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METRICS AND CONNECTIONS IN THE TANGENT BUNDLE

BY KENTARO YANO AND EVANS T. DA VIES

1. Introduction. One of the present authors has been concerned, in collabora-
tion with others [8, 9,10]υ, with the relations between a manifold M and its tan-
gent bundle TM. Three mappings from M to TM have been considered, called the
vertical, the complete, and the horizontal lifts, the first two not depending on any
connection which may be defined on M. In this note we want to consider further
the metrics and the connections which can be defined on TM. In particular, we
want to take into account the fact that the tangent bundle is an almost product
space with one of the distributions (the fibres) being integrable. In the greater
part of the paper, we shall take the case in which the manifold M is a Rie-
mannian space, while at the end we shall consider the case in which it is a
Finsler space.

Let π be the projection TM-^M. If p is a point of the open set UczM in
which the local coordinates are xh (h, i,j, k, « = 1, 2, •••, n) the local coordinates in
π~\U)c.TM are ξA ( Λ B, C, — = 1, 2, •••, In) where ςh=xh and ξn+h=ξh* = yh, where

yh is a system of coordinates in each tangent space TP(M) referred to dι=d\dx% at
p. The coordinates (xh, yh) are called induced coordinates in π~\U). The local
expressions for the various lifts of a vector field X of components Xh are re-
spectively

/ 0 \
Xv: for the vertical lift,

\Xh)

I χh \
(1.1) XG: for the complete lift, and

I χh \
XH: for the horizontal lift,

\ΓϊX*/
where d=yjd3 and Γ\=yjΓ)ι with Γhμ representing the connection coefficients in
the base manifold M.

Mappings of tensors from M to TM have been given in the papers cited, and,
since the metric in M is given locally by the components of a (0, 2) tensor G
written in a coordinate neighbourhood (U, xh) as gjh the vertical lift Gv and the
complete lift G° of this tensor are respectively written as

Received November 30, 1970.
1) These numbers refer to the papers listed at the end.
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/ Qji 0 \ / dgji gji
(1.2) Gv: , G°:

\ 0 0 / \ ^ 0

The definition given of the horizontal lift of tensors [9] would make the hori-
zontal lift of the metric tensor coincide with that of the complete lift. We shall
suggest another definition of GH in this paper, demanding that the horizontal lift
of a vector is equal in length to the original vector.

Using (1.1) and (1. 2) we immediately have

GV(XV, Yv)=0, GV(XV,
(1.3)

C, Y°)=g(X,

where g(X, Y) represents the inner product in M itself. Hence we state

PROPOSITION 1.1. With respect to the vertical metric in TM, ( i ) the vertical
vectors are null vectors, (ii) the horizontal vectors have the same length as the
vectors to which they project, (iii) the vertical and horizontal vectors are orthogonal.

The corresponding formulae for the complete lift are

GG(XV, Yv)=0, GC(XV, YH)=
(1.4)

G°(XH, YH) = 0, G°(X°, Y°) = (g(X, Y))c.

We correspondingly state

PROPOSITION 1. 2. With respect to the complete metric in TM, both the vertical
and the horizontal vectors are null. The vertical lift of a vector X and the hori-
zontal lift of a vetor Y will only be orthogonal if they are orthogonal with respect
to the metric g in M.

2. The tangen bundle as an almost product space. Let us take any C°° mani-
fold M of dimension N on which are defined globally two distributions of dimen-
sion n and N—n respectively. Let H and V represent the distributions which are
assumed to form a_complete system so that their sum is the distribution of the
tangent planes to M. Associated with the distributions there are two (1,1) tensors
H and V of rank n and N—n respectively which characterize the distributions
and satisfy

(2.1) H2=H, V2=V, HV=VH=0, H+V=L

The torsion tensor of the almost product structure is defined for any two vector
fields X and Y by ([4], p. 37)

SHMX, Y) = SV,H(X, Y)=-SH,V(Y, X)

= [HX, VY]-H[X, VY\- V[HX, Y]+HV[X, Y]

+ [VX, HY]- V[Xf HY]-H[VX, Y] + VH[X, Y],
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which reduces, for the case in which H and V satisfy (2.1) to

(2. 2) SBtr(X, Y)=-2H[VX, VY]-2V[HX, HY].

