=\alpha \operatorname{det}\left(\tilde{C}, \tilde{B}_{j}\right), \tag{2.11}\\
& \operatorname{det}\left(\tilde{E}, \tilde{A}_{j}\right)=\operatorname{det}\left(\tilde{E}, \tilde{B}_{j}-v_{j} \tilde{E}\right)=\operatorname{det}\left(\tilde{E}, \tilde{B}_{j}\right) .
\end{align*}
$$

Consequently, if we assume $\alpha>0$, we have from (2.7), (2.8) and (2.11)

$$
\begin{equation*}
|\alpha| \sqrt{\operatorname{det} \tilde{g}}=\sqrt{\operatorname{det} g} \tag{2.12}
\end{equation*}
$$

The metric \bar{g} of $\partial \tilde{M}^{n}$ induced from \tilde{g} being defined by

$$
\bar{g}_{c b}=\tilde{G}\left(\widetilde{B B}, \widetilde{B B_{b}}\right),
$$

we have

$$
\begin{equation*}
(\operatorname{det} \tilde{G})\left\{\operatorname{det}\left(\tilde{C}, \widetilde{B B_{c}}, \widetilde{B B_{b}}\right)\right\}^{2}=\operatorname{det} \bar{g} \tag{2.13}
\end{equation*}
$$

where $(\widetilde{B D})^{r}=B_{j}{ }^{r} D^{j}$ and $\left(\widetilde{B B_{b}}\right)^{r}=B_{j}{ }^{r} B_{b}{ }^{j}$. On the other hand, denoting by ${ }^{r} g$ the metric induced on $\pi\left(\partial \tilde{M}^{n}\right)$ from the induced metric g of M, we have

$$
\begin{equation*}
\sqrt{\operatorname{det} \tilde{G}} \operatorname{det}\left(\widetilde{A N}, \tilde{E}, \widetilde{A B_{b}}\right)=\sqrt{\operatorname{det}{ }^{*} g} \tag{2.14}
\end{equation*}
$$

where $N=\left(N^{j}\right)$ denotes the unit normal to $\pi\left(\partial \tilde{M}^{n}\right)$, and $(\widetilde{A N})^{r}=E^{r}{ }_{j} N^{j}$ is such that the determinant of the matrix $\left(\widetilde{A N}, \tilde{E}, \widetilde{A B_{b}}\right)$ is positive. The unit vector \widetilde{C} normal to \tilde{M}^{n} is a linear combination of $\widetilde{A N}, \tilde{E}$, and $\widetilde{A B_{d}}$, i.e.,

$$
\tilde{C}=a(\widetilde{A N})+b^{a}\left(\widetilde{A B_{d}}\right)+\alpha \tilde{E}
$$

a, b^{d} being certain functions where $|a| \leqq 1$. Thus we have

$$
\begin{equation*}
\operatorname{det}\left(\tilde{C}, \tilde{E}, A \widetilde{B}_{b}\right)=|a| \operatorname{det}\left(\widetilde{A N}, \tilde{E}, \widetilde{A B_{b}}\right) \tag{2.15}
\end{equation*}
$$

If we put

$$
\tilde{E}=\left(v_{j} D^{j}\right) \widetilde{B D}+d^{a}\left(\widetilde{B B_{a}}\right)+\alpha \widetilde{C}
$$

for certain functions d^{a}, we have

$$
\begin{align*}
\operatorname{det}\left(\tilde{C}, \tilde{E}, \widetilde{A B_{b}}\right) & =\operatorname{det}\left(\tilde{C}, \tilde{E}, \widetilde{B B_{b}}\right) \\
& =v_{j} D^{j} \operatorname{det}\left(\widetilde{C}, \widetilde{B D}, \widetilde{B B_{b}}\right), \tag{2.16}
\end{align*}
$$

by virtue of (2.8) and (2.10).
Now we suppose that \widetilde{D} is chosen in such a way that $\operatorname{det}\left(\widetilde{C}, \widetilde{B D}, \widetilde{B B_{b}}\right)>0$. Then we have $v_{j} D^{j} \geqq 0$ and

$$
\begin{equation*}
\left(v_{j} D^{j}\right) \sqrt{\operatorname{det} \bar{g}}=|a| \sqrt{\operatorname{det}^{*} g} \tag{2.17}
\end{equation*}
$$

because of (2.13)~(2.16).
Returning to the integral formula (2.5) and taking account of (2.12) and
(2. 17), we get

$$
\int_{\partial \tilde{M} n}|a| \sqrt{\overline{\operatorname{det}}{ }^{*} g} d r^{1} \wedge \cdots \wedge d r^{n-1}=n \int_{\tilde{M} n} H_{1} \sqrt{\operatorname{det} g} d u^{1} \wedge \cdots d u^{n}+\int_{\tilde{\mathcal{M}} n} G^{* \tau_{\beta}} £ G_{\gamma \beta} d \tilde{V}
$$

and hence by virtue of $|a| \leqq 1$

$$
\begin{equation*}
\int_{\partial \tilde{M} n} \sqrt{\operatorname{det}{ }^{*} g} d r^{1} \wedge \cdots \wedge d r^{n-1}=n \int_{\tilde{M} n} H_{1} \sqrt{\operatorname{det} g} d u^{1} \wedge \cdots d u^{n}+\int_{\tilde{M} n} G^{* \gamma \beta} £ G_{\tau \beta} d \tilde{V}, \tag{2.18}
\end{equation*}
$$

where we have put $G^{* r \beta}=\tilde{g}^{j i} B_{j}{ }^{r} B_{i}{ }^{\beta}$.
If we assume that $H_{1} \geqq c>0$ ($c:$ constant), $\alpha>0$ and

$$
\int_{\tilde{M} n} G^{* \tau \beta} £ G_{\gamma \beta} d \tilde{V} \geqq 0,
$$

then we get

$$
\int_{\pi(\partial \tilde{M} n)} d \sigma \geqq n c \int_{\pi(\tilde{M} n)} d V
$$

where $d \sigma$ and $d V$ are the volume elements of $\pi\left(\partial \tilde{M}^{n}\right)$ and $\pi\left(\tilde{M}^{n}\right)$ respectively. Therefore we obtain

