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ON DEFICIENCIES OF AN ENTIRE ALGEBROID FUNCTION
By Tsuclo Suzuki

§1. Niino and Ozawa [1, 2] proved some interesting results for entire alge-
broid functions. A typical one is the following:

Let f(2) be a two-valued entire transcendental algebroid function and aj, a.
and a; be different finite numbers satisfying

> oa, )>2

Then at least one of {@;} is a Picard exceptional value of f.

They also proved in the three- and four-valued cases that a more weaker
condition on deficiencies, under a “non-proportionality” condition, implies the
existence of Picard exceptional values (Theorem 1 in [2]).

In this paper we shall discuss the five-valued case and establish the similar
conclusions as in Theorem 1 in [2] under a different assumption on deficiencies
(see also Ozawa [3]). Those are the following:

THEOREM 1. Let f(2) be a five-valued transcendental entire algebroid function
defined by an irreducible equation

F(z, )=+ A + AP+ Ao 2+ A f+ A=0,

where As, As, As, Ay and Ay are entire functions. Let a,, j=1, -+, 6, be different
finite numbers satisfying

Z 8 F)+ (@, )+ 3(am F)>T

for every pair m,n (mxn), m, n=1, -, 6, where d(a,, ) indicates the Nevanlinna-
Selberg deficiency of f at a,. Further assume that any four of {F(z, a;)} are not
linearly dependent. Then one of {a;}5-, is a Picard exceptional value of f.

THEOREM 2. Let f(2) be the same as in Theorem 1. Let {a;};-, be different
finite numbers satisfying

z: 8@, £)+8(my ) +5(dm £)>T

for every pair m, n (mxn), m, n=1, ---, 6, and
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7

Z 5(01, f)+5(a7; f)>6

e
Further assume that any three of {F(z, a;)} are not linearly dependent. Then at
least two of {a;} are Picard exceptional values of f.

THEOREM 3. Let f(2) be the same as in Theorem 1. Let {a;}3., be different
finite numbers satisfying
6
121 5(aj,f)+5(dm,f)+5<an, f)>7

for every pair m, n (m=xn), m, n=1, -+, 6, and

Z 8ay, f)+a, £)>6

=6
for every k, k=1,2, ---,5,7, and
8
Z o(a,, f)>5.
12‘5_6,17

Further assume that any two of {F(z, a;)} are not proportional. Then at least three
of {a;} are Picard exceptional values of f.

Here we remark that Toda [4] proved that X3.,d(a;, f)>8 implies the ex-
istence of four Picard exceptional values among {a;}.

§2. Proof of Theorem 1.
1. We put

g,-(z)=F(z, aj)’ j=1) AR 6’

and assume that all ¢,(2), 7=1, ---, 6, are transcendental.
We first have

6
Z.; d(a;, £)>5
=
and

(1) a1g1+azgs+ asgs+asgs+ asgs +asge=1,

where

6
a,=1 / fl@-a), =16

k%)
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Applying the method in the proof of Theorem 1 in [1] to our case, we get the
linear dependency of {g,}5-,, that is, for constants {aj}5-, not all zero,

(2) g, + agg,+ aigs+ alg, + adgs+ atgs =0,

Here we may assume without any loss of generality that alaix0, a{=a, Elimi-
nating ¢; from (1) and (2), we have

5
Zl (ay—af)g;=1.
=
Since at least two of {a;—aj} are not zero, we study the following subcases:
1) axal, a¥a, a¥Fa, aFa, asxa,

2) a¥al, a,¥a}, as¥ay, a¥a, o=al,

(i) «a

i
Q
L)
]
2
&
i
2
£
I
L

(ii) al=ai=a;=0, aix0,

(iii) al=a}=0, alaix0, aia,—asaix0,

(iv) al=a;=0, alaix0, ala,—aai=0,

(v) /=0, alalai=0, (a, as, a)xC(al, a}, a)) for any complex number C,

(vi) =0, ajaiaix0, (@, as a)=Clal, af, a)) for some complex number C,

/ 4 4 4
.. 24 443 [4¢ .
(vil) dlaldlalx0, — =—"=—"L="1,
a, a, a; a,
al al a,l
(viil) afajadai=0, o2 _ " for some (i, 4, &), 1=i, i, i;=4, but not (vii),
a"l a"Z 3
al al a; a; ..
(ix) ofataiai=0, T " for some (4, fy U, Ly),

