KODAI MATH. SEM. REP.
24 (1972), 62-74

ON DEFICIENCIES OF AN ENTIRE ALGEBROID FUNCTION

By Tsugio Suzuki

§ 1. Niino and Ozawa [1, 2] proved some interesting results for entire algebroid functions. A typical one is the following:

Let $f(z)$ be a two-valued entire transcendental algebroid function and a_{1}, a_{2} and a_{3} be different finite numbers satisfying

$$
\sum_{j=1}^{3} \delta\left(a_{\jmath}, f\right)>2 .
$$

Then at least one of $\left\{a_{j}\right\}$ is a Picard exceptional value of f.
They also proved in the three- and four-valued cases that a more weaker condition on deficiencies, under a "non-proportionality" condition, implies the existence of Picard exceptional values (Theorem 1 in [2]).

In this paper we shall discuss the five-valued case and establish the similar conclusions as in Theorem 1 in [2] under a different assumption on deficiencies (see also Ozawa [3]). Those are the following:

Theorem 1. Let $f(z)$ be a five-valued transcendental entire algebroid function defined by an irreducible equation

$$
F(z, f) \equiv f^{5}+A_{4} f^{4}+A_{3} f^{3}+A_{2} f^{2}+A_{1} f+A_{0}=0
$$

where $A_{4}, A_{3}, A_{2}, A_{1}$ and A_{0} are entire functions. Let $a_{j}, j=1, \cdots, 6$, be different finite numbers satisfying

$$
\sum_{j=1}^{6} \delta\left(a_{j}, f\right)+\delta\left(a_{m}, f\right)+\delta\left(a_{n}, f\right)>7
$$

for every pair $m, n(m \neq n), m, n=1, \cdots, 6$, where $\delta\left(a_{3}, f\right)$ indicates the NevanlinnaSelberg deficiency of f at a_{ρ}. Further assume that any four of $\left\{F\left(z, a_{j}\right)\right\}$ are not linearly dependent. Then one of $\left\{a_{j}\right\}_{j=1}^{6}$ is a Picard exceptional value of f.

Theorem 2. Let $f(z)$ be the same as in Theorem 1. Let $\left\{a_{j}\right\}_{j=1}$ be different finite numbers satisfying

$$
\sum_{j=1}^{6} \delta\left(a_{j}, f\right)+\delta\left(a_{m}, f\right)+\delta\left(a_{n}, f\right)>7
$$

for every pair $m, n(m \neq n), m, n=1, \cdots, 6$, and

[^0]$$
\sum_{\substack{j=1 \\ j \neq 6}}^{7} \delta\left(a_{j}, f\right)+\delta\left(a_{7}, f\right)>6
$$

Further assume that any three of $\left\{F\left(z, a_{j}\right)\right\}$ are not linearly dependent. Then at least two of $\left\{a_{j}\right\}$ are Picard exceptional values of f.

ThEOREM 3. Let $f(z)$ be the same as in Theorem 1. Let $\left\{a_{j}\right\}_{j=1}^{8}$ be different finite numbers satisfying

$$
\sum_{j=1}^{6} \delta\left(a_{y}, f\right)+\delta\left(a_{m}, f\right)+\delta\left(a_{n}, f\right)>7
$$

for every pair $m, n(m \neq n), m, n=1, \cdots, 6$, and

$$
\sum_{\substack{j=1 \\ j \neq 6}}^{7} \delta\left(a_{j}, f\right)+\delta\left(a_{k}, f\right)>6
$$

for every $k, k=1,2, \cdots, 5,7$, and

$$
\sum_{\substack{j=1 \\ J \neq 6,7}}^{8} \delta\left(a_{\jmath}, f\right)>5
$$

Further assume that any two of $\left\{F\left(z, a_{j}\right)\right\}$ are not proportional. Then at least three of $\left\{a_{j}\right\}$ are Picard exceptional values of f.

Here we remark that Toda [4] proved that $\sum_{j=1}^{9} \delta\left(a_{j}, f\right)>8$ implies the existence of four Picard exceptional values among $\left\{a_{j}\right\}$.

§ 2. Proof of Theorem 1.

1. We put

$$
g_{j}(z)=F\left(z, a_{j}\right), \quad j=1, \cdots, 6
$$

and assume that all $g_{j}(z), j=1, \cdots, 6$, are transcendental.
We first have

$$
\sum_{j=1}^{6} \delta\left(a_{\jmath}, f\right)>5
$$

and

$$
\begin{equation*}
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}+\alpha_{6} g_{6}=1 \tag{1}
\end{equation*}
$$

where

$$
\alpha_{3}=1 / \prod_{\substack{k=1 \\ k \neq 1}}^{6}\left(a_{j}-a_{k}\right), \quad j=1, \cdots, 6
$$

Applying the method in the proof of Theorem 1 in [1] to our case, we get the linear dependency of $\left\{g_{j}\right\}_{j=1}^{6}$, that is, for constants $\left\{\alpha_{j}^{\prime}\right\}_{j=1}^{6}$ not all zero,

$$
\begin{equation*}
\alpha_{1}^{\prime} g_{1}+\alpha_{2}^{\prime} g_{2}+\alpha_{3}^{\prime} g_{3}+\alpha_{4}^{\prime} g_{4}+\alpha_{5}^{\prime} g_{5}+\alpha_{6}^{\prime} g_{6}=0 \tag{2}
\end{equation*}
$$

Here we may assume without any loss of generality that $\alpha_{5}^{\prime} \alpha_{6}^{\prime} \neq 0, \alpha_{6}^{\prime}=\alpha_{6}$. Eliminating g_{6} from (1) and (2), we have

$$
\sum_{j=1}^{5}\left(\alpha_{j}-\alpha_{j}^{\prime}\right) g_{j}=1
$$

Since at least two of $\left\{\alpha_{j}-\alpha_{j}^{\prime}\right\}$ are not zero, we study the following subcases:

1) $\alpha_{1} \neq \alpha_{1}^{\prime}, \quad \alpha_{2} \neq \alpha_{2}^{\prime}, \quad \alpha_{3} \neq \alpha_{3}^{\prime}, \quad \alpha_{4} \neq \alpha_{4}^{\prime}, \quad \alpha_{5} \neq \alpha_{5}^{\prime}$,
2) $\alpha_{1} \neq \alpha_{1}^{\prime}, \quad \alpha_{2} \neq \alpha_{2}^{\prime}, \quad \alpha_{3} \neq \alpha_{3}^{\prime}, \quad \alpha_{4} \neq \alpha_{4}^{\prime}, \quad \alpha_{5}=\alpha_{5}^{\prime}$,
(i) $\alpha_{1}^{\prime}=\alpha_{2}^{\prime}=\alpha_{3}^{\prime}=\alpha_{4}^{\prime}=0$,
(ii) $\alpha_{1}^{\prime}=\alpha_{2}^{\prime}=\alpha_{3}^{\prime}=0, \quad \alpha_{4}^{\prime} \neq 0$,
(iii) $\quad \alpha_{1}^{\prime}=\alpha_{2}^{\prime}=0, \quad \alpha_{3}^{\prime} \alpha_{4}^{\prime} \neq 0, \quad \alpha_{3}^{\prime} \alpha_{4}-\alpha_{3} \alpha_{4}^{\prime} \neq 0$,
(iv) $\alpha_{1}^{\prime}=\alpha_{2}^{\prime}=0, \quad \alpha_{3}^{\prime} \alpha_{4}^{\prime} \neq 0, \quad \alpha_{3}^{\prime} \alpha_{4}-\alpha_{3} \alpha_{4}^{\prime}=0$,
(v) $\alpha_{1}^{\prime}=0, \quad \alpha_{2}^{\prime} \alpha_{3}^{\prime} \alpha_{4}^{\prime} \neq 0, \quad\left(\alpha_{2}, \alpha_{3}, \alpha_{4}\right) \neq C\left(\alpha_{2}^{\prime}, \alpha_{3}^{\prime}, \alpha_{4}^{\prime}\right) \quad$ for any complex number C,
(vi) $\alpha_{1}^{\prime}=0, \quad \alpha_{2}^{\prime} \alpha_{3}^{\prime} \alpha_{4}^{\prime} \neq 0, \quad\left(\alpha_{2}, \alpha_{3}, \alpha_{4}\right)=C\left(\alpha_{2}^{\prime}, \alpha_{3}^{\prime}, \alpha_{4}^{\prime}\right)$ for some complex number C,
(vii) $\alpha_{1}^{\prime} \alpha_{2}^{\prime} \alpha_{3}^{\prime} \alpha_{4}^{\prime} \neq 0, \quad \frac{\alpha_{1}^{\prime}}{\alpha_{1}}=\frac{\alpha_{2}^{\prime}}{\alpha_{2}}=\frac{\alpha_{3}^{\prime}}{\alpha_{3}}=\frac{\alpha_{4}^{\prime}}{\alpha_{4}}$,
(viii) $\quad \alpha_{1}^{\prime} \alpha_{2}^{\prime} \alpha_{3}^{\prime} \alpha_{4}^{\prime} \neq 0, \quad \frac{\alpha_{\imath_{1}}^{\prime}}{\alpha_{2_{1}}}=\frac{\alpha_{i_{2}}^{\prime}}{\alpha_{2_{2}}}=\frac{\alpha_{\nu_{3}}^{\prime}}{\alpha_{\nu_{3}}}$ for some (i_{1}, i_{2}, i_{3}), $1 \leqq i_{1}, i_{2}, i_{3} \leqq 4$, but not (vii),
(ix) $\alpha_{1}^{\prime} \alpha_{2}^{\prime} \alpha_{3}^{\prime} \alpha_{4}^{\prime} \neq 0, \quad \frac{\alpha_{\imath_{1}}^{\prime}}{\alpha_{\nu_{1}}}=\frac{\alpha_{i_{2}}^{\prime}}{\alpha_{i_{2}}} \neq \frac{\alpha_{i_{3}}^{\prime}}{\alpha_{i_{3}}}=\frac{\alpha_{i_{4}}^{\prime}}{\alpha_{i_{4}}}$ for some ($i_{1}, i_{2}, i_{3}, i_{4}$),
(x) $\alpha_{1}^{\prime} \alpha_{2}^{\prime} \alpha_{3}^{\prime} \alpha_{4}^{\prime} \neq 0$, not (vii), (viii), (ix),
3) $\alpha_{1} \neq \alpha_{1}^{\prime}, \quad \alpha_{2} \neq \alpha_{2}^{\prime}, \quad \alpha_{3} \neq \alpha_{3}^{\prime}, \quad \alpha_{4}=\alpha_{4}^{\prime}, \quad \alpha_{5}=\alpha_{5}^{\prime}$,
(i) $\alpha_{1}^{\prime}=\alpha_{2}^{\prime}=\alpha_{3}^{\prime}=0$,
(ii) $\alpha_{1}^{\prime}=\alpha_{2}^{\prime}=0, \quad \alpha_{3}^{\prime} \neq 0$,
(iii) $\quad \alpha_{1}^{\prime}=0, \quad \alpha_{2}^{\prime} \alpha_{3}^{\prime} \neq 0, \quad \alpha_{3}^{\prime} \alpha_{2}-\alpha_{2}^{\prime} \alpha_{3} \neq 0$,
(iv) $\alpha_{1}^{\prime}=0, \quad \alpha_{2}^{\prime} \alpha_{3}^{\prime} \neq 0, \quad \alpha_{3}^{\prime} \alpha_{2}-\alpha_{2}^{\prime} \alpha_{3}=0$,
(v) $\alpha_{1}^{\prime} \alpha_{2}^{\prime} \alpha_{3}^{\prime} \neq 0, \quad\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=C\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right)$ for some C,
(vi) $\alpha_{1}^{\prime} \alpha_{2}^{\prime} \alpha_{3}^{\prime} \neq 0, \quad\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \neq C\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right)$ for any C,
4) $\alpha_{1} \neq \alpha_{1}^{\prime}, \quad \alpha_{2} \neq \alpha_{2}^{\prime}, \quad \alpha_{3}=\alpha_{3}^{\prime}, \quad \alpha_{4}=\alpha_{4}^{\prime}, \quad \alpha_{5}=\alpha_{5}^{\prime}$,
(i) $\alpha_{1}^{\prime}=\alpha_{2}^{\prime}=0$,
(ii) $\alpha_{1}^{\prime}=0, \quad \alpha_{2}^{\prime} \neq 0$,
(iii) $\alpha_{1}^{\prime} \alpha_{2}^{\prime} \neq 0, \quad \alpha_{1} \alpha_{2}^{\prime}-\alpha_{2} \alpha_{1}^{\prime} \neq 0$,
(iv) $\alpha_{1}^{\prime} \alpha_{2}^{\prime} \neq 0, \quad \alpha_{1} \alpha_{2}^{\prime}-\alpha_{2} \alpha_{1}^{\prime}=0$.

