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§0. Introduction.

Blair, Ludden and one of the present authors [1] have started the study of
the structure induced on a submanifold of codimension 2 of an almost complex
manifold and that induced on a hypersurface of an almost contact manifold.

In papers [4], [5], [6], we have defined the (f, g, #, v, A)-structure on an even-
dimensional differentiable manifold, and have studied normal (f, g, #, v, 2)-structures
on submanifolds of codimension 2 in a Euclidean space and invariant hypersurfaces
of a manifold with (f, g, %, v, 2)-structure.

In this paper, we shall study invariant submanifolds of odd and even dimen-
sion of a manifold with (f, g, #, v, A)-structure.

In §1, we state some of known results and formulas in the theory of sub-
manifolds.

In §2, we study invariant submanifolds of a manifold with (f, g, %, v, 2)-
structure.

In §3, we study invariant submanifolds of odd dimension and in §4 we con-
tinue the study of odd dimensional invariant submanifolds of a manifold with
normal (f, g, #%, v, A)-structure.

In the last §5, we study invariant submanifolds of even dimension.

§1. Preliminaries.

Let M be a differentiable manifold with (f, g, %, v, 2)-structure, that is, a dif-
ferentiable manifold endowed with a tensor field f of type (1,1), a Riemannian
metric ¢, two 1-forms #» and » and a function 2 satisfying

fifit=—0% +uut+-von,
f]tfzsgzs=gji" Uity —V;U;
11 wif =20, vifii=—2u,,

fitwi=—2"  fivi=2u",

Received January 28, 1971.
75



76 KENTARO YANO AND MASAFUMI OKUMURA
wut=1-—22, vivr=1—22, uv=0,

1 g i, v; and 2 being respectively components of f, g, #, v and 2 with respect
to a local coordinate system, #* and »* being defined by

Ui=ginu" and V;=0gin0"

respectively, where here and throughout the paper the indices 4, i, j, --- run over
the range {1, 2, --+, 2m}. It is known that such a manifold is even dimensional.
If we put

(1.2 Ju=ritou,
we can easily see that f;; is skew-symmetric.
We put
1. 3) Sy =Ny +(Vjubs— Viris)u" + (Vo3 — Vv 5)o™,

Nj;* denoting the Nijenhuis tensor formed with f;* and F; the operator of covariant
differentiation with respect to the Christoffel symbols {;*;} formed with g;. If
Sy vanishes, we say that the (f, g, #, v, A)-structure is normal.

The following two theorems are known [4]:

THEOREM 1. 1. If a normal (f, g, , v, 2)-structure satisfies

(1. 4) Vjvi— Vivj =2fji,
then
(1.5) JiVnfe— i Vn oy =ni(Vinen) — wi(Vjun) +0i(Vivn) — vs(Pjon).

THEOREM 1. 2. Let M be a complete manifold with normal (f, g, u, v, 2)-struc-
ture satisfying (1. 4) and

(1. 6) Vini—Viu,=2¢fji,

¢ being a certain function. If the function A(1—2A%) does not vanish almost every-
where, then M is isometric with a sphere.

We consider a submanifold N of M represented by

(L7 zh=zy")
and put
1.8 Byt =0,x",  9p=0]oy",

where here and throughout the paper the indices a, b, ¢, d, ¢ run over the range
{1’ 2) ] n}'
The induced Riemannian metric is given by

1.9) Jev= gjchiji-
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We denote by C,* 2m—»n mutually orthogonal unit normals to N. Then equations
of Gauss and those of Weingarten are respectively

(1.10) VeBy* =2} hepzCs

and ’

1.11) FCot = — e Bat+ 3 Lz Gy,

where ’

(1.12) 7 Byv=0: B+ {jhi}Bchbi—- {c"b}w

is the van der Waerden-Bortolotti covariant differentiation of B,*, {%} being
Christoffel symbols formed with g,

h

1.13) V.Ca=03.Ca + {]. l.}BcJ'C;,

hevz components of the second fundamental tensors with respect to normals C?,
(1.14) he® 2= heve g%

¢*® being contravariant components of the induced Riemannian metric tensor and
l.zy components of the third fundamental tensor with respect to normals C,"

§2. Invariant submanifolds of a manifold with (7, g, u, v, 2)-structure.