Theorem 1. Let $(\tilde{M}, M, \pi: \tilde{E}, \tilde{G})$ be a fibred space with projectable metric \tilde{G}. Let \tilde{M}^{n} be a compact piece of an oriented hypersurface in \tilde{M} with compact smooth boudary $\partial \tilde{M}^{n}$, which covers simply the projection $\pi\left(\tilde{M}^{n}\right)$. Suppose that its mean curvature H_{1} satisfies the condition $H_{1} \geqq c>0$ ($c:$ constant) and that \tilde{E} makes an angle $\leqq \pi / 2$ with the normals of \tilde{M}^{n} at each point. If the condition

$$
\begin{equation*}
\int_{\tilde{M} n} G^{* r \beta} £ G_{\gamma^{\beta}} d \tilde{V} \geqq 0 \tag{2.19}
\end{equation*}
$$

holds, then the inequality

$$
\begin{equation*}
n c V \leqq L \tag{2.20}
\end{equation*}
$$

holds, where V and L denote the volume of the projection of \tilde{M}^{n} and $\partial \tilde{M}^{n} r e$ spectively.

Remark 1. When \tilde{M}^{n} is a compact hypersurface, $\partial \tilde{M}^{n}$ is empty. Thus taking account of (2.18), we see that there is no compact hypersurface satisfying the conditions mentioned in Theorem 1. In other words we can say that if \tilde{M}^{n} is a compact hypersurface of constant mean curvature, then \tilde{M}^{n} must be minimal.

Remark 2. When $(\tilde{M}, M, \pi: \tilde{E}, \tilde{G})$ is a fibred space with invariant Riemanian metric, the condition (2.19) mentioned in Theorem 1 obviously holds.

For a projectable metric \tilde{G}, if we put

$$
£ E_{r}=\phi_{j} E_{r}{ }^{j}
$$

for certain functions ϕ_{j}, then we have

$$
G_{\gamma^{\beta}}=\phi_{j}\left(E_{\gamma}^{j} E_{\beta}+E_{\gamma} E_{\beta}^{j}\right)
$$

by virtue of $£ \tilde{E}=0$. Hence we have

$$
\begin{aligned}
G^{* \gamma \beta} £ G_{\gamma \beta} & =g^{j i} B_{j}{ }^{\gamma} B_{i}{ }^{\beta} \phi_{k}\left(E_{r}{ }^{k} E_{\beta}+E_{\gamma} E_{\beta}{ }^{k}\right) \\
& =2 \tilde{g}{ }^{j} v_{j} \phi_{i}
\end{aligned}
$$

by virtue of (2.3) and (2.8). Thus we get

$$
\begin{aligned}
G^{* r \beta} £ G_{\gamma \beta} & =2 v^{i} \phi_{i}=2 v^{i} B_{i}^{r} £ E_{r} \\
& =2\left(E^{r}-\alpha C^{r}\right) £ E_{r}=-2 \alpha C^{r} £ E_{r} .
\end{aligned}
$$

We note the above obtained results in the following remark.
Remark 3. The condition (2.19) is equivalent to the condition

$$
\int_{\tilde{\mathcal{M}} n} C^{\gamma} £ E_{\tau} d \tilde{V} \leqq 0 .
$$

3. A piece of submanifold of co-dimension 2 .

In this section we discuss a compact piece \tilde{M}^{n-1} of ($n-1$)-dimensional orientable submanifold of co-dimension 2 in a fibred space ($\tilde{M}, M, \pi: \tilde{E}, \tilde{G}$). We also suppose that \tilde{M}^{n-1} is a simple covering of the projection $M^{n-1}=\pi\left(\tilde{M}^{n-1}\right)$ in the above mentioned sense.

We now assume that \tilde{M}^{n-1} has a local expression

$$
\begin{equation*}
x^{\alpha}=x^{\alpha}\left(u^{j}\right), \tag{3.1}
\end{equation*}
$$

$\left(u^{j}\right)^{2)}=\left(u^{1}, \cdots, u^{n-1}\right)$ being local parameters of \tilde{M}^{n-1}, and that the boundary $\partial \tilde{M}^{n-1}$ has a local expression

$$
u^{j}=u^{j}\left(r^{\bar{a}}\right),
$$

$\left.\left(r^{\bar{a}}\right)^{3}\right)=\left(r^{1}, \cdots, r^{n-2}\right)$ being local parameters of $\partial \tilde{M}^{n-1}$. If we put

$$
B_{j}^{\alpha}=\frac{\partial x^{\alpha}}{\partial u^{j}},
$$

then we have $n-1$ linearly independent vectors $\tilde{D}_{j}=\left(B_{j}{ }^{\alpha}\right)$ tangent to \tilde{M}^{n-1}.
Let $\tilde{C}_{1}=\left(C_{1}{ }^{\alpha}\right), \tilde{C}_{2}=\left(C_{2}{ }^{\alpha}\right)$ be mutually orthogonal unit vectors normal to \tilde{M}^{n-1} and $\tilde{h}_{1}=\left(h_{(1) j i}\right), \tilde{h}_{2}=\left(h_{(2) j \bar{i}}\right)$ be the second fundamental tensors with respect to \tilde{C}_{1}, \tilde{C}_{2}, reespectively. A vector field $\tilde{H}=\left(H^{\alpha}\right)$ defined by

$$
H^{\alpha}=\frac{1}{n-1}\left(h_{(1) j i} C_{1}^{\alpha}+h_{(2) j_{i}} C_{2}^{\alpha}\right) \tilde{g}^{j i}
$$

2) The indicies \bar{i}, \bar{j}, \ldots run over the range $\{1, \cdots, n-1\}$.
3) The indicies \bar{a}, \bar{b}, \cdots run over the range $\{1, \cdots, n-2\}$.
is independent of the choice of $\left(\tilde{C}_{1}, \tilde{C}_{2}\right)$, and we call \tilde{H} the mean curvature vector field of \tilde{M}^{n-1}. The magnitude H_{1} of the mean curvature vector field is called the mean curvature of \tilde{M}^{n-1}, i.e.,

$$
H_{1}=\frac{1}{n-1}\left(\tilde{g}^{j i} h_{(1) j i}+\tilde{g}^{j i} h_{(2) j i)} .\right.
$$