The cases 1), 2) (ii), (iii), (v), (viii), (x), 3) (ii), (iii), (vi), 4) (ii) and (iii) lead to an identity of the following type;
A)

$$
\lambda_{1} g_{1}+\lambda_{2} g_{2}+\lambda_{3} g_{3}+\lambda_{4} g_{4}+\lambda_{5} g_{5}=1, \quad \lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} \lambda_{5} \neq 0
$$

The case 2) (i) leads to the following type;
B)

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}=1, \quad \alpha_{5} g_{5}+\alpha_{6} g_{6}=0
$$

The case 2) (iv) leads to
C^{1})

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\frac{\alpha_{3}^{\prime}-\alpha_{4}}{\alpha_{3}} \alpha_{5} g_{5}+\frac{\alpha_{3}^{\prime}-\alpha_{3}}{\alpha_{3}} \alpha_{6} g_{6}=1,
$$

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\left(\alpha_{3}-\alpha_{3}^{\prime}\right) g_{3}+\frac{\alpha_{4}}{\alpha_{3}}\left(\alpha_{3}-\alpha_{3}^{\prime}\right) g_{4}=1
$$

The cases 2) (vi) and 3) (iv) lead to

$$
\alpha_{1} g_{1}+\frac{\alpha_{3}-\alpha_{3}^{\prime}}{\alpha_{3}} \alpha_{2} g_{2}+\left(\alpha_{3}-\alpha_{3}^{\prime} g_{3}+\frac{\alpha_{3}-\alpha_{3}^{\prime}}{\alpha_{3}} \alpha_{4} g_{4}=1,\right.
$$

D)

$$
\alpha_{1} g_{1}+\frac{\alpha_{3}^{\prime}-\alpha_{3}}{\alpha_{3}} \alpha_{5} g_{5}+\frac{\alpha_{3}^{\prime}-\alpha_{3}}{\alpha_{3}} \alpha_{6} g_{6}=1 .
$$

The cases 2) (vii) and 4) (iv) lead to
E)

$$
\lambda_{1} g_{1}+\lambda_{2} g_{2}=1, \quad \lambda_{3} g_{3}+\lambda_{4} g_{4}+\lambda_{5} g_{5}+\lambda_{6} g_{6}=1 .
$$

The case 2) (ix) leads to

$$
\left(1-\frac{\alpha_{1}^{\prime}}{\alpha_{1}}\right) \alpha_{1} g_{1}+\left(1-\frac{\alpha_{1}^{\prime}}{\alpha_{1}}\right) \alpha_{2} g_{2}+\left(\alpha_{3}-\alpha_{3}^{\prime}\right) g_{3}+\left(1-\frac{\alpha_{3}^{\prime}}{\alpha_{3}}\right) \alpha_{4} g_{4}=1
$$

$$
\left(1-\frac{\alpha_{1}^{\prime}}{\alpha_{1}} \cdot \frac{\alpha_{3}}{\alpha_{3}^{\prime}}\right) \alpha_{1} g_{1}+\left(1-\frac{\alpha_{1}^{\prime}}{\alpha_{1}} \cdot \frac{\alpha_{3}}{\alpha_{3}^{\prime}}\right) \alpha_{2} g_{2}+\left(1-\frac{\alpha_{3}}{\alpha_{3}^{\prime}}\right) \alpha_{5} g_{5}+\left(1-\frac{\alpha_{3}}{\alpha_{3}^{\prime}}\right) \alpha_{6} g_{6}=1 .
$$

The case 3) (i) leads to
F)

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}=1, \quad \alpha_{4} g_{4}+\alpha_{5} g_{5}+\alpha_{6} g_{6}=0
$$

The case 3) (v) leads to
G)

$$
\lambda_{1} g_{1}+\lambda_{2} g_{2}+\lambda_{3} g_{3}=1, \quad \lambda_{4} g_{4}+\lambda_{5} g_{5}+\lambda_{6} g_{6}=1 .
$$

The case 4) (i) leads to
H)

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}=1, \quad \alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}+\alpha_{6} g_{6}=0 .
$$

2. By our assumption the cases B), C^{1}), F) and H) may be omitted. We shall discuss the other cases.

In the first place we remark that Valiron [5] proved

$$
T(r, f)=\mu(r, A)+O(1)
$$

where

$$
A=\max _{0 \leq \jmath \leq 4}\left(1,\left|A_{j}\right|\right)
$$

and

$$
5 \mu(r, A)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log A d \theta
$$

