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ON THE MINIMUM MODULUS OF A MEROMORPHIC ALGEBROID
FUNCTION OF LOWER ORDER LESS THAN ONE HALF

BY KOKICHI SHIBAZAKI

1. Ostrovskii [4] has proved the following:

Let f{z) be a meromorphic function of lower order λ.
If Λ<l/2, then

lim sup 1°f,^{ ) ^ - ^ y [cos ̂ -
r-»oo 1 \ff J ) o i n 7ΓΛ

where μ(r, f)=inf {\f(z)\; \z\~r) and δ(a) is the Nevanlinna deficiency of f(z) at a.

In this note we shall extend the above theorem to an ̂ -valued meromorphic
algebroid function of lower order less than one half.

It is well known that for algebroid functions even if a function y{z) is entire
and of order zero Wiman's theorem does not always hold on the covering Riemann
surface defined by y{z). If, however, we use the minimum modulus of the maximum
of the determinations of y(z), then Wiman's theorem for it holds. Recently Ozawa
[5] has extended Wiman's theorem of cos πΛ-type ([2]) to an ̂ -valued entire alge-
broid function of lower order less than one.

2. Let y(z) be an ̂ -valued meromorphic algebroid and non-algebraic function
of lower order λ defined by an irreducible equation

(2.1) F(z, y)~yn+A1y
n-1 + "'+Λn-1y+An=0}

where each At ( i=l, 2, •••, n) is meromorphic in \z\ < +oo and n is an integer greater
than one. Following Ozawa [5] we define the minimum modulus μ(r, y) of y{z) by
μ(r,y)=inf{maxι<zj^n\yj(z)\; \z\=r}, where y3 is the i-th determination of y(z).

Then we shall prove the following

THEOREM. / / λ<lβ, then

lim s u p % ^ f *-zĵ j-Γj cos ri-
rwoo Ί (r, y) sin πλ [_ k

where k is the number of coefficients A3 transcendental in the defining equation
(2.1).
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3. According to Selberg [6] we have the following relation between the coef-
ficients A3 in (2.1) and the determinations y3 of y(z):

log \Aj\^ Σ log \Vi\+nCίn/2i (.7=1, 2, »., ή).

Therefore we get

log max |A/|^» log max |

which implies

(3.1) log μ(r, A)^n log μ(r,

where A=maxι^3<zn \Aj\.
Moreover for all transcendental coefficients A3 we obtain the following in-

equalities:

(3. 2) -N(r, oo, Aj)-O(\og r)^N(r, oo, y)^-ΣN(r, oo, A)+O(log r)

and

(3. 3) 1 T(r, Aj)-O(log r)£ T(r, y)^ΣT{r, Λ)+O(log r).
fb Ύv

Here in (3. 2), (3. 3) and in the sequal each summation Σ is taken over all i such
that the A% in (2.1) are transcendental. From this last inequality we see that if
y{z) is of lower order λ, then every A3 is of lower order at most λ. The converse
is also true.

Denoting the number of transcendental coefficients Aj in (2.1) by k we derive
from (3.1)

π 4x n\ogμ{r,y) ^ log μ(r, A)+0(1) ^ log /*(
, y)

4. A lemma. Let f(z) be a meromorphic function of lower order λ, λ<l, with
/(0)=l . Following Ostrovskii and Goldberg we can construct for f(z)

HΛr)= Σ
\H\<R

where r<R and {at} and {bi} are zeros and poles of f(z\ respectively, and we have
fl>(r)^const.Γ(22?,/) for r^R.

Then we have the following

LEMMA ([1], [4]). For 0<ξ<η<R and 0<σ<l

(log μ(r,f)+ -^—Wr, oo,/)^cos πσN(r, 0,1//)]) ^
[ sin πσ j r
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where C and C" are two positive constants.

5. Proof of Theorem. From our assumption there exist k transcendental
coefficients A3 in the defining equation (2.1) of y(z). For each A3 of such trans-
cendental functions we can choose a value a3 satisfying

= 1( 5 ' 1 } ΪS T(r,Aj)

(for example take a3 not contained in a set {a} of inner capacity zero [3]).
Then we define {B3(z)} as follows. For each A3 of k transcendental functions

we put

Λ * z ) a if A3(z)-a3=c0+cmzm+ ~,
Co

where cm^0 and m i s a non-zero integer, or

if Aj(z)-a}=c'm,z«"+

where c'mf±?0y co^0 and m' is a non-zero integer.
From this definition of B3 and (5.1) we obtain for each B3

N(r, oo, B3)=N(r, oo, Ay)+O(log r)

(5. 2) JV(r, 0, Bj) = (1 + o(l)) Γ(r, ^ ),

log μ(r, 5 y )^log μ(r, As)+O(log r) as r->oo.

Further we have each J5/0)=l. Consequently as Ostrovskii [4] did we can con-
struct the function H3{r) in §4 for each B3{z). We can apply the above Lemma
to such functions B3{z). Hence with arbitrarily fixed ξ, η, R and σ we obtain for
0<ξ<η<R, 0<(7<l and for each transcendental B3

ίlog μ(r, B3)+ -£?— [N{ry oo, Bs)-cas πσ N(r, 0, B3)]
b i l l 7Γ<7

where CJ and Q 7 are two positive constants. Summing up these inequalities we
have for 0<<?<η<R and 0<<τ<l

log ^(r, 5 y ) + ^ — [ j J V ( r , oo, 5,)-cos ™27V(r, 0, S ) ] |

(5.3)

where each Σ is taken over all / such that the A3 in (2.1) are transcendental.
Now we choose σ so that λ<σ<l. No matter how large ξ is we can choose

the quantity R=2η such that the right side of (5.3) will-be positive since each B3



MINIMUM MODULUS OF MEROMORPHIC ALGEBROID FUNCTION 145

is of lower order at most λ from (5. 2) and (3. 3). It follows that

lim sup \l log μ(r, Bj)+ ™ [ΣN(r, oo, B^-cos πσΣN(r, 0, B/)] 1 ^ 0 .
r->co [ S1Π. 7ΐ(J J

Thus for an arbitrarily given ε>0 there exists a sequence {rn}, rn—>oo as n->co,
such that

Σ log μfa, Bj)^ - ^ ^ [ c o s πσΣN(rn, 0, Bj)-ΣN(rn, oo,
S i n 7Γ(7

From this inequality and (5. 2) we deduce

Σ log ^(rn, Λ )+O(log r n ) ^ ™ [cos
sin no

—ΣN(rn, oo, Λj)+O(ίog rn)]—ε.

By dividing both sides of the above inequality by kT(rny y) and letting rn tend to

infinity in due consideration of (3. 2) and (3. 3) we have with the arbitrariness of ε

Σ log μ(r, Aj) πσ Γ n „, NΊ
lim sup *, \ ^ —: -7- cos πσ-n+nδ(oo) .

Further we let <; tend to λ. Thus the combination of these with (3. 4) yields our

theorem.

The proof of our theorem is completed.
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