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§ 0. Introduction.

Blair, Ludden and one of the present authors [1] have started the study of
the structure induced on a submanifold of codimension 2 of an almost complex
manifold and that induced on a hypersurface of an almost contact manifold.

In papers [4], [5], [6], we have defined the (/, g, u, v, Λ)-structure on an even-
dimensional differentiable manifold, and have studied normal (/, g, u, v, Λ)-structures
on submanifolds of codimension 2 in a Euclidean space and invariant hypersurfaces
of a manifold with (/, g, #, v, ^-structure.

In this paper, we shall study invariant submanifolds of odd and even dimen-
sion of a manifold with (/, g, u, v, ^-structure.

In § 1, we state some of known results and formulas in the theory of sub-
manifolds.

In §2, we study invariant submanifolds of a manifold with (/, g, u, v, λ)-
structure.

In § 3, we study invariant submanifolds of odd dimension and in § 4 we con-
tinue the study of odd dimensional invariant submanifolds of a manifold with
normal (/, g, u, v, λ) -structure.

In the last § 5, we study invariant submanifolds of even dimension.

§ 1. Preliminaries.

Let M be a differentiable manifold with (/, g, u, v, ^-structure, that is, a dif-
ferentiable manifold endowed with a tensor field / of type (1, 1), a Riemannian
metric g, two 1-forms u and v and a function λ satisfying

fj'fi'ΰt* = Qji - UjUί - VjViy

(1.1) Uifj

ϊ=λvJ1 Vif^-λU

< = - λvh, /< V = λuh,
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f f , gjίy Ui, Vi and λ being respectively components of /, g, u, v and λ with respect
to a local coordinate system, uh and vh being defined by

Ui-gίhu
h and Vi=gihv

h

respectively, where here and throughout the paper the indices hy i, j, ••• run over
the range {1, 2, •••, 2m}. It is known that such a manifold is even dimensional.

If we put

(1- 2) /*=//</«,

we can easily see that fμ is skew-symmetric.
We put

(1. 3) Sji^N^+Wui-PiUjW+tfjVi-FiVj^

Njih denoting the Nijenhuis tensor formed with ff and Vi the operator of covariant
differentiation with respect to the Christoffel symbols {/J formed with gjit If
Sjih vanishes, we say that the (/, g, u, v, Λ)-structure is normal.

The following two theorems are known [4] :

THEOREM 1.1. If a normal (/, g, u> v, λ}-structure satisfies

(1.4)

then

(1. 5)

THEOREM 1. 2. Let M be a complete manifold with normal (/, g, u, v, ^-struc-
ture satisfying (1. 4) and

(1.6) Ϊ7jui-Γiuj=2φfjίy

φ being a certain function. If the function λ(l— λ2) does not vanish almost every-
where, then M is isometric with a sphere.

We consider a submanifold N of M represented by

(1. 7) xh=x\ya)

and put

(1.8) Bb

h=dbx
h, db

where here and throughout the paper the indices a, b, c, d, e run over the range
{1,2, -,»}.

The induced Riemannίan metric is given by

(1. 9) </cδ
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We denote by Cx

h 2m— n mutually orthogonal unit normals to N. Then equations
of Gauss and those of Weingarten are respectively

(1.10) FeA» = ΣAe»-G,fc

x

and

(1. 11)

where

(1. 12) β β .
[ c b

is the van der Waerden-Bortolotti covariant differentiation of Bb

h, {c

a

b} being
Christoffel symbols formed with gcb,

(1. 13) PcC*h=c)cCx

h+ J *f jtfc'CV,

/kδα. components of the second fundamental tensors with respect to normals Cx

h,

(1. 14) AΛ=AΛ.0*β,

#δα being contravariant components of the induced Riemannian metric tensor and
Icxy components of the third fundamental tensor with respect to normals Cx

h.

% 2. Invariant submanif olds of a manifold with (f, g, u, v9 ^-structure.