If H_{1} is positive, we can take the first unit normal \tilde{C}_{1} in the direction of the mean curvature vector field H. In this case we see that

$$
\begin{equation*}
\tilde{g}^{j i} h_{(2) j i}=0 \quad \text { and } \quad \frac{1}{n-1} \tilde{g}^{j i} h_{(1) j i}=H_{1} . \tag{3.2}
\end{equation*}
$$

We put

$$
\begin{equation*}
E^{r}=v^{j} B_{j}^{r}+\alpha C_{1}^{r}+\beta C_{2}^{r} \tag{3.3}
\end{equation*}
$$

on the compact piece \tilde{M}^{n-1}. Putting

$$
v_{i}=\tilde{g}_{j i v} v^{j}
$$

we have

$$
\begin{equation*}
v_{i}=B_{i}^{r} E_{\gamma}, \tag{3.4}
\end{equation*}
$$

because of (1.2) and (3.3). Hence we have

$$
\begin{equation*}
\nabla_{j} v_{i}=\alpha h_{j i}+\beta k_{j i}+B_{j}{ }^{r} B_{i}{ }^{\beta} \nabla_{r} E_{\beta} \tag{3.5}
\end{equation*}
$$

along \tilde{M}^{n-1}. Transvecting (3.4) with $\tilde{g}^{j z}$, we get

$$
\begin{equation*}
\tilde{g}^{j i} \nabla_{j} v_{i}=\alpha\left(n H_{1}\right)+\frac{1}{2} \tilde{g}^{j i} B_{j}^{r} B_{i} £ G_{\gamma \beta} \tag{3.6}
\end{equation*}
$$

by virtue of (3.2). Integrating both sides of (3.6) over \tilde{M}^{n-1} and applying Stokes' theorem, we have

$$
\begin{equation*}
\int_{\partial \tilde{M} n-1} v_{j} D^{j} d \tilde{\sigma}=n \int_{\tilde{M} n-1} H_{1} \alpha d \tilde{V}+\frac{1}{2} \int_{\tilde{M} n-1} \tilde{g}^{j i} B_{j}^{\tau} B_{i}^{\beta} £ G_{\gamma \beta} d \tilde{V}, \tag{3.7}
\end{equation*}
$$

where $\tilde{D}=\left(D^{j}\right)$ is the unit vector field normal to $\tilde{C}_{1}, \tilde{C}_{2}$ and to the boundary $\partial \tilde{M}^{n-1}$, and $d \tilde{\sigma}, d \tilde{V}$ denote the volume elements of $\partial \tilde{M}^{n-1}, \tilde{M}^{n-1}$ respectively. Next we will compare $d \tilde{V}$ with the volume element of $\pi\left(\tilde{M}^{n-1}\right)$. Since \tilde{M}^{n-1} is nowhere tangent to fibres, we can choose $\left(u^{j}\right)=\left(u^{1}, \cdots, u^{n-1}\right)$ as the local parameters of the projection M^{n-1} that is, M^{n-1} has the local expression

$$
\xi^{i}=\xi^{i}\left(u^{j}\right)
$$

and by virtue of (1.1), we have the identity

$$
\xi^{\imath}\left(u^{j}\right)=f^{i}\left(x^{\alpha}\left(u^{j}\right)\right) .
$$

Then, differentiating the equation above, we have

$$
\frac{\partial \xi^{i}}{\partial u^{j}}=E_{\alpha}^{i} B_{j}^{\alpha}
$$

and consequently, if we set

$$
B_{j}=\left(B_{j}^{i}\right)=\left(\frac{\partial \xi^{i}}{\partial u^{j}}\right),
$$

then we have

$$
\begin{equation*}
\widetilde{A B}_{j}=\left(E_{\imath}{ }^{\alpha} B_{j}{ }^{i}\right) \tag{3.8}
\end{equation*}
$$

in \tilde{U}. From the definition of $\tilde{C}_{1}, \tilde{C}_{2}$ and \tilde{g}, we have

$$
\sqrt{\operatorname{det} \tilde{G}} \operatorname{det}\left(\tilde{C}_{1}, \tilde{C}_{2}, \tilde{B}_{j}\right)=\sqrt{\operatorname{det} \tilde{g}}
$$

On the other hand, denoting by g the metric induced on $\pi\left(\tilde{M}^{n-1}\right)$ from the induced metric of M, we have

$$
\operatorname{det} \tilde{G}\left\{\operatorname{det}\left(\widetilde{E}, \widetilde{A N_{1}}, \widetilde{A B} \widetilde{B}_{j}\right)\right\}^{2}=\operatorname{det} g
$$

where $N_{1}=\left(N_{1}{ }^{i}\right)$ denotes the unit normal to $\pi\left(\tilde{M}^{n-1}\right)$, and $\left(\widetilde{A N_{1}}\right)^{r}=E^{r}{ }_{j} N_{1}{ }^{j}$. If we suppose that $\widetilde{A N}=\widetilde{C}_{2}$ or equivalently $\beta=0$ in (3.3), then we have

$$
\operatorname{det}\left(\tilde{E}, \widetilde{A N_{1}}, \widetilde{A B_{j}}\right)=\operatorname{det}\left(\tilde{E}, \tilde{C}_{2}, \widetilde{A B} \widetilde{B}_{j}\right)=\alpha \operatorname{det}\left(\tilde{C}_{1}, \tilde{C}_{2}, \tilde{B}_{j}\right)
$$

by virtue of (3.3) and (3.8). Thus we obtain the relation

$$
|\alpha| \sqrt{\operatorname{det} \tilde{g}}=\sqrt{\operatorname{det} g}
$$

Henceforth we assume that $\alpha>0$, and then we have

$$
\alpha d \tilde{V}=d V
$$

If we denote by \bar{g} the induced metric on $\partial \tilde{M}^{n-1}$ from \tilde{g}, \bar{g} is given by

$$
\bar{g}_{\bar{c} \bar{b}}=\tilde{G}\left(\widetilde{B B}_{\bar{c}} \widetilde{B B}_{\bar{b}}\right)
$$

and $\operatorname{det} \bar{g}$ by

$$
\begin{equation*}
\operatorname{det} \tilde{G}\left\{\operatorname{det}\left(\widetilde{C}_{1}, \widetilde{C}_{2}, \widetilde{B D}, \widetilde{B B_{\bar{b}}}\right)\right\}^{2}=\operatorname{det} \bar{g} \tag{3.10}
\end{equation*}
$$

