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ON PRIME ENTIRE FUNCTIONS

By Suiceru KIMURA

§1. An entire function F(z)=fog(z) is said to be prime if every factorization
of the above form implies that one of the functions f(z) or ¢(z) is linear.
Ozawa [5] has recently proved the following.

TueOREM A. Let F(2) be an entire function of order p,1/2<p<1 and with
only megative zervos. Assume that n(r)~2r’, 2>0 where n(r) indicates the number
of zeros of F(z) in |z|<r. Further assume that there are two indices j and k
such that a,, ax are zeros of F(z) whose multiplicities pj, px satisfy (pj pr)=1.
Then F(2) is prime.

The purpose of this note is to extend Theorem A to higher orders and to

prove the following.

THEOREM. Let F(2) be an entire function of non-integral ovder p (>1/2), with
only negative zeros. Assume that n(r)~ir®, 2>0. Further assume that there are
two indices j and k such that a,, ax arve zeros of F(2) whose multiplicities pj, pr
satisfy (pj, pv)=1. Then F(z) is prime.

In order to prove this we quote several known results.

LemMma 1. (Edrei [1]). Let f(2) be an entive function. Assume that there
exists an unbounded Ssequence {h)>, such that all the roots of the equations
f@)=h, v=1,2, ., be real. Then f(2) is a polynomial of degree at most two.

LemmMaA 2. (Pdlya [6]). Suppose that f(z), g(z) are entire functions and that
#(2)=Soq(2) is of finite order. Then either g(2) is a polynomial or f(z) is of order
zero.

LeMmMmA 3. (Hardy-Littlewood [2]). If F(z) is a positive integrable function
such that, when t—0,

SwF(x)e‘“dvat‘ﬁ (5>0),
0
then, when z—oo,

SxF(u)durv—xﬁ——
0 rp+1) "
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LemMmaA 4. (Titchmarsh [7]). If ¢(x) and ¢'(x) are integrable over any finite
interval and when x— oo,

d@)~zb, ¢ (x)=0@"*")  (0<p<Y),
then, when t—0,

i cos sin 1
~ = — B)gs-1
So §(a) oo atdo~ S0 7B H

§2. The main lemmas.

LEmmA 5. (Hellerstein-Shea [3]). Let f(z) be an entire function of order
0, g<p<q+1 where q is a mnonnegative integer, with real negative zeros and
n(r)~ar*(2>0) as r—oo, then

TP
sinzp ’

log f(re'?) ~ &**%nA

¥— 00

for each fixed 6 in —r<0<n.

Our proofs depend upon the following lemma which is the extension of the
theorem of [8].

LEMMA 6. Let f(z) be an entire function of orvder q<p<q+1 where q is a
nonnegative integer, with real negative zeros and if

log f(x) ~xA cosec mp-x° 2>0)
then n(x)~Aiz’.

Proof. We can write
—oP® ] i) <_i _1_<_f_>q>
f(z)=e nl;ll <1+ z exp z + e Z z.) ) a,>0

where P(z) is a polynomial of degree d=q. If we write |f(x)/ef™|=g(x), then
we have

log g(x) ~ =2 cosec np-z°.
From the representation

S (we")

eP (xeil)

_(_1)qxq+1S°° n(r) 7 cos (g+1)0+= cos g0
- o 74! 72427z cos 0+ 2

log dr,

we have

log g(x)=(— l)qxq“S: %dﬂ
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Hence

i dr - n(x)
e (@+Nret = 2g+1)

© d
[log g(x)| éxq“sz 77% = xtt. n(x)S

Therefore we have

n(x)=0(z").
Also
'@ _, 1(® (@+D)atr+gzrtt e
g(x) - ( 1)qS 1"’“-(7‘-+——_x)2 n(r)dr—O(x" ).
Now

(i RELE "),

72+E o m .
Multiply each side by

2%+ cos [.z't - %(2q+a)n] >0, 1-20<a<2—2p)

and integrate from 0 to co. We may, as in [8], invert the order of integration
on the right, and we obtain for a suitable a (1—20<a<2—2p)

Swlog g(x®) cos (xt - %an)x“-zdx=n Swn(rz)r“‘ze*"dr.
0 0
In the Lemma 4, put

sin
Ssnzo .
T

$(z) = -2 log g(2%), p=2—2p—a.
Then

Swlog g(x?) - cos (xt — —;—az)x“‘zdx
0

71'1{
2 2

1 i .1 i .
= S o COS —ar So @é(x) cos ztdt+sin—arn So ¢(x) sin xtdt}

2 1 1 1 1 _1_ —1)p1-20-a
~m - {cosian-sm(l—p—§a>n:+sm§an--cos(1—p— 2a>n}F(2p+o: 1)t .