In this form the torsion tensor of the almost product structure immediately gives
information about the integrability of the distributions. The case that we shall
be concerned with is that in which the bracket [VX, VY] lies in F, and hence
the expression for the torsion of the almost product structure reduces to

(2. 3) SH. AX, Y)=-2V[HX, HY}.

If any metric G has been defined on the manifold M, a new metric G can be
defined with respect to which the distribution H and V are orthogonal by putting

(2. 4) G(X, Y) = G(HX, HY)+G{ VX, VY)

so that

G(HX, VΎ)=0.

Connections which are closely related to the distributions have been studied
by Walker [7] whose results have been applied to the particular case of a tangent
bundle [2]. If we are given any symmetric connection, such as the unique torsion-

G

free connection V associated with a metric, another symmetric connection V can be
constructed such that, with respect to V the V(H) distribution is parallel for a
displacement in the H(V) distribution, which is expressed by

(2.5) VFvx(HY)=0 and HFHχ(VY)=0.

This connection will also have the property that a path (auto-parallel) of the
connection whose tangent at a point is in H(V) will have its tangent at every
point in H(V). This is expressed by the conditions

(a) VWuxiHY) + FHAHX)}=0,
(2. 6)

(b)
o G

The V is determined from V by the formula

(2.7) FxY=FxY+B(X,Y)φ),

where

2B(X, Y)(ίh=-2{A(X9 Y)+A(Y, X)} + {A(HX, HY)+A(HYy HX)}

+ {A(VX, VY)+A(VYy VX)}

and where

(2. 8) A(X, Y)=HFX{ VY) + VFX(HY).

This symmetric connection does not satisfy the condition ΓG=0, since the
unique connection for which G is constant is the coonection determined by G
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G

itself, which we denote by V. One of Walker's main results however is the fol-
lowing :

THEOREM I. Given a metric G with respect to which two complementary distri-
butions are orthogonal, it is possible to construct a global connection V with torsion
with respect to which the two distributions are parallel and such that G is constant,
i.e. PG=0.

We note that the two conditions of relative parallelism and of path paral-
lelism satisfied by the V are weaker than the condition of parallelism, which
would demand both

(2.9) HFX(VY)=O and VFX(HY)=O.
s

Such a connection is obtained from any symmetric conection V by forming

(1.10) Vx Y= Vx Y- A(X, YW).

For the paraticular case of the tangent bundle the HX and VX are the horizontal
and vertical lifts XH and Xv of the vector tangent to a manifold M, where the
vertical distribution V is given by the fibres and the horizontal distribution H is
the complementary distribution which determines the connection in M. For this
case the following relations hold for the brackets [3]

(2.11)
H[XH, YH] = [X,Y]H,

γ applied to a tensor field R%

h of type (1,1) of M being a vector field f λ of

TM, which, on comparing with the expression (2. 2) for the torsion Sv, H(X, Y) of
the almost product structure immediately gives a relation between that torsion and
the curvature tensor of the base manifold M.

The horizontal distribution H is spanned by the n vectors

(2.12) et = — Γj d

where Γ^y^Γ^ and Γ% are the coefficients of the connection defined in M. The
vertical distribution V is spanned by the n vectors

(2.13) ^ = ^ n + ι = - L ,

so that a vector X=Xhd/dxh tangent to M has lifts given by

Xv=Xheh*.
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Forms ω\ ωh* which are dual to the vectors e% and e* are given by

ω

h=dxh, ωh*=dyh + Γfldx\

The complete lift Xc of a vector has components in both the horizontal and
the vertical distributions. These components are readily found to be

/ Xh

(2.14) HXC=XH=\

and

0
(2.15) VXC=

1 PoXh

where

3. Connections associated with the metric Gc. Any Riemannian metric G and
a skew-symmetric tensor T(X, Y) determine a connection V for which FG = 0 with
T as torsion in accordance with the following formula