where $\left(\widetilde{B B_{\bar{b}}}\right)^{r}=B_{j}{ }^{r} B_{\bar{b}}{ }^{j}$ and $(\widetilde{B D})^{r}=B_{j}^{r} D^{j}$. On the other hand, as for the metric $*_{g}$ on $\pi\left(\partial \tilde{M}^{n-1}\right)$ induced from the metric g of $\pi\left(\tilde{M}^{n-1}\right)$, we have

$$
\begin{equation*}
\operatorname{det} \tilde{G}\left\{\operatorname{det}\left(\widetilde{A N}, \tilde{E}, \widetilde{A N_{2}}, \widetilde{A B_{\bar{b}}}\right)\right\}^{2}=\operatorname{det} * g \tag{3.11}
\end{equation*}
$$

where $N_{2}=\left(N_{2}{ }^{j}\right)$ denotes the unit normal to $\pi\left(\partial \tilde{M}^{n-1}\right),\left(\widetilde{A N_{2}}\right)^{r}=E^{\gamma}{ }_{\rho} B_{i}{ }^{j} N_{2}{ }^{i}$ and $\left(\widetilde{A B_{\bar{b}}}\right)^{r}=E^{r}{ }_{j} B_{i}{ }^{j} B_{\bar{b}}{ }^{i}$.

The unit vector \tilde{C}_{1} normal to \tilde{M}^{n-1} is a linear combination of $\widetilde{A N_{1}}, \widetilde{A N_{2}}, \tilde{E}$ and $\widetilde{A B}_{d}$, i.e.

$$
\widetilde{C}_{1}=a\left(\widetilde{A N_{1}}\right)+b\left(\widetilde{A N_{2}}\right)+c^{a}\left(\widetilde{A B_{\bar{\alpha}}}\right)+\alpha \tilde{E}
$$

a, b, c^{d} being certain functions $|a| \leqq 1,|b| \leqq 1$.
Therefore we have

$$
\begin{equation*}
\operatorname{det}\left(\tilde{E}, \tilde{C}_{1}, \widetilde{A N_{1}}, \widetilde{A B}_{\bar{b}}\right)=|b| \operatorname{det}\left(\tilde{E}, \widetilde{A N}_{2}, \widetilde{A N}_{1}, \widetilde{A B}_{\bar{b}}\right) \tag{3.12}
\end{equation*}
$$

Putting

$$
\tilde{E}=\left(v_{j} D^{j}\right) \widetilde{B D}+d^{a}\left(\widetilde{B B_{\bar{a}}}\right)+\alpha \widetilde{C}_{1}+\beta \widetilde{C}_{2}
$$

for certain functions d^{a}, and taking account of

$$
\widetilde{A B_{\bar{b}}}=\widetilde{B B_{\bar{b}}}-\left(v_{j} B_{\bar{b}}{ }^{j}\right) \tilde{E}
$$

obtained from (3.9), we have

$$
\begin{align*}
\operatorname{det}\left(\tilde{E}, \tilde{C}_{1} \widetilde{A N_{1}}, \widetilde{A B_{\bar{b}}}\right) & =\left(v_{j} D^{j}\right) \operatorname{det}\left(\widetilde{B D}, \tilde{C}_{1}, \tilde{C}_{2}, \widetilde{B B_{\bar{b}}}\right) \\
& =\left(v_{j} D^{j}\right) \operatorname{det}\left(\widetilde{C}_{1}, \widetilde{C}_{2}, \widetilde{B D}, \widetilde{B B_{\bar{b}}}\right) \tag{3.13}
\end{align*}
$$

As a result of (3.10)~(3.13), we get

$$
\left|v_{j} D^{j}\right| \sqrt{\operatorname{det} \bar{g}}=|b| \sqrt{\operatorname{det}^{*} g} .
$$

We can choose D in such a way that $v_{j} D^{j} \geqq 0$, and we finally get

$$
v_{j} D^{j} \sqrt{\operatorname{det} \bar{g}}=|b| \sqrt{\operatorname{det} *_{g}} .
$$

Returning to the integral formula (3.7), we get
$\int_{\pi\left(\partial \tilde{M}^{n-1}\right)} \sqrt{\operatorname{det}{ }^{*} g} d r^{1} \wedge \cdots \wedge d r^{n-1} \geqq n \int_{\tilde{M}^{n-1}} H_{1} \alpha \sqrt{\operatorname{det} \tilde{g}} d u^{1} \wedge \cdots \wedge d u^{n-1}+\int_{\tilde{M}^{n-1}} G^{* \gamma \beta} £ G_{\gamma \beta} d \tilde{V}$, where we have put $G^{* \gamma \beta}=\tilde{g}^{j i} B_{j}{ }^{\gamma} E_{i}^{\beta}$.

If we assume that $H_{1} \geqq c>0$ ($c:$ const) and

$$
\int_{\tilde{M}^{n-1}} G^{* \gamma \beta} £ G_{\gamma \beta} d \tilde{V} \geqq 0,
$$

then we get

$$
\int_{\pi(\partial \tilde{M} n-1)} d \sigma \geqq n c \int_{\pi(\tilde{M} n-1)} d V,
$$

where $d \sigma$ and $d V$ are the volume elements of $\pi\left(\partial \tilde{M}^{n-1}\right)$ and $\pi\left(\tilde{M}^{n-1}\right)$ respectively. Summarizing, we obtain

Theorem 2. Let $(\tilde{M}, M, \pi ; \tilde{E}, \tilde{G})$ be a fibred space with projectable metric \tilde{G}. Let \tilde{M}^{n-1} be a compact piece of an oriented submanifold of co-dimension 2 in \tilde{M} with compact smooth boundary $\partial \tilde{M}^{n-1}$, which covers simply the projection $\pi\left(\tilde{M}^{n-1}\right)$. Suppose that at each point, the mean curvature vetor \widetilde{H} is spanned by $B_{\overline{1}}, \cdots, B_{\overline{n-1}}$
and \tilde{E}, and that \tilde{H} makes an angle $<\pi / 2$ with \tilde{E}. If we assume that the mean curuature satisfies the condition $H_{1} \geqq c>0, c$ being a constant, and

$$
\int_{\tilde{\tilde{M}}{ }^{n-1}} G^{* r_{\beta}} \nsubseteq G_{r \beta} d \tilde{V} \geqq 0,
$$

then the inequality

$$
n c V \geqq L
$$

holds, where V and L denote the volume of the projection of \tilde{M}^{n-1} and $\partial \tilde{M}^{n-1}, r e$ spectively.

