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ANALYTIC MAPPING AND HARMONIC LENGTH

BY NOBUYUKI SUITA

The notion of harmonic length was introduced by Landau and Osserman [2].
They established the uniqueness of extremal functions of harmonic length pro-
blems for a Dirichlet domain i.e. a relatively compact subregion of a Riemann
surface whose boundary is regular with respect to the Dirichlet problem. By
using this uniqueness theorem they discussed an extremal problem of harmonic
lengths under analytic mappings and conformal rigidity of planar Dirichlet domains*

Recently the author and Kato [3] proved the same uniqueness for an arbitrary
Riemann surface. In the present paper we shall deal with the same extremal pro-
blem under analytic mappings of arbitrary Riemann surfaces. A similar result to
Theorem 3.1 of [2] will be obtained for the extremal case. As a result of this
it will be found that their main theorem of conformal rigidity of planar Dirichlet
domains (Theorem 4.1 [2]) holds for arbitrary domains. The uniqueness theorem
[3] will be stated for completeness.

Our proofs of the results obtained here are quite different from theirs [2]. In
the extremal problem of harmonic lengths, we shall use the Lindelof principle due
to Heins [1].

1. Harmonic length. Let R be a Riemann surface. We denote by H the class
of all functions u harmonic on R which satisfy O^z^l. Let c be a cycle on R.
We define

/<<;)=sup \
u£H J(

du*

and call it harmonic length of c.
Landau and Osserman [2] proved the following: There exists always a func-

tion u such that

= ( du*,
Jc

h(c)

and if R is a Dirichlet domain and if c is homologous to a level locus of a har-
monic measure u then u is the unique extremal function in determining h(c).

Let R be the Stoilow compactification of R which makes every boundary com-
ponent a point. Let c be a dividing cycle which divides the boundary 8R=R—R
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into two sets A, B in such a way that the intersection number of c with any
curve starting from A and ending at B is equal to 1. Clearly both A and B are
closed. Conversely, if two non-void closed A, B give a partition of the boundary dR,
which is denoted by (A, B) and called a regular partition of dR, we can easily con-
struct such a cycle. We call the cycle a dividing cycle relative to (A, B). The cycle
in the result of Landau and Osserman is just of this type.

We now improve the last part of the above statement and prove

THEOREM 1 (Suita and Kato [3]). Let R be an arbitrary Riemann surface and
let c be a dividing cycle relative to a regular partition (A, B) on R. If h(c)>0, the
function UQ satisfying

Jc

is unique and coincides with the harmonic measure of B.

2. Before proving Theorem 1, we shall explain some exhaustions of R. Every
boundary component α is defined by a defining sequence {Δn} such that the relative
boundary of Δn consists of a single Jordan curve, ΔnnΔn+ι and r\Δn=\ where Δn

denotes the closure of Δn in R. We can take ftn Π R as a basis of neighborhoods of a.
Let A be closed subset of dR. Since A is compact, it can be covered by a finite
number of members of defining sequences of elements of A. Then we can con-

struct such an exhaustion of R, denoted by (Rn(A)}, that Rn(A)dRn+ι(A)t R—Rn(A)
consists of only non compact components, each of whose relative boundaries is an
analytic Jordan curve and R=\jRn(A). Clearly we have Γ\(R—Rn(A))=§ and
ΠCl(R—Rn(A))=A, where Cl(*) means the closure in the Stoilow compactification
R. The exhaustion {Rn(A)} is referred to as an exhaustion of R towards A.

3. Proof of Theorem 1. We may suppose that the cycle c consists of a finite
number of Jordan curves, each component of whose complement is non-compact.
Let u0 be the harmonic measure of B. u0=£const by h(c)>Q. Let v be an ex-
tremal function of the harmonic length problem for c which satisfies

= ( dv*.

We take two exhaustions {Rn(A)}~=ί and {Rn(B)}°Z=1 of R so that R^A)^c and
Rί(B) Dc. Denote by An and Bn the relative boundaries of Rn(A) and Rn(B) re-
spectively and set Rmn=Rm(A)nRn(B).

