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INVARIANT SUBMANIFOLDS OF CODIMENSION 2 OF
A MANIFOLD WITH (F, G, u, v, 2)-STRUCTURE

By YosHiko KuBo*

An almost complex manifold, an almost contact manifold and a manifold with
a structure tensor f satisfying f*+f=0, all admit a tensor field of type (1,1). A
submanifold of these manifolds is said to be invariant when the tangent space at
each point of the submanifold is left invariant by the endomorphism defined by
this tensor field.

It is known that the invariant submanifolds of almost complex and contact
manifolds inherit properties of the enveloping manifold. For example, an invariant
submanifold of a Kihlerian manifold is Kihlerian and an invariant submanifold of
a normal contact manifold is normal [1, 2, 3].

Yano and Okumura [4] have recently introduced the so-called (F, G, #, v, 2)-
structure in an even-dimensional manifold and given a characterization of an
even-dimensional sphere in terms of this structure.

The purpose of the present paper is to study invariant submanifolds of codi-
mension 2 of a manifold with (F, G, «, v, 2)-structure.

We recall in §1 the definition and properties of (F, G, #, v, 2)-structure and in
§2 the fundamental formulas for submanifolds of codimension 2 of a Riemannian
manifold. In §3, we obtain fundamental formulas for submainfolds of codimension
2 of a Riemannian manifold with (F, G, «, v, 2)-structure. In the last §4, we get
a theorem stating that invariant submanifolds of codimension 2 of a manifold
with (F, G, u, v, A)-structure are also manifolds with (f, g, %, v, 2)-structure and a
corollary stating that invariant submanifolds of codimension 2 of an even-dimen-
sional sphere are also spheres.

§1. (F, G, u, v, A)-structures.

Let M be an m-dimensional differentiable manifold of class C>. If there exist
in M a tensor field F;* of type (1, 1), two contravariant vector fields U?% V?*, two
covariant vector fields #,, »;, and a function A such that®
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1) (x?) are local coordinates of M and F.*, U2 V3 u,; v; and 2 are components of
F, U, V,u,v and 2 with respect to this local coordinate system respectively. The indices
A, &, pyv, -+ run over the range {1, 2, ---, m} and the so-called Einstein summation conven-
tion is used with respect to this system of indices,
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(1.1 FfF=—=0"+U'u:+ Vv,
(1.2) FrU==2V",  Flu.=,
1. 3) FrVi=2U05 F'Ve=—2u,
1.4 Utu,=1-2, Viu,=0,
1.5) Vh,=1-2, U, =0,

then the manifold M is said to have an (F, U, V, u, v, A)-structure. Yano and
Okumura [4] proved.

THEOREM A. A differentiable manifold M™ with (F, U, V, u, v, A)-structure is
even-dimensional, i.e. m=2mn.

DerINITION. A (F, U, V, u, v, 2)-structure is said to be normal if the Nijenhuis
tensor N of F satisfies

def
(1. 6) S)‘v = Nl,”+(axu,—a,u1) UD+(agv,“a,Ul) Vv=0.

We assume that, in a manifold M with (F, U, V, u, v, 2)-structure, there exists
a positive definite Riemannian metric G such that

(1- 7) Gle'z:un Glﬁ Vl:”t)
(].. 8) GZvazFr‘ = Gvr —UU: —0V,0..

We call an (F, U, V, %, v, A)-structure with such a Riemannian metric a metric
(F, U, V, u, v, A)-structure and denote the structure by (F, G, «, v, 2).
In a manifold with (F, G, #, v, 2)-structure, we can easily see that F satisfies

(1. 9) Fp=—F
where
Fl:=F2va:-

As examples of manifolds with (F, G, #, v, A)-structure, we know submanifolds
of codimension 2 of an almost Hermitian manifold with non-zero mean curvature
vector and hypersurfaces of an almost contact metric manifold. Moreover we can
see that there always exists a metric (F, G, #, v, A)-structure in an even-dimen-
sional sphere.

By assuming that #; and »; in the manifold with (F, G, #, v, A)-structure satisfy

(1. 10) Vite—Veu, =2¢Fln
(1. 11) Vlv:_ V:vl =2Fln

where F, is the operator of covariant differentiation with respect to Christoffel
symbols {,%} formed with G, and ¢ a scalar function, we have the following
theorem [4]
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THEOREM B. If a manifold with normal metric (F, G, u, v, 2)-structure satisfies
(1. 10), and (1.11) and if 2(1—22) is an almost everywhere non-zero function, then
we have

(1.12) VF = —G,i(¢t:+0.) + Gl pra+02).