We assume that the submanifold N of M is /-invariant, that is, the trans-
form of a vector tangent to N by the linear transformation / is always tangent
to N:

(2. 1) ΛΛJ5»'=Λβ£Λ

/δ

α being a tensor field of type (1, 1) of N.
This shows that

that is, finCx

i is normal to the submanifold N. Thus, we put

(2.2)

Since

we see that

(2.3)

We put

(2.4)
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and

(2.5) fΛ=

ua and va being vector fields of N and ax and βx being functions of N.
Now, from the first equation of (1. 1) and (2. 1), we find

from which

and

From the second equation of (1. 1) and (2. 1), we find

ff

from which

fcefbdQed = Qcb ~ UcUb - VcVb.

From (2. 2), we find

(

from which

and

Σ ΎxyTvz =—dχz + OCχ<Xz + βxβz
y

From the fourth equations of (1. 1), (2. 4) and (2. 5), we find

and

from which

and

respectively.
Finally, from (2. 4) and (2. 5), we obtain respectively

and
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Summing up these results, we have

(2. 6) Λc/cα= -δϊ+u,ua+ vbv
a,

(2. 7) fcefbdQed = Qcϋ - UcUb - VcVi>,

(2. 8) yw= -λv\ fW=λif,

(2. 9) Wα«α=l

(2.10)

(2. 11)

(2. 12)
y

(2. 13) Σ γxyOίx = - λβy, Σ Txyβx = *<Xy.
X X

We also have, from (2. 1),

f3iPJBί=ffgΛ.

Thus putting

fceQeb=fcl),

we have

(2. 14)

which shows that /c& is skew-symmetric.
Equations (2. 6)— (2. 11) show that a necessary and sufficient condition for

Λα, 0cδ, Wδ, ^δ and λ to define an (/, g, ,̂ ,̂ ^)-structure is that

that is,

or, what amounts to the same, the vectors uh and vh are always tangent to the
submanifold.

We now compute SjihBc

J'Bb\ Since

that is,

(2. 15)

and similarly

(2. 16)

we have

SjPBJBJ - {^cδα + (Pcub - F,uc}ua + (Pcvb -
(2. 17)
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being equal to Ncb

a£ah by virtue of (2. 1), where Ncb

a is the Nijenhuis
tensor of /δ

α.
Thus, if the (/, gr, u, v, Λ)-structure of the ambient manifold is normal and the

inuced structure on the invariant submanifold is again an (/, g, u, v, Λ)-structure,
then the induced structure is also normal.

§3. Invariant submanifolds of odd dimension.

First of all we prove the

LEMMA 3. 1. Let N be an invariant submanifold of a manifold with (/, g, u,
v, ^-structure. If there exists a point P of N such that λ does not vanish at P,
then the submanifold N is even- dimensional.

Proof. Suppose that there exists a point P of N such that Λ(P)^0. Then
from (2. 8) and the fact that /cδ is skew-symmetric, we have

(3.1) (

from which, taking account of (2. 10), we have

(3.2) Σ«,j9,(P)=0.
X

On the other hand, from (2. 13) and the skew-symmetry of γxy, we find

from which

(3.3) Σ«*2(P)=Σ/V(P).
X X

Multiplying (2. 11) by ax and summing up over x, we get

(3.4) (Σ

because of (3. 2).
Thus we have

0 or «α(P)=0.

Suppose first that ^(P)=0. Then, because of (3.3), we have /3*(P)=0. So,
(2. 12) shows that

ΣΊxyfyz^—δxz
y

at P. This means that the normal space of N at P admits an almost complex
structure and consequently that N is even-dimensional.

Suppose next that ^α(P)=0. Then using (2. 11), we have

If ^α(P) = 0, then the tangent space of TV at P admits an almost complex structure
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and so TV is of even dimension. If βx(P)=Q, then at P, ax=Q because of (3.3).
Hence, as in the first case, TV is even-dimensional. This completes the proof.

By virtue of this lemma we have only to consider, in this section, the case in
which λ vanishes identically on the submanifold TV.