We assume that the submanifold N of M is f-invariant, that is, the trans-
form of a vector tangent to N by the linear transformation f is always tangent
to N:

@1 fi*Byt=fo"Ba",

f»® being a tensor field of type (1, 1) of N.
This shows that

SfinBy'Cs"=0,
that is, f;*C,* is normal to the submanifold N. Thus, we put

2.2 [i"Cat= 33 rzCy
Since !
FinCo'Cy =72y,
we see that
2.3 Tzy= ""Tyz
We put
2. 4) w=B*u"+ %} a;Cs",
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and
2.5) vh=B "+ 3, ,B:cca:hy

#* and v* being vector fields of N and a, and 8, being functions of N.
Now, from the first equation of (1.1) and (2. 1), we find

(—0F+usu +v,0") Byi=1'f " Ba",
from which
= —0¢ +upu® +vp0®
and
UpQ + vbﬁz = 0.
From the second equation of (1.1) and (2. 1), we find
S 2B Ba'gis= (gji — Uil — vjvi)Bchbi:
from which
f i bdged =gcb— Ucthp — VcUp.
From (2. 2), we find
(=t +usu +v0")Cot= 3] Txy Tyzczh,
Yz
from which
azu*+ Bs0°=0
and
Zy: Taylyz=— — Oxz+azotz+ ,Bapﬁz
From the fourth equations of (1.1), (2. 4) and (2. 5), we find

- th =fbaBahub + Z azra:yCyh.
z,Y

and
2" =1 Bo"0®+ T, Bay syCo®s
from which o
folur=—n", Zx: Azyay=—2Py
and
Jo®vb=2u", %} Bzt zy=Aay
respectively.

Finally, from (2. 4) and (2. 5), we obtain respectively
uaua=1_22_ Z a(l}zy
00 =123 B2
and )
U= —3 Pz



INVARIANT SUBMANIFOLDS OF A MANIFOLD 79

Summing up these results, we have

(2. 6) " fo? = —0f + ustu® +v50°,

2.7 S fo%9ea= gov — Ucthp — Vels,

(2.8 folub=—2"  f*v®=2u’,

2.9 Uath®=1— 22— ‘\; az, Va0 =1—22— ZI: Bz
(2. 10) U= — é} Az Pz,

2.11) gyt fz0=0,

2.12) %} Taoylye= —O0zz+az0tz+ Bafs,
@.13) Drsea==1n  DresPe=lay

We also have, from (2. 1),
f. jchiji =f Gev-
Thus putting
f cegeb=f ¢by
we have
2.14) SuBdByt=fe,
which shows that fe is skew-symmetric.

Equations (2. 6)~(2. 11) show that a necessary and sufficient condition for
fo% gevs s, U5 and 2 to define an (f, g, #, v, A)-structure is that

2 az*=0, Z‘Bzz':O’
that is,
Ax= 0; .B.‘D =0’

or, what amounts to the same, the vectors #* and »* are always tangent to the
submanifold.
We now compute S;;*B/By*. Since

Vyu;— Vi) Bed Byt = V(14 Byt) — Vo Byt — V,,(uchf) + uijBcf,

that is,

(2.15) (Vy04;— Vi) Be? Byt = Vetty— Vytte,

and similarly

(2. 16) (Pjv;— Vi) B Byt = Vw5 — Pyt

we have

@.17) Sji"Be! Byt={Nep® + (Vetio — Vstee)u® + (Voo — Vo0 )0} Ba™

H{Z Perto— Potee) s+ (Ve — Vo) B2} Ca™y
x
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N;i*B/ Byt being equal to N,*B.* by virtue of (2.1), where Np® is the Nijenhuis
tensor of f»*

Thus, if the (f, g, #, v, 2)-structure of the ambient manifold is normal and the
inuced structure on the invariant submanifold is again an (f, g, %, v, 2)-structure,
then the induced structure is also normal.

