SOME PROPERTIES OF EXTREMAL POLYNOMIALS FOR THE ILIEFF CONJECTURE

By Dean Phelps and Rene S. Rodriguez

Let P_{n} denote the family of complex polynomials each of degree n, with leading coefficient 1 , and having all of its roots in $\bar{D}(0,1)$, the closed unit disc with center at 0 and radius 1. Let $p \in P_{n}$ have roots z_{1}, \cdots, z_{n} and have roots w_{1}, \cdots, w_{n-1}. For such p we use $I\left(z_{j}\right), I(p)$, and $I\left(P_{n}\right)$ to denote the numbers min $\left\{\left|z_{i}-w_{k}\right|\right.$: $1 \leqq k \leqq n-1\}$, $\max \left\{I\left(z_{j}\right): 1 \leqq j \leqq n\right\}$, and $\sup \left\{I(p): p \in P_{n}\right\}$ respectively. Then $p \in P_{n}$ is called an extremal polynomial for the Ilieff conjecture if $I(p)=I\left(P_{n}\right)$. With this notation the Gauss-Lucas theorem implies that $I\left(P_{n}\right) \leqq 2$ and the conjecture of Ilieff is that $I(p) \leqq 1$ for all $p \in P_{n}$. We show that there exist extremal polynomials, that an extremal polynomial must have at least one root on each subarc of the unit circle of length $\geqq \pi$, and we find the extremal polynomials for $n=3$ and 4 .

We begin with a
Lemma. P_{n} is a compact normal family in the open plane C.
Proof. Let $R>0$. If $p \in P_{n}$ then $|p(z)|=\left|\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)\right| \leqq(R+1)^{n}$ when $|z| \leqq R$ so that by the theorem of Stieltjes and Osgood F_{n} is a normal family in C. Next if $\left\{p_{j}\right\}$ is a sequence in p_{n} converging almost uniformly, i.e., uniformly on compact sets, to a limit p then the Weierstrass convergence theorem implies that p is a polynomial of degree n with leading coefficient 1 and Hurwitz's theorem implies that all the roots of p lie in $\bar{D}(0,1)$.

Theorem 1. There exists an extremal polynomial.
Proof. Let $\left\{p_{k}\right\}$ be a sequence in P_{n} such that $\lim I\left(p_{k}\right)=I\left(P_{n}\right)$. We may assume that $\left\{p_{k}\right\}$ converges almost uniformly to a limit $p \in P_{n}$. Then $I(p) \leqq I\left(P_{n}\right)$. If equality does not hold then $I(p)+4 \varepsilon=I\left(P_{n}\right)$ for some $\varepsilon>0$. Choose $\delta, 0<\delta<\varepsilon$, so that p has no roots in $0<\left|z-z_{j}\right|<2 \delta, j=1, \cdots, n$. If $D\left(z_{j}, \delta\right)$ denotes the disc with center z_{j} and radius δ then $\cup_{1}^{n} D\left(z_{j}, \delta\right)$ contains all the roots of p and each disc $D\left(z_{3}, I(p)+\varepsilon\right)$ contains at least one root of p^{\prime}. Thus for sufficiently large k all the roots of p_{k} are contained in $\cup_{1}^{n} D\left(z_{\jmath}, \delta\right)$ and each disc $D\left(z_{\jmath}, I(p)+\varepsilon\right)$ contains at least one root of p_{k}^{\prime}, whence $I\left(p_{k}\right)<I(p)+2 \varepsilon=I\left(P_{n}\right)-2 \varepsilon$ for these k which is a contradiction.

Theorem 2. If $p \in P_{n}$ and $\left|z_{j}\right|<1$ for the roots z_{1}, \cdots, z_{n} of p, then p is not an extremal polynomial.

