ON DEFICIENCIES OF AN ENTIRE ALGEBROID FUNCTION

By Tsugio Suzuki

§1. Niino and Ozawa [1, 2] proved some interesting results for entire algebroid functions. A typical one is the following:

Let f(z) be a two-valued entire transcendental algebroid function and a_1, a_2 and a_3 be different finite numbers satisfying

$$\sum_{j=1}^{3} \delta(a_j, f) > 2.$$

Then at least one of $\{a_j\}$ is a Picard exceptional value of f.

They also proved in the three- and four-valued cases that a more weaker condition on deficiencies, under a "non-proportionality" condition, implies the existence of Picard exceptional values (Theorem 1 in [2]).

In this paper we shall discuss the five-valued case and establish the similar conclusions as in Theorem 1 in [2] under a different assumption on deficiencies (see also Ozawa [3]). Those are the following:

THEOREM 1. Let f(z) be a five-valued transcendental entire algebroid function defined by an irreducible equation

$$F(z, f) \equiv f^{5} + A_{4}f^{4} + A_{3}f^{3} + A_{2}f^{2} + A_{1}f + A_{0} = 0,$$

where A_4 , A_3 , A_2 , A_1 and A_0 are entire functions. Let a_j , $j=1, \dots, 6$, be different finite numbers satisfying

$$\sum_{j=1}^{6} \delta(a_j, f) + \delta(a_m, f) + \delta(a_n, f) > 7$$

for every pair $m, n \ (m \neq n), m, n = 1, \dots, 6$, where $\delta(a_j, f)$ indicates the Nevanlinna-Selberg deficiency of f at a_j . Further assume that any four of $\{F(z, a_j)\}$ are not linearly dependent. Then one of $\{a_j\}_{j=1}^6$ is a Picard exceptional value of f.

THEOREM 2. Let f(z) be the same as in Theorem 1. Let $\{a_j\}_{j=1}^{\gamma}$ be different finite numbers satisfying

$$\sum_{j=1}^{6} \delta(a_j, f) + \delta(a_m, f) + \delta(a_n, f) > 7$$

for every pair $m, n \ (m \neq n), m, n = 1, \dots, 6, and$

Received January 27, 1971.

$$\sum_{\substack{j=1\\j\neq 6}}^{7} \delta(a_j, f) + \delta(a_7, f) > 6.$$

Further assume that any three of $\{F(z, a_j)\}\$ are not linearly dependent. Then at least two of $\{a_j\}\$ are Picard exceptional values of f.

THEOREM 3. Let f(z) be the same as in Theorem 1. Let $\{a_j\}_{j=1}^{s}$ be different finite numbers satisfying

$$\sum_{j=1}^{6} \delta(a_j, f) + \delta(a_m, f) + \delta(a_n, f) > 7$$

for every pair $m, n \ (m \neq n), m, n = 1, \dots, 6, and$

$$\sum_{\substack{j=1\\j\neq 6}}^{7} \delta(a_j, f) + \delta(a_k, f) > 6$$

for every k, k=1, 2, ..., 5, 7, and

$$\sum_{\substack{j=1\\j\neq 6,7}}^{8} \delta(a_j, f) > 5.$$

Further assume that any two of $\{F(z, a_j)\}$ are not proportional. Then at least three of $\{a_j\}$ are Picard exceptional values of f.

Here we remark that Toda [4] proved that $\sum_{j=1}^{9} \delta(a_j, f) > 8$ implies the existence of four Picard exceptional values among $\{a_j\}$.

§2. Proof of Theorem 1.

1. We put

$$g_j(z) = F(z, a_j), \quad j = 1, \dots, 6,$$

and assume that all $g_j(z)$, $j=1, \dots, 6$, are transcendental.

We first have

$$\sum_{j=1}^{6} \delta(a_j, f) > 5$$

and (1)

$$\alpha_1 g_1 + \alpha_2 g_2 + \alpha_3 g_3 + \alpha_4 g_4 + \alpha_5 g_5 + \alpha_6 g_6 = 1,$$

where

$$\alpha_j = 1 / \prod_{\substack{k=1\\k\neq j}}^{6} (a_j - a_k), \qquad j = 1, \dots, 6.$$

TSUGIO SUZUKI

Applying the method in the proof of Theorem 1 in [1] to our case, we get the linear dependency of $\{g_j\}_{j=1}^6$, that is, for constants $\{\alpha'_j\}_{j=1}^6$ not all zero,

(2)
$$\alpha'_{1}g_{1} + \alpha'_{2}g_{2} + \alpha'_{3}g_{3} + \alpha'_{4}g_{4} + \alpha'_{5}g_{5} + \alpha'_{6}g_{6} = 0.$$

Here we may assume without any loss of generality that $\alpha'_{5}\alpha'_{6} \neq 0$, $\alpha'_{6} = \alpha_{6}$. Eliminating g_{6} from (1) and (2), we have

$$\sum_{j=1}^{5} (\alpha_j - \alpha'_j) g_j = 1.$$

Since at least two of $\{\alpha_j - \alpha'_j\}$ are not zero, we study the following subcases:

- 1) $\alpha_1 \neq \alpha'_1, \quad \alpha_2 \neq \alpha'_2, \quad \alpha_3 \neq \alpha'_3, \quad \alpha_4 \neq \alpha'_4, \quad \alpha_5 \neq \alpha'_5,$
- 2) $\alpha_1 \neq \alpha'_1$, $\alpha_2 \neq \alpha'_2$, $\alpha_3 \neq \alpha'_3$, $\alpha_4 \neq \alpha'_4$, $\alpha_5 = \alpha'_5$,