4. Special cases.

In this section we shall prove theorem 3 which is a generalization of Heinz's theorem. For this purpose we need some lemmas, which will be proved by devices similar to those developed in [1] and [3].

Let M be an n-dimensional Riemannian manifold. Let γ be a geodesic starting at $m \in M$ and parametrized by arc-length t,

$$
\gamma(t)=\exp _{m} \rho(t), \quad r(0)=m,
$$

where $\rho(t)$, is a ray in the tangent space M_{m} of M at the point m. Now a Jacobi field along a geodesic γ is defined by

Definition. If a vector field Y given along a geodesic γ satisfies the differential equation

$$
Y^{\prime \prime}+R(Y, \dot{\gamma}) \dot{\gamma}=0
$$

the prime denoting covariant differentiation along γ, Y is called a Jacobi field along γ, where R is the curvature tensor, that is,

$$
R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]} .
$$

As is well known, we have (cf. [1] p. 172)
Lemma 1. Let A be a constant field along the ray ρ in the tangent space M_{m}, then

$$
Y(t)=d \exp _{m} t A
$$

is a Jacobi field along γ.
Lemma 2. Assume that M is a space of constant curvature k. Let γ be a geodesic in M having no conjugate point of $\gamma(0)$ and $E_{1}, E_{2}, \cdots, E_{n}$ be a parallel orthonormal basis along γ. If $h E_{\imath}(i=1,2, \cdots, n)$ is Jacobi field with the conditions $h(0)=0, h(r)=1,{ }^{4}$ then h satisfies one of the following conditions:
4) See Appendix I.

1) $h(t)=\frac{\sin b t}{\sin b r}$, if $k=b^{2}$;
2) $h(t)=\frac{t}{r}, \quad$ if $k=0$;
3) $h(t)=\frac{\sinh b t}{\sinh b r}$ if $k=-b^{2}$.

Proof. If $h E_{\imath}$ is a Jacobi field along γ with the conditions $h(0)=0, h(r)=1$, then h is a solution of the differential equation

$$
\frac{d^{2} h}{d t^{2}}+k h=0
$$

with the conditions $h(0)=0, h(r)=1$. Thus we have Lemma 2.
If X and Y are vector fields along γ and orthogonal to γ, the index form of the pair (X, Y) on $(0, r)$ is given by

$$
I(X, Y)=\int_{0}^{r}\left\langle\left\langle X^{\prime}, Y^{\prime}\right\rangle-\langle R(\dot{\gamma}, X) \dot{\gamma}, Y\rangle\right\rangle_{t} d t,
$$

where \langle,$\rangle denotes the Riemannian metric in M$. For a Jacobi field $Y, I(X, Y)$ reduces to

$$
I(X, Y)=\left.\left\langle X, Y^{\prime}\right\rangle\right|_{0} ^{r}
$$

Lemma 3. Let γ be a geodesic and have no conjugate point of $m=\gamma(0)$. Let Y be an orthogonal Jacobi field along γ and X be any field orthogonal to γ with $X(0)=Y(0), X(r)=Y(r)$. Then $I(X, X) \geqq I(Y, Y)$ and the equality occurs only when $X=Y$.

Proof. If $X \neq Y$, then $X-Y \neq 0$. Since $I(X, Y)$ is positive definite, ${ }^{5}$)

$$
\begin{aligned}
0 & <I(X-Y, X-Y)=I(X, X)-2 I(X, Y)+I(Y, Y) \\
& =I(X, X)-\left.2\left\langle X, Y^{\prime}\right\rangle\right|_{0} ^{r}+\left.\left\langle Y, Y^{\prime}\right\rangle\right|_{0} ^{r} \\
& =I(X, X)-\left.\left\langle Y, Y^{\prime}\right\rangle\right|_{0} ^{r}=I(X, X)-I(Y, Y),
\end{aligned}
$$

which proves Lemma 3.
Next we consider the Jacobian determinant of the exponential mapping $\exp _{m}$ at a point $\rho(t)$ and its relation with Jacobi fields. In the sequel $R_{i}(X)$ and $K(X, Y)$ denote the Ricci curvature with respect to X and the sectional curvature with respect to X and Y, i.e.,

$$
K(X, Y)=\frac{\langle R(X, Y) Y, X\rangle}{\langle X, X\rangle\langle Y, Y\rangle-\langle X, Y\rangle^{2}},
$$

[^1]$$
R_{i}(X)=\frac{1}{n-1} \sum_{i=1}^{n} K\left(X_{i}, X\right)
$$
X_{2} being an orthonormal frame at m.
Lemma 4. Let γ be a geodesic starting at m in M and $j(t)$ the Jacobian determinant of $\exp _{m}$ at a point $\rho(t)$. Then $j(t)$ satisfies one of the following conditions:
1)
$$
\left\{\frac{\sin b t}{b t}\right\}^{n-1} \geqq j(t) \geqq\left\{\frac{\sin a t}{a t}\right\}^{n-1}
$$
at least out to the first conjugate point of m along γ, if $R_{i}(X) \geqq a^{2}>0$, and $0<K(X, Y) \leqq b^{2}$ for arbitrary X and Y;
2) $j(t)=1$, if $K(X, Y)=0$ for any X and Y;
3)
$$
1 \leqq j(t) \leqq\left\{\frac{\sinh a t}{a t}\right\}^{n-1}
$$
if $R_{i}(X) \geqq-a^{2}$, and $K(X, Y) \leqq 0$ for any X and Y.
Proof. We first note that $j(t)$ is given by
$$
j(t)=\frac{\left\|d \exp _{m} s_{1} \cdots d \exp _{m} s_{n-1}\right\|}{\left\|s_{1} \cdots s_{n-1}\right\|}
$$
for any linearly independent ($n-1$)-vectors s_{1}, \cdots, s_{n-1} which are orthogonal to ρ at $\rho(t)$ (cf. [1]), where
$$
\left\|Y_{1} \cdots Y_{n-1}\right\|=\operatorname{det}\left(\left\langle Y_{i}, Y_{j}\right\rangle\right) .
$$