2G(Z, FxY)=XG(Yf Z)+YG(Z, X)-ZG(X, Y) + G(Y, [Z, X] + T(Z, X))
(3.1)

G(Z, [X, Y] + T(X, Y))-G(X, [F,

We shall now take some particular cases of the general formula.
( i ) Let us take the case in which (a) the vectors X} F, and Z are the vectors

of the natural basis corresponding to the system of coordinates ξA = (xh, yh), (b)
the torsion is zero, ( c) the metric is the complete lift G° of the metric G of the
base manifold. The general formula (3.1) will then give the Christoffel symbols
for G° and we shall have, on letting Γ% represent the corresponding symbols in
M, and using a bar to indicate quantities in TM:

(3.2) r^=rfH=r%=r% r%=dr%

while the others vanish [10]. Using these we can easily obtain the equations of
the geodesies in TM in the form

Ό\
ji~dΓ dt

(3.3)

dt*

and we may state [10]

PROPOSITION 3.1. If α point (x(t), y(t)) in TM describes α geodesic relative to
the metric G°, the projection x{t) to M describes a geodesic in M and y(t) gives a
Jacobi field along this geodesic of M,
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If we compute the components of the curvature tensor of TM relative to GG

t

we obtain the following non-vanishing components

(3.4) Rkj^ = RkJi^ = Rkj^ = Rk^ = RkJi\ RkjΛ* = dRkJAm

The components of the Ricci tonsor are

(3.5) Rji=2Rju RJH=0, Rj»=0, RjH*=0.

From these expressions we may conclude

PROPOSITION 3. 2. The tangent bundle TM with the complete lift as metric (a)
is flat if and only if M is flat, (b) is an Einstein space if and only if M is Ein-
stein with vanishing scalar curvature, ( c ) has vanishing scalar curvature.

(ii) We take the vectors and the metric as before, but we take the torsion
tensor to have only one set of components determined in terms of the curvature
tensor of the base space M by

This metric space with torsion will have the non-vanishing connection components

fQ (\\ ph — ph* —ph* —Γh ph* — ΆΓh — 7? -h

This set of connection coefficients has appeared as the " horizontal lift" of the
connection in M [9].

(iii) We next take the case in which ( a ) the torsion is zero, (b) the vectors
X, F, and Z are the base vectors d and e* of the distribution H and V in which
case, using relations (1. 3) and (1. 4)

(3.7)
G°(eJ9 eί*)=Gc(ej*, ei)=g(βJ9 di)=gJt.

Also for the square brackets we shall have, corresponding to the relations (2.11)

(3.8) [0,,0*.] = (/>ίr)*Λ.,

[eJf ei] = -(Rjioh°π)eh*

which will give us as coefficients of connection

(3. 9) Γ%=Γ%=Γ%oπ, Γ% = Roji

h°π.

(iv) Finally in considering connections deducible from the metric we consider
the case in which the torsion of the connection is related to the torsion of the
almost product structure by the relation

(3.10) 2T(X, Y) = SH,v(X, Y)= -2V[HX, HY],
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which means that, in components, relative to the basis eif e* the only non-vanish-
ing component of the torsion tensor is

(3.11)

The non-vanishing components of the corresponding connection V will therefore be

(3.12) Γ%=Γ)\*=Γ%oπ.

The fact that Γ%* and /%* vanish means that the distribution V is parallel with
respect to F. Similarly the vanishing of Γft and ΓfH means that the distribution
H is parallel with respect to V. We can therefore state

THEOREM II. The lifted metric G° and the torsion SH,v of the almost product
structure determine a connection V for which ( a ) the fibres and the complementary
horizontal distribution are parallel, (b) the metric is constant, i.e. FG°=0.

The metric G is not one with respect to which the two distributions are
orthogonal.

Returning for the moment to the torsion-free connection listed in (3. 9) we
notice that it does satisfy the conditions in order that the distribution V and H are
relatively parallel with respect to it, which would demand the vanishing of ΓjH

and Γψi9 but it does not satisfy the path parallelism condition for H, which re-
quires Γ$+Γ%j=0. It was pointed out in the preceding section however that a
torsion-free connection V satisfying the conditions can always be constructed by
the formula (2.7). The application of the formula in this case gives

(3.13) f%=f%=Γ%oπ, 2Γ%= -2f%= -Rjioh°π.