(i)
$$\alpha'_{1} = \alpha'_{2} = \alpha'_{3} = \alpha'_{4} = 0$$
,

(ii)
$$\alpha'_1 = \alpha'_2 = \alpha'_3 = 0, \quad \alpha'_4 \neq 0,$$

(iii)
$$\alpha'_1 = \alpha'_2 = 0$$
, $\alpha'_3 \alpha'_4 \neq 0$, $\alpha'_3 \alpha_4 - \alpha_3 \alpha'_4 \neq 0$,

(iv)
$$\alpha'_1 = \alpha'_2 = 0$$
, $\alpha'_3 \alpha'_4 \neq 0$, $\alpha'_3 \alpha_4 - \alpha_3 \alpha'_4 = 0$,

$$(\mathbf{v}) \quad \alpha'_1 = 0, \quad \alpha'_2 \alpha'_3 \alpha'_4 \neq 0, \quad (\alpha_2, \alpha_3, \alpha_4) \neq C(\alpha'_2, \alpha'_3, \alpha'_4) \text{ for any complex number } C,$$

(vi)
$$\alpha'_1=0$$
, $\alpha'_2\alpha'_3\alpha'_4 \neq 0$, $(\alpha_2, \alpha_3, \alpha_4)=C(\alpha'_2, \alpha'_3, \alpha'_4)$ for some complex number C,

$$\begin{array}{ll} (\text{vii}) & \alpha_{1}' \alpha_{2}' \alpha_{3}' \alpha_{4}' \neq 0, & \frac{\alpha_{1}}{\alpha_{1}} = \frac{\alpha_{2}}{\alpha_{2}} = \frac{\alpha_{3}}{\alpha_{3}} = \frac{\alpha_{4}}{\alpha_{4}}, \\ (\text{viii}) & \alpha_{1}' \alpha_{2}' \alpha_{3}' \alpha_{4}' \neq 0, & \frac{\alpha_{i_{1}}'}{\alpha_{i_{1}}} = \frac{\alpha_{i_{2}}'}{\alpha_{i_{2}}} = \frac{\alpha_{i_{3}}}{\alpha_{i_{3}}} & \text{for some } (i_{1}, i_{2}, i_{3}), & 1 \leq i_{1}, i_{2}, i_{3} \leq 4, \text{ but not (vii)}, \\ (\text{ ix }) & \alpha_{1}' \alpha_{2}' \alpha_{3}' \alpha_{4}' \neq 0, & \frac{\alpha_{i_{1}}'}{\alpha_{i_{1}}} = \frac{\alpha_{i_{2}}'}{\alpha_{i_{2}}} \neq \frac{\alpha_{i_{3}}'}{\alpha_{i_{3}}} = \frac{\alpha_{i_{4}}'}{\alpha_{i_{4}}} & \text{for some } (i_{1}, i_{2}, i_{3}, i_{4}), \end{array}$$

(x) $\alpha'_1\alpha'_2\alpha'_3\alpha'_4 \neq 0$, not (vii), (viii), (ix),

3)
$$\alpha_1 \neq \alpha'_1$$
, $\alpha_2 \neq \alpha'_2$, $\alpha_3 \neq \alpha'_3$, $\alpha_4 = \alpha'_4$, $\alpha_5 = \alpha'_5$,

(i)
$$\alpha'_1 = \alpha'_2 = \alpha'_3 = 0$$
,

(ii)
$$\alpha'_1 = \alpha'_2 = 0$$
, $\alpha'_3 \neq 0$,

(iii) $\alpha'_1=0$, $\alpha'_2\alpha'_3\neq 0$, $\alpha'_3\alpha_2-\alpha'_2\alpha_3\neq 0$,

(iv)
$$\alpha'_1=0$$
, $\alpha'_2\alpha'_3 \neq 0$, $\alpha'_3\alpha_2-\alpha'_2\alpha_3=0$,

- $(\mathbf{v}) \quad \alpha_1' \alpha_2' \alpha_3' \neq 0, \quad (\alpha_1, \alpha_2, \alpha_3) = C(\alpha_1', \alpha_2', \alpha_3') \text{ for some } C,$
- (vi) $\alpha'_1\alpha'_2\alpha'_3 \neq 0$, $(\alpha_1, \alpha_2, \alpha_3) \neq C(\alpha'_1, \alpha'_2, \alpha'_3)$ for any C,

4)
$$\alpha_1 \neq \alpha'_1$$
, $\alpha_2 \neq \alpha'_2$, $\alpha_3 = \alpha'_3$, $\alpha_4 = \alpha'_4$, $\alpha_5 = \alpha'_5$,

$$(i) \quad \alpha_1'=\alpha_2'=0,$$

- (ii) $\alpha_1'=0, \alpha_2'\neq 0,$
- (iii) $\alpha'_1\alpha'_2 \neq 0$, $\alpha_1\alpha'_2 \alpha_2\alpha'_1 \neq 0$,
- (iv) $\alpha'_1\alpha'_2 \neq 0$, $\alpha_1\alpha'_2 \alpha_2\alpha'_1 = 0$.