THEOREM C. Let M be a complete manifold with normal metric (F, G, u, v, 2)-
structure satisfying (1.10) and (1.11). If 21—2%) is an almost everywhere non-zero
Sunction and m>2 then M is isometvic with an even dimensional sphere.

We know that the (F, G, u, v, A)-structure in an even-dimensional sphere
satisfies (1.10) and (1.11) and that 2(1—24% is an almost everywhere non-zero
function over the sphere.

§2. Submanifolds of codimension 2 of a Riemannian manifold.

We consider a submanifold N of codimension 2 of a differentiable manifold M
of dimension m with positive definite Riemannian metric G,., and let the para-
metric representation of the submanifold N be

zt=x*(y?),

where (y?) are local coordinates in N, and the indices ¢,7, &, , --- run over the
range {1, 2, ---, m—2}.
Put

Bil =a1;.’121,

0; denoting the operator 9/dy’, and denote a pair of mutually orthogonal unit
vector fields normal to N by C* and D?, which are locally defined in each coordi-
nate neighborhood of N. Then the Riemannian metric induced on N is given by

(2- 1) Qij=GuBi*Bf,
and we have
2.2 G.C*Bf =0, G.D'B;f=0, G.C'C'=1, G,CD'=0, G,;D*D"=1.

If we denote by F; the operator of the so-called van der Waerden-Bortolotti
covariant differentiation along N, i.e. if we put

k

2 fpy
@.3) %BJ‘=B¢BJ*+{E v]Bi B, —{i ;

}Bkus
@ 4) Vicz=aicz+{ 2 }B{C”, sz=aiDJ+{ A }B{D”,
KE VY Ky
{s%} being the Christoffel symhols formed with ¢;,, then, taking account of (2. 2),
we have
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(2.5) ViB =hy;C*+ ki D?,
(2. 6) V@Cl= —hijBJI—l-liD‘, V¢D1= —kifB,‘—liC‘,

where /%;; and k;, are the second fundamental tensors with respect to C* and D?
respectively, /, the third fundamental tensor, and A;/=/hug", k/=Fkug". As is well-
known we have

hij=hj,  ki,=Fkj,

where (¢%) is the inverse of the matrix (g;;). (2.5) are equations of Gauss and
(2. 6) those of Weingarten.

§3. Submanifolds of codimension 2 of a Riemannian manifold with
(F, G, u, v, A)-structure.

We now assume that the enveloping manifold M is a Riemannian manifold of
dimension m=2»n with (F, G, u, v, 2)-structure, and that there is given in M a
submanifold N of codimension 2. Then, for the transforms of B;* C* and D? by
F;* we have equations of the form

3.1 FiBi=fi/B,"+pC*+q.D",
3.2 FfC*=—p'B+aD",
3.3) FfD'=—g¢'B;" —aC",

where p*=p,g’t and ¢*'=g;9’%. We can see that f;/ defines a global tensor field of
type (1,1) in N independent of the choice of C* and D?, p¢ and ¢* are two local
vector fields and « is a global scalar field in N independent of the choice of C?
and D% On the submanifold N, the vector field #* and »* have the forms

3. 4) W=t B+ pC*+ DA,
(3.5) V=0t B +1Ci+eD?,

where % and »* are vector fields in N and p, v, 7, ¢ are scalar fields in N.
Considering the transform of (3.1) by F," and taking account of (1.1), (3.1)
and (3. 2), we have

FFB=fJF. B+ p:.F."C" +q.F."D",
(=0t +o0) B =1 (B +5,C°+ ;D7) + p( —p'B," +aD) +¢i( — ¢/ B," —aC"),
— B+ (! B, + pC* +v D%+ v/ B, +1C*+eD*);

= (=08 +ulu;+v70;) B + (o; +70,)C* + (vot; +ev;) D*

=(fifd —put! —pip") Bf* +(fps— aq)C* +(filq;+ap) D%,
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and consequentry

3.6) S ==+ u’ + 007 +pi P+ i,
3.7 filbj=puit+rvitag;,
(3 8) fﬂq] =vU; +£Z)i—api,

where u;=g;u° and v;=g;;07.
Similarly computing the transform of (3. 2) by F.*, we have

FlFC= —pF "B +aF D,
(=85 + w0 +0,0°)C = —pU ! B+ p:C*+ . D) +a( — ¢ Bi" —aC*),
~C*+ (B + pC*+vD*)p+ (v By" +1C*+-eD")c

=(ow+ 70} B;" +(—14p* +2)C*+ (v +1e) D*

=(=fip*—aq’) B, —(p'pi+a®)C* —p'q:D",

and hence
G.9 pipr=1—p*—c*—a?
(3. 10) p,,'qzz —-yp —ET.