This connection is of course not metrical, since the only torsion-free connection
for which the metric Gc is constant is the one given in (3. 9). To deduce from V
a connection V (with torsion) with respect to which both distributions are parallel
we need only use formula (2. 10). In this case it is to be pointed out that

(3.14) A(X, Y){V)= V[HX, HY]

so that although the A tensor is constructed from the V, it is independent of any
connection. The torsion of the conection F, the torsion of the almost product
structure, and the A tensor, are now related by

(3.15) 2T(X, Y) = SH,v(X, Y)= -2A(X, Y)(V).

The connection V is then given by

(3.16) Γ^Γf^Γfrπ.

We notice that although this connection has been deduced from the non-metrical
V connection, V coincides with the metrical connection with torsion appearing
in (3.12).
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4. The metric GL. Having defined the horizontal and vertical lifts of vectors
to the tangent bundle, let us introduce a metric GL by demanding

( , ) ( V , Yv)=g{X, Y>π,
(4.1)

GL(XH, Yv)=0.

In particular since ei=(di)H and ei*=(di)v are lifts of the base vectors we have

(4. 2) GL(eJ} et)=GL(ej* e»)=qSi*π, GL(eJf *„)=(>,

so that with respect to the lifted base vectors the components of GL are

Qji 0
(4.3) GL:

0

This metric is already well known and its components with respect to the induced
coordinate system given by Sasaki [5] as

(4.4) G*: (
\ Γ\gS]

who also calculated the corresponding Christoffel symbols, which appear also in a
recent paper by Tashiro [6] as

2Γ%=2Γ% + RosfΓl+RosihΓs

p 2Γ%.=2

(4. 5)

2Γψι=2Γ%-RmΨ1.

If we apply the general formula (3.1) to the metric in the form (4. 3), using
the simplifications that arise from the orthogonality of the V and H with respect
to this metric, we obtain for the case of zero torsion

(4.6) 2Γ^=2Γ%.=ROJi\

For the unique torsion-free connection associated with the metric GL therefore we
notice that both distributions are path parallel but the conditions of relative paral-
lelism are not satified, since Γ%* does not vanish.

If we now take the same general formula (3.1), and take for torsion the
expression given by (3.15) in terms of the torsion of the almost product structure,
the corresponding set of connection coefficients simplify to the following:
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and the others all vanish. We remark that the connection coefficients so obtained
coincide with the coefficients obtained from Gc and appearing in (3. 12) and (3. 16).
We may now state

THEOREM III. The metric GL and the torsion SH,v of the almost product

structure determine connections such that

( i ) the distributions are orthogonal with respect to GL.

(ii) the distributions are path parallel with respect to the torsion-free connection
given in (4. 6).

(iii) the distributions are parallel with respect to the connection given in (4. 7).

(iv) the GL is constant with respect to the connection (4. 7).

5. The metric GL deducible from a Finsler metric on M. The present
authors have shown elsewhere [8] how a function L denned on TM possessing the
properties necessary to serve as the fundamental function for a Finsler space can
be used to define a Riemannian metric in TM which is Hermitian. Let us take a
Riemannian metric 'G on TM such that

'G(-X* XH) = 'G(XV, Xv)=L2(x, X)oπ,

where X is a vector tangent to M and XH and Xv its lifts to the tangent bundle.
If X denotes the vector whose components in the distributions V and // are re-
spectively Xv and XH then we define

GL(X, Ϋ)='G(XH,

which will have a coordinate representation

ji o \

o J
I Qji

(5 X) GL: ( o J wίth '"-
If we apply the general formula (3.1) to this case in which the G is the GL

and the torsion is zero, we can use the following to simplify the expressions:

( i ) the fibres and the horizontal distribution are orthogonal with respect to GL:

(5.2) GL(Xv,YH)=0,

(ii) the fibres are integrable so that

(5.3) H[Xv,Yv]=0,

(iii) the bracket [XH, Yv] is veritical

(5.4) H[XH,Yv]=0.