The cases 1), 2) (ii), (iii), (v), (viii), (x), 3) (ii), (iii), (vi), 4) (ii) and (iii) lead to an identity of the following type;

A)
$$\lambda_1 g_1 + \lambda_2 g_2 + \lambda_3 g_3 + \lambda_4 g_4 + \lambda_5 g_5 = 1, \quad \lambda_1 \lambda_2 \lambda_3 \lambda_4 \lambda_5 \neq 0,$$

The case 2) (i) leads to the following type;

B)
$$\alpha_1 g_1 + \alpha_2 g_2 + \alpha_3 g_3 + \alpha_4 g_4 = 1, \quad \alpha_5 g_5 + \alpha_6 g_6 = 0.$$

The case 2) (iv) leads to

C¹)
$$\alpha_1 g_1 + \alpha_2 g_2 + \frac{\alpha'_3 - \alpha_4}{\alpha_3} \alpha_5 g_5 + \frac{\alpha'_3 - \alpha_3}{\alpha_3} \alpha_6 g_6 = 1,$$
$$\alpha_1 g_1 + \alpha_2 g_2 + (\alpha_3 - \alpha'_3) g_3 + \frac{\alpha_4}{\alpha_3} (\alpha_3 - \alpha'_3) g_4 = 1.$$

The cases 2) (vi) and 3) (iv) lead to

D)

$$\alpha_{1}g_{1} + \frac{\alpha_{3} - \alpha'_{3}}{\alpha_{3}} \alpha_{2}g_{2} + (\alpha_{3} - \alpha'_{3})g_{3} + \frac{\alpha_{3} - \alpha'_{3}}{\alpha_{3}} \alpha_{4}g_{4} = 1,$$

$$\alpha_{1}g_{1} + \frac{\alpha'_{3} - \alpha_{3}}{\alpha_{3}} \alpha_{5}g_{5} + \frac{\alpha'_{3} - \alpha_{3}}{\alpha_{3}} \alpha_{6}g_{6} = 1.$$

The cases 2) (vii) and 4) (iv) lead to

E)
$$\lambda_1 g_1 + \lambda_2 g_2 = 1, \qquad \lambda_3 g_3 + \lambda_4 g_4 + \lambda_5 g_5 + \lambda_6 g_6 = 1.$$

The case 2) (ix) leads to

$$C^{2}) \qquad \begin{pmatrix} \left(1 - \frac{\alpha_{1}'}{\alpha_{1}}\right)\alpha_{1}g_{1} + \left(1 - \frac{\alpha_{1}'}{\alpha_{1}}\right)\alpha_{2}g_{2} + (\alpha_{3} - \alpha_{3}')g_{3} + \left(1 - \frac{\alpha_{3}'}{\alpha_{3}}\right)\alpha_{4}g_{4} = 1, \\ \left(1 - \frac{\alpha_{1}'}{\alpha_{1}} \cdot \frac{\alpha_{3}}{\alpha_{3}'}\right)\alpha_{1}g_{1} + \left(1 - \frac{\alpha_{1}'}{\alpha_{1}} \cdot \frac{\alpha_{3}}{\alpha_{3}'}\right)\alpha_{2}g_{2} + \left(1 - \frac{\alpha_{3}}{\alpha_{3}'}\right)\alpha_{5}g_{5} + \left(1 - \frac{\alpha_{3}}{\alpha_{3}'}\right)\alpha_{6}g_{6} = 1.$$

The case 3) (i) leads to

F)
$$\alpha_1 g_1 + \alpha_2 g_2 + \alpha_3 g_3 = 1, \quad \alpha_4 g_4 + \alpha_5 g_5 + \alpha_6 g_6 = 0.$$

The case 3) (v) leads to

G)
$$\lambda_1g_1+\lambda_2g_2+\lambda_3g_3=1, \quad \lambda_4g_4+\lambda_5g_5+\lambda_6g_6=1.$$

The case 4) (i) leads to

$$\alpha_1 g_1 + \alpha_2 g_2 = 1, \qquad \alpha_3 g_3 + \alpha_4 g_4 + \alpha_5 g_5 + \alpha_6 g_6 = 0.$$

2. By our assumption the cases B), C^{1}), F) and H) may be omitted. We shall discuss the other cases.

In the first place we remark that Valiron [5] proved

$$T(r, f) = \mu(r, A) + O(1),$$

where

$$A = \max_{0 \le j \le 4} (1, |A_j|)$$

and

$$5\mu(r, A) = \frac{1}{2\pi} \int_0^{2\pi} \log A \, d\theta.$$

Further we have

 $5\mu(r, A) = m(r, g) + O(1),$

where $g = \max_{1 \le j \le 5} (1, |g_j|)$.

The case A). In this case we have

$$\sum_{j=1}^{5} \delta(a_j, f) > 4$$

and

$$5T(r, f) = m(r, g) + O(1) = m(r, g_1^*) + O(1),$$

where $g_1^* = \max_{1 \le j \le 4} (1, |g_j|)$. By the same argument as in the proof of Theorem 1 in [2], we get the linear dependency of $\{g_j\}_{j=1}^5$, and hence we have one of the following:

A')
$$\mu_1 g_1 + \mu_2 g_2 + \mu_3 g_3 + \mu_4 g_4 = 1, \quad \mu_1 \mu_2 \mu_3 \mu_4 \neq 0,$$

B')
$$\mu_1g_1 + \mu_2g_2 + \mu_3g_3 = 1, \quad \mu_4g_4 + \mu_5g_5 = 1,$$

C')
$$\lambda_1 g_1 + \lambda_2 g_2 = 1, \quad \lambda_3 g_3 + \lambda_4 g_4 + \lambda_5 g_5 = 0,$$