Further we have

$$
5 \mu(r, A)=m(r, g)+O(1)
$$

where $g=\max _{1 \leq j \leq 5}\left(1,\left|g_{j}\right|\right)$.
The case A). In this case we have

$$
\sum_{j=1}^{5} \delta\left(a_{j}, f\right)>4
$$

and

$$
5 T(r, f)=m(r, g)+O(1)=m\left(r, g_{1}^{*}\right)+O(1)
$$

where $g_{1}^{*}=\max _{1 \leqq \jmath \leqq 4}\left(1,\left|g_{j}\right|\right)$. By the same argument as in the proof of Theorem 1 in [2], we get the linear dependency of $\left\{g_{j}\right\}_{j=1}^{5}$, and hence we have one of the following:
A^{\prime})

$$
\mu_{1} g_{1}+\mu_{2} g_{2}+\mu_{3} g_{3}+\mu_{4} g_{4}=1, \quad \mu_{1} \mu_{2} \mu_{3} \mu_{4} \neq 0,
$$

B^{\prime})

$$
\mu_{1} g_{1}+\mu_{2} g_{2}+\mu_{3} g_{3}=1, \quad \mu_{4} g_{4}+\mu_{5} g_{5}=1
$$

C')

$$
\lambda_{1} g_{1}+\lambda_{2} g_{2}=1, \quad \lambda_{3} g_{3}+\lambda_{4} g_{4}+\lambda_{5} g_{5}=0
$$

$\left.D^{\prime}\right)$

$$
\lambda_{1} g_{1}+\lambda_{2} g_{2}+\lambda_{3} g_{3}=1, \quad \lambda_{1} g_{1}+\lambda_{4} g_{4}+\lambda_{5} g_{5}=1,
$$

E')

$$
\lambda_{1} g_{1}+\lambda_{2} g_{2}+\lambda_{3} g_{3}=1, \quad \lambda_{4} g_{4}+\lambda_{5} g_{5}=0
$$

By our assumption the cases C^{\prime}), D^{\prime}) and E^{\prime}) may be omitted. In the case A^{\prime}) we have

$$
\sum_{j=1}^{4} \delta\left(a_{j}, f\right)>3
$$

and

$$
5 T(r, f)=m\left(r, g_{1}^{*}\right)+O(1)=m\left(r, g_{2}^{*}\right)+O(1)
$$

where $g_{2}^{*}=\max _{1 \leq \jmath \leq 3}\left(1,\left|g_{j}\right|\right)$. Therefore the reasoning in the proof of Theorem 2 in [1] leads to a contradiction. In the case B^{\prime}) we have

$$
5 T(r, f)=m\left(r, g_{3}^{*}\right)+O(1)
$$

where $g_{3}^{*}=\max _{2 \leqq \jmath \leq 4}\left(1,\left|g_{j}\right|\right)$. Hence we have a contradiction by virtue of the argument in the case (B) in the proof of Theorem 2 in [1].

The case C^{2}). In this case we have

$$
m\left(r, g_{2}^{*}\right) \leqq \sum_{j=1}^{4} N\left(r ; 0, g_{j}\right)+o\left(\sum_{j=1}^{4} m\left(r, g_{j}\right)\right)
$$

with a negligible exceptional set, and

$$
m\left(r, g_{4}^{*}\right) \leqq \sum_{\substack{j=1 \\ j \neq 3,4}}^{6} N\left(r ; 0, g_{j}\right)+o\left(\sum_{\substack{j=1 \\ j \neq 3,4}}^{6} m\left(r, g_{j}\right)\right),
$$

where $g_{4}^{*}=\max \left(1,\left|g_{1}\right|,\left|g_{5}\right|,\left|g_{6}\right|\right)$. Evidently

$$
\begin{aligned}
m(r, g) & \leqq m\left(r, g_{2}^{*}\right)+m\left(r, g_{4}^{*}\right) \\
& \leqq \sum_{j=1}^{6} N\left(r ; 0, g_{j}\right)+N\left(r ; 0, g_{1}\right)+N\left(r ; 0, g_{2}\right)+o(m(r, g))
\end{aligned}
$$

On the other hand, for an arbitrary $\varepsilon>0$,

$$
N\left(r ; 0, g_{j}\right) \leqq\left\{1-\delta\left(a_{j}, f\right)+\varepsilon\right\} m(r, g)
$$

for $r \geqq r_{0}$. Hence we have

$$
m(r, g) \leqq\left\{8-\sum_{\rho=1}^{6} \delta\left(a_{j}, f\right)-\delta\left(a_{1}, f\right)-\delta\left(a_{2}, f\right)+\varepsilon\right\} m(r, g)+o(m(r, g)),
$$

which leads to a contradictory inequality

$$
\sum_{j=1}^{6} \delta\left(a_{j}, f\right)+\delta\left(a_{1}, f\right)+\delta\left(a_{2}, f\right) \leqq 7 .
$$

The case D). We have

$$
m\left(r, g_{2}^{*}\right) \leqq \sum_{j=1}^{4} N\left(r ; 0, g_{j}\right)+o\left(\sum_{j=1}^{4} m\left(r, g_{j}\right)\right)
$$

and

$$
m\left(r, g_{4}^{*}\right) \leqq N\left(r ; 0, g_{1}\right)+\sum_{\jmath=5}^{6} N\left(r ; 0, g_{j}\right)+o\left(m\left(r, g_{1}\right)+\sum_{j=5}^{6} m\left(r, g_{j}\right)\right)
$$

Hence we have

$$
m(r, g) \leqq\left\{7-\sum_{j=1}^{6} \delta\left(a_{\jmath}, f\right)-\delta\left(a_{1}, f\right)+\varepsilon\right\} m(r, g)+o(m(r, g)),
$$

which contradicts the assumption

$$
\sum_{j=1}^{6} \delta\left(a_{j}, f\right)+\delta\left(a_{1}, f\right)>6 .
$$

The cases E) and G). In these cases we have

$$
5 T(r, f)=m\left(r, g_{5}^{*}\right)+O(1)
$$

where $g_{5}^{*}=\max _{2 \leqq \jmath \leq 5}\left(1,\left|g_{j}\right|\right)$. Hence by virtue of the same argument as in the case (B) in the proof of Theorem 2 in [1] we have a contradiction.

Thus we have a contradiction in every case. Therefore at least one of $\left\{g_{j}\right\}_{j=1}^{6}$ must be a polynomial, that is, one of $\left\{a_{j}\right\}_{j=1}^{6}$ is a Picard exceptional value of f.