Moreover from (3. 3) we have
FeF D= —g'FS B —al"C,
from which
(=05t uut” +o0")D*= —g(fi! B," + pi.C* + ¢: D) — a(— p*B;" +aD"),
or equivalently
— D+ (wB;"+ pC* +vD" W+ (0 B;* +7C*+eD%)e

= (vt +ev?) By" + (v +7¢)C* (=1 +v*+¢*) D

=(=fdg+ap’)B,"—¢'p:C* —(@'q: +a*) D",
3.11) qtqi=1—12—e?—qat.

Forming the transform of (3.4) by F;* and using (1.2), (3.1), (3.2), and (3. 3),
we find

Fifw=uw'F B+ pF"C*+vF" D,
=W =u(fIB)" +pC" +q:D") +p(—p* B +aD") +v(—g B —aC"),
—A(W*Bi" +1C" +eD")=(f?u — pp? —vg?) B," + (w'p; — av)C* + (wq; + ap) D",
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(3. 12) fi"%i = —ij-l_ ppf_l_ vg?,
3.13) Wi =av— iz,
@.14) wiqi= —ap—12e.

Similarly, we have from (3. 5)
Ffv'=viF B+ cF;'C'+-eF) D,
A =v(fI By +pC +q@: D)+ (—p' B+ aD") +e(— ¢' B —aC"),
At B;"+ pC" +vD")=(filv* —tp? —eq?) B, + (v'ps — ae)C* + (v?g; + az) DF,

(3.15) [ilvt=2ul+tpi +eq?,
(3.16) vip=20+ag,
(3.17) vig;=Av—ar.

On the other hand from (1.4), (1.5), (3. 4) and (3. 5) it follows
w*e; = (wt Bt 4 pC v D*)(u; B7 4 pCi+v D),
1—22=ulu;+ 0%+27
V0, =0'B;*+1tC*+eD¥)(v;B7,4tCy+¢Dy),
1-22=vip;+ 2+,
w'v,=(u'B;* 4 pC*+vD?)(0;B71+1C+eDy),

0=wuvt+ pr+ve,

(3.18) wiy=1—22—p?—1?,
(3.19) vio=1—22—1%—¢?,
(3. 20) U= —pr—ve.

Now differentiating (3. 1) covariantly along the submanifold N and using (2. 5)
and (2. 6) we obtain

(3.21) (V,F:*)By* B+ Fi¥(hjiC*+ k;:D?)
=1 fOB + i huC* +kpnD")+ (7, p:)C° +pi( — B +1;D")
+(V;9)D* +qi(— k!B —1,C").

If we assume that the enveloping manifold is a manifold with normal metric
(F, G, u, v, A)-structure satisfying (1.10) and (1. 11) and 21 —2?) is an almost every-
where non-zero function, then we have, from Theorem B, (3.21), (3.1), (3.2),
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(3.3) and (3. 5)

(3 22) ijil = gﬁv‘ + 550;‘ +1>1;hjl + qikj‘ —plh_ﬁ —q’kﬁ,
(3. 23) Vipi= —gjir —akji—hufii+qid,,
(3. 24) qui=-—gﬁa—f-ahﬁ—kﬂfil—pilj.

Differentiating (3. 4) and (3. 5) covariantly along the submanifold N and taking
account of (2. 2), we find

B, V=7 48) B+ w(hiC + kDY) + (7;0)C*+ p( — A Bi+1;D%)
+(7p)D*+u(— ki BA—1,CY),

B, V.02 =P ) B+ 0 (h;,Cr+ kD) + (P;)C?
+2(—hfBA+1; DY)+ (Vyr) DA+ e(— ket B — 1,CY).

So, we have
(3. 25) Viur=pht+vk+ B, BiVu?,
(3. 26) Vivt=chj+ckii+ B, BV .

§4. Invariant submanifold of codimension 2 of a manifold with (F, G, u, v, 2)-
structure.