§3. Invariant submanifolds of odd dimension.
First of all we prove the

LemMA 3.1. Let N be an invariant submanifold of a manifold with (f, g, u,
v, A)-structure. If there exists a point P of N such that 2 does not vanish at P,
then the submanifold N is even-dimensional.

Proof. Suppose that there exists a point P of N such that A(P)x0. Then
from (2. 8) and the fact that f., is skew-symmetric, we have

G.1 (#at")(P)=0,
from which, taking account of (2. 10), we have
3.2) S asps(P)=0.
On the other hand, from (2. 13) and the skew-symmetry of r,,, we find
l§ (az?— B2 =0,

from which

3.3 %: az}(P)= %} B=*(P).
Multiplying (2. 11) by a, and summing up over z, we get
B4 (Z as"(P)u'(P)=0,

because of (3. 2).
Thus we have

a;(P)=0 or u™(P)=0.

Suppose first that a,(P)=0. Then, because of (3.3), we have B,(P)=0. So,
(2. 12) shows that

Z Taylyz=— — Oz
Yy

at P. This means that the normal space of N at P admits an almost complex
structure and consequently that N is even-dimensional.
Suppose next that #*P)=0. Then using (2. 11), we have

B=P)*P)=0.

If »%(P)=0, then the tangent space of N at P admits an almost complex structure
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and so N is of even dimension. If B4(P)=0, then at P, a,=0 because of (3.3).
Hence, as in the first case, N is even-dimensional. This completes the proof.

By virtue of this lemma we have only to consider, in this section, the case in
which 2 vanishes identically on the submanifold N.
In this case, we have, from (2. 6)~(2. 10),

3.5 Jo'fe = —0f + wpts® +v50°,
3. 6) T fo?gea=gev— thelhy — Ve,
3.7 f*u=0,  fi*°=0,
(3.8) wat®=1— § az?,  v*=1— Z Ba,
3.9) at"= — 3] s
From (2.11), we find
3. 10) (§ axz)ub+(§ azPz)0s=0
and
3. 11) (§ axﬁz)%b‘l‘(;; Ba2)vs=0,
from which

(2 azPusu® + (X azfo)usv®=0.

Thus substituting (3. 8) and (3. 9) into this equation, we have

3.12) (Z} az2)2+(2 AzPz)’= Z az’
Similarly, we have
(3.13) (Z ,Bzz)z'l‘(E azfa)?= Z Ba"

Now we recall the fact that a. and B, depend on the choice of the mutually
orthogonal unit normal vectors C,*. However, we prove the

LEmmA 3. 2. Z az? and Z} Bz* are both independent of the choice of the mutu-

ally orthogonal umt normal vecz‘ors to N and consequently both of them are globally
defined fuctions on N.

Proof. Let C,* be another choice of the mutually orthogonal unit normal
vectors to N. Then we can write

(3.14) wh=B"u®+ 3 @,C "

and

(3.15) vt =B+ 3 B.Com.
xr

Hence we have
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(3. 16) 5 aaCa= 3 @C 4"
x x

Since C,* are mutually orthogonal unit normals to N, using an orthogonal trans-
formation, we have

(3~ 17) th——— 2 A:wcwh'
Y
Substituting (3. 17) into (3. 16), we get
(3.18) oy =T @eAay.

Thus we have
2 a’y2: z (}-(z&a;AzyAxyz 2. a5t
Yy Z,Y,2 x

because (Az,) is an orthogonal matrix. This shows that 3 «,? is independent of
the choice of unit normals. :
Similarly 3] ;% is independent of the choice of unit normals.
We put ’
Naz{PeNl}; az2x0}  and Nﬂ={PeNI§ Bz?=0}.
Then N,, N; are open in N and satisfy N,UN,=N, because of the fact that N is

odd-dimensional.
In N,, we find, from (3. 10),

Z a’:c,Ba:
(3. 19) Up= —ﬁrvb.
Substituting (3. 19) into
usu®+v0%
we find
(2 aa”?+ (X asfa)®
Upt® + p0* == = a,:)z 0%,
or using (3.12)
(3. 20) upt”® +o* = 5 ‘1“2 V0%
In N, we find, from (3. 11),
Z a’zﬁz
(3. 21) Vp= —-%W"ub,
from which
U+ o0 = Z,]émz uyu®,
xr

because of (3. 13).
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Now we define a 1-form 7, on N in the following way: in N, we put