The proof of the theorem is completed.

§ 3. Proof of Theorem 2.

1. We shall use the same notations as in the proof of Theorem 1 and put $g_{7}(z)=F\left(z, a_{7}\right)$, and assume that all $g_{j}(z), j=1, \cdots, 7$, are transcendental. Then by the proof of Theorem 1 we have one of the following:
H^{1})

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}=1, \quad \alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}+\alpha_{6} g_{6}=0,
$$

H^{2})

$$
\alpha_{5} g_{5}+\alpha_{6} g_{6}=1, \quad \alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}=0
$$

Further we have

$$
\beta_{1} g_{1}+\beta_{2} g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{5} g_{5}+\beta_{7} g_{7}=1
$$

where

$$
\beta_{j}=1 / \prod_{\substack{k=1 \\ k \neq, 6}}^{7}\left(a_{j}-a_{k}\right), \quad j=1,2, \cdots, 5,7 .
$$

If we have H^{1}), then we get

$$
\left(\beta_{2}-\beta_{1} \frac{\alpha_{2}}{\alpha_{1}}\right) g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{5} g_{5}+\beta_{7} g_{7}=1-\frac{\beta_{1}}{\alpha_{1}} .
$$

Here

$$
5 T(r, f)=m\left(r, g_{6}^{*}\right)+O(1), \quad g_{6}^{*}=\max _{2 \leqq j \leq 5}\left(1,\left|g_{j}\right|\right) .
$$

Hence it reduces to type A^{\prime}), B^{\prime}), C^{\prime}), D^{\prime}) or E^{\prime}). Each of A^{\prime}), B^{\prime}), C^{\prime}) and E^{\prime}) leads to a contradiction. Hence we may consider the following:
(i) $\quad\left(\beta_{2}-\beta_{1} \frac{\alpha_{2}}{\alpha_{1}}\right) g_{2}+\lambda_{3} g_{3}+\lambda_{4} g_{4}=1-\frac{\beta_{1}}{\alpha_{1}}, \quad\left(\beta_{2}-\beta_{1} \frac{\alpha_{2}}{\alpha_{1}}\right) g_{2}+\lambda_{5} g_{5}+\lambda_{7} g_{7}=1-\frac{\beta_{1}}{\alpha_{1}}$,
(ii)

$$
\beta_{3} g_{3}+\lambda_{4} g_{4}+\lambda_{5} g_{5}=1-\frac{\beta_{1}}{\alpha_{1}}, \quad \beta_{3} g_{3}+\lambda_{2} g_{2}+\lambda_{7} g_{7}=1-\frac{\beta_{1}}{\alpha_{1}}
$$

(iii)

$$
\beta_{3} g_{3}+\lambda_{5} g_{5}+\lambda_{7} g_{7}=1-\frac{\beta_{1}}{\alpha_{1}}, \quad \beta_{3} g_{3}+\lambda_{2} g_{2}+\lambda_{4} g_{4}=1-\frac{\beta_{1}}{\alpha_{1}},
$$

$$
\begin{equation*}
\beta_{7} g_{7}+\lambda_{2} g_{2}+\lambda_{3} g_{3}=1-\frac{\beta_{1}}{\alpha_{1}}, \quad \beta_{7} g_{7}+\lambda_{4} g_{4}+\lambda_{5} g_{5}=1-\frac{\beta_{1}}{\alpha_{1}} . \tag{iv}
\end{equation*}
$$

When (i) occurs, using $\alpha_{1} g_{1}+\alpha_{2} g_{2}=1$, we have

$$
\left(\beta_{1}-\frac{\alpha_{1}}{\alpha_{2}} \beta_{2}\right) g_{1}+\lambda_{3} g_{3}+\lambda_{4} g_{4}=1-\frac{\beta_{2}}{\alpha_{2}}, \quad\left(\beta_{2}-\frac{\alpha_{2}}{\alpha_{1}} \beta_{1}\right) g_{2}+\lambda_{5} g_{5}+\lambda_{7} g_{7}=1-\frac{\beta_{1}}{\alpha_{1}} .
$$

When (ii) occurs, we have

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}=1, \quad \beta_{3} g_{3}+\lambda_{4} g_{4}+\lambda_{6} g_{5}=1
$$

When (iii) occurs, we have $5 T(r, f)=m\left(r, g_{7}^{*}\right)+O(1), g_{7}^{*}=\max \left(1,\left|g_{2}\right|,\left|g_{3}\right|,\left|g_{5}\right|\right)$, and

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}=1, \quad \beta_{3} g_{3}+\lambda_{5} g_{5}+\lambda_{7} g_{7}=1-\frac{\beta_{1}}{\alpha_{1}} .
$$

Finally when (iv) occurs, we have $5 T(r, f)=m\left(r, g_{8}^{*}\right)+O(1), g_{8}^{*}=\max \left(1,\left|g_{2}\right|\right.$, $\left.\left|g_{4}\right|,\left|g_{5}\right|\right)$, and

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}=1, \quad \lambda_{4} g_{4}+\lambda_{5} g_{5}+\lambda_{7} g_{7}=1-\frac{\beta_{1}}{\alpha_{1}} .
$$

Thus in every case we get a contradiction.
If we have H^{2}), then we have

$$
\begin{gathered}
5 T(r, f)=m\left(r, g_{6}^{*}\right)+O(1), \\
\left(\beta_{2}-\frac{\alpha_{2}}{\alpha_{1}} \beta_{1}\right) g_{2}+\left(\beta_{3}-\frac{\alpha_{3}}{\alpha_{1}} \beta_{1}\right) g_{3}+\left(\beta_{4}-\frac{\alpha_{4}}{\alpha_{1}} \beta_{1}\right) g_{4}+\beta_{5} g_{5}+\beta_{7} g_{7}=1
\end{gathered}
$$

and hence it is sufficient to consider the following:

$$
\begin{equation*}
\left(\beta_{2}-\frac{\alpha_{2}}{\alpha_{1}} \beta_{1}\right) g_{2}+\lambda_{3} g_{3}+\lambda_{4} g_{4}=1, \quad\left(\beta_{2}-\frac{\alpha_{2}}{\alpha_{1}} \beta_{1}\right) g_{2}+\lambda_{5} g_{5}+\lambda_{7} g_{7}=1, \tag{i}
\end{equation*}
$$