We now assume that the tangent space of the submanifold N of codimension
2 in a manifold with (F, G, u, v, A)-structure is invariant under the action of F)*
at every point, and we call such a submanifold an invariant submanifold.

For an invariant submanifold, ‘we have

4.1 FifBi=fiB),
that is,
;=0 and ¢;=0,
in (3.1). Thus we have
4.2) FiCt=aD", F{D'*=-—al,
from (3. 2) and (3. 3) respectively,
4.3) fif = -0+ vlu; +v'v;,
4. 4) ou;+7v;=0,
4.5) v +ev; =0,



INVARIANT SUBMANIFOLDS OF CODIMENSION 2 OF A MANIFOLD 57

from (3. 6), (3. 7) and (3. 8) respectively,

4. 6) at=1—p—1%
4.7 vo+er=0,
4. 8) a’=1—1"—¢,

from (3. 9), (3.10) and (3. 11) respectively,

4.9 filut=—27,

4. 10) av=71r,

(4.11) ap=—1,

from (3.12), (3.13) and (3. 14) respectively and finally
4.12) filvi=2uw,

4.13) as=—2p,

4.14) ar=2,

from (3. 15), (3. 16) and (3. 17) respectively.
Now, first of all, we prepare the following Lemma.

LeMMA 1. In an invaviant submanifold N of a manifold with (I, G, u, v, 2)-
structure we have

(4. 15) 0*=¢?,
(4. 16) Vvi=1%

Proof. Suppose first that P is a point of N where A(P)=0. Since the simul-
taneous equations (4. 11) and (4. 13) with unknowns A(P) and «(P) have non-trivial
solutions, we have (4.15). Similarly we can prove (4. 16).

In the next place we suppose that A(P)=0. Then we have

4.17) p(P)a(P)=0,
and
(4. 18) eP)a(P)=0,

from (4.11) and (4.13) respectively. In this case, we distinguish two cases, that
is, a(P)=0 and a(P)x0. If 2(P)=0 and «(P)=0, then, by virture of (4.10) and
(4. 14), we get

v(P)=7(P)=0.
Thus it follows that
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0*(P)=&*P)=14P)=7*P)=0,

because of (4.17) and (4. 18).
Suppose that A(P)=0 and «(P)=0. Then from (4. 6), (4.8), (3.18) and (3. 19)
we have

(4. 19) 1—pP—72=0),
(4. 20) 1—2—e=0,

(4. 21) Wiy =1—p* =12,
(4. 22) vo=1—rt—e,

Substituting (4. 19) and (4. 20) into (4. 21) and (4. 22) respectively, we have

(4. 23) wu;=12—12,
and
4. 24) vw;=vi—12

These imply that
uur = — V=1 —17%,
from which
wuw=v,0°=0,
and consequently
(4. 25) i=)t
at P. Substituting (4. 25) into (4.19) and (4. 20), we get
p*(P)=¢*(P).
This completes the proof of the Lemma.

We remark that the result of Lemma 1 is independent of the choice of
normal unit vector C?* and D? that is, the property is intrinsic.
Now let

N,={P|p(P)=0 and u(P)=0}
and
N2=N_le

then N; is open in N and N;UN;=N.
In N; the vector fields #* and »* have the forms
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w=u'B?,  v*=v'Bp,
ie. #* and v* are tangent to N;. So, we get
(4. 26) wu;=1—22, uwv;=0, vw;=1-—22,

from (3.18), (3.19) and (3.20). Combining these equations with (4. 3), (4. 9) and
(4.12), we see that the invariant submanifold N, of a Riemannian manifold with
(F, G, u, v, A)-structure has also (f,g, %, v, A)-structure and is even-dimensional
because of Theorem A.

LEMMA 2. In N, the vector fields w* and v* have the forms
4. 27) w*=pC*+vD?, v*=vC*—pD?,
that is, u* and v* arve normal to N.

Proof. At the point P where A(P)x0 and «(P)=0, we get o(P)=v(P)=7(P)
=¢(P)=0 from (4.10), (4.11), (4.13) and (4. 14). This contradicts with (4. 6) and
(4.8). From Lemma 1, we see that at the point P where A(P)=0 and «(P)=0,
o(P)=v(P)=7(P)=e(P)=0. Since at P of N, p(P)x=0 or v(P)x0, at P of N, (i)
AP)x0 and aP)x0 or (ii) A(P)=0 and «(P)=0. At the point of (i), multiplying
(4.11) by « and (4.13) by 2 and adding those, we get 12=a®. Moreover substitut-
ing 2*=a* and (4. 6) into (3. 18) and (3. 19), we get #*=v*=0 at the point P. This
shows that at P # and » are normal to N.. Also, at the point of (ii) from Lemma
1 we get wi=0v'=0. So, we see that # and v have forms (4. 27) over N, because
of (4.7).

