ON PRIME ENTIRE FUNCTIONS

By Shigeru Kimura

§1. An entire function $F(z)=f \circ g(z)$ is said to be prime if every factorization of the above form implies that one of the functions $f(z)$ or $g(z)$ is linear.

Ozawa [5] has recently proved the following.
Theorem A. Let $F(z)$ be an entire function of order $\rho, 1 / 2<\rho<1$ and with only negative zeros. Assume that $n(r) \sim \lambda r^{\rho}, \lambda>0$ where $n(r)$ indicates the number of zeros of $F(z)$ in $|z|<r$. Further assume that there are two indices j and k such that a_{j}, a_{k} are zeros of $F(z)$ whose multiplicities p_{j}, p_{k} satisfy $\left(p_{j}, p_{k}\right)=1$. Then $F(z)$ is prime.

The purpose of this note is to extend Theorem A to higher orders and to prove the following.

Theorem. Let $F(z)$ be an entire function of non-integral order $\rho(>1 / 2)$, with only negative zeros. Assume that $n(r) \sim \lambda r^{\circ}, \lambda>0$. Further assume that there are two indices j and k such that a_{j}, a_{k} are zeros of $F(z)$ whose multiplicities p_{j}, p_{k} satisfy $\left(p_{j}, p_{k}\right)=1$. Then $F(z)$ is prime.

In order to prove this we quote several known results.
Lemma 1. (Edrei [1]). Let $f(z)$ be an entire function. Assume that there exists an unbounded sequence $\left\{h_{\nu}\right\}_{v=1}^{\infty}$ such that all the roots of the equations $f(z)=h_{\nu}, \nu=1,2, \cdots$, be real. Then $f(z)$ is a polynomial of degree at most two.

Lemma 2. (Pólya [6]). Suppose that $f(z), g(z)$ are entire functions and that $\phi(z)=f \circ g(z)$ is of finite order. Then either $g(z)$ is a polynomial or $f(z)$ is of order zero.

Lemma 3. (Hardy-Littlewood [2]). If $F(z)$ is a positive integrable function such that, when $t \rightarrow 0$,

$$
\int_{0}^{\infty} F(x) e^{-x t} d x \sim t^{-\beta} \quad(\beta>0),
$$

then, when $x \rightarrow \infty$,

$$
\int_{0}^{x} F(u) d u \sim \frac{x^{\beta}}{\Gamma(\beta+1)} .
$$

Received January 11, 1971.

Lemma 4. (Titchmarsh [7]). If $\phi(x)$ and $\phi^{\prime}(x)$ are integrable over any finite interval and when $x \rightarrow \infty$,

$$
\phi(x) \sim x^{-\beta}, \quad \phi^{\prime}(x)=O\left(x^{-\beta-1}\right) \quad(0<\beta<1),
$$

then, when $t \rightarrow 0$,

$$
\int_{0}^{\infty} \phi(x) \frac{\cos }{\sin } x t d x \sim \sin \frac{1}{2} \pi \beta \Gamma(1-\beta) t^{\beta-1}
$$

§ 2. The main lemmas.

Lemma 5. (Hellerstein-Shea [3]). Let $f(z)$ be an entire function of order $\rho, q<\rho<q+1$ where q is a nonnegative integer, with real negative zeros and $n(r) \sim \lambda r^{\rho}(\lambda>0)$ as $r \rightarrow \infty$, then

$$
\log f\left(r e^{i \theta}\right) \sim e^{i \rho \theta} \pi \lambda \frac{r^{\rho}}{\sin \pi \rho}, \quad r \rightarrow \infty
$$

for each fixed θ in $-\pi<\theta<\pi$.
Our proofs depend upon the following lemma which is the extension of the theorem of [8].

Lemma 6. Let $f(z)$ be an entire function of order $q<\rho<q+1$ where q is a nonnegative integer, with real negative zeros and if

$$
\log f(x) \sim \pi \lambda \operatorname{cosec} \pi \rho \cdot x^{\rho} \quad(\lambda>0)
$$

then $n(x) \sim \lambda x^{\rho}$.
Proof. We can write

$$
f(z)=e^{P(z)} \prod_{n=1}^{\infty}\left(1+\frac{z}{a_{n}}\right) \exp \left(-\frac{z}{a_{n}}+\cdots+\frac{1}{q}\left(-\frac{z}{a_{n}}\right)^{q}\right), \quad a_{n}>0
$$

where $P(z)$ is a polynomial of degree $d \leqq q$. If we write $\left|f(x) / e^{P(x)}\right|=g(x)$, then we have

$$
\log g(x) \sim \pi \lambda \operatorname{cosec} \pi \rho \cdot x^{\rho}
$$

From the representation

$$
\log \left|\frac{f\left(x x i^{i \theta}\right)}{e^{P(x e i \theta)}}\right|=(-1)^{q} x^{q+1} \int_{0}^{\infty} \frac{n(r)}{r^{q+1}} \cdot \frac{r \cos (q+1) \theta+x \cos q \theta}{r^{2}+2 r x \cos \theta+x^{2}} d r,
$$

we have

$$
\log g(x)=(-1)^{q} x^{q+1} \int_{0}^{\infty} \frac{n(r)(r+x)}{r^{q+1}(r+x)^{2}} d r .
$$