Proof. We may assume that $I(p)=I\left(z_{1}\right)$. By the Gauss-Lucas theorem we have that $\left|w_{j}\right|<1$ for the roots w_{1}, \cdots, w_{n-1} of p^{\prime}; also $\left|z_{1}-w_{j}\right| \geqq I\left(z_{1}\right)$ for $j=1, \cdots, n-1$. Therefore for each w_{\jmath} there is a sequence $\left\{S_{k}^{j}\right)_{k=1}^{\infty}$ of points in $D(0,1)$ converging to w_{\jmath} and such that $\left|z_{1}-s_{k}^{j}\right|>I\left(z_{1}\right)$. Consider the functions

$$
p_{k}(z)=n \int_{z_{1}}^{z} \prod_{j=1}^{n-1}\left(w-s_{k}^{j}\right) d w, \quad k=1,2, \cdots
$$

They are polynomials of degree n and leading coefficient 1 , and the sequence $\left\{p_{k}\right\}$ converges almost uniformly on C to p. Since the roots of p are in the open disc $D(0,1)$, Hurwitz's theorem implies there is an integer K such that for $k>K$, p, has all its roots in $D(0,1)$. Thus $p_{k} \in P_{n}$ for $k>K$ and by construction $I\left(p_{k}\right)>I\left(z_{1}\right)=I(p)$. Hence $I(p) \neq I\left(P_{n}\right)$.

Thus an extremal polynomial in P_{n} has at least one root on the unit circle $C(0,1)$. An improvement of this result is given in

Theorem 3. If $p \in P_{n}$ is an extremal polynomial then every closed subarc of $C(0,1)$ of length greater than or equal to π contains a root of p.

Proof. Suppose first that p has one distinct root, say z_{1}, on $C(0,1)$. We may assume that $z_{1}=1$. Let $r=\max \left\{\left|z_{j}\right|: m \leqq j \leqq n\right\}$ where $z_{m}, z_{m+1}, \cdots, z_{n}$ are the roots of p that lie in $D(0,1)$, and define $s=(1-r) / 2$. Then the polynomial $q(z)=p(z+s)$ is in P_{n}, has all of its roots in $D(0,1)$ and $I(q)=I(p)$. By theorem 2, however, $I(q)<I\left(P_{n}\right)=I(p)$. Now suppose p has two distinct roots z_{1} and z_{2} on $C(0,1)$ and that z_{1} and z_{2} are separated by a subarc of $C(0,1)$ of length greater than π and containing no root of p. We may assume that for some $\theta, 0<\theta<\pi / 2, z_{1}=\exp (i \theta), z_{2}$ $=\exp (-i \theta)$ and p has no roots on $\{\exp (i t): \theta<t<2 \pi-\theta\}$. Define $r=\max \left\{\left|z_{j}\right|:\right.$ $\left.\left|z_{j}\right|<1\right\}$ if p has a root in $D(0,1)$ and $r=0$ otherwise. Define $s=\min \{\cos \theta,(1-r) / 2\}$. Then as above, the polynomial $q(z)=p(z+s)$ is in P_{n}, has all of its roots in $D(0,1)$, and $I(p)=I(q)<I\left(P_{n}\right)=I(p)$. This contradiction establishes the theorem.

As an application of theorem 3 we have
Theorem 4. Let $p \in P_{n}$ be extremal. If z_{k} is a root of p with $\left|z_{k}\right|<1$ then

$$
I\left(z_{k}\right) \leqq\left[\frac{\left(1+\left|z_{k}\right|^{2}\right)\left(1+\left|z_{k}\right|\right)^{n-3}}{n}\right]^{1 /(n-1)}
$$

Proof. We may assume without loss of generality that $z_{1}=1$ is a root of p on $C(0,1)$ nearest to z_{k} and that $z_{k}=z_{n}=r \exp (i y)$ with $0 \leqq y \leqq \pi$. By theorem 3 , p has a root on the circular arc $\{\exp (i t): 0<t \leqq \pi\}$, say $\exp (i u)=z_{2}$. Then writing $p(z)=\Pi_{j=1}^{n}\left(z-z_{j}\right)$ and $p^{\prime}(z)=n \Pi_{j=1}^{n-1}\left(z-w_{j}\right)$ we have

$$
p^{\prime}\left(z_{n}\right)=\prod_{j=1}^{n-1}\left(z_{n}-z_{j}\right)=n \prod_{j=1}^{n-1}\left(z_{n}-w_{j}\right)
$$

so that

$$
n\left(I\left(z_{n}\right)\right)^{n-1} \leqq n \prod_{j=1}^{n-1}\left|z_{n}-w_{j}\right|=\prod_{j=1}^{n-1}\left|z_{n}-z_{j}\right| \leqq\left|z_{n}-1\right|\left|z_{n}-\exp (i u)\right|\left(1+\left|z_{n}\right|\right)^{n-3}
$$