(3. 22) PP =g \/Z o
and in N,
(3.23) B =—F— \/ ﬁz
Since in N,NN; we have
Z'. APz le B
Up=— —ZT&T%, W= ——Z—ﬁzz_ub’

it follows that ’

(Z azfz)’

W“”’

from which
(3. 24) (Z aspo)*=(Z as)(Z Ba”)-

If ¥ azf=0 in N,NN;, from (3.19) and (3.21), we have »*=0, v*=0. This shows
that N is even-dimensional. So, in N,NN; X asf: has no zero point. Without
x

loss of generality we may suppose that

(3. 25) 2 azfz>0.
Thus, in N,N N, we have
1 V(D azpa)?
PO = =
VZad """ T VEal(ZhH"
\/Z = ety =1 ®,

because of (3. 21), (3. 24) and (3. 25). Hence, 7 is a well defined 1-form on N.
Computing #,u®+v0®, we find

(3. 26) upth” + V0, =787,

and consequently, (3.5) and (3. 7) give

3.27) Jo'fe* =05 +nun®
and

3. 28) fitpp=0
respectively.

Thus, from (3. 27), we have, using (3. 28),
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3. 29) — 7%+ (o) =0,
from which
(3. 30) pip=1.

Thus the structure defined by (f3*% ¢, 7%) is an almost contact metric
structure.

§4. Odd dimensional invariant submanifolds of a manifold with normal
(f, 9, u, v, A)-structure.

In §2 we have calculated S;?B./By* and got
Sjih’Bchbl" = {Mba + (chb - Vbuc)ua + (V;;Ub — vac)l)a}Bah
+ § {(Petts — Votae)ors 4 (Vv — Vyv) Bz} C™.

Consequently, if the (f, g, #, v, A)-structure of the ambient manifold is normal
we have

4.1 Neo® + (Petty — Vo)™ + (Ve — Py )v® =0

and

4. 2) Py — Vorae)otz+(Vevn — Vyve) B =0.
Equations (3. 22), (3. 23) and (3. 30) say that

4.3) V= ;: as’

in N, and that

4. 4 wu = %; B2

in Na.
Now we define « and g by

(4.5) a’= § ar®,  pr= § B’

then, by virtue of Lemma 3. 2, they are globally defined functions on N and we
can put

4. 6) u=— By, v=ay?

because, when « or § vanishes, »* or #* vanishes.
Then

(Verts — Vorte)us® + (Vevp — Vv )o®
= B(Vemp — Pome)n® + (Vo — Vome) 1™

H{(PePrps— (PoPYpe} By +{(Peat)ypp — (Poc)pelay®,
or



INVARIANT SUBMANIFOLDS OF A MANIFOLD 85

4.7 (Peras — Poytae)u® + (Voo — Vsve)o® = (Pemp — Vsmpe)y®,
by virtue of
4. 8) a4 =1,

which is obtained from (3. 5), (4. 3) and (4. 5).
Thus (4. 1) becomes

4.9 Neo®+Pepp — Ve =0.

Thus we have

THEOREM 4. 1. Let N be an odd-dimensional invariant submanifold of a mani-
fold with normal (f, g, u, v, A)-structure. Then the submanifold N admits a normal
almost contact metric structure.