Hence

$$
|\log g(x)| \geqq x^{q+1} \int_{x}^{\infty} \frac{n(r) d r}{r^{q+1}(x+r)} \geqq x^{q+1} \cdot n(x) \int_{x}^{\infty} \frac{d r}{(x+r) r^{q+1}} \geqq \frac{n(x)}{2(q+1)} .
$$

Therefore we have

$$
n(x)=O\left(x^{\rho}\right) .
$$

Also

$$
\frac{g^{\prime}(x)}{g(x)}=(-1)^{q} \int_{0}^{\infty} \frac{(q+1) x^{q} r+q x^{q+1}}{r^{q+1}(r+x)^{2}} n(r) d r=O\left(x^{\rho-1}\right)
$$

Now

$$
(-1)^{q} \cdot \frac{\log g\left(x^{2}\right)}{x^{2 q+2}}=2 \int_{0}^{\infty} \frac{n\left(r^{2}\right)}{r^{2 q+1}\left(r^{2}+x^{2}\right)} d r
$$

Multiply each side by

$$
x^{2 q+\alpha} \cos \left\{x t-\frac{1}{2}(2 q+\alpha) \pi\right\} \quad(t>0,1-2 \rho<\alpha<2-2 \rho)
$$

and integrate from 0 to ∞. We may, as in [8], invert the order of integration on the right, and we obtain for a suitable $\alpha(1-2 \rho<\alpha<2-2 \rho)$

$$
\int_{0}^{\infty} \log g\left(x^{2}\right) \cos \left(x t-\frac{1}{2} \alpha \pi\right) x^{\alpha-2} d x=\pi \int_{0}^{\infty} n\left(r^{2}\right) r^{\alpha-2} e^{-r t} d r
$$

In the Lemma 4, put

$$
\phi(x)=\frac{\sin \pi \rho}{\pi \lambda} x^{\alpha-2} \log g\left(x^{2}\right), \quad \beta=2-2 \rho-\alpha .
$$

Then

$$
\begin{aligned}
& \int_{0}^{\infty} \log g\left(x^{2}\right) \cdot \cos \left(x t-\frac{1}{2} \alpha \pi\right) x^{\alpha-2} d x \\
& =\frac{\pi \lambda}{\sin \pi \rho}\left\{\cos \frac{1}{2} \alpha \pi \int_{0}^{\infty} \phi(x) \cos x t d t+\sin \frac{1}{2} \alpha \pi \int_{0}^{\infty} \phi(x) \sin x t d t\right\} \\
& \sim \frac{\pi \lambda}{\sin \pi \rho}\left\{\cos \frac{1}{2} \alpha \pi \cdot \sin \left(1-\rho-\frac{1}{2} \alpha\right) \pi+\sin \frac{1}{2} \alpha \pi \cdot \cos \left(1-\rho-\frac{1}{2} \alpha\right) \pi\right\} \Gamma(2 \rho+\alpha-1) t^{1-2 \rho-\alpha}
\end{aligned}
$$

Hence

$$
\int_{0}^{\infty} n\left(r^{2}\right) r^{\alpha-2} e^{-r t} d r \sim \lambda \Gamma(2 \rho+\alpha-1) t^{1-2 \rho-\alpha} .
$$

Hence, by Lemma 3, we have

$$
\int_{0}^{x} n\left(r^{2}\right) r^{\alpha-2} d r \sim \frac{\lambda}{2 \rho+\alpha-1} x^{2 \rho+\alpha-1} .
$$

Thus, for $x>x_{0}(\varepsilon)$

$$
\frac{\lambda(1-\varepsilon)}{2 \rho+\alpha-1} x^{2 \rho+\alpha-1}<\int_{0}^{x} n\left(r^{2}\right) r^{\alpha-2} d r<\frac{\lambda(1+\varepsilon)}{2 \rho+\alpha-1} x^{2 \rho+\alpha-1}
$$

Hence

$$
\begin{aligned}
\int_{x}^{x+x \delta} n\left(r^{2}\right) r^{\alpha-2} d r & <\frac{\lambda(1+\varepsilon)(1+\delta)^{2 \rho+\alpha-1}-\lambda(1-\varepsilon)}{2 \rho+\alpha-1} x^{2 \rho+\alpha-1} \\
& =\frac{\lambda}{2 \rho+\alpha-1}\left\{(2 \rho+\alpha-1) \delta+O\left(\delta^{2}\right)+O(\varepsilon)\right\} x^{2 \rho+\alpha-1} .
\end{aligned}
$$

On the other hand,

$$
\int_{x}^{x+x \delta} n\left(r^{2}\right) r^{\alpha-2} d r \geqq n\left(x^{2}\right) \int_{x}^{x+x \delta} \quad r^{\alpha-2} d r>n\left(x^{2}\right) \frac{x \delta}{x^{2-\alpha}(1+\delta)^{2-\alpha}} .
$$

Hence

$$
n\left(x^{2}\right)<\lambda(1+\delta)^{2-\alpha}\left\{1+O(\delta)+O\left(\frac{\varepsilon}{\delta}\right)\right\} x^{2 \rho}
$$

and the required upper bound is obtained on taking, e. g., $\delta=\sqrt{\bar{\varepsilon}}$. The lower bound may be obtained in a similar way. This proves Lemma 6.

