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§0. Introduction.

Blair, Ludden and Yano [1] introduced a structure which is naturally induced
on a submanifold of codimension 2 of an almost complex manifold. Yano and
Okumura [6] introduced what they call an (f, g, %, v, )-structure and gave chara-
cterizations of even-dimensional sphere. In a previous paper [5], Yano and the present
author proved that

THEOREM A. Let M be a complete manifold with normal metric (f, g, u, v, 2)-
structurve satisfying

0.1) (dv)ji=2cf js,
or, equivalently
(0. 2) Lugji=—2c2g;i,

where c is a non-zevo constant on M. If 21—2%) is an almost everywhere non-zero
Sunction and dim M>2, then M is isometric with an even-dimensional sphere.

In the present paper, using theorem A, we study submanifolds of codimension
2 of an almost Tachibana manifold M.

In §1, we recall the properties of (f, g, #, v, A)-structure of a submanifold of
codimension 2 in M and find differential equations which the induced (f, g, «, v, 2)-
structure satisfies.

We study in §2 totally umbilical submanifolds of codimension 2 of M and in
§3 submanifolds of codimension 2 of 6-dimensional sphere S°®.

§1. Submanifolds of codimension 2 of an almost Tachibana manifold.

In this section, we recall some properties of submanifolds of codimension 2 in
an almost Tachibanzi manifold as examples of the manifold with (f, g, #, v, 2)-structure
(cf. [5], [6]). Let M be a (2n+2)-dimensional almost Tachibana manifold covered by
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a system of coordinate neighborhoods {UJ; y*}, where here and in the sequel the indices
& A s, v, -+ TuUn over the range {1,2, -, 2n+2}, and let (F}, G,;) be the almost
Tachibana structure, that is, F;* is the almost complex structure;

1.1) FfFF= -,

and G,; a Riemannian metric such that

(1. 2) G FFf=G,
and
1.3) VFf+V,F, =0,

where we denote by {.";} and 7, the Christoffel symbols formed with G,; and the
operator of covariant differentiation with respect to {,";} respectively.

Let M be a 2n-dimensional differentiable manifold which is covered by a system
of coordinate neighborhoods {U; z"}, where here and in the sequel the indices
h, i, j, -+~ run over the range {1, 2, ---, 2} and which is differentiably immersed in
M as a submanifold of codimension 2 by the equations

(.4 Y =y @").
We put
Bf=0y",  (0:=0/0x"),
then B is, for each i, a local vector field of M tangent to M and the vectors B

are linearly independent in each coordinate neighborhood. B;* is, for each «, a local

1-form of M.

We assume that we can choose two mutually orthogonal unit vectors C* and D*
of M normal to M in such a way that 2z+2 vectors B, C%, D give the positive
orientation of M. The transforms F;*B;* of B/ by Fy* can be expressed as linear
combinations of B;", C* and D~, that is,

(1.5) FBi=f"By +uC +v.D",

where 1, is a tensor field of type (1,1) and u; v; are 1-forms on M, and, the
transform F;"C* of C* by F;" and the transform F,"D? of D? by F,* can be written as

FiCl=— B+ D",
1.6)
FfD'= —p' B — C",

respectively, where

tf:utgti) z)‘:z)tg“:,
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g;; being the Riemannian metric on M induced from that of 1\71, and 2 is a func-
tion on M. We can easily verify that 2 is a function globally defined on M.

From (1. 2), (1. 5) and (1. 6), we have

[t ==&+ uut+v 0",
T o0 =05 —uju—0;505

@L.7 Sluy=2v; or fluw=— v,
fulvy=—2u; or  fJvr=2Au",
u =o' =1-22, w0t =0.

If we put

Ji=f3"gr,

then we can easily verify that f;; is skew-symmetric.
We call an (f, g, u, v, A)-structure of M the set of f, g, #, v and A satisfying (1. 7).
An (f, g, u, v, 2)-structure is said to be normal if the tensor field S;* of type
(1, 2) defined by

1. 8) S =N+ (Vjui = Viwej "+ (V v, — Vv ;o™

vanishes, where N;" is the Nijenhuis tensor formed with f,*. We denote by {,%;}
and P, the Christoffel symbols formed with ¢; and the operator of covariant
differentiation with respect to {,*;} respectively.

