INVARIANT SUBMANIFOLDS OF A MANIFOLD WITH ($f, \boldsymbol{g}, \boldsymbol{u}, \boldsymbol{v}, \lambda$)-STRUCTURE

By Kentaro Yano and Masafumi Okumura

Dedicated to Professor Y. Mutō on his sixtieth birthday

§ 0. Introduction.

Blair, Ludden and one of the present authors [1] have started the study of the structure induced on a submanifold of codimension 2 of an almost complex manifold and that induced on a hypersurface of an almost contact manifold.

In papers [4], [5], [6], we have defined the (f, g, u, v, λ) -structure on an evendimensional differentiable manifold, and have studied normal (f, g, u, v, λ)-structures on submanifolds of codimension 2 in a Euclidean space and invariant hypersurfaces of a manifold with (f, g, u, v, λ)-structure.

In this paper, we shall study invariant submanifolds of odd and even dimension of a manifold with (f, g, u, v, λ)-structure.

In § 1, we state some of known results and formulas in the theory of submanifolds.

In $\S 2$, we study invariant submanifolds of a manifold with (f, g, u, v, λ) structure.

In §3, we study invariant submanifolds of odd dimension and in §4 we continue the study of odd dimensional invariant submanifolds of a manifold with normal (f, g, u, v, λ)-structure.

In the last $\S 5$, we study invariant submanifolds of even dimension.

§ 1. Preliminaries.

Let M be a differentiable manifold with (f, g, u, v, λ)-structure, that is, a differentiable manifold endowed with a tensor field f of type (1,1), a Riemannian metric g, two 1 -forms u and v and a function λ satisfying

$$
\begin{align*}
f_{j}{ }^{2} f_{i}^{h} & =-\delta_{j}^{h}+u_{j} u^{h}+v_{j} v^{h}, \\
f_{j}^{t} f_{i}^{s} g_{t s} & =g_{j i}-u_{j} u_{i}-v_{j} v_{i}, \\
u_{i} f_{j}{ }^{2} & =\lambda v_{j}, \quad v_{i} f_{j}{ }^{i}=-\lambda u_{j}, \tag{1.1}\\
f_{i}^{h} u^{i} & =-\lambda v^{h}, \quad f_{i}^{h} v^{i}=\lambda u^{h},
\end{align*}
$$

Received January 28, 1971.

$$
u_{i} u^{i}=1-\lambda^{2}, \quad v_{i} v^{2}=1-\lambda^{2}, \quad u_{i} v^{2}=0
$$

$f_{i}{ }^{h}, g_{j i}, u_{i}, v_{i}$ and λ being respectively components of f, g, u, v and λ with respect to a local coordinate system, u^{h} and v^{h} being defined by

$$
u_{i}=g_{i h} u^{h} \quad \text { and } \quad v_{i}=g_{i h} v^{h}
$$

respectively, where here and throughout the paper the indices h, i, j, \cdots run over the range $\{1,2, \cdots, 2 m\}$. It is known that such a manifold is even dimensional.

If we put

$$
\begin{equation*}
f_{j i}=f_{j}{ }^{t} g_{t i}, \tag{1.2}
\end{equation*}
$$

we can easily see that $f_{j i}$ is skew-symmetric.
We put

$$
\begin{equation*}
S_{j i}{ }^{h}=N_{j i}{ }^{h}+\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u^{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) v^{h}, \tag{1.3}
\end{equation*}
$$

$N_{j i}{ }^{h}$ denoting the Nijenhuis tensor formed with $f_{i}{ }^{h}$ and ∇_{i} the operator of covariant differentiation with respect to the Christoffel symbols $\left\{j_{i}{ }_{i}\right\}$ formed with $g_{j i}$. If $S_{j i}{ }^{h}$ vanishes, we say that the (f, g, u, v, λ)-structure is normal.

The following two theorems are known [4]:
Theorem 1.1. If a normal (f, g, u, v, λ)-structure satisfies

$$
\begin{equation*}
\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i}, \tag{1.4}
\end{equation*}
$$

then

$$
\begin{equation*}
f_{j}^{t} \nabla_{h} f_{t i}-f_{i} \nabla_{h} f_{t_{j}}=u_{j}\left(\nabla_{i} u_{h}\right)-u_{i}\left(\nabla_{j} u_{h}\right)+v_{j}\left(\nabla_{i} v_{h}\right)-v_{i}\left(\nabla_{j} v_{h}\right) . \tag{1.5}
\end{equation*}
$$

Theorem 1.2. Let M be a complete manifold with normal (f, g, u, v, λ)-structure satisfying (1.4) and

$$
\begin{equation*}
\nabla_{j} u_{i}-\nabla_{i} u_{j}=2 \phi f_{j i}, \tag{1.6}
\end{equation*}
$$

ϕ being a certain function. If the function $\lambda\left(1-\lambda^{2}\right)$ does not vanish almost everywhere, then M is isometric with a sphere.

We consider a submanifold N of M represented by

$$
\begin{equation*}
x^{h}=x^{h}\left(y^{a}\right) \tag{1.7}
\end{equation*}
$$

and put

$$
\begin{equation*}
B_{b}{ }^{h}=\partial_{b} x^{h}, \quad \partial_{b}=\partial / \partial y^{b}, \tag{1.8}
\end{equation*}
$$

where here and throughout the paper the indices a, b, c, d, e run over the range $\{1,2, \cdots, n\}$.

