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INVARIANT SUBMANIFOLDS OF CODIMENSION 2 OF

A MANIFOLD WITH (F, G, u, v, ^-STRUCTURE

BY YOSHIKO KUBO*

An almost complex manifold, an almost contact manifold and a manifold with
a structure tensor / satisfying /3+/=0, all admit a tensor field of type (1,1). A
submanifold of these manifolds is said to be invariant when the tangent space at
each point of the submanifold is left invariant by the endomorphism defined by
this tensor field.

It is known that the invariant submanifolds of almost complex and contact
manifolds inherit properties of the enveloping manifold. For example, an invariant
submanifold of a Kahlerian manifold is Kahlerian and an invariant submanifold of
a normal contact manifold is normal [1, 2, 3].

Yano and Okumura [4] have recently introduced the so-called (F, G, u, v, λ}-
structure in an even-dimensional manifold and given a characterization of an
even-dimensional sphere in terms of this structure.

The purpose of the present paper is to study invariant submanifolds of codi-
mension 2 of a manifold with (F, G, u, v, Λ)-structure.

We recall in § 1 the definition and properties of (F, G, u, v, /l)-structure and in
§2 the fundamental formulas for submanifolds of codimension 2 of a Riemannian
manifold. In §3, we obtain fundamental formulas for submainfolds of codimension
2 of a Riemannian manifold with (F, G, u, v, X)-structure. In the last § 4, we get
a theorem stating that invariant submanifolds of codimension 2 of a manifold
with (F, G, u, v, ^-structure are also manifolds with (/, gy u, v, ^-structure and a
corollary stating that invariant submanifolds of codimension 2 of an even-dimen-
sional sphere are also spheres.

§ 1. (F, G, u, v, ^)-structures.

Let M be an ^-dimensional differentiate manifold of class C°°. If there exist
in M a tensor field F/ of type (1,1), two contravariant vector fields U*, Vλ, two
covariant vector fields uλ, vλ, and a function λ such thatυ
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1) (xλ) are local coordinates of M and F/, Uλ, Vλ, uλ, Vι and λ are components of

F, C7, V, u, v and λ with respect to this local coordinate system respectively. The indices
λ, K, μ,v, ••• run over the range {1, 2, •••, my and the so-called Einstein summation conven-
tion is used with respect to this system of indices,
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(1. 1) F/F/= -A"+ U ui+Vv*

(1. 2) FSU*=-λVlt, Fλ

κuκ=λvλ,

(1.3) Fλ*Vl=λU , Fλ'Vf=-λuι,

(1.4) U*uλ=l-λ*, F^,=0,

(1.5) F^l-Λ Z7^=0,

then the manifold M is said to have an (F, U, F, u, v, ^-structure. Yano and
Okumura [4] proved.

THEOREM A. A differentiable manifold Mm with (F, C7, F, u, v, λ}-structure is
even-dimensional, i.e. m=2n.

DEFINITION. A (F, U, F, u, v, ^-structure is said to be normal if the Nijenhuis
tensor N of F satisfies

def

(1. 6) S,«" = N

We assume that, in a manifold M with (F, U, F, u, v, Λ)-structure, there exists
a positive definite Riemannian metric G such that

(1.7) G,.Z7'=«., GλκV
λ=vκ,

(1. 8) GλκFv

λFτ

κ=Gvτ-uvuτ-vvvτ.

We call an (F, £7, F, u, v, Λ)-structure with such a Riemannian metric a metric
(F, U, F, w, ,̂ ^-structure and denote the structure by (F, G, u, v, X).

In a manifold with (F, G, u, v, ^-structure, we can easily see that F satisfies

(1.9) Fλκ=-Fκι,

where

As examples of manifolds with (F, G, u, v, Λ)-structure, we know submanifolds
of codimension 2 of an almost Hermitian manifold with non-zero mean curvature
vector and hypersurfaces of an almost contact metric manifold. Moreover we can
see that there always exists a metric (F, G, u, v, Λ)-structure in an even-dimen-
sional sphere.

By assuming that uλ and vλ in the manifold with (F, G, u, v, Λ)-structure satisfy

(1.10) P*uκ-l7κuλ=2φFλκ,

(1.11) FΛ-FΛ=2F2.,

where Vλ is the operator of covariant differentiation with respect to Christoffel
symbols {Λ} formed with Gλκ and φ a scalar function, we have the following
theorem [4]
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THEOREM B. If a manifold with normal metric (F, G, u, v, ^-structure satisfies
(1. 10), and (1. 11) and if Λ(l— Λ2) z's <m almost everywhere non-zero functiony then
we have

(1. 12) ftF,.= -Gv,(0«,+ιO+GU^+^)

THEOREM C. Let M be a complete manifold with normal metric (F, G, w, 0, Λ)-
structure satisfying (1. 10) <md (1. 11). // λ(l—λ2) is an almost everywhere non-zero
function and m>2 then M is isometric with an even dimensional sphere.