D')
$$\lambda_1 g_1 + \lambda_2 g_2 + \lambda_3 g_3 = 1, \quad \lambda_1 g_1 + \lambda_4 g_4 + \lambda_5 g_5 = 1,$$

E')
$$\lambda_1 g_1 + \lambda_2 g_2 + \lambda_3 g_3 = 1, \qquad \lambda_4 g_4 + \lambda_5 g_5 = 0.$$

By our assumption the cases C'), D') and E') may be omitted. In the case A') we have

$$\sum_{j=1}^{4} \delta(a_j, f) > 3$$

66

H)

and

$$5T(r, f) = m(r, g_1^*) + O(1) = m(r, g_2^*) + O(1),$$

where $g_2^* = \max_{1 \le j \le 3} (1, |g_j|)$. Therefore the reasoning in the proof of Theorem 2 in [1] leads to a contradiction. In the case B') we have

$$5T(r, f) = m(r, g_3^*) + O(1),$$

where $g_3^* = \max_{2 \le j \le 4} (1, |g_j|)$. Hence we have a contradiction by virtue of the argument in the case (B) in the proof of Theorem 2 in [1].

The case C^2). In this case we have

$$m(r, g_2^*) \leq \sum_{j=1}^4 N(r; 0, g_j) + o\left(\sum_{j=1}^4 m(r, g_j)\right)$$

with a negligible exceptional set, and

$$m(r, g_4^*) \leq \sum_{\substack{j=1\\j\neq 3,4}}^{6} N(r; 0, g_j) + o\left(\sum_{\substack{j=1\\j\neq 3,4}}^{6} m(r, g_j)\right),$$

where $g_4^* = \max(1, |g_1|, |g_5|, |g_6|)$. Evidently

$$m(r, g) \leq m(r, g_2^*) + m(r, g_4^*)$$
$$\leq \sum_{j=1}^{6} N(r; 0, g_j) + N(r; 0, g_1) + N(r; 0, g_2) + o(m(r, g)).$$

On the other hand, for an arbitrary $\varepsilon > 0$,

$$N(r; 0, g_j) \leq \{1 - \delta(a_j, f) + \varepsilon\} m(r, g)$$

for $r \ge r_0$. Hence we have

$$m(r,g) \leq \left\{ 8 - \sum_{j=1}^{6} \delta(a_j,f) - \delta(a_1,f) - \delta(a_2,f) + \varepsilon \right\} m(r,g) + o(m(r,g)),$$

which leads to a contradictory inequality

$$\sum_{j=1}^{6} \delta(a_j, f) + \delta(a_1, f) + \delta(a_2, f) \leq 7.$$

The case D). We have

$$m(r, g_{z}^{*}) \leq \sum_{j=1}^{4} N(r; 0, g_{j}) + o\left(\sum_{j=1}^{4} m(r, g_{j})\right)$$

and

$$m(r, g_4^*) \leq N(r; 0, g_1) + \sum_{j=5}^6 N(r; 0, g_j) + o\Big(m(r, g_1) + \sum_{j=5}^6 m(r, g_j)\Big).$$

Hence we have

$$m(r, g) \leq \left\{7 - \sum_{j=1}^{6} \delta(a_j, f) - \delta(a_1, f) + \varepsilon\right\} m(r, g) + o(m(r, g)),$$

which contradicts the assumption

$$\sum_{j=1}^{6} \delta(a_j, f) + \delta(a_1, f) > 6.$$

The cases E) and G). In these cases we have

$$5T(r, f) = m(r, g_5^*) + O(1),$$

where $g_5^* = \max_{2 \le j \le 5} (1, |g_j|)$. Hence by virtue of the same argument as in the case (B) in the proof of Theorem 2 in [1] we have a contradiction.

Thus we have a contradiction in every case. Therefore at least one of $\{g_j\}_{j=1}^6$ must be a polynomial, that is, one of $\{a_j\}_{j=1}^6$ is a Picard exceptional value of f.

The proof of the theorem is completed.

§3. Proof of Theorem 2.

1. We shall use the same notations as in the proof of Theorem 1 and put $g_7(z) = F(z, a_7)$, and assume that all $g_j(z)$, $j=1, \dots, 7$, are transcendental. Then by the proof of Theorem 1 we have one of the following:

H¹) $\alpha_1 g_1 + \alpha_2 g_2 = 1, \qquad \alpha_3 g_3 + \alpha_4 g_4 + \alpha_5 g_5 + \alpha_6 g_6 = 0,$

H²) $\alpha_5 g_5 + \alpha_6 g_6 = 1, \quad \alpha_1 g_1 + \alpha_2 g_2 + \alpha_3 g_3 + \alpha_4 g_4 = 0.$

Further we have

$$\beta_1 g_1 + \beta_2 g_2 + \beta_3 g_3 + \beta_4 g_4 + \beta_5 g_5 + \beta_7 g_7 = 1,$$

where

$$\beta_j = 1 \int_{\substack{k=1 \ k \neq j, 6}}^{7} (a_j - a_k), \quad j = 1, 2, \dots, 5, 7.$$

If we have H¹), then we get

$$\left(\beta_{2}-\beta_{1}\frac{\alpha_{2}}{\alpha_{1}}\right)g_{2}+\beta_{3}g_{3}+\beta_{4}g_{4}+\beta_{5}g_{5}+\beta_{7}g_{7}=1-\frac{\beta_{1}}{\alpha_{1}}$$