The induced Riemannian metric is given by

$$
\begin{equation*}
g_{c b}=g_{j i} B_{c}{ }^{j} B_{b}{ }^{i} . \tag{1.9}
\end{equation*}
$$

We denote by $C_{x}{ }^{h} 2 m-n$ mutually orthogonal unit normals to N. Then equations of Gauss and those of Weingarten are respectively

$$
\begin{equation*}
\nabla_{c} B_{o}^{h}=\sum_{x} h_{c b x} C_{x}{ }^{h} \tag{1.10}
\end{equation*}
$$

and
(1.11)

$$
\nabla_{c} C_{x}{ }^{h}=-h_{c}{ }^{a}{ }_{x} B_{a}{ }^{h}+\sum_{y} l_{c x y} C_{y}{ }^{h},
$$

where

$$
\nabla_{c} B_{b}{ }^{h}=\partial_{c} B_{b}{ }^{h}+\left\{\begin{array}{c}
h \tag{1.12}\\
j
\end{array}\right\}
$$

is the van der Waerden-Bortolotti covariant differentiation of $B_{0}{ }^{h},\left\{c^{a}{ }_{b}\right\}$ being Christoffel symbols formed with $g_{c b}$,

$$
\nabla_{c} C_{x}{ }^{h}=\partial_{c} C_{x^{h}}+\left\{\begin{array}{c}
h \tag{1.13}\\
j i
\end{array}\right\} B_{c}{ }^{j} C_{x^{2}},
$$

$h_{c b x}$ components of the second fundamental tensors with respect to normals $C_{x}{ }^{h}$,

$$
\begin{equation*}
h_{c}{ }^{a}{ }_{x}=h_{c b x} g^{b a}, \tag{1.14}
\end{equation*}
$$

$g^{b a}$ being contravariant components of the induced Riemannian metric tensor and $l_{c x y}$ components of the third fundamental tensor with respect to normals $C_{x}{ }^{h}$.

§ 2. Invariant submanifolds of a manifold with ($f, g, u, v, \lambda)$-structure.

We assume that the submanifold N of M is f-invariant, that is, the transform of a vector tangent to N by the linear transformation f is always tangent to N :

$$
\begin{equation*}
f_{i}{ }^{h} B_{b}{ }^{i}=f_{b}{ }^{a} B_{a}{ }^{h}, \tag{2.1}
\end{equation*}
$$

$f_{b}{ }^{a}$ being a tensor field of type $(1,1)$ of N.
This shows that

$$
f_{i n} B_{b}{ }^{i} C_{x}{ }^{h}=0,
$$

that is, $f_{i}{ }^{h} C_{x}{ }^{i}$ is normal to the submanifold N. Thus, we put

$$
\begin{equation*}
f_{i}{ }^{h} C_{x}{ }^{i}=\sum_{y} \gamma_{x y} C_{y}{ }^{h} \tag{2.2}
\end{equation*}
$$

Since

$$
f_{i h} C_{x}{ }^{i} C_{y}{ }^{h}=\gamma x y
$$

we see that
(2.3)

$$
\gamma_{x y}=-\gamma_{y x} .
$$

We put

$$
\begin{equation*}
u^{h}=B_{a}^{h} u^{a}+\sum_{x} \alpha_{x} C_{x}{ }^{h}, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{h}=B_{a}{ }^{h} v^{a}+\sum_{x} \beta_{x} C_{x}{ }^{h} \tag{2.5}
\end{equation*}
$$

u^{a} and v^{a} being vector fields of N and α_{x} and β_{x} being functions of N.
Now, from the first equation of (1.1) and (2.1), we find

$$
\left(-\delta_{i}^{h}+u_{i} u^{h}+v_{i} v^{h}\right) B_{b}{ }^{i}=f_{b}^{c} f_{c}^{a} B_{a}{ }^{h},
$$

from which

$$
f_{b}^{c} f_{c}^{a}=-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a}
$$

and

$$
u_{b} \alpha_{x}+v_{b} \beta_{x}=0
$$

From the second equation of (1.1) and (2.1), we find

$$
f_{c}^{e} f_{b}{ }^{d} B_{e}{ }^{t} B_{d}{ }^{s} g_{t s}=\left(g_{j i}-u_{j} u_{\imath}-v_{j} v_{i}\right) B_{c}{ }^{j} B_{b}{ }^{i},
$$

from which

$$
f_{c}^{e} f_{b}^{d} g_{e d}=g_{c b}-u_{c} u_{b}-v_{c} v_{b} .
$$

From (2. 2), we find

$$
\left(-\delta_{i}^{h}+u_{i} u^{h}+v_{i} v^{h}\right) C_{x}^{i}=\sum_{y, z} \gamma_{x y} \gamma_{y z} C_{z}^{h},
$$

from which

$$
\alpha_{x} u^{a}+\beta_{x} v^{a}=0
$$

and

$$
\sum_{y} \gamma_{x y \gamma} \gamma_{y z}=-\delta_{x z}+\alpha_{x} \alpha_{z}+\beta_{x} \beta_{z} .
$$

From the fourth equations of (1.1), (2.4) and (2.5), we find
and

$$
-\lambda v^{h}=f_{b}{ }^{a} B_{a}{ }^{h} u^{b}+\sum_{x, y} \alpha_{x \gamma} \gamma_{x y} C_{y}{ }^{h} .
$$

from which

$$
\lambda u^{h}=f_{b}^{a} B_{a}{ }^{h} v^{b}+\sum_{x, y} \beta_{x} \gamma_{x y} C_{y}{ }^{h},
$$

$$
f_{b}^{a} u^{b}=-\lambda v^{a}, \quad \sum_{x} \alpha_{x} \gamma_{x y}=-\lambda \beta_{y}
$$

and

$$
f_{b}^{a} v^{b}=\lambda u^{a}, \quad \sum_{x} \beta_{x} \gamma_{x y}=\lambda \alpha_{y}
$$

respectively.
Finally, from (2.4) and (2.5), we obtain respectively
and

$$
\begin{gathered}
u_{a} u^{a}=1-\lambda^{2}-\sum_{x} \alpha_{x}{ }^{2}, \\
v_{a} v^{a}=1-\lambda^{2}-\sum_{x} \beta_{x}^{2}
\end{gathered}
$$