Ayy iy (249 dyy

(%) adaeaix0, not (vii), (viii), (ix),
3) ay>af, ay¥al, axai, a=al, a=d,
(i) a=a=a;=0,
(ii) al=a;=0, aix0,
(iil) al=0, aas>x0, ata,—aja;0,
(iv) =0, aix0, ajo,—ajo;=0,
(v) dajei=0, (e, ay a)=Clai, a3, ) for some C,

( Vi ) a{a;aé#()r (0‘;’ Ay aa):\FC(a{) a£9 a;) for any C,
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4) a>xaf, ay¥a;, a;=ai, a,=af, a;=dai,
(i) aj=a;=0,
(i) af=0, a0,
(ii) alasx0, aa—aalx0,
(iv) ala;x0, a0;—aai=0.

The cases 1), 2) (ii), (iii), (v), (viii), (x), 3) (ii), (iii), (vi), 4) (ii) and (iii) lead
to an identity of the following type;

A) Mgt Aegat Asgs+ Augs+ 26g5=1,  QAhsAeds >0,
The case 2) (i) leads to the following type;

B) 101t asgetasgstasgi=1,  asgs+aegs=0.
The case 2) (iv) leads to

—ay —as

-aes=1,

’
a.
asgs+

3 3

’
[4¢
a0+ .0, +

«@
01+ g+ (o —ag)gs + ‘;4‘ (ay—ad)g,=1.
3

The cases 2) (vi) and 3) (iv) lead to

—ag o —as

a0+ = a0y + (@ —as)gs + =1,
3 3
D)
r_ ’_
a0+ K% asgs+ G as0s=1.
Qas 3
The cases 2) (vii) and 4) (iv) lead to
E) Ag1+2:9:=1, Asgs+A4gs+ 2595+ 2egs=1.

The case 2) (ix) leads to

’ ’ ’
(1 - %)axgx + (1 - Z_:> .0, + (0 —as)gs + (1 - %) a,9,=1,

1 3

o ’
< - ‘a_j‘>a1gx+< - 'gl_ . %)azgz'l‘ (1— %)asgs‘l' (1— %)a’d’e:l'

a,  as 1 3 3 3

6

The case 3) (i) leads to
F) a101+a’202+(1303=1, a4g4+a5g5+txege=0.

The case 3) (v) leads to
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G) 2191+ A0z + 2303 =1, A4ga+ 2595+ 2606 =1.
The case 4) (i) leads to

H) a101+azg:=1, asgs+asgs+asgs+asgs=0.

2. By our assumption the cases B), C!), F) and H) may be omitted. We shall
discuss the other cases.
In the first place we remark that Valiron [5] proved

T(r, f)=p(r, A)+0Q),
where
A= max (1, |4])
0=)=4

and
Sur, A)= —\"log A d
(7, )‘E{So og 0.
Further we have

5u(r, A)=m(r, g)+0(L),

where g=maX;<;<s (1, |g;])-
The case A). In this case we have

Z 8a,) £)>4
and
5T'(r, f)=m(r, 9)+O0Q)=m(r, g¥)+O0Q),

where g¥=maX;<;<4 (1, |g;|)- By the same argument as in the proof of Theorem 1
in [2], we get the linear dependency of {g;}5-,, and hence we have one of the
following:

A’) g1+ praget prags+puga=1,  ppapspas0,
B gt pegetprags=1,  pagatpsgs=1,
(025 2191+ A2g2=1, Asgs+ 2404+ 2595 =0,
D’) A101+ Aoga+Asgs=1, 2191+ Aga+ 2505 =1,
E’) 2191+ 2202+ 2393 =1, A0+ 2595 =0.

By our assumption the cases C’), D) and E’) may be omitted. In the case
A’) we have

; 3y f)>3
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and
5T(r, f)=mlr, g¥)+0Q1) =m(r, ¢F)+0(1),

where g¢¥=max;<,<s (1, |g;|). Therefore the reasoning in the proof of Theorem 2
in [1] leads to a contradiction. In the case B’) we have

5T (r, f)=m(r, g5)+O0(1),

where ¢f=maX,<,<: (1, |g;]). Hence we have a contradiction by virtue of the argu-
ment in the case (B) in the proof of Theorem 2 in [1].
The case C?). In this case we have

m(r, gF) = g N(r; 0, 01')"'0( Z4! m(7, w)>

=1
with a negligible exceptional set, and

6

m(r, gH)= 2 N(r 0, g]-)+0( Zj!lm(r, Gj)>y

]=1 =
J%3,4 i%3,4

where gf=max (1, |gi], |gs], lgsl). Evidently

m(r, ) =m(r, g¥)+m(r, g¥)