We now assume that the (f, g, #, v, A)-structure of the ambient manifold is
normal and satisfies

(4. 10) Vivi—Vw;=2f;.
Then we have, by Theorem 1.1,

(4. 11) T fa—Ft Vo= wui(Viun) — ui(Viun) +0;(Vivn) — 0i(Vjon).
From (4. 10), we have, by transvection with B,/By,
(4.12) Vevs— Vv =2f 4.
Also we have, from (4. 11),

SoWafar—Io VoS ae=te(Potea) — thp(Vetta) + ve(Vova) = ve(Fea),
from which

Vao(fe fas)— (Vafe®) fao—fo™VaS ae=the(Vstha) — tts(Vetha) + Ve(Vs0a) — 05(Veta),

Va(—gep + tctty +0c05) + 2104 Vo fea) = te(Vstha) — s(Vetha) +0c(Pova) — v6(Peva),
or
2(Vafea) fo' = tue(Votha— Vatts) — tur(Vetba+Vate)

(4.13)
+ 0e(Vsva— Vo) — 0s(Vet0a+ Vave).
On the other hand, using (4. 6) and (4. 8), we have
we(Vothg— Vathp) — ths(Vetta + Vathe) + 0e(Ve0a — Vo) — 0s(Ve00 + Vo)
=1e(Vorpa—Vano) = np(Vetpa+ Varpe)-
Substituting this into (4. 12), we get
(4. 14) 2,V foa) =1 Fota—Var) = Fona-+ V).

Now we prove the
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LeMMA 4.2. Let N be an odd-dimensional invariant submanifold of a mani-
fold with normal (f, g, u, v, A)-structure. If the ambient manifold satisfies (4.10),

we have
(4. 15) a(Vsna—Vanp) =2fva-
Proof. Since an almost contact metric structure (f, g, ) always satisfies
St fab=1-n,
it follows that
(4. 16) Neo*=0.

If the ambient manifold admits a normal (f, g, %, v, A)-structure, from Theorem
4.1, we have

4.17) (Pams—Vona)y* = Sea” — Nea® =0.
On the other hand, (4. 6) and (4. 12) imply that

(4. 18) a(Vanp—Vona) + (Pac) s — (Vo) =2 f as,

from which

4.19) Vo= (5 Vac)mp,

because of (4.17).
Substituting (4. 19) into (4. 18), we have (4. 15).

LemMA 4.3. Under the same assumptions as those in Lemma 4.2, a is a
non-zero constant.
Proof. Suppose that there exists a point P at which

a(P)=0, then, for all x, a,(P)=0.

Consequently we have at P
(4. 20) (chb - ‘7171)0),82 = 2fcb,B.z =0

because of (4. 2).
Thus Bz(P)=0 and this, together with (2.12), shows that N is even-

dimensional.
To prove that « is a constant, we differentiate (4. 19) covariantly and find

VoV = TVa7]b+ (Var)ﬁb»
from which
(4. 21) 7(Pany—Pena) + (Pa o= (Popa=0,

where we have put y=7"V,a.
Transvecting (4. 21) with £, we have
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(n—1)r=0,

which, together with (4. 19), implies Fa=0.
Thus we have proved Lemma 4. 3.

THEOREM 4. 4. An odd dimensional invariant submanifold of a manifold with
normal (f, g, #, v, 2)-structure satisfying

Viv,—Viv,=2f;
admits a Sasakian structure.
Proof. Transvecting (4. 14) with »* and making use of (4.17), we have

4. 22) Venna+Vane=0,
which, together with (4. 15), implies that
(4. 23) aVepa=fea.
Substituting (4. 23) into (4. 14), we have

afos*(Vafea)=7cSva-
Transvecting this equation with f?, we find

—aVufe +a7]b77d’7afcd = —Ncfadb T Yo
or
—alVafeo—an feaVan® = —NeGas + nepsa-

Substituting (4. 23) into the above equation and making use of (3. 6), we have
aVa,fbc= NoGca—NecFab-

Thus the submanifold admits a Sasakian structure.

§5. Invariant submanifolds of even dimension.