$$
u_{a} v^{a}=-\sum_{x} \alpha_{x} \beta_{x} .
$$

Summing up these results, we have

$$
\begin{gather*}
f_{b}^{c} f_{c}^{a}=-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a}, \tag{2.6}\\
f_{c}^{e} f_{b}^{d} g_{e d}=g_{c b}-u_{c} u_{b}-v_{c} v_{b}, \\
f_{b}^{a} u^{b}=-\lambda v^{a}, \quad f_{b}^{a} v^{b}=\lambda u^{a}, \tag{2.7}\\
u_{a} u^{a}=1-\lambda^{2}-\sum_{x} \alpha_{x}^{2}, \quad v_{a} v^{a}=1-\lambda^{2}-\sum_{x} \beta_{x}^{2}, \tag{2.8}\\
u_{a} v^{a}=-\sum_{x} \alpha_{x} \beta_{x}, \tag{2.9}\\
\alpha_{x} u_{b}+\beta_{x} v_{b}=0, \tag{2.10}\\
\sum_{y} \gamma_{x y} \gamma_{y z}=-\delta_{x z}+\alpha_{x} \alpha_{z}+\beta_{x} \beta_{z}, \tag{2.11}\\
\sum_{x} \gamma_{x y} \alpha_{x}=-\lambda \beta_{y}, \quad \sum_{x} \gamma_{x y} \beta_{x}=\lambda \alpha_{y} .
\end{gather*}
$$

$$
f_{j i} B_{c}{ }^{j} B_{b}{ }^{i}=f_{c}^{e} g_{e b} .
$$

Thus putting

$$
f_{c}^{e} g_{e b}=f_{c b},
$$

we have

$$
\begin{equation*}
f_{j i} B_{c}{ }^{j} B_{b}{ }^{i}=f_{c b} \tag{2.14}
\end{equation*}
$$

which shows that $f_{c b}$ is skew-symmetric.
Equations (2.6) $\sim(2.11)$ show that a necessary and sufficient condition for $f_{b}^{a}, g_{c b}, u_{b}, v_{b}$ and λ to define an (f, g, u, v, λ)-structure is that

$$
\sum_{x} \alpha_{x}^{2}=0, \quad \sum_{x} \beta_{x}^{2}=0
$$

that is,

$$
\alpha_{x}=0, \quad \beta_{x}=0,
$$

or, what amounts to the same, the vectors u^{h} and v^{h} are always tangent to the submanifold.

We now compute $S_{j i}{ }^{h} B_{c}{ }^{j} B_{b}{ }^{2}$. Since

$$
\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) B_{c}{ }^{j} B_{b}{ }^{2}=\nabla_{c}\left(u_{i} B_{b}{ }^{i}\right)-u_{i} \nabla_{c} B_{b}{ }^{i}-\nabla_{b}\left(u_{j} B_{c}{ }^{j}\right)+u_{j} \nabla_{b} B_{c}{ }^{j},
$$

that is,

$$
\begin{equation*}
\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) B_{c}{ }^{j} B_{b}{ }^{i}=\nabla_{c} u_{b}-\nabla_{b} u_{c}, \tag{2.15}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) B_{c}^{j} B_{b}{ }^{i}=\nabla_{c} v_{b}-\nabla_{b} v_{c}, \tag{2.16}
\end{equation*}
$$

we have

$$
\begin{align*}
S_{j i}{ }^{h} B_{c}{ }^{j} B_{b}{ }^{i}= & \left\{N_{c b}{ }^{a}+\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) v^{a}\right\} B_{a}{ }^{h} \\
& +\left\{\sum_{x}\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) \alpha_{x}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) \beta_{x}\right\} C_{x}{ }^{h}, \tag{2.17}
\end{align*}
$$

$N_{j i}{ }^{h} B_{c}{ }^{j} B_{b}{ }^{i}$ being equal to $N_{c b}{ }^{a} B_{a}{ }^{h}$ by virtue of (2.1), where $N_{c b}{ }^{a}$ is the Nijenhuis tensor of $f_{b}{ }^{a}$.

Thus, if the (f, g, u, v, λ)-structure of the ambient manifold is normal and the inuced structure on the invariant submanifold is again an (f, g, u, v, λ)-structure, then the induced structure is also normal.

§ 3. Invariant submanifolds of odd dimension.

First of all we prove the
Lemma 3.1. Let N be an invariant submanifold of a manifold with (f, g, u, $v, \lambda)$-structure. If there exists a point P of N such that λ does not vanish at P , then the submanifold N is even-dimensional.

Proof. Suppose that there exists a point P of N such that $\lambda(\mathrm{P}) \neq 0$. Then from (2.8) and the fact that $f_{c b}$ is skew-symmetric, we have

$$
\begin{equation*}
\left(u_{a} v^{a}\right)(\mathrm{P})=0, \tag{3.1}
\end{equation*}
$$

from which, taking account of (2.10), we have

$$
\begin{equation*}
\sum_{x} \alpha_{x} \beta_{x}(\mathrm{P})=0 \tag{3.2}
\end{equation*}
$$

On the other hand, from (2.13) and the skew-symmetry of $\gamma_{x y}$, we find

$$
\lambda \sum_{x}\left(\alpha_{x}^{2}-\beta_{x}{ }^{2}\right)=0,
$$

from which

$$
\begin{equation*}
\sum_{x} \alpha_{x}{ }^{2}(\mathrm{P})=\sum_{x} \beta_{x}{ }^{2}(\mathrm{P}) . \tag{3.3}
\end{equation*}
$$

Multiplying (2.11) by α_{x} and summing up over x, we get

$$
\begin{equation*}
\left(\sum_{x} \alpha_{x}^{2}(\mathrm{P})\right) u^{a}(\mathrm{P})=0 \tag{3.4}
\end{equation*}
$$

because of (3.2).
Thus we have

$$
\alpha_{x}(\mathrm{P})=0 \quad \text { or } \quad u^{a}(\mathrm{P})=0 .
$$

Suppose first that $\alpha_{x}(\mathrm{P})=0$. Then, because of (3.3), we have $\beta_{x}(\mathrm{P})=0$. So, (2.12) shows that

$$
\sum_{y} \gamma_{x y} \gamma_{y z}=-\delta_{x z}
$$

at P . This means that the normal space of N at P admits an almost complex structure and consequently that N is even-dimensional.

Suppose next that $u^{a}(\mathrm{P})=0$. Then using (2.11), we have

$$
\beta_{x}(\mathrm{P}) v^{a}(\mathrm{P})=0 .
$$

If $v^{a}(\mathrm{P})=0$, then the tangent space of N at P admits an almost complex structure
and so N is of even dimension. If $\beta_{x}(\mathrm{P})=0$, then at $\mathrm{P}, \alpha_{x}=0$ because of (3.3). Hence, as in the first case, N is even-dimensional. This completes the proof.