6
= > N 0,99+ N0, g:)+N(r; 0, g2)+0(m(7, 9)).
J=1

On the other hand, for an arbitrary ¢>0,
N#; 0, gp={1—d(aj, f)+em(r, g)

for r=7, Hence we have
mr, )= {8 33 8@, 1) =lan £)= oa £)+e| o, )+ otmtr, o),
which leads to a contradictory inequality
X, 0a £)+la, £)+as £)=T.
The case D). We have
m(r, g¥)= jZill N(r; 0, gj)+0< g m(r, gj)>
and

mir, =N 0, )+ Ji NG 0, gj>+o(m<r, W+ X mir, g;)).
=5 J=5
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Hence we have
mir, 0= (7= 3 e, )= 8as, £+ | mtr, o)+ olomtr, o)
which contradicts the assumption
X, e )+ 16,

The cases E) and G). In these cases we have

5T(r, f)=m(r, ¢¥)+0),

where ¢¥=maX,g,ss5 (1, |g;]). Hence by virtue of the same argument as in the case

(B) in the proof of Theorem 2 in [1] we have a contradiction.

Thus we have a contradiction in every case. Therefore at least one of {g;}5,
must be a polynomial, that is, one of {@,}5_, is a Picard exceptional value of f.

The proof of the theorem is completed.

§3. Proof of Theorem 2.

1. We shall use the same notations as in the proof of Theorem 1 and put

g«(2)=F (2, a;), and assume that all g,(2), j=1, -, 7, are transcendental.

the proof of Theorem 1 we have one of the following:

HY) o191+ g2 =1, 305+ augs -+ asgs + aegs =0,
H?) asgstasgs=1, @101+ azg2+asgs+aigi=0.
Further we have

,3191+ﬁ292+,3393+/9404+,Bsgs+,37g7=1,
where
7
ﬂ.i:l / I_I (aj_ak)) j=1y 21 °tty 5’ 7.
kij,le

If we have H'), then we get

(192_191 %j‘)gz'thg:z + Bags+ Bsgs+ frgi=1— ﬂ; .

ay
Here
5T(r, f)=m(r, g©)+01),  g¥=max(l, |g;).
2575

Then by

Hence it reduces to type A’), B’), C’), D’) or E’). Each of A’), B’), C’) and E’)

leads to a contradiction. Hence we may consider the following:
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(i) (ﬁz—ﬂlﬁ)gz+zsgs+z4g4= _ b
[+ 4} (26}

(ii) ﬁags+34g4+lsgs= - %,
1

(iii) Bsgs+Asgs+ Aegr=1— *—51 )
1

(iv) ,87g7+1202+1303=1— %,
1

az —1_ B
<ﬁz B1 le1 >02+2595+17g7— @’
Bsgs+ 2202+ Argr= "—‘8’1"

a1
Bsgs+ 2202+ Augs=1— ﬁ‘:

a1
BrgrtA4ga+ 2595 = “—ﬁl— .

ay

When (i) occurs, using aig:+az9.=1, we have

o —1_ P
(,31 Ct’z ﬁz>01+lsgs+l4g4— @

When (ii) occurs, we have

o191+ aaga=1,

(ﬁz— Z_jﬁ1>92+lsgs+lvg7=1" f_i .

Bsgs+ Auga+ Asgs=1.

When (iii) occurs, we have 5T(r, f)=m(r, ¢¥)+O0(), ¢¥=max (1, |gz|, |gsl, lgs]),

and

a101+azg9:,=1,

13393+/2505+17g7= - & .
25}

Finally when (iv) occurs, we have 57z, f)=m(r, ¢g¥)+0Q1), g¥=max(, |gs|,

lgals lgs]), and

o101+ asge=1,

.31.

A49s+ Asgs+ 2agr=1—"—

a1

Thus in every case we get a contradiction.