Here

$$5T(r, f) = m(r, g_6^*) + O(1), \qquad g_6^* = \max_{2 \le j \le 5} (1, |g_j|)$$

Hence it reduces to type A'), B'), C'), D') or E'). Each of A'), B'), C') and E') leads to a contradiction. Hence we may consider the following:

(i)
$$\left(\beta_2-\beta_1\frac{\alpha_2}{\alpha_1}\right)g_2+\lambda_3g_3+\lambda_4g_4=1-\frac{\beta_1}{\alpha_1}, \left(\beta_2-\beta_1\frac{\alpha_2}{\alpha_1}\right)g_2+\lambda_5g_5+\lambda_7g_7=1-\frac{\beta_1}{\alpha_1},$$

(ii)
$$\beta_3 g_3 + \lambda_4 g_4 + \lambda_5 g_5 = 1 - \frac{\beta_1}{\alpha_1}, \qquad \beta_3 g_3 + \lambda_2 g_2 + \lambda_7 g_7 = 1 - \frac{\beta_1}{\alpha_1},$$

(iii)
$$\beta_3 g_3 + \lambda_5 g_5 + \lambda_7 g_7 = 1 - \frac{\beta_1}{\alpha_1}, \qquad \beta_3 g_3 + \lambda_2 g_2 + \lambda_4 g_4 = 1 - \frac{\beta_1}{\alpha_1},$$

(iv)
$$\beta_7 g_7 + \lambda_2 g_2 + \lambda_3 g_3 = 1 - \frac{\beta_1}{\alpha_1}, \qquad \beta_7 g_7 + \lambda_4 g_4 + \lambda_5 g_5 = 1 - \frac{\beta_1}{\alpha_1}.$$

When (i) occurs, using $\alpha_1g_1 + \alpha_2g_2 = 1$, we have

$$\left(\beta_1-\frac{\alpha_1}{\alpha_2}\beta_2\right)g_1+\lambda_3g_3+\lambda_4g_4=1-\frac{\beta_2}{\alpha_2},\qquad \left(\beta_2-\frac{\alpha_2}{\alpha_1}\beta_1\right)g_2+\lambda_5g_5+\lambda_7g_7=1-\frac{\beta_1}{\alpha_1}.$$

When (ii) occurs, we have

$$\alpha_1 g_1 + \alpha_2 g_2 = 1, \qquad \beta_3 g_3 + \lambda_4 g_4 + \lambda_5 g_5 = 1.$$

When (iii) occurs, we have $5T(r, f) = m(r, g_1^*) + O(1)$, $g_1^* = \max(1, |g_2|, |g_3|, |g_5|)$, and

$$\alpha_1 g_1 + \alpha_2 g_2 = 1, \qquad \beta_3 g_3 + \lambda_5 g_5 + \lambda_7 g_7 = 1 - \frac{\beta_1}{\alpha_1}.$$

Finally when (iv) occurs, we have $5T(r, f) = m(r, g_s^*) + O(1)$, $g_s^* = \max(1, |g_2|, |g_4|, |g_5|)$, and

$$\alpha_1g_1+\alpha_2g_2=1, \qquad \lambda_4g_4+\lambda_5g_5+\lambda_7g_7=1-\frac{\beta_1}{\alpha_1}.$$

Thus in every case we get a contradiction.

If we have H²), then we have

$$5T(r, f) = m(r, g_6^*) + O(1),$$

$$\left(\beta_2-\frac{\alpha_2}{\alpha_1}\beta_1\right)g_2+\left(\beta_3-\frac{\alpha_3}{\alpha_1}\beta_1\right)g_3+\left(\beta_4-\frac{\alpha_4}{\alpha_1}\beta_1\right)g_4+\beta_5g_5+\beta_7g_7=1,$$

and hence it is sufficient to consider the following:

(i)
$$\left(\beta_2 - \frac{\alpha_2}{\alpha_1}\beta_1\right)g_2 + \lambda_3g_3 + \lambda_4g_4 = 1, \quad \left(\beta_2 - \frac{\alpha_2}{\alpha_1}\beta_1\right)g_2 + \lambda_5g_5 + \lambda_7g_7 = 1,$$

(ii)
$$\left(\beta_2-\frac{\alpha_2}{\alpha_1}\beta_1\right)g_2+\lambda_3g_3+\lambda_5g_5=1, \left(\beta_2-\frac{\alpha_2}{\alpha_1}\beta_1\right)g_2+\lambda_4g_4+\lambda_7g_7=1,$$

(iii)
$$\beta_5 g_5 + \lambda_2 g_2 + \lambda_3 g_3 = 1, \qquad \beta_5 g_5 + \lambda_4 g_4 + \lambda_7 g_7 = 1,$$

(iv)
$$\beta_7 g_7 + \lambda_2 g_2 + \lambda_3 g_3 = 1, \qquad \beta_7 g_7 + \lambda_4 g_4 + \lambda_5 g_5 = 1.$$

TSUGIO SUZUKI

When (i) occurs, we have B')-type, and (ii), (iii) and (iv) lead to type A'). Hence we have a contradiction in every case.

Thus we conclude that one of $\{a_j\}_{j=1}^{\gamma}$ is a Picard exceptional value of f.