By virtue of this lemma we have only to consider, in this section, the case in which λ vanishes identically on the submanifold N.

In this case, we have, from (2.6) $\sim(2.10)$,

$$
\begin{gather*}
f_{b}^{c} f_{c}^{a}=-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a}, \tag{3.5}\\
f_{c}^{e} f_{b}^{d} g_{e d}=g_{c b}-u_{c} u_{b}-v_{c} v_{b}, \tag{3.6}\\
f_{b}{ }^{a} u^{b}=0, \quad f_{b}^{a} v^{b}=0, \tag{3.7}\\
u_{a} u^{a}=1-\sum_{x} \alpha_{x}{ }^{2}, \quad v_{a} v^{a}=1-\sum_{x} \beta_{x}{ }^{2}, \tag{3.8}\\
u_{a} v^{a}=-\sum_{x} \alpha_{x} \beta_{x} . \tag{3.9}
\end{gather*}
$$

From (2.11), we find

$$
\begin{equation*}
\left(\sum_{x} \alpha_{x}{ }^{2}\right) u_{b}+\left(\sum_{x} \alpha_{x} \beta_{x}\right) v_{b}=0 \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sum_{x} \alpha_{x} \beta_{x}\right) u_{b}+\left(\sum_{x} \beta_{x}{ }^{2}\right) v_{b}=0, \tag{3.11}
\end{equation*}
$$

from which

$$
\left(\sum_{x} \alpha_{x}{ }^{2}\right) u_{b} u^{b}+\left(\sum_{x} \alpha_{x} \beta_{x}\right) u_{b} v^{b}=0 .
$$

Thus substituting (3.8) and (3.9) into this equation, we have

$$
\begin{equation*}
\left(\sum_{x} \alpha_{x}^{2}\right)^{2}+\left(\sum_{x} \alpha_{x} \beta_{x}\right)^{2}=\sum_{x} \alpha_{x}^{2} . \tag{3.12}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left(\sum_{x} \beta_{x}{ }^{2}\right)^{2}+\left(\sum_{x} \alpha_{x} \beta_{x}\right)^{2}=\sum_{x} \beta_{x}{ }^{2} . \tag{3.13}
\end{equation*}
$$

Now we recall the fact that α_{x} and β_{x} depend on the choice of the mutually orthogonal unit normal vectors $C_{x}{ }^{h}$. However, we prove the

Lemma 3. 2. $\sum_{x} \alpha_{x}^{2}$ and $\sum_{x} \beta_{x}{ }^{2}$ are both independent of the choice of the mutually orthogonal unit normal vectors to N and consequently both of them are globally defined fuctions on N.

Proof. Let $\bar{C}_{x}{ }^{h}$ be another choice of the mutually orthogonal unit normal vectors to N. Then we can write

$$
\begin{equation*}
u^{h}=B_{a}{ }^{h} u^{a}+\sum_{x} \bar{\alpha}_{x} \bar{C}_{x^{h}} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{h}=B_{a}^{h} v^{a}+\sum_{x} \bar{\beta}_{x} \bar{C}_{x^{h}} . \tag{3.15}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\sum_{x} \alpha_{x} C_{x}{ }^{h}=\sum_{x} \bar{\alpha}_{x} \bar{C}_{x}{ }^{h} . \tag{3.16}
\end{equation*}
$$

Since $\bar{C}_{x^{h}}$ are mutually orthogonal unit normals to N, using an orthogonal transformation, we have

$$
\begin{equation*}
\bar{C}_{x}{ }^{h}=\sum_{y} A_{x y} C_{y}^{h} . \tag{3.17}
\end{equation*}
$$

Substituting (3.17) into (3.16), we get

$$
\begin{equation*}
\alpha_{y}=\sum_{x} \bar{\alpha}_{x} A_{x y} \tag{3.18}
\end{equation*}
$$

Thus we have

$$
\sum_{y} \alpha_{y}{ }^{2}=\sum_{x, y, z} \bar{\alpha}_{z} \bar{\alpha}_{x} A_{z y} A_{x y}=\sum_{x} \bar{\alpha}_{x}^{2},
$$

because ($A_{x y}$) is an orthogonal matrix. This shows that $\sum_{x} \alpha_{x}{ }^{2}$ is independent of the choice of unit normals.

Similarly $\sum_{x} \beta_{x}{ }^{2}$ is independent of the choice of unit normals.
We put

$$
N_{\alpha}=\left\{\mathrm{P} \in N \mid \sum_{x} \alpha_{x}{ }^{2} \neq 0\right\} \quad \text { and } \quad N_{\beta}=\left\{\mathrm{P} \in N \mid \sum_{x} \beta_{x}{ }^{2} \neq 0\right\} .
$$

Then N_{α}, N_{β} are open in N and satisfy $N_{\alpha} \cup N_{\beta}=N$, because of the fact that N is odd-dimensional.

In N_{α}, we find, from (3.10),

$$
\begin{equation*}
u_{b}=-\frac{\sum_{x} \alpha_{x} \beta_{x}}{\sum_{x} \alpha_{x}{ }^{2}} v_{b} \tag{3.19}
\end{equation*}
$$

Substituting (3.19) into

$$
u_{b} u^{a}+v_{b} v^{a},
$$

we find

$$
u_{b} u^{a}+v_{b} v^{a}=\frac{\left(\sum_{x} \alpha_{x}^{2}\right)^{2}+\left(\sum_{x} \alpha_{x} \beta_{x}\right)^{2}}{\left(\sum_{x} \alpha_{x}^{2}\right)^{2}} v_{b} v^{a}
$$

or using (3.12)
(3. 20)

$$
u_{b} u^{a}+v_{b} v^{a}=\frac{1}{\sum_{x} \alpha_{x}^{2}} v_{b} v^{a} .
$$

In N_{β}, we find, from (3.11),

$$
\begin{equation*}
v_{b}=-\frac{\sum_{x} \alpha_{x} \beta_{x}}{\sum_{x} \beta_{x}{ }^{2}} u_{b} \tag{3.21}
\end{equation*}
$$

from which

$$
u_{b} u^{a}+v_{b} v^{a}=\frac{1}{\sum_{x} \beta_{x}^{2}} u_{b} u^{a}
$$

because of (3.13).