We now consider an even-dimensional invariant submanifold of a manifold

with (f, g, , v, 2)-structure.
First we assume that the function 2 does not vanish almost everywhere along
the submanifold. In this case, from (2. 8) and the fact that f, is skew-symmetric,

we have
6.1) uqv*=0,

from which, taking account of (2.10), we have
(5' 2) § ax‘s,;=0.
On the other hand, from (2. 13) and the skew-symmetry of yg,, we find
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A% az’— Z 82")=0,

from which

(5. 3) Dagt=7 f"
We assume furthermore that

(5. 4) £ ar= 1 B0

almost everywhere along the submanifold.
From (2.11) and (3. 2), we find

Z azzub=0, Z ﬁ&‘zvbzov
from which
(5 5) =0, 0,=0,

that is, the vectors #" and »" are normal to the submanifold.
From (2. 6) and (5. 5), we have

. 6) fPft=—a8,

that is, f»* defines an almost complex structure on the submanifold. If
(f, g, u, v, A)-structure of the ambient manifold is normal, we have

0= Sj,;thiji = .ZvcbaBah

and consequently the almost complex structure is integrable.
If the ambient manifold satisfies

Vivi—Viw,=2f
then we have
(Piv;—Viv;) B Byt =2f;; B By,
or
0=2f,

which contradicts (3. 6). Thus, we have

the

THEOREM 5.1. Let M be a differentiable manifold with (f, g, u, v, 2)-structure
satisfying Vi;—Viv,=2f; and N be an invariant submanifold along which 130

almost everywhere. Then
Yalt=3 ﬁxz
cannot be different from zero almost everywhere.

We next assume that
6.7 Yazt=3 B.*=0
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everywhere along N, that is,
(5. 8) az=0, B==0,
and consequently the vectors #” and »* are tangent to the submanifold.

Then equations (2. 6)~(2. 10) show that the submanifold admits an (f, g, #, v,

A)-structure.
Equation (2. 12) shows that the normal bundle of the submanifold admits an

almost complex structure.
In this case, we have

Sy Be? Byt ={Ney® + (Veths — Vytte)u® + (Vevo — Vovo)v®} Bo*,
and consequently

THEOREM 5. 2. Let M be a differentiable manifold with normal (f, g, u, v, A)-
structnre and N an invarviant submanifold such that Ax0 almost everywhere along
N and uw" and v* are always tangent to N. Then, the submanifold N admits also
a normal (f, g, u, v, A)-structure.

Suppose that the (f, g, %, v, A)-structure of M satisfies
Viws— Vi, =20 f s, Vivi—Viw,=2f,
then that of the submanifold N satisfies
Vests— Votha=2¢ f o5, Voo —Vsve=2fc
and consequently we have

THEOREM 5. 3. Let S be an even-dimensional sphere with (f, g, u, v, 2)-structure
naturally induced in it. Awm invariant complete submanifold N such that 20
almost everywhere along N and vectors u® and v* are tangent to N is an even-
dimentional spheve.

We next assume that 1 vanishes identically along the invariant submaniold N.

If there exists a point P of N at which one of Zaxz and Z}‘Bx , say Zax,
does not vanish, then the tangent space of N at P admlts an almost contact struc
ture such that

(m®n s z a)

is the structure tensors of it. Consequently, the submanifold is odd-dimensional.
Thus we have only to consider, in this section, the case in which both ] a,?

and 2 B, vanish. ’
’fhen, equations (2. 6)~(2. 10) become

F' = —0g +upu” +ovp0?,
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T f6%9ea=gev— thethy — Ve,
Jotu?=0, So"v?=0,
uu” =1, vt =1,

u0*=0

and consequently the invariant submanifold admits the so-called framed f-structure

of rank »n—2.
If the (f, g, %, v, 2)-structure of the ambient manifold is normal, we have

Sev”® = Nep® + (Petts — Nytae)u 4 (Pevs — Voo )o* =0.

Thus we have the

THEOREM 5.4. Let N be an even-dimensional invariant submanifold of a
manifold with (f, g, u, v, 2)-structuve. If the function 2 vanishes identically on the
submanifold N, then N admits a framed f-structure of rank n—2. If, moreover,
the (f, g, u, v, A)-Structure is normal, the f-structure of N is also normal.
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