Hence

S°°n(rZ)r«-ze-rtdr~zr(2p+a—1)t1-2p-".
0
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Hence, by Lemma 3, we have

x
2
2\, a—2 2P+a—1.
Son(r)r dr~2p o

Thus, for x> z,(c)

A(1—e¢) 20+a—1 Sz 2\ a—2 Al+e) 20+a—1
—2p+a—1 x < , n(r®re—2dr < G yr— z .
Hence
z+x8 2(1-}-5)(1 +8)¥#+e-1—2(1—e)
2) pra—2 20 +a—1
Sz n(r¥)r 2dr < 2ota—1 &
2

= ST et (@ora—13+0(E)+0(E)a*

On the other hand,

z+xd 2 yomt y > . r+xd y o x0
SI n(r?)r r:n(:c)SZ ¥ r>%(x)w~

Hence
n(at) <AL +5)2-a{1+0(5>+o(§> }x”.

and the required upper bound is obtained on taking, e. g., =+/¢. The lower
bound may be obtained in a similar way. This proves Lemma 6.

§3. Proof of Theorem.

Let F'(z) be fog(z). Assume that f(w) is transcendental. If f(w)=0 has only
a finite number of roots, then we can write

S (w)=Pw)e” >

where P(w) is a polynomial and H(w) is also a polynomial, in view of p<+oo.
Since, by Lemma 2, ¢(z) is a polynomial, p is an integer. This is a contradiction.
Hence f(w)=0 has an infinite number of roots {w,}, w,—co as n—oo. Consider
the equations g¢(z)=w., n=1, 2, ---. All their roots lie on the real negative axis.
Then by Lemma 1 ¢(z) is a polynomial of degree at most two. Therefore ¢(z2)
must be linear.

Suppose, next, that F'(z)=fog(z) with a polynomial f(w). In this case, we have

FR)=Aqn@)4 - gy(2)'2,  ¢;()=g(2)—w;.

From the representation
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Fe=e [ B(Z, q),
n=1 Qn
we may put

sermem i 5(2, )
n=1 Qjn

And it is clear that

lgiN~lge(M],  r—o00,

for any j and k. Thus for each s, 1=s=p
P P
FOI~IAN [T lat) =141 - o)1 (a= jzzj), r—oo

By Lemma 5 we have

Lz
log |F(r)|~ Sinzo 7P, 7—00,
Hence
L(z_/ﬁ)_. P <s< SN
log g5l ~ - rrad (I=s=p), r—oo.

Then by Lemma 6
1
”(7’; gs(z)) Nzrpr r—00.
Therefore, in view of p>1/2, we can choose a rectilinear ray issuing from the
origin by Lemma 5 such that along the ray,
g(2)—wy, g@)—w,  (2—o00).

This is clearly a contradiction. Therefore we have F(2)=A(g(z)—w:)1. By the
existence of two zeros whose multiplicities are coprime, /; must reduce to 1.
Hence we have

F(2)=A(9(z) —w),

which is the desired result.

REFERENCES

[1] EbrEer, A, Meromorphic functions with three radially distributed values. Trans.
Amer. Math. Soc. 78 (1955), 276-293.
[2] Harpy, G. H, anp J. E, LirtLEwoop, Tauberian theorems concerning power



[31]

[4]
[51]
[6]
[71
[8]

PRIME ENTIRE FUNCTIONS 33

series and Dirichlet series whose coefficients are positive. Proc. London Math.
Soc. 13 (1913), 174-191.

HELLERSTEIN, S., AND D. F. Suea, Bound for the deficiencies of meromorphic
functions of finite order. Proc. of Symposia in pure Math. 11, Amer. Math.
Soc., Providence (1968), 214-239.

Ozawa, M., On prime entire functions. Koédai Math. Sem. Rep. 22 (1970), 301-
308.

Ozawa, M., On prime entire functions, II. Kodai Math. Sem. Rep. 22 (1970),
309-312.

PéLva, G.,, On an integral function of an integral function. J. London Math.
Soc. 1 (1926), 12-15.

TircumarsH, E. C., A theorem on infinite products. J. London Math. Soc. 1
(1926), 35-37.

TitcuMmArsH, E. C.,, On integral functions with real negative zeros. Proc. London
Math. Soc. 26 (1927), 185-200.

DEPARTMENT OF MATHEMATICS,
Utsunomivya UNIVERSITY.