Now we define a 1-form η_{a} on N in the following way: in N_{α} we put

$$
\begin{equation*}
\eta_{b}{ }^{(\alpha)}=\frac{1}{\sqrt{\sum_{x} \alpha_{x}^{2}}} v_{b} \tag{3.22}
\end{equation*}
$$

and in N_{β}

$$
\begin{equation*}
\eta_{b}{ }^{(\beta)}=\frac{-1}{\sqrt{\sum_{x} \beta_{x}}} u_{b} . \tag{3.23}
\end{equation*}
$$

Since in $N_{\alpha} \cap N_{\beta}$ we have

$$
u_{b}=-\frac{\sum_{x} \alpha_{x} \beta_{x}}{\sum_{x} \alpha_{x}{ }^{2}} v_{b}, \quad v_{b}=-\frac{\sum_{x} \alpha_{x} \beta_{x}}{\sum_{x} \beta_{x}{ }^{2}} u_{b},
$$

it follows that

$$
u_{b}=\frac{\left(\sum_{x} \alpha_{x} \beta_{x}\right)^{2}}{\left.\left(\sum_{x} \alpha_{x}\right)^{2}\right)\left(\sum_{x} \beta_{x}^{2}\right)} u_{b}
$$

from which

$$
\begin{equation*}
\left(\sum_{x} \alpha_{x} \beta_{x}\right)^{2}=\left(\sum_{x} \alpha_{x}{ }^{2}\right)\left(\sum_{x} \beta_{x}{ }^{2}\right) . \tag{3.24}
\end{equation*}
$$

If $\sum_{x} \alpha_{x} \beta_{x}=0$ in $N_{\alpha} \cap N_{\beta}$, from (3.19) and (3.21), we have $u^{a}=0, v^{a}=0$. This shows that N is even-dimensional. So, in $N_{\alpha} \cap N_{\beta}, \sum_{x} \alpha_{x} \beta_{x}$ has no zero point. Without loss of generality we may suppose that

$$
\begin{equation*}
\sum_{x} \alpha_{x} \beta_{x}>0 \tag{3.25}
\end{equation*}
$$

Thus, in $N_{\alpha} \cap N_{\beta}$, we have

$$
\begin{aligned}
\eta_{b}^{(\alpha)} & =\frac{1}{\sqrt{\sum_{x} \alpha_{x}^{2}}} v_{b}=-\frac{\sqrt{\left(\sum_{x} \alpha_{x} \beta_{x}\right)^{2}}}{\sqrt{\sum_{x} \alpha_{x}^{2}}\left(\sum_{x} \beta_{x}^{2}\right)} u_{b} \\
& =-\frac{1}{\sqrt{\sum_{x} \beta_{x}^{2}}} u_{b}=\eta_{b}{ }^{(\beta)},
\end{aligned}
$$

because of (3.21), (3.24) and (3.25). Hence, η_{0} is a well defined 1-form on N.
Computing $u_{b} u^{a}+v_{b} v^{a}$, we find

$$
\begin{equation*}
u_{b} u^{a}+v_{b} v_{p}=\eta_{b} \eta^{a}, \tag{3.26}
\end{equation*}
$$

and consequently, (3.5) and (3.7) give

$$
\begin{equation*}
f_{b}^{c} f_{c}^{a}=-\delta_{b}^{a}+\eta_{b} \eta^{a} \tag{3.27}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{b}^{a} \eta^{b}=0 \tag{3.28}
\end{equation*}
$$

respectively.
Thus, from (3.27), we have, using (3.28),

$$
\begin{equation*}
-\eta^{a}+\left(\eta_{b} \eta^{b}\right) \eta^{a}=0, \tag{3.29}
\end{equation*}
$$

from which

$$
\begin{equation*}
\eta_{b} \eta^{b}=1 . \tag{3.30}
\end{equation*}
$$

Thus the structure defined by $\left(f_{b}{ }^{a}, g_{c b}, \eta_{b}\right)$ is an almost contact metric structure.
§4. Odd dimensional invariant submanifolds of a manifold with normal (f, $\boldsymbol{g}, \boldsymbol{u}, \boldsymbol{v}, \lambda)$-structure.

In $\S 2$ we have calculated $S_{j i}{ }^{h} B_{c}{ }^{j} B_{b}{ }^{i}$ and got

$$
\begin{aligned}
S_{j i}{ }^{h} B_{c}{ }^{j} B_{b}{ }^{2}= & \left\{N_{c b}{ }^{a}+\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) v^{a}\right\} B_{a}{ }^{h} \\
& +\sum_{x}\left\{\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) \alpha_{x}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) \beta_{x}\right\} C_{x}{ }^{h} .
\end{aligned}
$$

Consequently, if the (f, g, u, v, λ)-structure of the ambient manifold is normal we have

$$
\begin{equation*}
N_{c b}{ }^{a}+\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) v^{a}=0 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) \alpha_{x}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) \beta_{x}=0 . \tag{4.2}
\end{equation*}
$$

Equations (3.22), (3.23) and (3.30) say that

$$
\begin{equation*}
v_{b} v^{b}=\sum_{x} \alpha_{x}{ }^{2} \tag{4.3}
\end{equation*}
$$

in N_{α} and that

$$
\begin{equation*}
u_{b} u^{b}=\sum_{x} \beta_{x}{ }^{2} \tag{4.4}
\end{equation*}
$$

in N_{β}.
Now we define α and β by

$$
\begin{equation*}
\alpha^{2}=\sum_{x} \alpha_{x}{ }^{2}, \quad \beta^{2}=\sum_{x} \beta_{x}^{2}, \tag{4.5}
\end{equation*}
$$

then, by virtue of Lemma 3.2, they are globally defined functions on N and we can put

$$
\begin{equation*}
u^{a}=-\beta \eta^{a}, \quad v^{a}=\alpha \eta^{a} \tag{4.6}
\end{equation*}
$$