An (f, g, u, v, A)-structure is said to be quasi-normal if the condition

(1.9 Sjin— (3 frin—FL fen) =0,
is satisfied, where
(1.10) Fin=V, firn+ Vi fri+Vn Sy

Yano and the present author [5] proved

LemMa 1. 1. For a manifold with quasi-normal (f, g, #, v, 2)-structure, if A(1—22)
is almost everywhere non-zero, then we have

111 A=) Tjui—Viug)=w.f U Logse— {Auv' + 1 —22) 5} Logji, (Lugss)u’v*=0,
and
(1.12) Q=20 —Vw;)= — 0. [0 Lugs— {0’ —(L =23 f.5} Lugje, (Log )’ v*=0,

where [, denotes the operator of Lie differentiation with respect to the vector
field u.
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The equations of Gauss of M are

7B =3, B+ {:AB,"BJ—B,:{ ;‘Z]
(1.13)
=huC* + kD",
where /%;; and k;; are the second fundamental tensors of M with respect to the
normals C* and D" respectively.
The equations of Weingarten are

ViCr=0,C"+ {:Z}BJ”C‘= —hBif+1; D",
(1. 14)

K

VjD‘=8jD‘+ {#2

}B/‘D‘ =—k;B—1,C",
where
hir=hjg", kyp=Fkjg"

and /, is the so-called third fundamental tensor.
Differentiating (1.5) covarirntly along M and taking account of (1.13) and

(1. 14), we get
(L. 15) (P F3F) By By — (hjiu" + kjv™) By — Ak iC* + Ak D*
- =V fi = hitu;— k) Ba" + (Vius + by . — L0)CT + (Vv + R fo - Lus) D"

Thus, from (1. 3), we have

(1 16) V;fih'l' V’Lf]hz —2hﬁu"+hﬁui+hihuj —ijil)h’ +kjh’v,;+k¢hl)]‘
(1 17) Vju,+ Viu, = —'/’ljtf@t—huf]t —22kji+ljv¢+liv,,
(1. 18) Vﬂ)i-}-Vﬂ)j = —kj;f/—kuf]t'l'Zﬂhji—ljui— ;.

In particular, if M is a Kihlerian manifold, that is, if F,F;"=0, then we have
from (1. 15)
V]fzh’-: —-hﬁu"-l-h,ﬂui—kjivh+k,~"vi.

From this, we have f;»,=0. Therefore, from (1.9), we see that a submanifold of
codimension 2 with quasi-normal (f, g, #, v, A)-structure of a Kihlerian manifold is
normal.

§2. Totally umbilical submanifolds of conimenson 2 in an almost Tachibana
manifold.

In this section, we consider totally umbilical submanifolds of codimension 2
with normal (f, g, %, v, A)-structure of an almost Tachibana manifold.
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Let M be a submanifold of codimension 2 of an almost Tachibana manifold.
Then the mean curvature vector of M is defined to be

1 1
s Li(* _ biD*
2.1 H_Znhtc+2nkzD,
and the mean curvature H of M is defined to be the length of H*, that is,
1 )
2.2 H 2=4—n;{(hii)2+(ki’)2}-

Differentiating (2. 1) covariantly and making use of (1.13) and (1. 14), we have

1

ViH'=— 4n®

(P + (P By Pk OC + Tl -H LD

If the covariant derivative V;H* of the mean curvature vector field of M is
tangent to M, then

(2 3) thit = ljk@i, ij,,'" = ljhiz-

We now suppose that M is totally umbilical. Then from (1.17) we have
1 2
2.4 Vit Vi, = —2( 5kt )29 50+ Live+ 1,

from which, using the second equation of (1.11), /#'=0. Similarly we see, from
(1. 18) and the second equation of (1.12), that /»*=0. Taking the symmetric part
of the first equation of (1.12) in j and 7 and using (2. 4), /@*=0 and /u'=0, we
find /;u;+1l;u,=0, from which, /,=0 and consequently #4;=constant, k;‘=constant
because of (2.3). Thus the structure is normal (See [5]).