In this case, we have, from (2. 6)~(2. 10),

(3. 5) ft>cfca= -

(3. 6) fcefbdge<L=gCb--UcUb-vcvb,

(3. 7) Λα«δ=0, ΛV=0,

(3. 8) Uau
a =l-Σ oix\ vav

a = 1 - Σ
X X

(3.9) UaVa=-Σ«xβχ.
x

From (2. 11), we find

(3. 10) (Σ α*
X

and

(3.11) (Σ««
X X

from which

( Σ ax

2}ubu* + ( Σ ctχβx)ubv
b = 0.

X X

Thus substituting (3. 8) and (3. 9) into this equation, we have

(3. 12) (Σ α*2)2+(Σ a,β,γ= Σ «/•
X X X

Similarly, we have

(3. 13) (Σ β**)* + (Σ <**β*r= Σ j8Λ

Now we recall the fact that ax and βx depend on the choice of the mutually
orthogonal unit normal vectors Cx

h. However, we prove the

LEMMA 3. 2. Σ <*/ and Σ βχ2 cire both independent of the choice of the mutu-
X X

ally orthogonal unit normal vectors to N and consequently both of them are globally
defined fuctions on TV.

Proof. Let Cx

h be another choice of the mutually orthogonal unit normal
vectors to TV. Then we can write

(3. 14) uh = Ba

flua + Σ cίχCχh

x

and

(3.15) vh=Bah

Hence we have
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(3.16) Σ<χ*£χ
h
=Σά£x

h
.

X X

Since Cx

h are mutually orthogonal unit normals to N, using an orthogonal trans-
formation, we have

y
Substituting (3. 17) into (3. 16), we get

(3.18) av=Σά*
X

Thus we have

because (Axy) is an orthogonal matrix. This shows that Σ<*#2 is independent of
X

the choice of unit normals.

Similarly Σβχz is independent of the choice of unit normals.
X

We put

and Nβ

Then Na, Nβ are open in N and satisfy Na(jNβ=N, because of the fact that N is
odd-dimensional.

In Na, we find, from (3.10),

(3.19) ub=—* * I vb.
X

Substituting (3.19) into

we find

c
ubu

a+vbv
a=——^—^ v*>va>

X

or using (3.12)

(3. 20) ubu
a+vbv

a = * 2 vbv
a.

x

In Nβ, we find, from (3.11),

(3.21) Vb= —

from which

because of (3.13).
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Now we define a 1-form ηa on N in the following way: in N« we put

(3.22) ^(0= l_-t,6

X

and in Nβ

(3.23) m<» = ~1

Since in NaΓ[Nβ we have

it follows that

from which

(3. 24) (Σ «*/3*)2=(Σ **
X X X

If Σ<*W3*=0 in NaΓ}Nβ, from (3.19) and (3.21), we have wα=0, ^α=0. This shows
X

that AT is even-dimensional. So, in Naf}Nβ, Σ<*χβχ has no zero point. Without
X

loss of generality we may suppose that

(3.25) Σ«.A,>0.
a?

Thus, in NaΓ)Np, we have

because of (3. 21), (3. 24) and (3. 25). Hence, ηb is a well defined 1-form on N.
Computing UϋUa+Vι,va, we find

(3.26) Ut>ua+Vt)VO=yb'qa>

and consequently, (3. 5) and (3. 7) give

(3.27) Λβ/eβ=-<

and

(3.28) ΛV=0

respectively.
Thus, from (3. 27), we have, using (3. 28),
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(3.29) -?β+(wV=0,

from which

(3.30) w»=l.

Thus the structure defined by (fb

a, gcb, j?&) is an almost contact metric
structure.

§ 4. Odd dimensional invariant submanif olds of a manifold with normal
(f, ff, u, v, ^-structure.

In § 2 we have calculated SjPBJBj and got

SjPBJBf = {Ncb

a + (ί7cub -

+ Σ

Consequently, if the (/, g, u, v, ^-structure of the ambient manifold is normal
we have

(4. 1) Ncϊa+(Pcub-PbUc)ua+(Pcvb-rt,vc)va==()

and

(4. 2) (Pcub - Pbuc}ax + (?<$* - Fbvc}βx = 0.