because, when α or β vanishes, v^{a} or u^{a} vanishes.
Then

$$
\begin{aligned}
&\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) v^{a} \\
&=\beta^{2}\left(\nabla_{c} \eta_{b}-\nabla_{b} \eta_{c}\right) \eta^{a}+\alpha^{2}\left(\nabla_{c} \eta_{b}-\nabla_{b} \eta_{c}\right) \eta^{a} \\
&+\left\{\left(\nabla_{c} \beta\right) \eta_{b}-\left(\nabla_{b} \beta\right) \eta_{c}\right\} \beta \eta^{a}+\left\{\left(\nabla_{c} \alpha\right) \eta_{b}-\left(\nabla_{b} \alpha\right) \eta_{c}\right\} \alpha \eta^{a},
\end{aligned}
$$

or

$$
\begin{equation*}
\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) v^{a}=\left(\nabla_{c} \eta_{b}-\nabla_{b} \eta_{c}\right) \eta^{a} \tag{4.7}
\end{equation*}
$$

by virtue of

$$
\begin{equation*}
\alpha^{2}+\beta^{2}=1 \tag{4.8}
\end{equation*}
$$

which is obtained from (3.5), (4.3) and (4.5).
Thus (4.1) becomes

$$
\begin{equation*}
N_{c b}{ }^{a}+\left(\nabla_{c} \eta_{b}-\nabla_{b} \eta_{c}\right) \eta^{a}=0 . \tag{4.9}
\end{equation*}
$$

Thus we have
Theorem 4.1. Let N be an odd-dimensional invariant submanifold of a manifold with normal (f, g, u, v, λ)-structure. Then the submanifold N admits a normal almost contact metric structure.

We now assume that the (f, g, u, v, λ)-structure of the ambient manifold is normal and satisfies

$$
\begin{equation*}
\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i} . \tag{4.10}
\end{equation*}
$$

Then we have, by Theorem 1.1,

$$
\begin{equation*}
f_{j}^{t} \nabla_{h} f_{t i}-f_{\imath}{ }^{\imath} \nabla_{h} f_{t j}=u_{j}\left(\nabla_{i} u_{h}\right)-u_{i}\left(\nabla_{j} u_{h}\right)+v_{j}\left(\nabla_{i} v_{h}\right)-v_{i}\left(\nabla_{j} v_{h}\right) \tag{4.11}
\end{equation*}
$$

From (4.10), we have, by transvection with $B_{c}{ }^{j} B_{b}{ }^{2}$,

$$
\begin{equation*}
\nabla_{c} v_{b}-\nabla_{b} v_{c}=2 f_{c b} . \tag{4.12}
\end{equation*}
$$

Also we have, from (4.11),

$$
f_{c}{ }^{d} \nabla_{a} f_{d b}-f_{b}{ }^{d} \nabla_{a} f_{d c}=u_{c}\left(\nabla_{b} u_{a}\right)-u_{b}\left(\nabla_{c} u_{a}\right)+v_{c}\left(\nabla_{b} v_{a}\right)-v_{b}\left(\nabla_{c} v_{a}\right),
$$

from which

$$
\begin{gathered}
\nabla_{a}\left(f_{c}{ }^{d} f_{d b}\right)-\left(\nabla_{a} f_{c}{ }^{d}\right) f_{d b}-f_{b}{ }^{d} \nabla_{a} f_{d c}=u_{c}\left(\nabla_{b} u_{a}\right)-u_{b}\left(\nabla_{c} u_{a}\right)+v_{c}\left(\nabla_{b} v_{a}\right)-v_{b}\left(\nabla_{c} v_{a}\right), \\
\nabla_{a}\left(-g_{c b}+u_{c} u_{b}+v_{c} v_{b}\right)+2 f_{b}{ }^{d}\left(\nabla_{a} f_{c d}\right)=u_{c}\left(\nabla_{b} u_{a}\right)-u_{b}\left(\nabla_{c} u_{a}\right)+v_{c}\left(\nabla_{b} v_{a}\right)-v_{b}\left(\nabla_{c} v_{a}\right),
\end{gathered}
$$

or

$$
\begin{align*}
2\left(\nabla_{a} f_{c a}\right) f_{b}^{d}= & u_{c}\left(\nabla_{b} u_{a}-\nabla_{a} u_{b}\right)-u_{b}\left(\nabla_{c} u_{a}+\nabla_{a} u_{c}\right) \\
& +v_{c}\left(\nabla_{b} v_{a}-\nabla_{a} v_{b}\right)-v_{b}\left(\nabla_{c} v_{a}+\nabla_{a} v_{c}\right) . \tag{4.13}
\end{align*}
$$

On the other hand, using (4.6) and (4.8), we have

$$
\begin{aligned}
& u_{c}\left(\nabla_{b} u_{a}-\nabla_{a} u_{b}\right)-u_{b}\left(\nabla_{c} u_{a}+\nabla_{a} u_{c}\right)+v_{c}\left(\nabla_{b} v_{a}-\nabla_{a} v_{b}\right)-v_{b}\left(\nabla_{c} v_{a}+\nabla_{a} v_{c}\right) \\
= & \eta_{c}\left(\nabla_{b} \eta_{a}-\nabla_{a} \eta_{b}\right)-\eta_{b}\left(\nabla_{c} \eta_{a}+\nabla_{a} \eta_{c}\right) .
\end{aligned}
$$

Substituting this into (4.12), we get

$$
\begin{equation*}
2 f_{b}{ }^{d}\left(\nabla_{a} f_{c d}\right)=\eta_{c}\left(\nabla_{b} \eta_{a}-\nabla_{a} \eta_{b}\right)-\eta_{b}\left(\nabla_{c} \eta_{a}+\nabla_{a} \eta_{c}\right) . \tag{4.14}
\end{equation*}
$$

Now we prove the

Lemma 4.2. Let N be an odd-dimensional invariant submanifold of a manifold with normal (f, g, u, v, λ)-structure. If the ambient manifold satisfies (4.10), we have

$$
\begin{equation*}
\alpha\left(\nabla_{b} \eta_{a}-\nabla_{a} \eta_{b}\right)=2 f_{b a} . \tag{4.15}
\end{equation*}
$$