Taking acount of Theorem A and /,=0, we have

THEOLEM 2.1.° Let M be a complete totally umbilical submanifold of codimen-
sion 2 with normal (f, g, u, v, A)-structure of an almost Tachibana manifold M.
Suppose that the covariant derivative of the mean curvature vector of M is tangent
to M, the mean curvature of M does not vanish and A(1—2%) is almost everywhere
non-zero (m>1). Then M is isometric with an even-dimensional sphere.

As a direct consequence of (1.17), (2.4), /,=0 and Theorem A, we have

THEOREM 2. 2. Let M be a complete totally wumbilical submanifold (n>1) of
codimension 2 of an almost Tachibana manifold. If the (f, g, u, v, 2)-structure on M
is nomal, hy* or ki is non-vanishing constant and A(1—2%) is an almost everywhere
non-zevo function, then M is isometric with an even-dimensional sphere.

1) M. Okumura has proved the theorem in the case 1% is Kihlerian, [3].
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§ 3. Submanifolds of codimension 2 of a 6-dimensional sphere.

Let M be an almost Tachibana manifold of constant curvature, that is, 6-
dimensional sphere S° [4]. Its curvature form is given by

(3' 1) Rvﬂ2t=k(Gv~Gyi_prGpl)y

k being a positive constant.
In this section, we consider a submanifold of codimension 2 of S®. Substituting
(3. 1) into the Gauss, Codazzi, Ricci-equations;

Rup1eBe B, BiABy* = Rijin— hunhsi+ hinhi— Rinksi+ Ry,
R By’ By B C =V ji—Vihi— bk i+ Likexs,

{ Rop2eBy’ B, BAD =ik s — Vs +lihyi— Lias,
Rop2eBi B CD* =Vl — Vil + ekt — hykets

we have respectively

@-2) Rujin—hunhji+hinhes— kink i+ kinkin=k(geng ji— g ingi),
and
3.3) { Vihji—Vitws — ik s+ ke =0,
Vikjs—Vikwi+ L — ke, =0,
and
(3.4 Vidij— Vil hik,t — Rjokert =O0.

Now, we consider a submanifold M of codimension 2 of an almost Tachibana
manifold satisfying the fallowing conditions;

(3- 5) f ]thth=h]tf zh,
@3- 6) Sihir=ht S
We see that (3.5) and (3. 6) are global conditions over the submanifold M.

Lemma 3. 1. For (f, g, u, v, A)-structure of M with (3.5) and (3.6), if 2 does
not vanssh almost everywhere, we have

(3. 7) hjiui=au,, hﬁv"=av,,
and
(3 8) kmﬁ:du], k,-ivi=c'wj,

where a and & are scalars of M [2].

LEmMA 3.2, Let M be a submanifold of codimension 2 of an almost Tachibana
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manifold. If the (f, g, u, v, A)-structure on M is quais-normal and satisfies (3.5)
and (3. 6), and assume that A(1—22) is almost everywhere non-zero, then we have

3.9 Viss= —hj fot — ks,
(3. 10) Vivi=—kj it + AR,
Proof. By assumptions, (1. 17) and (1.18) can be respectively written as
Viws+ Vi, = — 22k 53 -+10:+ Lv,, Vivi+Vw, =22 — 1w, —Lu,.
Substituting the equations above into the first equations of (1. 11), (1.12) res-

pectively, we have

1
(3. 11) Vju,-— Viu] = —Zhjtfzt + 7 (u]fztlt_uifjtlt)'l_ljvi’

(3 12) le)i— Vil)] = —Zkﬂfzt + %(v]fl‘l,—vif,‘lt) -—ljui

by virtue of Lemma 3.1, from which, taking the symmetric part in j and ¢ and
using the second equations of (1.11) and (1. 12), [z;+Lu,=0 and lwv;+/»,=0 and
consequently /,=0. Thus (3.9) and (3. 10) proved.