2. Now we first suppose that this exceptional value is a_1 , and that all g_j , $j=2, \dots, 7$, are transcendental. We have only to consider when $1-\alpha_1g_1\equiv 0$. Then

$$\beta_2 g_2 + \beta_3 g_3 + \beta_4 g_4 + \beta_5 g_5 + \beta_7 g_7 = 1 - \frac{\beta_1}{\alpha_1}$$

leads to type D'). Since we have

 $\alpha_2 g_2 + \alpha_3 g_3 + \alpha_4 g_4 + \alpha_5 g_5 + \alpha_6 g_6 = 0,$

it is sufficient to consider the case

$$\beta_7 g_7 + \lambda_2 g_2 + \lambda_3 g_3 = 1 - \frac{\beta_1}{\alpha_1}, \qquad \beta_7 g_7 + \lambda_4 g_4 + \lambda_5 g_5 = 1 - \frac{\beta_1}{\alpha_1},$$

But this contradicts the assumption

$$\sum_{\substack{j=2\\j\neq 6}}^{7} \delta(a_j, f) + \delta(a_7, f) > 5.$$

Hence we get two Picard exceptional values.

Next we suppose that the exceptional value is a_6 . Similarly we have only to consider $1-\alpha_6 g_6 \equiv 0$. Then we have

$$\alpha_1 g_1 + \alpha_2 g_2 + \alpha_3 g_3 + \alpha_4 g_4 + \alpha_5 g_5 = 0,$$

and hence

$$\left(\beta_2-\frac{\beta_1}{\alpha_1}\alpha_2\right)g_2+\left(\beta_3-\frac{\beta_1}{\alpha_1}\alpha_3\right)g_3+\left(\beta_4-\frac{\beta_1}{\alpha_1}\alpha_4\right)g_4+\left(\beta_5-\frac{\beta_1}{\alpha_1}\alpha_5\right)g_5+\beta_7g_7=1.$$

By the same reasoning as above we can conclude that there are at least two Picard exceptional values.

The proof of the theorem is completed.

§4. Proof of Theorem 3.

1. We set

$$g_j(z) = F(z, a_j), \quad j = 1, \dots, 8,$$

and assume that all $g_j(z)$, $j=1, \dots, 8$, are transcendental. Then by the proof of Theorem 1 we have one of the following:

$$A^{1}) \qquad \qquad \lambda_{1}g_{1}+\lambda_{2}g_{2}+\lambda_{3}g_{3}+\lambda_{4}g_{4}+\lambda_{5}g_{5}=1,$$

 $A^{2}) \qquad \qquad \lambda_{1}g_{1}+\lambda_{2}g_{2}+\lambda_{3}g_{3}+\lambda_{4}g_{4}+\lambda_{6}g_{6}=1,$

F¹)
$$\alpha_1g_1 + \alpha_2g_2 + \alpha_3g_3 = 1, \quad \alpha_4g_4 + \alpha_5g_5 + \alpha_6g_6 = 0,$$

$$F^{2}) \qquad \alpha_{4}g_{4} + \alpha_{5}g_{5} + \alpha_{6}g_{6} = 1, \qquad \alpha_{1}g_{1} + \alpha_{2}g_{2} + \alpha_{3}g_{3} = 0,$$

H¹)
$$\alpha_1 g_1 + \alpha_2 g_2 = 1, \quad \alpha_3 g_3 + \alpha_4 g_4 + \alpha_5 g_5 + \alpha_6 g_6 = 0,$$

H²)
$$\alpha_5 g_5 + \alpha_6 g_6 = 1$$
, $\alpha_1 g_1 + \alpha_2 g_2 + \alpha_3 g_3 + \alpha_4 g_4 = 0$

2. We show that A^1 , A^2) reduce to F^1 , F^2 , H^1) or H^2). Indeed, by our standard argument A^1) reduces to

(i)
$$\lambda_1 g_1 + \lambda_2 g_2 = 1, \quad \lambda_3 g_3 + \lambda_4 g_4 + \lambda_5 g_5 = 0.$$

Here if $(\lambda_3, \lambda_4, \lambda_5) = C(\alpha_3, \alpha_4, \alpha_5)$ for some complex number C, we get

 $\alpha_1 g_1 + \alpha_2 g_2 + \alpha_6 g_6 = 1, \qquad \alpha_3 g_3 + \alpha_4 g_4 + \alpha_5 g_5 = 0,$

which is of type F²). If $(\lambda_3, \lambda_4, \lambda_5) \neq C(\alpha_3, \alpha_4, \alpha_5)$ for any complex number C, then we can eliminate one of g_j , j=3, 4, 5, and hence we have, for example,

$$\alpha_1g_1+\alpha_2g_2+\left(\alpha_4-\frac{\lambda_4}{\lambda_3}\alpha_3\right)g_3+\left(\alpha_5-\frac{\lambda_5}{\lambda_3}\alpha_3\right)g_5+\alpha_6g_6=1.$$

Further we have

$$\lambda_1 g_1 + \lambda_2 g_2 = 1.$$

It is easy to see that $\lambda_1 = \alpha_1$, $\lambda_2 = \alpha_2$ is only a non-contradictory case. Hence it reduces to H¹). Other equations of type (i) also reduce to F¹), F²), H¹) or H²), as we can see easily.

A²) can be dealt with similarly.