Let A_{2} be constant fields along ρ, and assume that $d \exp _{m}\left(r A_{\imath}\right)=F_{i}(r)$, where $\left\{F_{1}, \cdots, F_{n-1}\right\}$ is a parallel orthonormal basis along γ. Put $Y_{i}(t)=d \exp _{m}\left(t A_{i}\right)$, then by virtue of Lemma $1, Y_{1}, \cdots, Y_{n-1}$ are Jacobi fields along γ which are linearly independent. Then we have

$$
j(t)=\frac{\left\|Y_{1} \cdots Y_{n}\right\|}{t^{n-1} A}
$$

where $A=\left\|A_{1} \cdots A_{n-1}\right\|$ is constant. Since $Y_{1}(r), \cdots, Y_{n-1}(r)$ are orthonormal, we have

$$
\frac{d}{d t}\left\|Y_{1} \cdots Y_{n-1}\right\|^{2}(r)=2 \sum_{\imath=1}^{n-1}\left\langle Y_{i}(r), Y_{\imath}^{\prime}(r)\right\rangle
$$

and therefore

$$
\begin{equation*}
\frac{j^{\prime}(r)}{j(r)}=\sum_{i=1}^{n-1}\left\langle Y_{i}(r), Y_{\imath}^{\prime}(r)\right\rangle-\frac{n-1}{r} . \tag{4.1}
\end{equation*}
$$

For the first case 1), using the assumption, we have
(4. 2)

$$
\begin{aligned}
\left\langle Y_{i}(r), Y_{2}^{\prime}(r)\right\rangle & =\int_{0}^{r}\left\{\left\|Y_{i}^{\prime}\right\|^{2}-K\left(\dot{r}, Y_{i}\right)\left\|Y_{i}\right\|^{2}\right\}_{t} d t \\
& =\int_{0}^{r}\left\{\left\|Y_{\imath}^{\prime}\right\|^{2}-b^{2}\left\|Y_{i}\right\|^{2}\right\}_{t} d t .
\end{aligned}
$$

On the other hand, if we consider a Jacobi field $\bar{Y}_{i}=h(t) E_{i}(t)$ along a geodesic $\bar{\gamma}$ on the space S of constant curvature $b^{2}\left(\bar{\gamma}(t)=\overline{\exp }_{\bar{m}}(t), \overrightarrow{\exp }_{\bar{m}}: S_{\bar{m}} \rightarrow S\right) E_{\imath}$ denoting orthonormal vector fields given in Lemma 2, we have

$$
\begin{equation*}
\left\langle h(r) E_{i}(r), \dot{h}(r) E_{i}(r)\right\rangle=\left\langle\bar{Y}_{i}(r), \bar{Y}_{i}{ }^{\prime}(r)\right\rangle=\int_{0}^{r}\left\{\left\|\bar{Y}_{2}^{\prime}\right\|^{2}-b^{2}\left\|\bar{Y}_{i}\right\|^{2}\right\}_{t} d t \tag{4.3}
\end{equation*}
$$

by means of Lemma 2.
Since \bar{Y}_{i} are Jacobi fields, we have, from Lemma 3,

$$
\begin{equation*}
\int_{0}^{r}\left\{\left\|Y_{2}^{\prime}\right\|^{2}-b^{2}\left\|Y_{2}\right\|^{2}\right\}_{t} d t \geqq \int_{0}^{r}\left\{\left\|\bar{Y}_{2}^{\prime}\right\|^{2}-b^{2}\left\|\bar{Y}_{i}\right\|^{2}\right\} t d t . \tag{4.4}
\end{equation*}
$$

Combining (3. 2), (3.3) and (3.4), we have

$$
\begin{equation*}
\left\langle Y_{i}(r), Y_{\imath}^{\prime}(r)\right\rangle \geqq \cot b r \tag{4.5}
\end{equation*}
$$

by virtue of Lemma 2.
Next, taking account of Lemma 3, we have

$$
\begin{equation*}
\left\langle Y_{i}(r), Y_{i}^{\prime}(r)\right\rangle=I\left(Y_{i}, Y_{i}\right)=I\left(h F_{i}, h F_{i}\right)=\int_{0}^{r}\left\{h^{\prime 2}-K\left(\dot{r}, F_{i}\right) h^{2}\right\} d t . \tag{4.6}
\end{equation*}
$$

Taking sum with respect to i and taking account of the inequality $R_{i}(\dot{\gamma}) \geqq a^{2}>0$ and (4.1), we find

$$
\begin{equation*}
\frac{j^{\prime}(r)}{j(r)} \leqq(n-1) \int_{0}^{r}\left\{\left(h^{\prime}\right)^{2}-a^{2} h^{2}\right\} d t-\frac{n-1}{r}, \tag{4.7}
\end{equation*}
$$

which implies together with (4.2)

$$
(n-1)\left(\cot a r-\frac{1}{r}\right) \geqq \frac{j^{\prime}(r)}{j(r)} \geqq(n-1)\left(\cot b r-\frac{1}{r}\right) .
$$

Integrating each side of this inequality from s to $t,(s \in(0, t))$, we get

$$
\left(\frac{\sin a t}{a t}\right)^{n-1}\left(\frac{a s}{\sin a s}\right)^{n-1} \geqq \frac{j(t)}{j(s)} \geqq\left(\frac{\sin b t}{b t}\right)^{n-1}\left(\frac{b s}{\sin b s}\right)^{n-1}
$$

Taking the limit as $s \rightarrow 0$, we have

$$
\left(\frac{\sin a t}{a t}\right)^{n-1} \geqq j(t) \geqq\left(\frac{\sin b t}{b t}\right)^{n-1}
$$

by virtue of $j(0)=1$.