LemMmA 3. 3. Let M be a submanifold of codimension 2 of S¢. If the (f, g, #, v, 2)-
structure on M is quasi-normal and satisfies (3. 5) and (3. 6), and assume that 2(1—22)
is almost everywhere non-zero on M, then we have

(3.13) hitht=al®, kiRt =akd,
and o and & are bolh constants.
Proof. Differentiating the first equation of (3. 7) covariantly, we obtain
(Tehyi)owr+hyi(Vrot) = (Vra)u; + aViu,,
or, using (3.9),
(Pihjo)rws~+hjs(hi' f ¢ — 2ki?) = (Pra) i+ a( — hae [t — Akexj),
and consequently, taking the skew-symmetric part, we have
Ryl it — huih,t o = Pra)u; — (Vi) ur — ahge ot + by
because of Fihji—Vihi, =0, hjki'=hrk,, or, using (3. 5),
(3. 14) 2hjiti fr = (Vea)u; — (Vie)ue — 2ahe £,
from which, transvecting with #*,

—2a2h ' = (W Pya)u; — (Via)(1— 22) — 220,
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that is,

(3.15) A —22)j0=(u*Vra)u,.

Thus, V,a being proportional to #; we find from (3. 14)
ki fithd=ahi fit

since At and fi* commute.
Transvecting this equation with f,*, we find

(kjihgi)( —5;;+ unu+ vhv‘) = cxhjt( - 5;,“' uhu” + U}.,l)t),
or, using (3. 7),
hithlr=ahi.
Differentiating the second equation of (3.7) covariantly and taking account of
(8. 10), we find
(Pihi®Yvn — bt (ki fb — Ak n) = (V)0 — a(kji fof — W),
from which, taking the skew-symmetric part

bk fo' =Rk St = (V)i — (Via)v;+ alka S5t — ks fi),

because of the equation of Conazzi (3. 3) with /,=0.
Transvecting the above equation with »/ and making use of (1.7), (3.7) and
(3. 8), we obtain

(3. 16) 1 -2V a= 0" a)v,.

From (3. 15) and (3. 16), we see that « is constant.
Similarly we can prove

kiko=ak, @=constant.

LeMMA 3. 4. Under the same assumptions as those in Lemma 3.3, the mean
curvature of M is constant.

Proof. Let a’ be an eigenvalue of #;* at a point of M and p¢ the eigenvector
corresponding to a’ at the point. Then we have

kit pr=a'p".
Applying this %, and taking account of (3.13), we find
aa’pl=a’?p,
from which

a'=a or a’=0.

Thus the only eigenvalue of %;* is a or 0 and consequently the eigenvalues of
h;* are constant,
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Similarly we can prove that k;* has only two constant eigenvalues & and 0.

Let 7 and s be multiplicities of the eigenvalues a of 4;* and & of k;* respec-
tively. Then « and @ being constant, » and s are also constant. So we have

hit=ra, kit=sa.

Substituting these into the equation giving the mean curvature of M;
(.17 Hr= 9+ kY,
we have H=const. This complets the proof of the lemma.

We now assume that the mean curvature vector does not vanish everywhere
on M and choose the second unit normal D in such a way that B, C*, D* form
the positive orientation of S°®. Then from the equation giving the mean curvature

vector of M:

H'= 1 {(heC+ ke,
we have
(3.18) k=0,
which implies that
kjikI*=0,

because of (3.13). This shows that k;=0 and consequently

3. 19) Vivi=2hji,
by virtue of (3. 10).
Differentiating
VU= 1-22

covariantly and taking account of (3.19), we obtain
(3. 20) ViA= —av,.
Substituting (3. 19) into the Ricci-identity :
ViV —ViVv™ = Ry jv*,

we have
Ryji'vr= (Vkl)hjh — (le)hkh + Z(V/Jl]" - Vj/lkl‘),

or, using (3. 3) with /,=0 and (3. 20),
(3. 21) Rkﬁhvi—avjhkh +a7)khjh=0.

On the other hand, transvecting (3. 2) with ¢* and using k;;=0, we have
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Ry jinv*— avihin+ avihjn=R(gen0;— 9 inlk)-

From these and (3. 21), we have £=0. This contradicts (3.1). Thus, the mean
curvature vector vanishes identically on M and consequently

hiz = 0, ii == 0.

So, using (3. 13), we have

hhi=0,  kkii=0

which implies that

3. 22)

hj1;=0, k]1,=0

Thus we have

THEOREM 3.5. Let M be a submanifold of codimension 2 of S°. If the
(f, g, u, v, 2)-structure on M is quasi-normal, 2(1—24%) is almost everywhere non-zero
on M, and the linear transformation h;it and ki which are defined by the second
fundrmental tensors commute with f}*, then M is totally geodesic.

If the submanifold M is complete, then it is a great sphere.
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