If we have H?), then we have

5T(r, f)=ml(r, ¢¥)+0OQ),

(.32" -Z—jﬁx)gﬁ (,33— %: ﬁx)gs+ (134— % ﬁl)g4+ﬁsgs+ﬁvgv=1,

and hence it is sufficient to consider the following:

(i) <,32— %‘ [91>gz+lsgs+24g4=1,
1

(ii) (,32— gz—.@l)gz-f'lsgs-l‘lsgs:l,
1

(iii) Bsgs+ Az 4 505 =1,

(iv) Brgrt 2202+ 2395 =1,

(ﬁz - g‘j‘ 191>92+2595 +hgr=1,

<,32 - % ﬁl) gat Augs+ g =1,
1

ﬁsgs+34g4+27g7 =1,
Bagr+ Aaga+ Asgs=1.
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When (i) occurs, we have B’)-type, and (ii), (iii) and (iv) lead to type A’).
Hence we have a contradiction in every case.
Thus we conclude that one of {a,};, is a Picard exceptional value of f.

2. Now we first suppose that this exceptional value is @; and that all g,,

j=2, ---, 7, are transcendental. We have only to consider when 1—a;9;=0. Then

,3202+,Bag3+,3494+13505+,3797= —"_fl
1
leads to type D’). Since we have
szt asgs+ asgs+ asgs +asge =0,

it is sufficient to consider the case

LBI" ‘87g7+24g4+1595=1—&.
(25} a

1

ﬁ7g7+zzgz+zsgs= -
But this contradicts the assumption
7
%, 8(a; 1)+ (@, £)>5.
=
J%x6

Hence we get two Picard exceptional values.
Next we suppose that the exceptional value is @s. Similarly we have only to
consider 1—aes=0. Then we have

191+ asga+ asgs +augs+ asgs =0,
and hence

(,82—— %— 0(2>gz+ <,Bs— % as>g3+ <,84— f—ia4>g4+ <135—— %‘0/5)05""87@7:1.

By the same reasoning as above we can conclude that there are at least two

Picard exceptional values.
The proof of the theorem is completed.

§4. Proof of Theorem 3.
1. We set
gj(z)=F(z, a])’ .7=1! ) 8;

and assume that all g;(z), =1, ---, 8, are transcendental. Then by the proof of
Theorem 1 we have one of the following:
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AY 2101+ Aega+ Asgs+ Aaga+ 595 =1,
A?) Xag1+Aaget+ Asgs+Aags+ Aegs =1,
FY) it azgetasgs=1,  augitasgs+asgs=0,
F?) augstasgstasgs=1,  aigi+agat+asgs=0,
H?) agitasgea=1,  @sgstasgitasgs+asgs=0,
H?) asgs+asge=1, 191+ aags+ asgs+aug.=0.

2. We show that A?Y'), A?) reduce to F'), F?), H') or H?. Indeed, by our
standard argument A?) reduces to

(i) Agi+Aa0e=1,  Asgs+2gs+ 2505 =0.
Here if (23, 44, 25) =C(as, as, a5) for some complex number C, we get
191+ aoga+ asgs =1, asgs+asgst+asgs =0,
which is of type F?). If (%, A, A5)Clas, ay, as) for any complex number C, then

we can eliminate one of g,, =3, 4, 5, and hence we have, for example,

P i
a1y +asgs+ (6(4 - 74— as)gs‘l' (as - "2—5‘ aa)gs +asgs=1.
3 3

Further we have
2101+2202=1-

It is easy to see that A;=a;, d2=a: is only a non-contradictory case. Hence it
reduces to H!). Other equations of type (i) also reduce to F?), F?), HY) or H?), as
we can see easily.

A?) can be dealt with similarly.

3. Now we consider the case F*!). Eliminating ¢, from
a191+azgs+asgs=1
and
B191+ Bega+ Bsgs+ Paga+ Bsgs + Prgn =1,

we have

(:‘92_ Z—j .31)92"' (ﬁs— % 131)03+.3404+.3595+.3707= _ b .

(24}
Here we have

5T(r, )=m(r, g¥)+01),  g¥= [max @, lgs)-
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Hence by our assumption only the following cases need to be discussed:

(i) (22 ot (Be= 22 pi)os=1= L5, pugut pugs pron=0,
(ii) (ﬁz——ﬂ >02+.3506—1—ﬂ, <ﬁ3—g—j'ﬂl>gs+ﬁ4g4+ﬂvg7=0,
(iii) Baga+Bsgs=1— ﬁ_l’ <192— -—,81>92+< Bs— Z—iﬁl>93+l3707=0,

