SOME PROPERTIES OF EXTREMAL POLYNOMIALS FOR THE ILIEFF CONJECTURE

BY DEAN PHELPS AND RENE S. RODRIGUEZ

Let P_n denote the family of complex polynomials each of degree n, with leading coefficient 1, and having all of its roots in $\overline{D}(0, 1)$, the closed unit disc with center at 0 and radius 1. Let $p \in P_n$ have roots z_1, \dots, z_n and have roots w_1, \dots, w_{n-1} . For such p we use $I(z_j), I(p)$, and $I(P_n)$ to denote the numbers min $\{|z_i - w_k|:$ $1 \le k \le n-1\}$, max $\{I(z_j): 1 \le j \le n\}$, and $\sup \{I(p): p \in P_n\}$ respectively. Then $p \in P_n$ is called an extremal polynomial for the Ilieff conjecture if $I(p)=I(P_n)$. With this notation the Gauss-Lucas theorem implies that $I(P_n) \le 2$ and the conjecture of Ilieff is that $I(p) \le 1$ for all $p \in P_n$. We show that there exist extremal polynomials, that an extremal 'polynomial must have at least one root on each subarc of the unit circle of length $\ge \pi$, and we find the extremal polynomials for n=3 and 4.

We begin with a

LEMMA. P_n is a compact normal family in the open plane C.

Proof. Let R>0. If $p \in P_n$ then $|p(z)| = |(z-z_1) \cdots (z-z_n)| \leq (R+1)^n$ when $|z| \leq R$ so that by the theorem of Stieltjes and Osgood P_n is a normal family in C. Next if $\{p_j\}$ is a sequence in p_n converging almost uniformly, i.e., uniformly on compact sets, to a limit p then the Weierstrass convergence theorem implies that p is a polynomial of degree n with leading coefficient 1 and Hurwitz's theorem implies that all the roots of p lie in $\overline{D}(0, 1)$.

THEOREM 1. There exists an extremal polynomial.

Proof. Let $\{p_k\}$ be a sequence in P_n such that $\lim I(p_k)=I(P_n)$. We may assume that $\{p_k\}$ converges almost uniformly to a limit $p \in P_n$. Then $I(p) \leq I(P_n)$. If equality does not hold then $I(p)+4\varepsilon = I(P_n)$ for some $\varepsilon > 0$. Choose δ , $0 < \delta < \varepsilon$, so that p has no roots in $0 < |z-z_j| < 2\delta$, $j=1, \dots, n$. If $D(z_j, \delta)$ denotes the disc with center z_j and radius δ then $\bigcup_i^n D(z_j, \delta)$ contains all the roots of p and each disc $D(z_j, I(p)+\varepsilon)$ contains at least one root of p'. Thus for sufficiently large k all the roots of p_k are contained in $\bigcup_i^n D(z_j, \delta)$ and each disc $D(z_j, I(p)+\varepsilon)$ contains at least one root of p'_k , whence $I(p_k) < I(p) + \varepsilon = I(P_n) - 2\varepsilon$ for these k which is a contradiction.

THEOREM 2. If $p \in P_n$ and $|z_j| < 1$ for the roots z_1, \dots, z_n of p, then p is not an extremal polynomial.

Received March 15, 1971.

Proof. We may assume that $I(p)=I(z_1)$. By the Gauss-Lucas theorem we have that $|w_j| < 1$ for the roots w_1, \dots, w_{n-1} of p'; also $|z_1-w_j| \ge I(z_1)$ for $j=1, \dots, n-1$. Therefore for each w_j there is a sequence $\{s_k^j\}_{k=1}^{\infty}$ of points in D(0, 1) converging to w_j and such that $|z_1-s_k^j| > I(z_1)$. Consider the functions

$$p_k(z) = n \int_{z_1}^{z_1} \prod_{j=1}^{n-1} (w - s_k^j) dw, \qquad k = 1, 2, \cdots.$$

They are polynomials of degree *n* and leading coefficient 1, and the sequence $\{p_k\}$ converges almost uniformly on *C* to *p*. Since the roots of *p* are in the open disc D(0, 1), Hurwitz's theorem implies there is an integer *K* such that for k > K, p, has all its roots in D(0, 1). Thus $p_k \in P_n$ for k > K and by construction $I(p_k) > I(z_1) = I(p)$. Hence $I(p) \neq I(P_n)$.

Thus an extremal polynomial in P_n has at least one root on the unit circle C(0, 1). An improvement of this result is given in

THEOREM 3. If $p \in P_n$ is an extremal polynomial then every closed subarc of C(0, 1) of length greater than or equal to π contains a root of p.

Proof. Suppose first that p has one distinct root, say z_1 , on C(0, 1). We may assume that $z_1=1$. Let $r=\max\{|z_j|: m \le j \le n\}$ where z_m, z_{m+1}, \dots, z_n are the roots of p that lie in D(0, 1), and define s=(1-r)/2. Then the polynomial q(z)=p(z+s) is in P_n , has all of its roots in D(0, 1) and I(q)=I(p). By theorem 2, however, $I(q) < I(P_n)=I(p)$. Now suppose p has two distinct roots z_1 and z_2 on C(0, 1) and that z_1 and z_2 are separated by a subarc of C(0, 1) of length greater than π and containing no root of p. We may assume that for some θ , $0 < \theta < \pi/2$, $z_1 = \exp(i\theta)$, $z_2 = \exp(-i\theta)$ and p has no roots on $\{\exp(it): \theta < t < 2\pi - \theta\}$. Define $r=\max\{|z_j|: |z_j|<1\}$ if p has a root in D(0, 1) and r=0 otherwise. Define $s=\min\{\cos \theta, (1-r)/2\}$. Then as above, the polynomial q(z)=p(z+s) is in P_n , has all of its roots in D(0, 1), and $I(p)=I(q) < I(P_n)=I(p)$. This contradiction establishes the theorem.