Equations (3. 22), (3. 23) and (3. 30) say that

(4.3) vbv»

in Na and that

(4.4) ubu*
X

in Nf.
Now we define a and β by

(45) α t=Σα«>, /3* = Σj8»1,
X X

then, by virtue of Lemma 3. 2, they are globally defined functions on N and we
can put

(4.6) ua=-βη\ ιT = af,

because, when a or β vanishes, va or ua vanishes.
Then

or
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(4. 7) (Fcub - Γbuo)ua + (Pcvύ - Pbvc)va = (Fcηb - ί7b^
a

y

by virtue of

(4.8) a*+β*=l,

which is obtained from (3. 5), (4. 3) and (4. 5).
Thus (4. 1) becomes

(4.9) Ncb

a+(Pcrjb-Γb^
a=0.

Thus we have

THEOREM 4. 1. Let N be an odd- dimensional invariant submanifold of a mani-
fold with normal (/, g, u, v, ^-structure. Then the submanifold N admits a normal
almost contact metric structure.

We now assume that the (/, g, u, v, Λ)-structure of the ambient manifold is
normal and satisfies

(4.10) P î

Then we have, by Theorem 1. 1,

(4. 11) // F*/« -fWhftj

From (4. 10), we have, by transvection with

(4.12) Fcvb-Pbvc=

Also we have, from (4. 11),

from which

VcVb) + 2fb

d(Pafcd) =

or

2(Pafcd)fl>d = Uc(PbUa ~ FaUb} - Ub(FcUa

(4.13)

+ Vc(Fb

On the other hand, using (4. 6) and (4. 8), we have

Substituting this into (4. 12), we get

(4. 14) 2fb

d(PafCd) =

Now we prove the
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LEMMA 4. 2. Let N be an odd-dimensional invariant submanifold of a mani-
fold with normal (/, g, u, v, λ) structure. If the ambient manifold satisfies (4. 10),
we have

(4. 15) a(Pbηa - Par]b) = 2/δα.

Proof. Since an almost contact metric structure (/, g, ή) always satisfies

Λβ/.*=l-*,

it follows that

(4. 16) Nca

a=0.

If the ambient manifold admits a normal (/, g, u, v, Λ)-structure, from Theorem
4. 1, we have

(4. 17) (Γα^-Γ6^
α=&αα--2Vrcβα=0.

On the other hand, (4. 6) and (4. 12) imply that

(4. 18) a(Faηι> - F6?α) + (Fαα)?δ - (Fba}ηa = 2/αδ,

from which

(4. 19) Fδα = (

because of (4. 17).
Substituting (4. 19) into (4. 18), we have (4. 15).

LEMMA 4. 3. Under the same assumptions as those in Lemma 4. 2, a is a
non-zero constant.

Proof. Suppose that there exists a point P at which

α(P)=0, then, for all .x, α*(P)=0.

Consequently we have at P

(4. 20) (rcV*-r>VcW*=2f^a=0

because of (4. 2).
Thus j9α (P)=0 and this, together with (2. 12), shows that N is even-

dimensional.
To prove that a is a constant, we differentiate (4. 19) covariantly and find

from which

(4. 21) r(^-

where we have put γ= ̂ αFαα.
Transvecting (4. 21) with /δα, we have
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which, together with (4. 19), implies Fδα — 0.
Thus we have proved Lemma 4. 3.

THEOREM 4. 4. An odd dimensional invariant submanifold of a manifold with
normal (/, g, u, v, λ}- structure satisfying

admits a Sasakian structure.

Proof. Transvecting (4. 14) with rf and making use of (4. 17), we have

(4.22) Fβ?β+Fβi7e=0,

which, together with (4. 15), implies that

(4. 23) aPcrja=fca.

Substituting (4. 23) into (4. 14), we have

afbd(Ϋafcd) = ηcfύa

Transvecting this equation with /Λ we find

or

Substituting (4. 23) into the above equation and making use of (3. 6), we have

Thus the submanifold admits a Sasakian structure.

§5. Invariant submanifolds of even dimension.

