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ON PRIME ENTIRE FUNCTIONS

BY SHIGERU KIMURA

§1. An entire function F(z)=f°g(z) is said to be prime if every factorization
of the above form implies that one of the functions f(z) or g(z) is linear.

Ozawa [5] has recently proved the following.

THEOREM A. Let F(z) be an entire function of order ρ,lj2<p<l and with
only negative zeros. Assume that n(r)^λrp, λ>Q where n(r) indicates the number
of zeros of F(z) in \z\<r. Further assume that there are two indices j and k
such that βj, ak are zeros of F(z) whose multiplicities pj,pk satisfy (£/,/>*)=!.
Then F(z) is prime.

The purpose of this note is to extend Theorem A to higher orders and to
prove the following.

THEOREM. Let F(z) be an entire function of non-integral order p (>l/2), with
only negative zeros. Assume that n(r)~λrp, Λ>0. Further assume that there are
two indices j and k such that #,, ak are zeros of F(z) whose multiplicities pj, pk

satisfy (pj, pk) = l Then F(z) is prime.

In order to prove this we quote several known results.

LEMMA 1. (Edrei [1]). Let f(z) be an entire function. Assume that there
exists an unbounded sequence {hv}^ such that all the roots of the equations
f(z)=hvί y = l, 2, •••, be real. Then f(z) is a polynomial of degree at most two.

LEMMA 2. (Pόlya [6]). Suppose that f(z\ g(z) are entire functions and that
φ(z)=f°g(z) is of finite order. Then either g(z) is a polynomial or f(z) is of order
zero.

LEMMA 3. (Hardy-Littlewood [2]). // F(z) is a positive integrable function
such that, when t—>09

, when x—>oo,
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LEMMA 4. (Titchmarsh [7]). If φ(x) and φ'(x) are integrable over any finite
interval and when #— >oo,

then, when f— »0,

\™φ(x) "* xtdx- *n l^Γd-
Jo sin cos Δ

§ 2. The main lemmas.

LEMMA 5. (Hellerstein-Shea [3]). Let f(z) be an entire function of order
Pi q<f><q+l where q is a nonnegative integer, with real negative zeros and
n(r)~λrp(λ>$) as r—»oo, then

log f(reiθ} ~ eίpθπλ —^—, r-* oo
sin πp

for each fixed θ in — π<#<π.

Our proofs depend upon the following lemma which is the extension of the
theorem of [8].

LEMMA 6. Let f(z) be an entire function of order #<|0<#+1 where q is a
nonnegative integer, with real negative zeros and if

log f(x) — πλ cosec πp xp (λ>0)

then n(x)~λxp.

Proof. We can write

i „„>„

where P(z) is a polynomial of degree d^q. If we write \f(x)lep< x>\=g(x), then
we have

log g(x) — πλ cosec πp xp.

From the representation

log
ycos(g+l)0+jcosg0

: COS

we have

.
'
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Hence

dr

Therefore we have

Also

Now

Multiply each side by

r 1 i
(f>0, 1-r COS

and integrate from 0 to oo. We may, as in [8], invert the order of integration
on the right, and we obtain for a suitable a (l—2p<a<2—2p)

Γlog g(x*} cos (xt - \aπ\3f-*dx=π (°° n(r2)ra-2e~rt dr.
Jo \ ^ / Jo

In the Lemma 4, put

φ(x) = ̂ ^ x«-* log g(x2), β=2-2p-a.
Tΐλ

Then

\ log g(xί} cos ί xt — —aπ\xa-2dx

I f 0 0 I f 0 0 I
cos — aπ \ φ(x) cos xtdt + sin — aπ \ φ(x) sin Λ?^ [

^ Jo ^ Jo j

cos — cπr sinίl — p— -y αjπ+sin— απ-cosίl— p — ^-a\π\Γ(2p+a—l}t1-2p-a.

πλ
sin πp

πλ

sin πp

Hence
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Hence, by Lemma 3, we have

n(r2)ra~2dr 0 1Jo 2ρ+a-l

Thus, for x>x0(ε)

r
Jo

Hence

2p+a-l

On the other hand,

x+xδS
x+xδ

x
ra~2dr >

XT'

Hence

and the required upper bound is obtained on taking, e. g., δ=Vε. The lower
bound may be obtained in a similar way. This proves Lemma 6.

§ 3. Proof of Theorem.

Let F(z) be f°g(z). Assume that f(w) is transcendental. If f(w)=Q has only
a finite number of roots, then we can write

where P(w) is a polynomial and H(w) is also a polynomial, in view of 1o<+oo.
Since, by Lemma 2, g(z) is a polynomial, p is an integer. This is a contradiction.
Hence f(w)=Q has an infinite number of roots {wn}, wn—*oo as n-^oo. Consider
the equations g(z)=wn, n=l,2, . All their roots lie on the real negative axis.
Then by Lemma 1 g(z) is a polynomial of degree at most two. Therefore g(z)
must be linear.

Suppose, next, that F(z)=fog(z) with a polynomial/^). In this case, we have

From the representation
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F(*)=β»« Π E( %-, q\
n=ι \an i

we may put

ffί(z)=er*n f j E(~, q\
n=l \ #/n /

And it is clear that

for any / and &. Thus for each s, l^s^/

By Lemma 5 we have

Hence

log |g,(;

Then by Lemma 6

n(r, g,(zy) — — rp,

Therefore, in view of /o>l/2, we can choose a rectilinear ray issuing from the
origin by Lemma 5 such that along the ray,

This is clearly a contradiction. Therefore we have F(z)=A(g(z)— Wι)11. By the
existence of two zeros whose multiplicities are coprime, /i must reduce to 1.
Hence we have

which is the desired result.
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