(ii) $\quad\left(\beta_{2}-\frac{\alpha_{2}}{\alpha_{1}} \beta_{1}\right) g_{2}+\lambda_{3} g_{3}+\lambda_{5} g_{5}=1, \quad\left(\beta_{2}-\frac{\alpha_{2}}{\alpha_{1}} \beta_{1}\right) g_{2}+\lambda_{4} g_{4}+\lambda_{7} g_{7}=1$,
(iii)

$$
\beta_{5} g_{5}+\lambda_{2} g_{2}+\lambda_{3} g_{3}=1, \quad \beta_{5} g_{5}+\lambda_{4} g_{4}+\lambda_{7} g_{7}=1,
$$

(iv)

$$
\beta_{7} g_{7}+\lambda_{2} g_{2}+\lambda_{3} g_{3}=1, \quad \beta_{7} g_{7}+\lambda_{4} g_{4}+\lambda_{6} g_{5}=1
$$

When (i) occurs, we have B^{\prime})-type, and (ii), (iii) and (iv) lead to type A^{\prime}). Hence we have a contradiction in every case.

Thus we conclude that one of $\left\{a_{j}\right\}_{j=1}^{\gamma_{1}}$ is a Picard exceptional value of f.
2. Now we first suppose that this exceptional value is a_{1}, and that all g_{j}, $j=2, \cdots, 7$, are transcendental. We have only to consider when $1-\alpha_{1} g_{1} \equiv 0$. Then

$$
\beta_{2} g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{5} g_{5}+\beta_{7} g_{7}=1-\frac{\beta_{1}}{\alpha_{1}}
$$

leads to type $\left.D^{\prime}\right)$. Since we have

$$
\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}+\alpha_{6} g_{6}=0
$$

it is sufficient to consider the case

$$
\beta_{7} g_{7}+\lambda_{2} g_{2}+\lambda_{3} g_{3}=1-\frac{\beta_{1}}{\alpha_{1}}, \quad \beta_{7} g_{7}+\lambda_{4} g_{4}+\lambda_{5} g_{5}=1-\frac{\beta_{1}}{\alpha_{1}} .
$$

But this contradicts the assumption

$$
\sum_{\substack{j=2 \\ j \neq 6}}^{7} \delta\left(a_{j}, f\right)+\delta\left(a_{7}, f\right)>5 .
$$

Hence we get two Picard exceptional values.
Next we suppose that the exceptional value is a_{6}. Similarly we have only to consider $1-\alpha_{6} g_{6} \equiv 0$. Then we have

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}=0
$$

and hence

$$
\left(\beta_{2}-\frac{\beta_{1}}{\alpha_{1}} \alpha_{2}\right) g_{2}+\left(\beta_{3}-\frac{\beta_{1}}{\alpha_{1}} \alpha_{3}\right) g_{3}+\left(\beta_{4}-\frac{\beta_{1}}{\alpha_{1}} \alpha_{4}\right) g_{4}+\left(\beta_{5}-\frac{\beta_{1}}{\alpha_{1}} \alpha_{5}\right) g_{5}+\beta_{7} g_{7}=1
$$

By the same reasoning as above we can conclude that there are at least two Picard exceptional values.

The proof of the theorem is completed.

§4. Proof of Theorem 3.

1. We set

$$
g_{j}(z)=F\left(z, a_{j}\right), \quad j=1, \cdots, 8,
$$

and assume that all $g_{j}(z), j=1, \cdots, 8$, are transcendental. Then by the proof of Theorem 1 we have one of the following:
A^{1})

$$
\lambda_{1} g_{1}+\lambda_{2} g_{2}+\lambda_{3} g_{3}+\lambda_{4} g_{4}+\lambda_{5} g_{5}=1
$$

A^{2})

$$
\lambda_{1} g_{1}+\lambda_{2} g_{2}+\lambda_{3} g_{3}+\lambda_{4} g_{4}+\lambda_{6} g_{6}=1
$$

F^{1})

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}=1, \quad \alpha_{4} g_{4}+\alpha_{5} g_{5}+\alpha_{6} g_{6}=0,
$$

$\left.\mathrm{F}^{2}\right) \quad \alpha_{4} g_{4}+\alpha_{5} g_{5}+\alpha_{6} g_{6}=1, \quad \alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}=0$,
$\left.\mathrm{H}^{1}\right) \quad \alpha_{1} g_{1}+\alpha_{2} g_{2}=1, \quad \alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}+\alpha_{6} g_{6}=0$,
H^{2})

$$
\alpha_{5} g_{5}+\alpha_{6} g_{6}=1, \quad \alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}=0
$$

2. We show that A^{1}), A^{2}) reduce to F^{1}), F^{2}), H^{1}) or H^{2}). Indeed, by our standard argument A^{1}) reduces to

$$
\begin{equation*}
\lambda_{1} g_{1}+\lambda_{2} g_{2}=1, \quad \lambda_{3} g_{3}+\lambda_{4} g_{4}+\lambda_{5} g_{5}=0 \tag{i}
\end{equation*}
$$

Here if $\left(\lambda_{3}, \lambda_{4}, \lambda_{5}\right)=C\left(\alpha_{3}, \alpha_{4}, \alpha_{5}\right)$ for some complex number C, we get

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{6} g_{6}=1, \quad \alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}=0
$$

which is of type $\left.\mathrm{F}^{2}\right)$. If $\left(\lambda_{3}, \lambda_{4}, \lambda_{5}\right) \neq C\left(\alpha_{3}, \alpha_{4}, \alpha_{5}\right)$ for any complex number C, then we can eliminate one of $g_{j}, j=3,4,5$, and hence we have, for example,