These show that the submanifold N; is a manifold with (f, g, #, v, 2)-structure
and the submanifold N; is an almost complex manifold.

Now, we assume that (1.10) is valid in M. Since N, is open, taking any
vectors X and Y tangent to IV, we get

wlX, Y =u (X7, Y* = YVi7,X")
= X Y Vithe+ Y X"Vt
= — XY (Pt —Vstr) = — 20 X3 Y “F
= —2¢f,, BB 2By By
= —20f, a0,

where z* and y* are tangent components of X and Y. This means that the vector
[X, Y] are not tangent to N. Therefore, there is no invariant submanifold such
as N..

So, we see that the invariant submanifold N of the manifold M with
(F, G, u, v, 2)-structure satisfying (1.10) exists only when #* and »* are tangent to
N and a=0 over N from (4.6) and the invariant submanifold N has induced
(f, g, 4, v, A)-structure. Moreover if we assume that A(1—2?) is almost everywhere
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non-zero and (1.10) and (1.11) are valid, we have in the submanifold N, from
(3. 23) and (3. 24),

akj=—hufd, ahjp=kufi.

Since 4;i, kj are symmetric and f;; is skew-symmetric, transvecting these equa-
tions by ¢’%, we have k;’=0 and %;*=0. Since « is non-zero on the submanifold
N, we have A;t=k;*=0, i.e., the invariant submanifold N is minimal.

In the submanifold N, by computing the Nijenhuis tensor of f;? and exterior
derivative of #; and v;, we get

Sijk=Mjk+ (Viuj - V]ul)%k‘k (Vﬂ)j - Vﬂ)i)vk
=[Ni"+ Vit —Vew)u’ + (V0. — Ve0)0*1 Bi* B," B,*.

This shows that if the Riemannian manifold with (F, G, %, », 2)-structure is normal,
then an invariant submanifold N with induced (f, g, %, v, 2)-structure of codimen-

sion 2 of M is also normal.
Next, if the (F, G, «, v, A)-structure satisfies (1. 10), and (1.11) then we have,

on the invariant submanifold N,
Viuj—Viuy=Vyste—Vern2) Bi* By* =2¢ F 3. Bi* Bf* =2¢f,
Vﬂ)j bl ij = (ng, - V,U})BiXBJ' = 2F1,,B1;IBJ‘ =2f,;j

So, the induced (f, g, %, v, )-structure satisfies Vju;—Vu,=2¢f; and Vi, —Vw;=2f;
and then, if we assume that A(1—2%* is almost everywhere non-zero over N an
invariant submanifold N is also isometric with a sphere if the manifold M is
isometric with a sphere because of Theorem C.

Summarizing the above we have

ProPOSITION 1. Let M be a Riemannian manifold with (F, G, u, v, 2)-structure.
If N is an F-invariant submanifold of codimension 2 of M, i.e., Fy"Bi*=fiB,,
then N is a sum of e manifold with (f, g, u, v, A)-Structure and an almost complex
manifold.

PROPOSITION 2. Let M be a Riemannian manifold with (F, G, u, v, 2)-structure
and satisfy (1.10). If N is an F-invariant submanifold of codimension 2 of M,
then uw* and v* are tangent to N i.e., uw*=u'B;* and v*=v'B.

PrOPOSITION 3. Let M be a Riemannian manifold with (F, G, u, v, 2)-structure
and satisfy (1.10). If N is an F-invariant submanifold of codimension 2 of M,
then N has also (f, g, u, v, 2)-structure induced from (F, G, u, v, 2)-structure.

ProrosITION 4. If M is a Riemannian wmanifold with normal (F, G, u, v, 2)-
structure and satisfy (1.10), then an F-invariant submanifold N of codimension 2
of M is also a Riemannian manifold with normal (f, g, u, v, 2)-structure.

PROPOSITION 5. In an even dimensional sphere M, there always exists
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(F, G, u, v, A)-structure. If N is an F-invariant submanifold of codimension 2 of
M and 2(1—2%) is almost everywheve non-zero over N, them N is also an even
dimensional sphere.
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