§ 3. Proof of Theorem.

Let $F(z)$ be $f \circ g(z)$. Assume that $f(w)$ is transcendental. If $f(w)=0$ has only a finite number of roots, then we can write

$$
f(w)=P(w) e^{H(w)}
$$

where $P(w)$ is a polynomial and $H(w)$ is also a polynomial, in view of $\rho<+\infty$. Since, by Lemma 2, $g(z)$ is a polynomial, ρ is an integer. This is a contradiction. Hence $f(w)=0$ has an infinite number of roots $\left\{w_{n}\right\}, w_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Consider the equations $g(z)=w_{n}, n=1,2, \cdots$. All their roots lie on the real negative axis. Then by Lemma $1 g(z)$ is a polynomial of degree at most two. Therefore $g(z)$ must be linear.

Suppose, next, that $F(z)=f \circ g(z)$ with a polynomial $f(w)$. In this case, we have

$$
F(z)=A g_{1}(z)^{l_{1}} \cdots g_{p}(z)^{l_{p}}, \quad g_{j}(z)=g(z)-w_{j} .
$$

From the representation

$$
F(z)=e^{p(z)} \prod_{n=1}^{\infty} E\left(\frac{z}{a_{n}}, q\right)
$$

we may put

$$
g_{j}(z)=e^{p_{j}(z)} \prod_{n=1}^{\infty} E\left(\frac{z}{a_{j n}}, q\right)
$$

And it is clear that

$$
\left|g_{j}(r)\right| \sim\left|g_{k}(r)\right|, \quad r \rightarrow \infty
$$

for any j and k. Thus for each $s, 1 \leqq s \leqq p$

$$
|F(r)| \sim|A| \prod_{j=1}^{p}\left|g_{s}(r)\right|^{l_{j}}=|A| \cdot\left|g_{s}(r)\right|^{\alpha} \quad\left(\alpha=\sum_{j=1}^{p} l_{j}\right), \quad r \rightarrow \infty
$$

By Lemma 5 we have

$$
\log |F(r)| \sim \frac{\pi \lambda}{\sin \pi \rho} r^{p}, \quad r \rightarrow \infty
$$

Hence

$$
\log \left|g_{s}(r)\right| \sim \frac{\pi(\lambda / \alpha)}{\sin \pi \rho} r^{\rho} \quad(1 \leqq s \leqq p), \quad r \rightarrow \infty
$$

Then by Lemma 6

$$
n\left(r, g_{s}(z)\right) \sim \frac{\lambda}{\alpha} r^{\rho}, \quad r \rightarrow \infty
$$

Therefore, in view of $\rho>1 / 2$, we can choose a rectilinear ray issuing from the origin by Lemma 5 such that along the ray,

$$
g(z) \rightarrow w_{1}, \quad g(z) \rightarrow w_{2} \quad(z \rightarrow \infty)
$$

This is clearly a contradiction. Therefore we have $F(z)=A\left(g(z)-w_{1}\right)^{l_{1}}$. By the existence of two zeros whose multiplicities are coprime, l_{1} must reduce to 1 . Hence we have

$$
F(z)=A\left(g(z)-w_{1}\right)
$$

which is the desired result.

References

[1] Edrei, A., Meromorphic functions with three radially distributed values. Trans. Amer. Math. Soc. 78 (1955), 276-293.
[2] Hardy, G. H., and J. E. Littlewood, Tauberian theorems concerning power
series and Dirichlet series whose coefficients are positive. Proc. London Math. Soc. 13 (1913), 174-191.
[3] Hellerstein, S., and D. F. Shea, Bound for the deficiencies of meromorphic functions of finite order. Proc. of Symposia in pure Math. 11, Amer. Math. Soc., Providence (1968), 214-239.
[4] Ozawa, M., On prime entire functions. Kōdai Math. Sem. Rep. 22 (1970), 301308.
[5] Ozawa, M., On prıme entıre functıons, II. Kōdai Math. Sem. Rep. 22 (1970), 309-312.
[6] Pólya, G., On an integral function of an integral function. J. London Math. Soc. 1 (1926), 12-15.
[7] Titchmarsh, E. C., A theorem on infinite products. J. London Math. Soc. 1 (1926), 35-37.
[8] Titchmarsh, E. C., On integral functions with real negative zeros. Proc. London Math. Soc. 26 (1927), 185-200.

Department of Mathematics, Utsunomiya University.