3. Now we consider the case F^{1}). Eliminating g_{1} from

$$\alpha_1 g_1 + \alpha_2 g_2 + \alpha_3 g_3 = 1$$

and

$$\beta_1 g_1 + \beta_2 g_2 + \beta_3 g_3 + \beta_4 g_4 + \beta_5 g_5 + \beta_7 g_7 = 1,$$

we have

$$\left(\beta_2-\frac{\alpha_2}{\alpha_1}\beta_1\right)g_2+\left(\beta_3-\frac{\alpha_3}{\alpha_1}\beta_1\right)g_3+\beta_4g_4+\beta_5g_5+\beta_7g_7=1-\frac{\beta_1}{\alpha_1}.$$

Here we have

$$5T(r, f) = m(r, g_5^*) + O(1), \qquad g_5^* = \max_{2 \le j \le 5} (1, |g_j|).$$

Hence by our assumption only the following cases need to be discussed:

(i)
$$\left(\beta_2 - \frac{\alpha_2}{\alpha_1}\beta_1\right)g_2 + \left(\beta_3 - \frac{\alpha_3}{\alpha_1}\beta_1\right)g_3 = 1 - \frac{\beta_1}{\alpha_1}, \quad \beta_4g_4 + \beta_5g_5 + \beta_7g_7 = 0,$$

(ii)
$$\left(\beta_2 - \frac{\alpha_2}{\alpha_1}\beta_1\right)g_2 + \beta_5g_5 = 1 - \frac{\beta_1}{\alpha_1}, \quad \left(\beta_3 - \frac{\alpha_3}{\alpha_1}\beta_1\right)g_3 + \beta_4g_4 + \beta_7g_7 = 0,$$

(iii)
$$\beta_4 g_4 + \beta_5 g_5 = 1 - \frac{\beta_1}{\alpha_1}, \qquad \left(\beta_2 - \frac{\alpha_2}{\alpha_1}\beta_1\right) g_2 + \left(\beta_3 - \frac{\alpha_3}{\alpha_1}\beta_1\right) g_3 + \beta_7 g_7 = 0,$$

(iv)
$$\beta_5 g_5 + \beta_7 g_7 = 1 - \frac{\beta_1}{\alpha_1}, \qquad \left(\beta_2 - \frac{\alpha_2}{\alpha_1}\beta_1\right) g_2 + \left(\beta_3 - \frac{\alpha_3}{\alpha_1}\beta_1\right) g_3 + \beta_4 g_4 = 0,$$

$$(\mathbf{v}) \qquad \left(\beta_2 - \frac{\alpha_2}{\alpha_1}\beta_1\right)g_2 + \beta_7 g_7 = 1 - \frac{\beta_1}{\alpha_1}, \qquad \left(\beta_3 - \frac{\alpha_3}{\alpha_1}\beta_1\right)g_3 + \beta_4 g_4 + \beta_5 g_5 = 0.$$

Further we have

(1)
$$\gamma_1 g_1 + \gamma_2 g_2 + \gamma_3 g_3 + \gamma_4 g_4 + \gamma_5 g_5 + \gamma_8 g_8 = 1,$$

where

$$\gamma_j = 1 / \prod_{\substack{k=1 \ k \neq j, 6, 7}}^{8} (a_j - a_k), \quad j = 1, 2, ..., 5, 8.$$

Eliminating g_1 from (1) and $\alpha_1g_1 + \alpha_2g_2 + \alpha_3g_3 = 1$, we have

(2)
$$\left(\gamma_2 - \frac{\alpha_2}{\alpha_1}\gamma_1\right)g_2 + \left(\gamma_3 - \frac{\alpha_3}{\alpha_1}\gamma_1\right)g_3 + \gamma_4g_4 + \gamma_5g_5 + \gamma_8g_8 = 1 - \frac{\gamma_1}{\alpha_1}.$$

Each of (i), (ii), ..., (v) together with (2) leads to type A') or B'), which implies that F^1 is contradictory. It is to be noted that

α_1	α_2	α_3		α_1	α_2	1	
β_1	β_2	β_3	≠0,	β_1	β_2	1	≠0 .
γ ₁	Y2	7 3		γ 1	Y2	1	

 $\mathrm{F}^2),\,\mathrm{H}^1)$ and $\mathrm{H}^2)$ can be dealt with similarly, and hence we have a contradiction in every case.

Thus we conclude that at least one of $\{a_j\}$ is a Picard exceptional value of f.

4. We first suppose that g_1 is a polynomial and the remaining g's are transcendental. We may suppose $(1-\beta_1g_1)(1-\gamma_1g_1) \equiv 0$. Then

$$\beta_2 g_2 + \beta_3 g_3 + \beta_4 g_4 + \beta_5 g_5 + \beta_7 g_7 = 1 - \beta_1 g_1$$

leads to either of the following:

(i)
$$\beta_2 g_2 + \beta_3 g_3 = 1 - \beta_1 g_1, \qquad \beta_4 g_4 + \beta_5 g_5 + \beta_7 g_7 = 0,$$

(ii)
$$\beta_5 g_5 + \beta_7 g_7 = 1 - \beta_1 g_1, \qquad \beta_2 g_2 + \beta_3 g_3 + \beta_4 g_4 = 0.$$

Further we have

$$\gamma_2 g_2 + \gamma_3 g_3 + \gamma_4 g_4 + \gamma_5 g_5 + \gamma_8 g_8 = 1 - \gamma_1 g_1.$$

Hence, eliminating g_2 (or g_3), we get a contradiction in every case.