For the second case 2$), j^{\prime}(r) / j(r)$ being zero, we have $j(t)=1$.
For the last case 3), (4.2) reduces to

$$
\left\langle Y_{i}(r), Y_{i}{ }^{\prime}(r)\right\rangle \geqq \int_{0}^{r}\left\|Y_{i}{ }^{\prime}\right\|^{2} d t \geqq \frac{1}{r}
$$

by means of Lemmas 2 and 3. Moreover (4.7) reduces to

$$
0 \leqq \frac{j^{\prime}(r)}{j(r)} \leqq(n-1) \int_{0}^{r}\left\{\left(h^{\prime}\right)^{2}+a^{2} h^{2}\right\} d t-\frac{n-1}{r},
$$

where $h(t)=\sinh a t / \sinh a r$. Thus we get

$$
1 \leqq j(t) \leqq\left(\frac{\sinh a t}{a t}\right)^{n-1}
$$

Consequently, Lemma 4 has been proved completely.
We are now going to prove
Theoem 3. Let $(\tilde{M}, M, \pi ; \tilde{E}, \tilde{G})$ be a fibred space with projectable metric and \tilde{M}^{n} a compact piece of an oriented hypersurface in \tilde{M} with properties stated in Theorem 2. Assume that the projection M^{n} of \tilde{M}^{n} to M is a Riemannian sphere with radius R lying in a normal coordinate neighborhood. Then R satisfies one of the following inequalities:

1) $n c\left(\frac{a}{b}\right)^{n-1} \int_{0}^{R}\left(\frac{\sin b t}{\sin a R}\right)^{n-1} d t \leqq 1$, if $R_{i}(X) \geqq a^{2}>0$, and $0<K(X, Y) \leqq b^{2}$ on M^{n};
2) $c R \leqq 1$, if $K(X, Y)=0$;
3) $c R \leqq\left(\frac{\sinh a R}{a}\right)^{n-1}$, if $R_{i}(X) \geqq-a^{2}$ and $K(X, Y)<0$,
where c is the constant appearing in Theorem 2.
Proof. If m is the origin of the Riemannian sphere M^{n}, M^{n} is the image of R-ball $B(R)$ in the tangent space M_{m}^{n} under the exponential mapping and its boundary ∂M^{n} is the image of ($n-1$)-dimensional sphere $S^{n-1}(R)$ with radius R. Let γ be a geodesic in M^{n} orthogonal to ∂M^{n} and $j(t)$ be the Jacobian determinant of $\exp _{m}$ at $\rho(t)$. If $d B$ and $d S$ are the volume elements of $B(R)$ and the unit sphere $S^{n-1}(1)$ respectively, the volume element $d V$ of M^{n} is given by

$$
d V=j(t) d B=j(t) t^{n-1} d t d S
$$

Thus we get

$$
\text { volume } M^{n} \geqq \int_{B(R)} j(t) d B=\int_{0}^{R} \int_{S^{n-1}} j(t) t^{n-1} d t d B \text {. }
$$

Taking account of Lemma 4, we have for the case 1)

$$
\text { volume } \begin{aligned}
M^{n} & \geqq \text { (volume } S^{n-1} \text {) } \int_{0}^{R}\left(\frac{\sin b t}{b}\right)^{n-1} d t \\
& \geqq\left(\text { volume } \partial M^{n}\right)\left(\frac{a}{b}\right)^{n-1} \int_{0}^{R}\left(\frac{\sin b t}{\sin a R}\right)^{n-1} d t .
\end{aligned}
$$

On the other hand, we have already in Theorem 2 the inequality

$$
n c \text { volume } M^{n} \leqq \text { volume } \partial M^{n}
$$

Thus, summing up, we obtain the following required inequality

$$
n c\left(\frac{a}{b}\right)^{n-1} \int_{0}^{R}\left(\frac{\sin b t}{\sin a R}\right)^{n-1} d t \leqq 1
$$

For the cases 2) and 3) we reach the corresponding inequalities in the same way.
As a special case, we consider a fibred space $\left(S^{n+1}, C P(l), \pi ; \tilde{E}, \tilde{G}\right)$, where S^{n+1} is a unit sphere with natural metric \tilde{G} induced from E^{n+2} and $C P(l)$ is the complex projective space of complex dimension $l(2 l=n)$. We shall prove

Theorem 4. Let \tilde{M}^{n} be a compact piece of an oriented hypersurface of S^{n+1} with properties stated in Theorem 2. Assume that the projection M^{n} of \tilde{M}^{n} to $C P(l)$ is a Riemannian sphere with radius $R<\pi / 2$. Then R satisfies the following inequality

$$
2 c \tan \frac{R}{2} \leqq 1
$$

where c is the constant appearing in Theorem 2.
Proof. Let m be the origin of the Riemannian sphere. A holomorphic sectional curvature on $C P(l)$ being constant $(=1)$, the curvature tensor is given by

$$
\begin{align*}
\langle R(X, Y) Z, W\rangle= & \frac{1}{4}\{\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle \\
& +\langle J X, W\rangle\langle J Y, Z\rangle-\langle J Y, W\rangle\langle J X, Z\rangle-2\langle J X, Y\rangle\langle J Z, W\rangle\}, \tag{4.8}
\end{align*}
$$

where J is the complex structure in $C P(l)$. Let γ be a geodesic starting at m and orthogonal to ∂M^{n}. We choose a parallel orthonormal basis along $\dot{\gamma}, E_{1}, E_{1^{*}}, \cdots, E_{l}$, $E_{l^{*}}$ in such a way that

$$
E_{1}=\dot{\gamma}, \quad E_{\alpha^{*}}=J E_{\alpha} \quad(\alpha=1, \cdots, l) .
$$

If $h_{i} E_{i}\left(i:\right.$ not summed $\left.i=1,1^{*}, \cdots, l, l^{*}\right)$ is a Jacobi field along γ with the conditions $h(0)=0$ and $h(r)=1$, then $h_{i}(t)$ satisfies

$$
\begin{equation*}
h_{1^{*}}(t)=\frac{\sin t}{\sin r}, \quad h_{i}(t)=\frac{\sin (t / 2)}{\sin (r / 2)} \quad\left(i=2,2^{*}, \cdots, l, l^{*}\right) \tag{4.9}
\end{equation*}
$$

In fact, h_{1}. and h_{i} satisfy the differential equations

$$
\begin{array}{lll}
\frac{d^{2} h_{1^{*}}}{d t^{2}}+h_{1^{*}}=0, & h_{1^{*}}(0)=0, & h_{1 *}(r)=1 \\
\frac{d^{2} h_{i}}{d t^{2}}+\frac{1}{4} h_{i}=0, & h_{i}(0)=0, & h_{i}(r)=1
\end{array}
$$