Proof. Since an almost contact metric structure (f, g, η) always satisfies

$$
f_{b}^{a} f_{a}^{b}=1-n,
$$

it follows that

$$
\begin{equation*}
N_{c a}{ }^{a}=0 \tag{4.16}
\end{equation*}
$$

If the ambient manifold admits a normal (f, g, u, v, λ)-structure, from Theorem 4.1, we have

$$
\begin{equation*}
\left(\nabla_{a} \eta_{b}-\nabla_{b} \eta_{a}\right) \eta^{a}=S_{c a}{ }^{a}-N_{c a}{ }^{a}=0 . \tag{4.17}
\end{equation*}
$$

On the other hand, (4.6) and (4.12) imply that

$$
\begin{equation*}
\alpha\left(\nabla_{a} \eta_{b}-\nabla_{b} \eta_{a}\right)+\left(\nabla_{a} \alpha\right) \eta_{b}-\left(\nabla_{b} \alpha\right) \eta_{a}=2 f_{a b} \tag{4.18}
\end{equation*}
$$

from which

$$
\begin{equation*}
\nabla_{b} \alpha=\left(\eta^{a} \nabla_{a} \alpha\right) \eta_{b}, \tag{4.19}
\end{equation*}
$$

because of (4.17).
Substituting (4.19) into (4.18), we have (4.15).
Lemma 4.3. Under the same assumptions as those in Lemma 4.2, α is a non-zero constant.

Proof. Suppose that there exists a point P at which

$$
\alpha(\mathrm{P})=0, \quad \text { then, for all } x, \alpha_{x}(\mathrm{P})=0
$$

Consequently we have at P

$$
\begin{equation*}
\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) \beta_{x}=2 f_{c b} \beta_{x}=0 \tag{4.20}
\end{equation*}
$$

because of (4.2).
Thus $\beta_{x}(\mathrm{P})=0$ and this, together with (2.12), shows that N is evendimensional.

To prove that α is a constant, we differentiate (4.19) covariantly and find

$$
\nabla_{a} \nabla_{b} \alpha=\gamma \nabla_{a} \eta_{b}+\left(\nabla_{a} \gamma\right) \eta_{b},
$$

from which

$$
\begin{equation*}
\gamma\left(\nabla_{a} \eta_{b}-\nabla_{b} \eta_{a}\right)+\left(\nabla_{a} \gamma\right) \eta_{b}-\left(\nabla_{b \gamma}\right) \eta_{a}=0 \tag{4.21}
\end{equation*}
$$

where we have put $\gamma=\eta^{a} V_{a} \alpha$.
Transvecting (4.21) with $f^{b a}$, we have

$$
(n-1)_{\gamma}=0,
$$

which, together with (4.19), implies $\nabla_{b} \alpha=0$.
Thus we have proved Lemma 4.3.
Theorem 4.4. An odd dimensional invariant submanifold of a manifold with normal (f, g, u, v, λ)-structure satisfying

$$
\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i}
$$

admits a Sasakian structure.

Proof. Transvecting (4.14) with η^{b} and making use of (4.17), we have

$$
\begin{equation*}
\nabla_{c} \eta_{a}+\nabla_{a} \eta_{c}=0, \tag{4.22}
\end{equation*}
$$

which, together with (4.15), implies that

$$
\begin{equation*}
\alpha \nabla_{c} \eta_{a}=f_{c a} . \tag{4.23}
\end{equation*}
$$

Substituting (4.23) into (4.14), we have

$$
\alpha f_{b}^{a}\left(\nabla_{a} f_{c d}\right)=\eta_{c} f_{b a}
$$

Transvecting this equation with f_{e}^{b}, we find

$$
-\alpha \nabla_{a} f_{c b}+\alpha \eta_{b} \eta^{d} \nabla_{a} f_{c b}=-\eta_{c} g_{a b}+\eta_{c} \eta_{b} \eta_{a}
$$

or

$$
-\alpha \nabla_{a} f_{c b}-\alpha \eta_{b} f_{c a} \nabla_{a} \eta^{d}=-\eta_{c} g_{a b}+\eta_{c} \eta_{b} \eta_{a} .
$$

Substituting (4.23) into the above equation and making use of (3.6), we have

$$
\alpha \nabla_{a} f_{b c}=\eta_{b} g_{c a}-\eta_{c} g_{a b} .
$$

Thus the submanifold admits a Sasakian structure.

§ 5. Invariant submanifolds of even dimension.

We now consider an even-dimensional invariant submanifold of a manifold with (f, g, u, v, λ)-structure.

First we assume that the function λ does not vanish almost everywhere along the submanifold. In this case, from (2.8) and the fact that $f_{c b}$ is skew-symmetric, we have

$$
\begin{equation*}
u_{a} v^{a}=0, \tag{5.1}
\end{equation*}
$$

from which, taking account of (2.10), we have

$$
\begin{equation*}
\sum_{x} \alpha_{x} \beta_{x}=0 \tag{5.2}
\end{equation*}
$$

On the other hand, from (2.13) and the skew-symmetry of $\gamma_{x y}$, we find

$$
\lambda\left(\sum_{x} \alpha_{x}^{2}-\sum_{x} \beta_{x}{ }^{2}\right)=0
$$

from which

$$
\begin{equation*}
\sum_{x} \alpha_{x}{ }^{2}=\sum_{x} \beta_{x}{ }^{2} . \tag{5.3}
\end{equation*}
$$

We assume furthermore that

$$
\begin{equation*}
\sum_{x} \alpha_{x}{ }^{2}=\sum_{x} \beta_{x}{ }^{2} \neq 0 \tag{5.4}
\end{equation*}
$$

almost everywhere along the submanifold.
From (2.11) and (3. 2), we find

$$
\sum_{x} \alpha_{x}{ }^{2} u_{b}=0, \quad \sum_{x} \beta_{x}{ }^{2} v_{b}=0
$$

from which

$$
\begin{equation*}
u_{b}=0, \quad v_{b}=0 \tag{5.5}
\end{equation*}
$$

that is, the vectors u^{h} and v^{h} are normal to the submanifold.
From (2.6) and (5.5), we have

$$
\begin{equation*}
f_{c}^{b} f_{b}^{a}=-\delta_{c}^{a} \tag{5.6}
\end{equation*}
$$

that is, $f_{0}{ }^{a}$ defines an almost complex structure on the submanifold. If the (f, g, u, v, λ)-structure of the ambient manifold is normal, we have