Next we suppose that g_6 is a polynomial and that the remaining g's are transcendental. If $1-\alpha_6 g_6 \equiv 0$, then by the same argument as in 3, we get a contradiction. If $1-\alpha_6 g_6 \equiv 0$, then

$$\alpha_1g_1 + \alpha_2g_2 + \alpha_3g_3 + \alpha_4g_4 + \alpha_5g_5 = 1 - \alpha_6g_6$$

leads to

$$\alpha_4 g_4 + \alpha_5 g_5 = 1 - \alpha_6 g_6, \qquad \alpha_1 g_1 + \alpha_2 g_2 + \alpha_3 g_3 = 0.$$

Again, by the same argument as in 3, we get a contradiction.

Next we consider the case that g_7 is a polynomial. In this case we have

$$\beta_1 g_1 + \beta_2 g_2 + \beta_3 g_3 + \beta_4 g_4 + \beta_5 g_5 = 1 - \beta_7 g_7.$$

Further

$$\alpha_1 g_1 + \alpha_2 g_2 + \alpha_3 g_3 + \alpha_4 g_4 + \alpha_5 g_5 + \alpha_6 g_6 = 1$$

leads to one of F^1 , F^2 , H^1 and H^2 . In every case we get an equation of type A'), hence we get a contradiction.

The case that g_8 is a polynomial is quite similar as above.

Thus two of $\{g_j\}$ are polynomials, that is, there are two Picard exceptional values among $\{a_j\}$.

5. Now we show that there is one more Picard exceptional value. We distinguish several cases: (i) g_1 and g_2 are polynomials, (ii) g_1 and g_6 , (iii) g_1 and g_7 , (iv) g_1 and g_8 , (v) g_6 and g_7 , (vi) g_6 and g_8 , (vii) g_7 and g_8 .

We suppose that in every case other g's are transcendental.

Case (i). Since

$$\begin{vmatrix} \alpha_1 & \alpha_2 & 1 \\ \beta_1 & \beta_2 & 1 \\ \gamma_1 & \gamma_2 & 1 \end{vmatrix} \approx 0,$$

we may assume that

$$\alpha_{3}g_{3} + \alpha_{4}g_{4} + \alpha_{5}g_{5} + \alpha_{6}g_{6} = 1 - \alpha_{1}g_{1} - \alpha_{2}g_{2} \equiv 0.$$

This implies a contradictory inequality

$$\sum_{j=3}^{6} \delta(a_j, f) \leq 3.$$

TSUGIO SUZUKI

Case (ii). If $1-\alpha_1g_1-\alpha_6g_6 \equiv 0$, then we have obviously a contradiction. If $1-\alpha_1g_1-\alpha_6g_6 \equiv 0$, then we have

$$\alpha_2 g_2 + \alpha_3 g_3 + \alpha_4 g_4 + \alpha_5 g_5 = 0$$

We may assume that $1 - \beta_1 g_1 \equiv 0$. Hence, eliminating g_2 from

 $\beta_2 g_2 + \beta_3 g_3 + \beta_4 g_4 + \beta_5 g_5 + \beta_7 g_7 = 1 - \beta_1 g_1,$

we have a contradiction.

Case (iii) and case (iv). Similarly as above.

Case (v). If both of $1-\alpha_6 g_6$ and $1-\beta_7 g_7$ are not constantly zero, we have a contradiction, eliminating one of g_1 , $j=1, \dots, 5$, from

 $\alpha_1 g_1 + \alpha_2 g_2 + \alpha_3 g_3 + \alpha_4 g_4 + \alpha_5 g_5 = 1 - \alpha_6 g_6$

and

$$\beta_1 g_1 + \beta_2 g_2 + \beta_3 g_3 + \beta_4 g_4 + \beta_5 g_5 = 1 - \beta_7 g_7.$$

If both of them are constantly zero, we eliminate g_1 and g_2 from

$$\alpha_1 g_1 + \alpha_2 g_2 + \alpha_3 g_3 + \alpha_4 g_4 + \alpha_5 g_5 = 0,$$

$$\beta_1 g_1 + \beta_2 g_2 + \beta_3 g_3 + \beta_4 g_4 + \beta_5 g_5 = 0$$

and

$$\gamma_1 g_1 + \gamma_2 g_2 + \gamma_3 g_3 + \gamma_4 g_4 + \gamma_5 g_5 + \gamma_8 g_8 = 1.$$

Then we have a contradiction, too.

Case (vi) and (vii). Similarly as above.

Thus we have a contradiction in every case. Therefore at least three of $\{g_j\}_{j=1}^{s}$ are polynomials, that is, at least three of $\{a_j\}_{j=1}^{s}$ are Picard exceptional values of f. The proof of the theorem is completed.

References

- NIINO, K., AND M. OZAWA, Deficiencies of an entire algebroid function. Kodai Math. Sem. Rep. 22 (1970), 98-113.
- [2] NIINO, K., AND M. OZAWA, Deficiencies of an entire algebroid function, II. Kodai Math. Sem. Rep. 22 (1970), 178-187.
- [3] OZAWA, M., Deficiencies of an entire algebroid function, III. Kodai Math. Sem. Rep. 23 (1971), 486-492.
- [4] TODA, N., Sur quelques combinaisons linéaires exceptionnelles au sens de Nevanlinna. Tôhoku Math. J. 23 (1971), 67-95.
- [5] VALIRON, G., Sur la dérivée des fonctions algébroïdes. Bull. Soc. Math. 59 (1931), 17-39.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.