Next we have an estimation of the Jacobian determinant $j(t)$ of $\exp _{m}$, that is,

$$
\begin{equation*}
j(t)=\frac{1}{t^{n-1}}\left(2 \sin \frac{t}{2}\right)^{n-1} \cos \frac{t}{2} \tag{4.10}
\end{equation*}
$$

at least out to the first conjugate point of m along γ. In fact, taking $n-1$ Jacobi fields Y_{1}, \cdots, Y_{n-1} in the same way as in proof of Theorem 3, we have again

$$
\frac{j^{\prime}(r)}{j(r)}=\sum_{i=1}^{n-1}\left\langle Y_{i}(r), Y_{i}{ }^{\prime}(r)\right\rangle-\frac{n-1}{r}
$$

If $h_{i} E_{i}\left(i:\right.$ not summed) is a Jacobi field along γ such that $h_{i}(0)=0, h_{i}(r)=1$, then we have

$$
\left\langle Y_{i}(r), Y_{\imath}^{\prime}(r)\right\rangle=h_{i}(r) \dot{h}_{i}(r)= \begin{cases}\cot r, & i=1^{*} \\ \frac{1}{2} \cot \frac{r}{2}, & i \neq 1^{*}\end{cases}
$$

Therefore we obtain

$$
\frac{j^{\prime}(r)}{j(r)}=\frac{n-2}{2} \cot \frac{r}{2}+\cot r-\frac{n-1}{r} .
$$

Integrating this from s to $t(s \in(0, t))$, we get

$$
\frac{j(t)}{j(s)}=\frac{s^{n-1}(2 \sin (t / 2))^{n-2} \sin t}{t^{n-1}(2 \sin (s / 2))^{n-2} \sin s}
$$

Now taking the limit as $s \rightarrow 0$, we have

$$
j(t)=\frac{1}{t^{n-1}}\left(2 \sin \frac{t}{2}\right)^{n-2} \sin t
$$

by virtue of $j(0)=1$.
Denoting by $d S$ the volume element of the unit sphere S^{n-1}, we have

$$
\begin{aligned}
\text { volume } M^{n} & =\int_{0}^{R} \int_{S^{n-1}} j(t) t^{n-1} d t d S \\
& =\left(\text { volume } S^{n-1}\right) \int_{0}^{R}\left(2 \sin \frac{t}{2}\right)^{n-1} \cos \frac{t}{2} d t \\
& =2^{n}\left(\text { volume } S^{n-1}\right) \int_{0}^{\sin (R / 2)} u^{n-1} d u \quad\left(u=\sin \frac{t}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n}\left(2 \sin \frac{R}{2}\right)^{n}\left(\text { volume } S^{n-1}\right) \\
& =\frac{2}{n} \tan \frac{R}{2} j(R) R^{n-1} \quad\left(\text { volume } S^{n-1}\right) \\
& \left.=\frac{2}{n} \tan \frac{R}{2} \text { (volume } \partial M^{n}\right)
\end{aligned}
$$

by virtue of (4.3). Since ($\left.S^{n+1}, C P(l), \pi: \tilde{E}, \tilde{G}\right)$ is a fibred space with invariant metric, the inequality

$$
n c \text { (volume } M^{n} \text {) } \leqq \text { volume } \partial M^{n}
$$

has been established. Thus we obtain the required inequality

$$
2 c \tan \frac{R}{2} \leqq 1
$$

5. Appendix (cf. [1] or [6]).

We give here the definition of conjugate points and properties which our argument requires.

Let $\gamma:[0, l] \rightarrow M$ be a geodesic starting at m and parametrized by arc length t;

$$
\gamma(t)=\exp _{m} \rho(t), \quad \gamma(0)=m
$$

We call t_{0} a conjugate point to 0 along γ if $d \exp _{m}$ is singular at $\rho\left(t_{0}\right)$ and call $\gamma\left(t_{0}\right)$ a conjugate point to $\gamma(0)=m$ along γ.
I) The uniqueness of Jacobi field.

Let r be a non-conjugate point to 0 along γ and $v \in M_{m}$ and $w \in M_{\gamma(r)}$. Then there exists exactly one Jacobi field Y along r such that $Y(0)=v$ and $Y(r)=w$.
II) The relation to the index form.

The following two propositions are equivalent:

1) r has no conjugate point.
2) $I(X, X)>0$ for any $X \neq 0$ such that $X(0)=X(l)=0$.

III) Theorem of Morse-Schoenberg:

1) If $K(X, Y) \leqq k$ and $l<\pi / \sqrt{ } \bar{k}$, then γ has no conjugate point,
1)' if $K(X, Y) \leqq 0$, then γ has no conjugate point,
2) if $0 \leqq k<K(X, Y)$, there exists at least one conjugate point along γ at distance at most π / \sqrt{k},
where k is a constant.

Bibligraphy

[1] Bishop, R. L., and R. L. Crittendan, Geometry of manifolds. Academic Press, New York (1964), 253-255.
[2] Chern, S. S., On the curvature of a piece of hypersurface in Euclidean space. Sem. Univ. Hamburg 29 (1965), 77-91.
[3] Grossman, N., The volume of a totally-geodesic hypersurface in a pinched manıfold. Pacific J. 23 (1967), 257-262.
[4] Heinz, E., Über Flächen mıt eindeutiger Projektion aut eıne Ebene, deren Krümmungen durch Ungleichungen eingeschränkt sind. Math. Ann. 129 (1955), 451454.
[5] Katsurada, Y., On a piece of hypersurface in a Riemannian manifold with mean curvature bounded away from zero. Trans. Amer. Math. Soc. 129 (1967), 447457.
[6] Tsukamoto, Y., Curvature, geodesics and topological structures of Riemannian manifolds. Publications of the study group of geometry 2 (1966).
[7] Yano, K., and S. Ishihara, Fibred spaces with invariant Riemannian metric. Kōdai Math. Sem. Rep. 19 (1967), 317-360.
[8] Yano, K., and S. Ishimara, Fibred spaces with projectable Riemannian metric. Jonrnal of Differential Geometry 1 (1967), 71-86.

Department of Mathematics, Tokyo Institute of Technology.

[^0]: 1) As to notations and the definitions of fibred spaces we follow [7] and [8].
[^1]: 5) See Appendix II.