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\left(\alpha_{4}-\frac{\lambda_{4}}{\lambda_{3}} \alpha_{3}\right) g_{3}+\left(\alpha_{5}-\frac{\lambda_{5}}{\lambda_{3}} \alpha_{3}\right) g_{5}+\alpha_{6} g_{6}=1 .
$$

Further we have

$$
\lambda_{1} g_{1}+\lambda_{2} g_{2}=1
$$

It is easy to see that $\lambda_{1}=\alpha_{1}, \lambda_{2}=\alpha_{2}$ is only a non-contradictory case. Hence it reduces to H^{1}). Other equations of type (i) also reduce to F^{1}), F^{2}), H^{1}) or H^{2}), as we can see easily.
A^{2}) can be dealt with similarly.
3. Now we consider the case F^{1}). Eliminating g_{1} from

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}=1
$$

and

$$
\beta_{1} g_{1}+\beta_{2} g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{5} g_{5}+\beta_{7} g_{7}=1
$$

we have

$$
\left(\beta_{2}-\frac{\alpha_{2}}{\alpha_{1}} \beta_{1}\right) g_{2}+\left(\beta_{3}-\frac{\alpha_{3}}{\alpha_{1}} \beta_{1}\right) g_{3}+\beta_{4} g_{4}+\beta_{5} g_{5}+\beta_{7} g_{7}=1-\frac{\beta_{1}}{\alpha_{1}} .
$$

Here we have

$$
5 T(r, f)=m\left(r, g_{5}^{*}\right)+O(1), \quad g_{5}^{*}=\max _{2 \leqq J \leq 5}\left(1,\left|g_{j}\right|\right) .
$$

Hence by our assumption only the following cases need to be discussed:

$$
\begin{align*}
& \left(\beta_{2}-\frac{\alpha_{2}}{\alpha_{1}} \beta_{1}\right) g_{2}+\left(\beta_{3}-\frac{\alpha_{3}}{\alpha_{1}} \beta_{1}\right) g_{3}=1-\frac{\beta_{1}}{\alpha_{1}}, \quad \beta_{4} g_{4}+\beta_{5} g_{5}+\beta_{7} g_{7}=0, \tag{i}\\
& \left(\beta_{2}-\frac{\alpha_{2}}{\alpha_{1}} \beta_{1}\right) g_{2}+\beta_{5} g_{5}=1-\frac{\beta_{1}}{\alpha_{1}}, \quad\left(\beta_{3}-\frac{\alpha_{3}}{\alpha_{1}} \beta_{1}\right) g_{3}+\beta_{4} g_{4}+\beta_{7} g_{7}=0, \tag{ii}
\end{align*}
$$

$$
\begin{equation*}
\beta_{4} g_{4}+\beta_{5} g_{5}=1-\frac{\beta_{1}}{\alpha_{1}}, \quad\left(\beta_{2}-\frac{\alpha_{2}}{\alpha_{1}} \beta_{1}\right) g_{2}+\left(\beta_{3}-\frac{\alpha_{3}}{\alpha_{1}} \beta_{1}\right) g_{3}+\beta_{7} g_{7}=0 \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{5} g_{5}+\beta_{7} g_{7}=1-\frac{\beta_{1}}{\alpha_{1}}, \quad\left(\beta_{2}-\frac{\alpha_{2}}{\alpha_{1}} \beta_{1}\right) g_{2}+\left(\beta_{3}-\frac{\alpha_{3}}{\alpha_{1}} \beta_{1}\right) g_{3}+\beta_{4} g_{4}=0 \tag{iv}
\end{equation*}
$$

$$
\begin{equation*}
\left(\beta_{2}-\frac{\alpha_{2}}{\alpha_{1}} \beta_{1}\right) g_{2}+\beta_{7} g_{7}=1-\frac{\beta_{1}}{\alpha_{1}}, \quad\left(\beta_{3}-\frac{\alpha_{3}}{\alpha_{1}} \beta_{1}\right) g_{3}+\beta_{4} g_{4}+\beta_{5} g_{5}=0 \tag{v}
\end{equation*}
$$

Further we have

$$
\begin{equation*}
\gamma_{1} g_{1}+\gamma_{2} g_{2}+\gamma_{3} g_{3}+\gamma_{4} g_{4}+\gamma_{5} g_{5}+\gamma_{8} g_{8}=1 \tag{1}
\end{equation*}
$$

where

$$
\gamma_{\jmath}=1 / \prod_{\substack{k=1 \\ k \neq j, 6,7}}^{8}\left(a_{j}-a_{k}\right), \quad j=1,2, \cdots, 5,8 .
$$

Eliminating g_{1} from (1) and $\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}=1$, we have

$$
\begin{equation*}
\left(\gamma_{2}-\frac{\alpha_{2}}{\alpha_{1}} \gamma_{1}\right) g_{2}+\left(\gamma_{3}-\frac{\alpha_{3}}{\alpha_{1}} \gamma_{1}\right) g_{3}+\gamma_{4} g_{4}+\gamma_{5} g_{5}+\gamma_{8} g_{8}=1-\frac{\gamma_{1}}{\alpha_{1}} . \tag{2}
\end{equation*}
$$

Each of (i), (ii), \cdots, (v) together with (2) leads to type A^{\prime}) or B^{\prime}), which implies that F^{1}) is contradictory. It is to be noted that

$$
\left|\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\beta_{1} & \beta_{2} & \beta_{3} \\
\gamma_{1} & \gamma_{2} & \gamma_{3}
\end{array}\right| \neq 0, \quad\left|\begin{array}{ccc}
\alpha_{1} & \alpha_{2} & 1 \\
\beta_{1} & \beta_{2} & 1 \\
\gamma_{1} & \gamma_{2} & 1
\end{array}\right| \neq 0 .
$$

F^{2}), H^{1}) and H^{2}) can be dealt with similarly, and hence we have a contradiction in every case.