We know that the (F, G, #, v, Λ)-structure in an even-dimensional sphere
satisfies (1.10) and (1.11) and that λ(l— λ2) is an almost everywhere non-zero
function over the sphere.

§ 2. Submanif olds of codimension 2 of a Riemannian manifold.

We consider a submanifold N of codimension 2 of a differentiate manifold M
of dimension m with positive definite Riemannian metric Giκy and let the para-
metric representation of the submanifold N be

where (#*) are local coordinates in N, and the indices /,/,&,/,••• run over the
range {1, 2, -, m-2}.

Put

% denoting the operator d/dy*, and denote a pair of mutually orthogonal unit
vector fields normal to N by Cλ and Dλ, which are locally defined in each coordi-
nate neighborhood of N. Then the Riemannian metric induced on N is given by

(2. 1) gv=GlfBt*B/9

and we have

(2. 2) Gi&Bf=09 G,JW=0,

If we denote by ft the operator of the so-called van der Waerden-Bortolotti
covariant differentiation along N, i.e. if we put

ι j

(2.4) ftC?=diC?+|
[

{/*:} being the Chrίstoffel symbols formed with gi)y then, taking account of (2. 2),
we have
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(2.5) ViPS^hip+kijiy,

(2. 6) ^σ= -w

where hij and ki3 are the second fundamental tensors with respect to C* and Dλ

respectively, 4 the third fundamental tensor, and hίj=huglj

y kiJ=kuQlJ. As is well-
known we have

where (gίj) is the inverse of the matrix (g^ ). (2. 5) are equations of Gauss and
(2. 6) those of Weingarten.

§3. Submanifolds of codimension 2 of a Riemannian manifold with
(F, G, u, v, Jί)-structure.

We now assume that the enveloping manifold M is a Riemannian manifold of
dimension m=2n with (F, G, u, v, Λ)-structure, and that there is given in M a
submanifold N of codimension 2. Then, for the transforms of Bf, Cλ and Dλ by
Fλ

κ we have equations of the form

(3. 1) FfB

(3.2) FS

(3.3) F/

where pϊ=pjgjί and qί=qjQji We can see that fj defines a global tensor field of
type (1, 1) in N independent of the choice of Cλ and D\ pί and qi are two local
vector fields and a is a global scalar field in N independent of the choice of Cλ

and Dλ. On the submanifold N, the vector field uλ and vλ have the forms

(3. 4) uλ

(3.5) υ

where w* and v* are vector fields in N and /?, v, τ, ε are scalar fields in N.
Considering the transform of (3. 1) by Fλ

f and taking account of (1. 1), (3. 1)
and (3. 2), we have

j" + τCa + εDa)Vi

+ (pui + τVi}Ca + (vui + εVi)D°
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and consequentry

(3. 6) ftfι'= -δί+UiUJ + ViVJ+

(3. 7) fίjpj = put + τVi + aqi9

(3. 8)

where Ui=gijUJ and Vi=gijVJ.
Similarly computing the transform of (3. 2) by F"9 we have

F°Fλ*Cλ = -pΦSBt" + aFK"DK,

'=^

(uϊBi* + pCa + v^^)^ + (t;»J5iβ

r2)Cα + (v

and hence

(3.9) A^ = l-^8-τa-

(3.10) piq
ί=-i'p-ετ.

Moreover from (3. 3) we have

from which

(-«+^Mβ+^β)βi=-^W5/+ACr+^<Z^^

or equivalently

(3. 11) î = l-ι;a-ea-αa.

Forming the transform of (3. 4) by F/ and using (1. 2), (3. 1), (3. 2), and (3. 3),
we find

εDκ) = (fiW - ppJ - vq*)B/ + (u^ - av)CK + (ιϊqt + ap}DK>
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(3. 12) fi>u*= -W+ppJ+vqJ,

(3. 13) uipi=av-λτt

(3. 14) ulqi =—aρ— λε.

Similarly, we have from (3. 5)

(3. 15) fiW=λu*+τp*+eq',

(3. 16) itpi^λp+ae,

(3.17) vίqί=λv-aτ.

On the other hand from (1. 4), (1. 5), (3. 4) and (3. 5) it follows

+ τCλ + εDλ)(VjBJλ + τCλ

(3. 18) utui^l-λt-p2-^,

(3.19) ^=l~^2-r2-ε2,

(3.20) UiV^-pτ-vε.