As an application of theorem 3 we have

THEOREM 4. Let $p \in P_n$ be extremal. If z_k is a root of p with $|z_k| < 1$ then

$$I(z_k) \leq \left[\frac{(1+|z_k|^2)(1+|z_k|)^{n-3}}{n}\right]^{1/(n-1)}$$

Proof. We may assume without loss of generality that $z_1=1$ is a root of p on C(0, 1) nearest to z_k and that $z_k=z_n=r \exp(iy)$ with $0 \le y \le \pi$. By theorem 3, p has a root on the circular arc $\{\exp(it): 0 < t \le \pi\}$, say $\exp(iu)=z_2$. Then writing $p(z)=\prod_{j=1}^{n}(z-z_j)$ and $p'(z)=n\prod_{j=1}^{n-1}(z-w_j)$ we have

$$p'(z_n) = \prod_{j=1}^{n-1} (z_n - z_j) = n \prod_{j=1}^{n-1} (z_n - w_j)$$

so that

DEAN PHELPS AND RENE S. RODRIGUEZ

$$n(I(z_n))^{n-1} \leq n \prod_{j=1}^{n-1} |z_n - w_j| = \prod_{j=1}^{n-1} |z_n - z_j| \leq |z_n - 1| |z_n - \exp(iu)|(1 + |z_n|)^{n-3}.$$

Since $\varphi(t) = |z_n - \exp(it)| = |r \exp(iy) - \exp(it)|$ is a decreasing function of t for $0 \le t \le y$, we have that $u \ge y$ because 1 is a root of p on C(0, 1) nearest to z_n . Since $\varphi(t)$ is increasing for $y \le t \le \pi$, $\varphi(u) \le \varphi(\pi)$. Thus $n(I(z_n))^{n-1} \le |z_n-1| |z_n+1| (1+|z_n|)^{n-3} \le (1+|z_n|^2)(1+|z_n|)^{n-3}$ and the result follows.

We remark here that in [1] it is shown that if $p \in P_n$ has a root z_k on C(0, 1), then $I(z_k) \leq 1$. Using this and Theorem 4 we can prove a result of Rubinstein [3].

PROPOSITION. $I(p_n)=1$ for n=3 and 4.

Proof. Let $p \in P_n$ be extremal. If z_k is a root of p with $|z_k| < 1$, the bound in theorem 4 gives $I(z_k) < (2/3)^{1/2}$ for n=3 and $I(z_k) < 1$ for n=4. Thus $I(P_n) \le 1$ for n=3 or 4, and the polynomials $z^n - 1 \in P_n$ show that $I(P_n) \ge 1$.

Further it is shown in [3] that if $p \in P_n$ has a root at z_k on C(0, 1) and p is not of the form $z^n - \exp(it)$ for some t, then $I(z_k) < 1$. Using this result and theorem 4 we can prove

THEOREM 5. If $p \in P_n$ is extremal, then $p(z) = z^n - \exp(it)$ for some t if n=2, 3, and 4.

Proof. This is immediate for n=2. In the proof of the proposition it was shown that $I(z_k) < (2/3)^{1/2}$ and $I(z_k) < 1$ for n=3 and 4 respectively and $|z_k| < 1$. The result in [3] quoted above completes the proof.

Based on this result we offer the conjecture: If $p \in P_n$ is extremal then $p(z) = z^n - \exp(it)$ for some t.

A result not dependent on the above theorems is given in

THEOREM 6. If $p \in P_n$ has all of its roots on a line segment that is contained in $\overline{D}(0, 1)$ then $I(p) \leq 1$.

Proof. We may assume that p has all its roots on the closed real interval [-1, 1], p(1)=0, and p has at least one root less than 1. Let the roots of p be such that $z_1=z_2=\cdots=z_{m-1}< z_m \leq \cdots \leq z_n=1$. Then $I(z_n)\leq 1$ by the result in [1], and if z_j is a root in the half open interval $[z_m, 1)$ then p has a root on either side of z_j whence by Rolle's theorem $I(z_j)\leq 1$. If $z_1=-1$ then by [1] again, $I(z_1)\leq 1$. If $-1< z_1$ then $q(z)=p(z+z_1+1)$ has roots $z'_j=z_j-(z_1+1)$ where $-1=z'_1\leq \cdots z'_n$ so that $I(z_1)=I(z'_1)\leq 1$. Thus $I(p)\leq 1$.

174

References

- [1] GOODMAN, A. W., Q. I. RAHMAN AND J. S. RATTI, On the zeros of a polynomial and its derivative. Proc. Amer. Math. Soc. 21 (1969), 273-74.
- [2] Hayman, W. K., Research problems in function theory. Athlone Press, University of London (1967).
- [3] Rubinstein, Z., On a problem of Ilyeff. Pacific J. Math. 26 (1968), 159-61.

UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32601.