Thus we conclude that at least one of $\left\{a_{j}\right\}$ is a Picard exceptional value of f.
4. We first suppose that g_{1} is a polynomial and the remaining g 's are transcendental. We may suppose $\left(1-\beta_{1} g_{1}\right)\left(1-\gamma_{1} g_{1}\right) \neq 0$. Then

$$
\beta_{2} g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{5} g_{5}+\beta_{7} g_{7}=1-\beta_{1} g_{1}
$$

leads to either of the following:

$$
\begin{array}{ll}
\beta_{2} g_{2}+\beta_{3} g_{3}=1-\beta_{1} g_{1}, & \beta_{4} g_{4}+\beta_{5} g_{5}+\beta_{7} g_{7}=0, \\
\beta_{5} g_{5}+\beta_{7} g_{7}=1-\beta_{1} g_{1}, & \beta_{2} g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}=0 . \tag{ii}
\end{array}
$$

Further we have

$$
\gamma_{2} g_{2}+\gamma_{3} g_{3}+\gamma_{4} g_{4}+\gamma_{5} g_{5}+\gamma_{8} g_{8}=1-\gamma_{1} g_{1} .
$$

Hence, eliminating g_{2} (or g_{3}), we get a contradiction in every case.
Next we suppose that g_{6} is a polynomial and that the remaining g 's are transcendental. If $1-\alpha_{6} g_{6} \equiv 0$, then by the same argument as in 3 , we get a contradiction. If $1-\alpha_{6} g_{6} \neq 0$, then

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}=1-\alpha_{6} g_{6}
$$

leads to

$$
\alpha_{4} g_{4}+\alpha_{5} g_{5}=1-\alpha_{6} g_{6}, \quad \alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}=0 .
$$

Again, by the same argument as in 3 , we get a contradiction.
Next we consider the case that g_{7} is a polynomial. In this case we have

$$
\beta_{1} g_{1}+\beta_{2} g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{5} g_{5}=1-\beta_{7} g_{7} .
$$

Further

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}+\alpha_{6} g_{6}=1
$$

leads to one of F^{1}), F^{2}), H^{1}) and H^{2}). In every case we get an equation of type A^{\prime}), hence we get a contradiction.

The case that g_{8} is a polynomial is quite similar as above.
Thus two of $\left\{g_{j}\right\}$ are polynomials, that is, there are two Picard exceptional values among $\left\{a_{j}\right\}$.
5. Now we show that there is one more Picard exceptional value. We distinguish several cases: (i) g_{1} and g_{2} are polynomials, (ii) g_{1} and g_{6}, (iii) g_{1} and g_{7}, (iv) g_{1} and g_{8}, (v) g_{6} and g_{7}, (vi) g_{6} and g_{8}, (vii) g_{7} and g_{8}.

We suppose that in every case other g 's are transcendental.
Case (i). Since

$$
\left|\begin{array}{lll}
\alpha_{1} & \alpha_{2} & 1 \\
\beta_{1} & \beta_{2} & 1 \\
\gamma_{1} & \gamma_{2} & 1
\end{array}\right| \neq 0,
$$

we may assume that

$$
\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}+\alpha_{6} g_{6}=1-\alpha_{1} g_{1}-\alpha_{2} g_{2} \neq 0 .
$$

This implies a contradictory inequality

$$
\sum_{j=3}^{6} \delta\left(a_{\jmath}, f\right) \leqq 3 .
$$

Case (ii). If $1-\alpha_{1} g_{1}-\alpha_{6} g_{6} \neq 0$, then we have obviously a contradiction. If $1-\alpha_{1} g_{1}-\alpha_{6} g_{6} \equiv 0$, then we have

$$
\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}=0 .
$$

We may assume that $1-\beta_{1} g_{1} \neq 0$. Hence, eliminating g_{2} from

$$
\beta_{2} g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{5} g_{5}+\beta_{7} g_{7}=1-\beta_{1} g_{1},
$$

we have a contradiction.
Case (iii) and case (iv). Similarly as above.
Case (v). If both of $1-\alpha_{6} g_{6}$ and $1-\beta_{7} g_{7}$ are not constantly zero, we have a contradiction, eliminating one of $g_{j}, j=1, \cdots, 5$, from

$$
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}=1-\alpha_{6} g_{6}
$$

and

$$
\beta_{1} g_{1}+\beta_{2} g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{5} g_{5}=1-\beta_{7} g_{7}
$$

If both of them are constantly zero, we eliminate g_{1} and g_{2} from

$$
\begin{aligned}
& \alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}=0, \\
& \beta_{1} g_{1}+\beta_{2} g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{5} g_{5}=0
\end{aligned}
$$

and

$$
\gamma_{1} g_{1}+\gamma_{2} g_{2}+\gamma_{3} g_{3}+\gamma_{4} g_{4}+\gamma_{5} g_{5}+\gamma_{8} g_{8}=1 .
$$

Then we have a contradiction, too.
Case (vi) and (vii). Similarly as above.
Thus we have a contradiction in every case. Therefore at least three of $\left\{g_{j}\right\}_{j=1}^{8}$ are polynomials, that is, at least three of $\left\{a_{j}\right\}_{j=1}^{8}$ are Picard exceptional values of f.

The proof of the theorem is completed.

References

[1] Ninno, K., and M. Ozawa, Deficlencles of an entıre algebroid function. Kōdaı Math. Sem. Rep. 22 (1970), 98-113.
[2] Niino, K., and M. Ozawa, Deficiencies of an entıre algebrold function, II. Kōdai Math. Sem. Rep. 22 (1970), 178-187.
[3] Ozawa, M., Deficiencies of an entire algebroid function, III. Kōdai Math. Sem. Rep. 23 (1971), 486-492.
[4] Toda, N., Sur quelques combinaisons linéares exceptıonnelles au sens de Nevanlinna. Tôhoku Math. J. 23 (1971), 67-95.
[5] Valiron, G., Sur la dérivée des fonctions algébroìdes. Bull. Soc. Math. 59 (1931), 17-39.

[^0]: Received January 27, 1971.