If we use the abbreviation HHV for GL(ZH, VXHYV) with corresponding mean-
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ings for the other combinations of the letters H and V, we can write for the
coefficients of the connection determined by GL the following:

(a) 2HHV= YVGL(ZH, X11)+GL( Yv, [ZH, XH])>

(b) 2HVH= XVGL( YH, ZH) - GL(XV, [ YH, ZH]),

(c) 2HVV= -ZHG\XV, YV) + GL(YV, [Zv, XH])+GL(XV, [ZH, Yv}\

(5. 5) (d) 2VHH= -ZVGL{XH, YH)+GL(Zv

t [XH, YH})>

(e) VHV=XHGL(YV, ZV) + GL(YV, [Zv, XH])+GL(ZV, [XH, Yv]\

(f) VVH= YHGL(ZV, XV)+GL(ZV, [Xv, YH])-GL(XV, [YH, Zv\\

(g) VVV= XVGL( Yv, Zv) + YVGL(ZV, Xv) - ZVGL(XV, Yv).

If instead of taking the torsion of the connection to be zero we take it to
be determined by

(5.6) T(X,Y)=-V[XH,YH]

then some of the above experessions simplify and we have

(a) HHV= YVGL(ZH, XH),

(5. 7) (b) HVH= XVGL( YH, ZH),

(c) 2 VHfί= -ZVGL(XH,

6. Relation to the theory of Finsler spaces. Referring now to the classical
theory of Finsler spaces as presented in Cartan [1] we recall that if y% denote the
Christoffel symbols formed from the gμ defined in (5.1) we write, using di=d/dxi,

(β.l) 2Gh

and recall that ([1], p. 19)

(6.2) Gify h

The horizontal and vertical lifts of the base vectors d* tangent to M can now
be written

(6.3) {di)H=ei=di__Gitdh φtγ=ei>=dt

and the brackets corresponding to (3. 8) now become

(6. 4) [eJ} eiλ = G%et* = (ΓJ, + FoiV)**,

[ejy et] = -Rj usytes*= -Rjio

ses*.

The coefficients of the torsion-free connection associated with the function L
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and the Riemannian metric GL on TM are therefore obtained from (5. 5) on taking
the vectors X, Y and Z to be the natural base vectors associated with the coordi-
nate system in M, and recalling the coordinate expression for GL and its inverse,
we get

ph ph* TΠh
1 ji~1 ji*~J ji>

(6. 5)

expressions which have already appeared [8]. If we now calculate the corres-
ponding coefficient of a metric space with the torsion determined by (5. 6) the
corresponding table becomes

(6. 6) Γ%*=ΓJH = - Γ%=Γ%. = C/Λ

ph^ ^ ph*, — φjS^.Ji

If we denote by F the almost complex structure given by

(6.7)

or, with reference to the frame determined by ei} et* as

0
(6.8)

' -« 0
L

we shall find [8] that FF=0 if and only if Rjί0

h=0, which is the condition that
the horizontal distribution H is also integrable, as follows from (6. 4). The condi-
tions listed in (6. 5) and (6. 6) do not satisfy the conditions necessary to make the
distributions V and H parallel.

A connection V which is symmetrical and with respect to which V and H are
relatively parallel and path parallel is deducible from (β. 5) by an application of
the formula (2.10) giving the non-vanishing components

o o *
ph ph* ph1 ji — 1 ji* — 1 jU

(6. 9) f
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Finally calculating

(6.10) 2FxY=2FxY+SH,v(X, Y)

gives the connection V with torsion of non-vanishing components

ph — ph* _ ph

(6.11)
ph _ _ σ .. h ph* —r..K

In this case the vanishing of the coefficients assuring the parallelism of the

distributions is assured. We may therefore state

THEOREM IV. The fundamental function L of a Finsler spce, together with the

torsion of the almost product structure represented by V and H, determine an F

connnection which is metric, and also a connection for which V and H are parallel.

Their components are given by (6. 6) and (6.10) respectively.
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