Now differentiating (3. 1) covariantly along the submanifold N and using (2. 5)
and (2. 6) we obtain

(3. 21)

( - hfBf

If we assume that the enveloping manifold is a manifold with normal metric
(F, G, uy vy ^-structure satisfying (1. 10) and (1. 11) and λ(l— Λ2) is an almost every-
where non-zero function, then we have, from Theorem B, (3. 21), (3. 1), (3. 2),
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(3. 3) and (3. 5)

(3. 22) V,ft= -

(3. 23) F,

(3. 24) F

Differentiating (3. 4) and (3. 5) covariantly along the submanifold N and taking
account of (2. 2), we find

So, we have

(3. 25) Vjtf = phf + vkf + Bj*BλΨκu
λ,

(3. 26) PJv
i=τhJ

i+ekji+B,'BίΨtv
λ.

§ 4. Invariant submanifold of codimension 2 of a manifold with (F9 G9 u, v, X)-
structure.

We now assume that the tangent space of the submanifold N of codimension
2 in a manifold with (F, G, u, v, Λ) -structure is invariant under the action of Fλ

κ

at every point, and we call such a submanifold an invariant submanifold.
For an invariant submanifold, we have

(4.1)

that is,

/>ί=0 and #ί=0,

in (3. 1). Thus we have

(4. 2) F/C'=

from (3. 2) and (3. 3) respectively,

(4.3) fi'f

(4. 4) pUi+τvt=0,

(4. 5)



INVARIANT SUBMANIFOLDS OF CODIMENSION 2 OF A MANIFOLD 57

from (3. 6), (3. 7) and (3. 8) respectively,

(4.6) a2 = l-(>z-τ2,

(4. 7) ιγ>+er=0,

(4.8) a2=I-S-e2,

from (3. 9), (3. 10) and (3. 11) respectively,

(4.9) /ίJw*=-M

(4. 10) av=λτ,

(4.11) ap=-λε,

from (3. 12), (3. 13) and (3. 14) respectively and finally

(4. 12) f^=λu^

(4.13) ae=-λp,

(4. 14) aτ=λv,

from (3. 15), (3. 16) and (3. 17) respectively.
Now, first of all, we prepare the following Lemma.

LEMMA 1. In an invariant submanifold N of a manifold with (F, G, u, v, λ)-
structure we have

(4. 15) p* = e\

(4. 16) v* = τ*.

Proof. Suppose first that P is a point of N where Λ(P)^0. Since the simul-
taneous equations (4. 11) and (4. 13) with unknowns Λ(P) and α(P) have non-trivial
solutions, we have (4. 15). Similarly we can prove (4. 16).

In the next place we suppose that Λ(P)=0. Then we have

(4.17)

and

(4.18) β(P)α(P) = 0,

from (4. 11) and (4. 13) respectively. In this case, we distinguish two cases, that
is, α(P)=0 and α(P)^=0. If Λ(P)=0 and α(P)^0, then, by virture of (4.10) and
(4. 14), we get

Thus it follows that
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^(P)=ε2(P) = *2(P) = τ2(P)=0,

because of (4. 17) and (4. 18).
Suppose that Λ(P)=0 and α(P) = 0. Then from (4. 6), (4. 8), (3. 18) and (3. 19)

we have

(4.19) ι_/02_T8=0>

(4.20) l-^2-ε2=0,

(4.21) «*«4=l-y-ιΛ

(4.22) z^ = l-r2-ε2.

Substituting (4. 19) and (4. 20) into (4. 21) and (4. 22) respectively, we have

(4. 23) «*w<=ra-ιΛ

and

(4.24) v*Vi=S-τ2.

These imply that

UiUl=—ViVl = τ2—u2,

from which

UiUl=ViVl=Q,

and consequently

(4. 25) τ2=p2

at P. Substituting (4. 25) into (4. 19) and (4. 20), we get

io
2(P) = ε2(P).

This completes the proof of the Lemma.

We remark that the result of Lemma 1 is independent of the choice of
normal unit vector Cλ and Dλ, that is, the property is intrinsic.

Now let

)=0 and

and

then N2 is open in TV and Nι\jN2=N.
In Nι the vector fields uλ and vλ have the forms
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i.e. uλ and vλ are tangent to N\. So, we get

(4. 26) u^i =l-λ2, u*Vi = 0, τh)i = 1 - λ\

from (3. 18), (3. 19) and (3. 20). Combining these equations with (4. 3), (4. 9) and
(4. 12), we see that the invariant submanifold N, of a Riemannian manifold with
(F, G, u, v, Λ)-structure has also (/, g, u, v, ^-structure and is even-dimensional
because of Theorem A.

LEMMA 2. In N2 the vector fields uλ and vλ have the forms

(4.27) uλ=p

that is, uλ and vλ are normal to N2.