$$
0=S_{j i}{ }^{h} B_{c}{ }^{j} B_{b}{ }^{i}=N_{c b}{ }^{a} B_{a}{ }^{h}
$$

and consequently the almost complex structure is integrable.
If the ambient manifold satisfies

$$
\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i},
$$

then we have

$$
\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) B_{c}{ }^{j} B_{b}{ }^{2}=2 f_{j i} B_{c}{ }^{j} B_{b}{ }^{2},
$$

or

$$
0=2 f_{c b},
$$

which contradicts (3.6). Thus, we have
Theorem 5.1. Let M be a differentiable manifold with (f, g, u, v, λ)-structure satisfying $\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i}$ and N be an invariant submanifold along which $\lambda \neq 0$ almost everywhere. Then

$$
\sum_{x} \alpha_{x^{2}}=\sum_{x} \beta_{x}^{2}
$$

cannot be different from zero almost everywhere.
We next assume that

$$
\begin{equation*}
\sum_{x} \alpha_{x}{ }^{2}=\sum_{x} \beta_{x}{ }^{2}=0 \tag{5.7}
\end{equation*}
$$

everywhere along N, that is,

$$
\begin{equation*}
\alpha_{x}=0, \quad \beta_{x}=0, \tag{5.8}
\end{equation*}
$$

and consequently the vectors u^{h} and v^{h} are tangent to the submanifold.
Then equations $(2.6) \sim(2.10)$ show that the submanifold admits an $(f, g, u, v$, ג)-structure.

Equation (2.12) shows that the normal bundle of the submanifold admits an almost complex structure.

In this case, we have

$$
S_{j i}{ }^{h} B_{c}{ }^{3} B_{b}{ }^{2}=\left\{N_{c b}{ }^{a}+\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) v^{a}\right\} B_{a}{ }^{h},
$$

and consequently
Theorem 5.2. Let M be a differentiable manifold with normal (f, g, u, v, λ)structnre and N an invariant submanifold such that $\lambda \neq 0$ almost everywhere along N and u^{h} and v^{h} are always tangent to N. Then, the submanifold N admits also a normal (f, g, u, v, λ)-structure.

Suppose that the (f, g, u, v, λ)-structure of M satisfies

$$
\nabla_{j} u_{i}-\nabla_{i} u_{j}=2 \phi f_{j i}, \quad \nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i},
$$

then that of the submanifold N satisfies

$$
\nabla_{c} u_{b}-\nabla_{b} u_{a}=2 \phi f_{c b}, \quad \nabla_{c} v_{b}-\nabla_{b} v_{c}=2 f_{c b}
$$

and consequently we have
Theorem 5.3. Let S be an even-dimensional sphere with (f, g, u, v, λ)-structure naturally induced in it. An invariant complete submanifold N such that $\lambda \neq 0$ almost everywhere along N and vectors u^{h} and v^{h} are tangent to N is an evendimentional sphere.

We next assume that λ vanishes identically along the invariant submaniold N.
If there exists a point P of N at which one of $\sum_{x} \alpha_{x}{ }^{2}$ and $\sum_{x} \beta_{x}{ }^{2}$, say $\sum_{x} \alpha_{x}{ }^{2}$, does not vanish, then the tangent space of N at P admits an almost contact structure such that

$$
\left(f_{b}{ }^{a}(\mathrm{P}), \quad \frac{1}{\sqrt{\sum_{x} \alpha_{x}^{2}}} v_{b}(\mathrm{P})\right)
$$

is the structure tensors of it. Consequently, the submanifold is odd-dimensional.
Thus we have only to consider, in this section, the case in which both $\sum_{x} \alpha_{x}{ }^{2}$ and $\sum_{x} \beta_{x}{ }^{2}$ vanish.

Then, equations (2.6) $\sim(2.10$) become

$$
f_{b}{ }^{c} f_{c}{ }^{a}=-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a},
$$

$$
\begin{gathered}
f_{c}^{e} f_{b}{ }^{a} g_{e d}=g_{c b}-u_{c} u_{b}-v_{c} v_{b} \\
f_{b}{ }^{a} u^{b}=0, \quad f_{b}{ }^{a} v^{b}=0 \\
u_{a} u^{a}=1, \quad v_{a} v^{a}=1 \\
u_{a} v^{a}=0
\end{gathered}
$$

and consequently the invariant submanifold admits the so-called framed f-structure of rank $n-2$.

If the (f, g, u, v, λ)-structure of the ambient manifold is normal, we have

$$
S_{c b}{ }^{a}=N_{c b}{ }^{a}+\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) v^{a}=0
$$

Thus we have the
Theorem 5.4. Let N be an even-dimensional invariant submanifold of a manifold with (f, g, u, v, λ)-structure. If the function λ vanishes identically on the submanifold N, then N admits a framed f-structure of rank $n-2$. If, moreover, the (f, g, u, v, λ)-structure is normal, the f-structure of N is also normal.

Bibliography

[1] Blair, D. E., G. D. Ludden, and K. Yano, Induced structures on submanifolds. Kōdai Math. Sem. Rep. 22 (1970), 188-198.
[2] Kubo, Y., Invariant submanifolds of codimension 2 of a manifold with (F, G, u, $v, \lambda)$-structure. Kōdai Math.' Sem. Rep. 24 (1972), 50-61.
[3] Sasaki, S., and Y. Hatakeyama, On differentiable manifolds with contact metric structures. J. Math. Soc. Japan 14 (1962), 249-271.
[4] Yano, K., and M. Okumura, On (f, g, u, v, λ)-structures. Kōdai Math. Sem. Rep. 22 (1970), 401-423.
[5] Yano, K., and M. Okumura, On normal (f, g, u, v, λ)-structures on submanifolds of codimension 2 in an even-dimensional Euclidean space. Kōdai Math. Sem. Rep. 23 (1971), 172-197.
[6] Yano, K., and M. Okumura, Invarıant hypersurfaces of a manifold with (f, g, $u, v, \lambda)$-structures. Kōdai Math. Sem. Rep. 23 (1971), 290-304.

Tokyo Institute of Technology and
Saitama University.