Since $\varphi(t)=\left|z_{n}-\exp (i t)\right|=|r \exp (i y)-\exp (i t)|$ is a decreasing function of t for $0 \leqq t \leqq y$, we have that $u \geqq y$ because 1 is a root of p on $C(0,1)$ nearest to z_{n}. Since $\varphi(t)$ is increasing for $y \leqq t \leqq \pi, \varphi(u) \leqq \varphi(\pi)$. Thus $n\left(I\left(z_{n}\right)\right)^{n-1} \leqq\left|z_{n}-1\right|\left|z_{n}+1\right|\left(1+\left|z_{n}\right|\right)^{n-3}$ $\leqq\left(1+\left|z_{n}\right|^{2}\right)\left(1+\left|z_{n}\right|\right)^{n-3}$ and the result follows.

We remark here that in [1] it is shown that if $p \in P_{n}$ has a root z_{k} on $C(0,1)$, then $I\left(z_{k}\right) \leqq 1$. Using this and Theorem 4 we can prove a result of Rubinstein [3].

Proposition. $I\left(p_{n}\right)=1$ for $n=3$ and 4.
Proof. Let $p \in P_{n}$ be extremal. If z_{k} is a root of p with $\left|z_{k}\right|<1$, the bound in theorem 4 gives $I\left(z_{k}\right)<(2 / 3)^{1 / 2}$ for $n=3$ and $I\left(z_{k}\right)<1$ for $n=4$. Thus $I\left(P_{n}\right) \leqq 1$ for $n=3$ or 4 , and the polynomials $z^{n}-1 \in P_{n}$ show that $I\left(P_{n}\right) \geqq 1$.

Further it is shown in [3] that if $p \in P_{n}$ has a root at z_{k} on $C(0,1)$ and p is not of the form $z^{n}-\exp (i t)$ for some t, then $I\left(z_{k}\right)<1$. Using this result and theorem 4 we can prove

Theorem 5. If $p \in P_{n}$ is extremal, then $p(z)=z^{n}-\exp (i t)$ for some t if $n=2,3$, and 4.

Proof. This is immediate for $n=2$. In the proof of the proposition it was shown that $I\left(z_{k}\right)<(2 / 3)^{1 / 2}$ and $I\left(z_{k}\right)<1$ for $n=3$ and 4 respectively and $\left|z_{k}\right|<1$. The result in [3] quoted above completes the proof.

Based on this result we offer the conjecture: If $p \in P_{n}$ is extremal then $p(z)=z^{n}-\exp (i t)$ for some t.

A result not dependent on the above theorems is given in
Theorem 6. If $p \in P_{n}^{n}$ has all of its roots on a line segment that is contained in $\bar{D}(0,1)$ then $I(p) \leqq 1$.

Proof. We may assume that p has all its roots on the closed real interval $[-1,1], p(1)=0$, and p has at least one root less than 1 . Let the roots of p be such that $z_{1}=z_{2}=\cdots=z_{m-1}<z_{m} \leqq \cdots \leqq z_{n}=1$. Then $I\left(z_{n}\right) \leqq 1$ by the result in [1], and if z_{j} is a root in the half open interval $\left[z_{m}, 1\right)$ then p has a root on either side of z_{j} whence by Rolle's theorem $I\left(z_{j}\right) \leqq 1$. If $z_{1}=-1$ then by [1] again, $I\left(z_{1}\right) \leqq 1$. If $-1<z_{1}$ then $q(z)=p\left(z+z_{1}+1\right)$ has roots $z_{j}^{\prime}=z_{j}-\left(z_{1}+1\right)$ where $-1=z_{1}^{\prime} \leqq \cdots z_{n}^{\prime}$ so that $I\left(z_{1}\right)=I\left(z_{1}^{\prime}\right) \leqq 1$. Thus $I(p) \leqq 1$.

References

[1] Goodman, A. W., Q. I. Rahman and J. S. Ratti, On the zeros of a polynomial and its derivative. Proc. Amer. Math. Soc. 21 (1969), 273-74.
[2] Hayman, W. K., Research problems in function theory. Athlone Press, University of London (1967).
[3] Rubinstein, Z., On a problem of Ilyeff. Pacific J. Math. 26 (1968), 159-61.