Proof. At the point P where Λ(P)^0 and α(P)=0, we get /o(P)=y(P)=τ(P)
=e(P)=0 from (4. 10), (4. 11), (4. 13) and (4. 14). This contradicts with (4. 6) and
(4.8). From Lemma 1, we see that at the point P where Λ(P)=0 and α(P)φO,
/o(P)=*(P) = r(P)=ε(P)=0. Since at P of N2 p(P)*0 or ι<P)^0, at P of N2 (i)
Λ(P)^0 and α:(P)^0 or (ii) Λ(P)=0 and α(P)=0. At the point of (i), multiplying
(4. 11) by a and (4. 13) by λ and adding those, we get λ2=a2. Moreover substitut-
ing λ2=a2 and (4. 6) into (3. 18) and (3. 19), we get «*=0»=0 at the point P. This
shows that at P u and v are normal to N2. Also, at the point of (ii) from Lemma
1 we get ui=vi=Q. So, we see that u and v have forms (4. 27) over N2 because
of (4. 7).

These show that the submanifold Ni is a manifold with (/, g, u> v, ^-structure
and the submanifold N2 is an almost complex manifold.

Now, we assume that (1. 10) is valid in M. Since N2 is open, taking any
vectors X and Y tangent to N2, we get

u.[X, YY=uκ(XΨλY
κ-

where xl and yl are tangent components of X and Y. This means that the vector
[X, Y] are not tangent to N. Therefore, there is no invariant submanifold such
as N2.

So, we see that the invariant submanifold N of the manifold M with
(F, G, u, v, ^-structure satisfying (1. 10) exists only when uλ and vλ are tangent to
N and α^O over N from (4. 6) and the invariant submanifold N has induced
(/, g, u, v, ^-structure. Moreover if we assume that λ(l— λ2) is almost everywhere
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non-zero and (1. 10) and (1. 11) are valid, we have in the submanifold N, from
(3. 23) and (3. 24),

= kβfi

Since hji, kβ are symmetric and /# is skew-symmetric, transvecting these equa-
tions by gj'\ we have &^=0 and hi'

l=0. Since α is non-zero on the submanifold
N, we have A** =£$*=(), i.e., the invariant submanifold N is minimal.

In the submanifold N, by computing the Nijenhuis tensor of fι3 and exterior
derivative of Ui and v^ we get

Sif = Nif + (Ptuj - FjUi)

This shows that if the Riemannian manifold with (F, G, u, v, ^-structure is normal,
then an invariant submanifold N with induced (/, g, u, v, ^-structure of codimen-
sion 2 of M is also normal.

Next, if the (F, G, u, v, ^-structure satisfies (1. 10), and (1. 11) then we have,
on the invariant submanifold N,

PίUj - PjUi = (Vλuκ - Vκuϊ)BilB3

κ = 2<j>FλκBi

λBj

κ = 2φfijy

So, the induced (/, g, u, v, ^-structure satisfies PjUi — PiUj=2φfjί and PjVi — PiVj—
and then, if we assume that λ(l— λ2) is almost everywhere non-zero over N an
invariant submanifold N is also isometric with a sphere if the manifold M is
isometric with a sphere because of Theorem C.

Summarizing the above we have

PROPOSITION 1. Let M be α Riemannian manifold with (F, G, u, v, X)- structure.
If N is an F-invariant submanifold of codimension 2 of M, i.e., Fλ

κBiλ=fiJBjκ,
then N is a sum of a manifold with (/, g, u, v, λ)-structure and an almost complex
manifold.

PROPOSITION 2. Let M be a Riemannian manifold with (F, G, u, v, ^-structure
and satisfy (1. 10). If N is an F-invariant submanifold of codimension 2 of M",
then uλ and vλ are tangent to Ni i.e., uλ = uίBi

λ and vλ=vίBi

λ.

PROPOSITION 3. Let M be a Riemannian manifold with (F, G, u, v, ^-structure
and satisfy (1. 10). If N is an F-invariant submanifold of codimension 2 of M>
then N has also (/, g, u, v, ^-structure induced from (F, G, u, v, λ)-structure.

PROPOSITION 4. If M is a Riemannian manifold with normal (F, G, u, v, λ}-
structure and satisfy (1. 10), then an F-invariant submanifold N of codimension 2
of M is also a Riemannian manifold with normal (/, g, u, v, ^-structure.

PROPOSITION 5. In an even dimensional sphere M, there always exists
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(F, G, u, v, λ}-structure. If N is an F-invariant submanifold of codimension 2 of
M and 2(1—λ2) is almost everywhere non-zero over N, then N is also an even
dimensional sphere.
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