We now consider an even-dimensional invariant submanifold of a manifold
with (/, g, u, v, ^-structure.

First we assume that the function λ does not vanish almost everywhere along
the submanifold. In this case, from (2. 8) and the fact that fcb is skew-symmetric,
we have

(5. 1) uav
a=Q,

from which, taking account of (2. 10), we have

(5.2) Σ«*A.=0.
X

On the other hand, from (2. 13) and the skew-symmetry of γxy, we find
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from which

(5.3) Σ«*8

Λ'

We assume furthermore that

(5.4) Σ«/
X

almost everywhere along the submanifold.
From (2. 11) and (3. 2), we find

Σ«Λ*=0,
X

from which

(5. 5) ub=Q, vb=Q,

that is, the vectors uh and vh are normal to the submanifold.
From (2. 6) and (5. 5), we have

(5.6) /cδΛα=-<5c

α,

that is, fb

a defines an almost complex structure on the submanifold. If the
(/> g> u, v, /Q-structure of the ambient manifold is normal, we have

Q=SJi

hBe'Bιf=Neι>
aBah'

and consequently the almost complex structure is integrable.
If the ambient manifold satisfies

then we have

or

which contradicts (3. 6). Thus, we have

THEOREM 5. 1. Let M be a differentiable manifold with (/, g, u, v, ^-structure
satisfying i7jVi—FiVj=2fji and N be an invariant submanifold along which
almost everywhere. Then

cannot be different from zero almost everywhere.

We next assume that

(5.7) Σα»a
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everywhere along N, that is,

(5.8) ax = Q, βχ = Q,

and consequently the vectors uh and vh are tangent to the submanifold.

Then equations (2. 6)~(2. 10) show that the submanifold admits an (/, g, u, v,
/0-structure.

Equation (2. 12) shows that the normal bundle of the submanifold admits an
almost complex structure.

In this case, we have

SjihBc

JBb

l={Ncb

a + (Pcub — Fbuc}ua+(Ϋcvb — FύVc)va}Bah,

and consequently

THEOREM 5. 2. Let M be a differentiate manifold with normal (/, g, u, v, λ}-
structnre and N an invariant submanifold such that λ^Q almost everywhere along
N and uh and vh are always tangent to N. Then, the submanifold N admits also
a normal (/, g, u, v, λ}-structure.

Suppose that the (/, g, u, v, λ) -structure of M satisfies

VjUi — ViU3 — 2φfji, VjVi — ViV3 — 2fji,

then that of the submanifold N satisfies

Pc«δ - Fδ^α=2<f>f c b, Pcvb - Vbvc=2fcb

and consequently we have

THEOREM 5. 3. Let S be an even-dimensional sphere with (/, g, u, v, λ}-structure
naturally induced in it. An invariant complete submanifold N such that /ί^O
almost everywhere along N and vectors uh and vh are tangent to N is an even-
dimentional sphere.

We next assume that λ vanishes identically along the invariant submaniold N.

If there exists a point P of TV at which one of Σ a*2 and Σ βαΛ say Σ <*χ2>
X X X

does not vanish, then the tangent space of N at P admits an almost contact struc-
ture such that

km

is the structure tensors of it. Consequently, the submanifold is odd-dimensional.

Thus we have only to consider, in this section, the case in which both Σ&

and Σβχ2 vanish.
X

Then, equations (2. 6)~(2.10) become
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fcefbdQed = gcϋ - UcUt) - VcVb,

fbW=0, /6V=0,

and consequently the invariant submanifold admits the so-called framed /-structure
of rank n—2.

If the (/, g, u, v, X) -structure of the ambient manifold is normal, we have

Scb

a = Ncb

a + (Vcub - Vbuc}ua + (Pcvb - Pbvc}va = 0.

Thus we have the

THEOREM 5. 4. Let N be an even-dimensional invariant submanifold of a
manifold with (f, g, u, v, λ)-structure. If the function λ vanishes identically on the
submanifold N, then N admits a framed f -structure of rank n—2. If, moreover,
the (f, g, u, v, λ)- structure is normal, the f -structure of N is also normal.
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