(iv) Bsgs+ Brgr=1— —'81—’ (ﬂz— —,31>92+ (.33— % ,31>ga+194g4=0,

(v) (,32-‘ —.31>gz+l3797—1— (,33“‘ %:—,31>93+ﬁ4g4+.3595=0-
Further we have

(1) 7101+ 7202+ 7305+ ra0a+ 7505+ rsgs =1,

where

8
7'J=1 / kn (aj_ak)’ j=12,.-58.
=1

k%),6,7

Eliminating ¢, from (1) and aig:+aag:+asgs=1, we have
(2) <rz— 2 r:)gz+ <rs— =% )’1>93+T4g4+2’595+7’898=1’— I
(24} ay (451

Each of (i), (ii), -+, (v) together with (2) leads to type A’) or B’), which implies
that F') is contradictory. It is to be noted that

[2 4] A A3 (44} A3 1
B B2 Bs |0, B B 1 |=0.
i T2 78 1 712 1

F?), H') and H?) can be dealt with similarly, and hence we have a contradic-

tion in every case.
Thus we conclude that at least one of {e;} is a Picard exceptional value of f.

4. We first suppose that ¢, is a polynomial and the remaining ¢’s are trans-
cendental. We may suppose (1—p19:)(1—7i9:)%0. Then

Begz~+ Bsgs+ Baga+ Bsgs + Brgr=1— P11

leads to either of the following:



DEFICIENCIES OF AN ENTIRE ALGEBROID FUNCTION 73
(i) Bega+ Bags=1—Pugs, Buga+ Bsgs+ Brgr =0,
(ii) Bs0s+ Prgr=1—Bigy, Begz+ Bsgs+ Paga=0.
Further we have
7292t 7303+ 7404+ 7595+ 7398 =1 — 71101

Hence, eliminating ¢, (or ¢s;), we get a contradiction in every case.

Next we suppose that g is a polynomial and that the remaining ¢’s are trans-
cendental. If 1—aegs=0, then by the same argument as in 3, we get a contradic-
tion. If 1—aege=x0, then

a191+azga+asgs+ augs+ as0s =1—aegs
leads to
asgs+asgs =1—aegs, 191+ asgs +asgs=0.

Again, by the same argument as in 3, we get a contradiction.
Next we consider the case that ¢; is a polynomial. In this case we have

Big1+ Bege+ Bsgs+ Bags+ Bsgs =1— Baga.
Further
arg1+asgs+asgs +asgs +asgs +asge=1
leads to one of F?), F%), H') and H?). In every case we get an equation of type
A’), hence we get a contradiction.
The case that g is a polynomial is quite similar as above.
Thus two of {g;} are polynomials, that is, there are two Picard exceptional
values among {a;}.

5. Now we show that there is one more Picard exceptional value. We dis-
tinguish several cases: (i) ¢: and g, are polynomials, (ii) ¢; and ge, (iii) ¢: and
g, (iv) g1 and gs, (V) gs and ¢r, (vi) gs and gs, (vii) gz and gs.

We suppose that in every case other ¢’s are transcendental.

Case (i). Since

a; az 1

,31 ,82 1 |=0,

71 72 1
we may assume that

@393+ asgs+ asgs + g =1—a19:—a9:%0.

This implies a contradictory inequality

}: 8(a,, F)=3.
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Case (ii). If 1—aig1—aegex0, then we have obviously a contradiction. If
1—a19:—asgs=0, then we have

sfa+asgs+ asgs+ asgs =0.

We may assume that 1—pg:%0. Hence, eliminating ¢, from

B2ga+ Bsgs+ Paga+ Bsgs + frgr=1— gy,

we have a contradiction.

Case (iii) and case (iv). Similarly as above.

Case (v). If both of 1—aegs and 1—p.g; are not constantly zero, we have a
contradiction, eliminating one of g¢,, j=1, :--, 5, from

and

191+ asga+ asgs+ asgi+ asgs =1 —aegs

B1g1+ P22+ Bsgs+ Bagat Bsgs =1 — Baga.

If both of them are constantly zero, we eliminate g, and ¢. from

and

191+ azga+ asgs+ augs +asgs =0,

P91+ B2g2+ Bsgs+ Bags+ Ps95 =0

7101 +7’202 + 789+ 7494+ 7595+ 7808 =1.

Then we have a contradiction, too.
Case (vi) and (vii). Similarly as above.
Thus we have a contradiction in every case. Therefore at least three of {g,}%.,
are polynomials, that is, at least three of {@;}}., are Picard exceptional values of f.
The proof of the theorem is completed.
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