Let Vmn be a function harmonic in Rmn, continuous on Rmnί and satisfying
vmn=v on Am and vmn=l on Bn. It is easily verified that {vmn} is increasing with
m. Since vmn^l, we can set

Vn= limVmn.
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The sequence {vn} is decreasing with n and vn^0. We have a limit function

We shall prove v0=v. In fact, since vmn— 0^0, we have

where d/dv denotes the inner normal differential operator with respect to Rmn By
letting m—*oo and n— »oo, we get

^\ dv*=h(c)
Jc Jc

and by the extremality

( dvf=h(c).
Jc

Set
a— inf (v0(z)—v(z)).
^ z€c

To show μ=Q, for every ε>0 there exist an n and m such that μ—ε^vmn—v on c.
Let ωn be the harmonic measure of c with respect to the set of regions bounded
by Am and c. Then we have (μ—ε)ωm^vmn—v in each component, and as before

^( d(vmn-v)*.
Jc

Since ωm is the extremal function of the harmonic length problem for each com-
ponent of c in the respective region [2], we have

By lettting m-+oo and ^->oo, we get μ—ε^O and thus ^=0. By the minimum
principle we have v=vϋ. Obviously v—v^u^

By taking the cycle — c and an extremal 1—0, we have 1—0^1—u0 which
implies V=UQ.

4. Analytic mappings. Let f(z) be an analytic mapping of a Riemann surface
R into a Riemann surface S and let c be a cycle on R. Then an inequality
hs(c)^hs(f(c)) holds in general [2], where hR, hs mean harmonic lengths on R, S
respectively. Landau and Qsserman obtained the following further result [3]:
Suppose that R is a Dirichlet domain and that c is homologous to a level locus of
a harmonic measure. If hR(c)=hs(f(c')\ f maps R k-to-l onto S, for some integer k.

We shall discuss this extremal case for an arbitrary Riemann surface and
prove
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THEOREM 2. Let c be a dividing cycle relative to a regular partition. If
hR(c)=hs(f(c})>Q, then f covers S exactly k times except for a closed set of capa-
city zero, where k is an integer.

5. To prove this theorem we shall need some of Heins' results about analytic
mappings [1]. From the assumption hR(c))=hs(f(c))>Q we can deduce that both R
and S have Green's functions GR and Gs. We shall use the following Lindelof
principle [1].

(1) Gs(f(z\ω) = Σ «K;/)G*(*,C)+tf.(*),
<o=/(O

where Uω(z) is a positive harmonic function on R and n(ζ',f) is the order of / at
ζ. Furthermore, Uω has the following canonical decomposition

(2) Uω(z)=Vω(z)+Pω(z),

where Vω is quasi-bounded and Pω is singular. It is known that either Vω(z)>Q for
all ω€S or else that Fω=0, ωeS. The function / is said to be of type Bl if Fω=0,
ω€S. A remarkable property of a mapping / of type Bl is as follows: / covers S
exactly the same number of times (may be infinite) except for an Fσ set of capa-
city zero and if the valence of / is finite, the exceptional set is closed. As to
these facts, the readers will be referred to Heins [1].

6. Proof of Theorem 2. Let UQ be the extremal function of the harmonic
length problem for c, which is a harmonic measure from Theorem 1. Let v
denote an extremal function for the cycle f(c). Then the function v°f is an ex-
tremal function for c. From Theorem 1, we get a functional equation u0=v°f.

To show that / is of type Bl, we use an inequality from (1) and (2) :

Gs(f(z\ ώ)^Vω(z).

Since Vω is quasi-bounded, we have

Vω(z)=\im(Vω(z)/\N\
AWoo

where Vω/\N means the greatest harmonic minorant of min(Fω(2), N). We select
so large N that the open set ON = {W\GS(W, ω)>7V} is simply connected and relatively
compact. Set

μN= inf v(w\ μίf= inf (l-

and

τr ( N N\KN=max( - , —r).
\ μN μίf /

We have

KN min (v(w\ l-v(w))^ min (Gs(w, ω), ΛO^ min (VJ&), N)
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with w=f(z),zeR and by the equation uQ=v°f

u0(z))^ Vω(z)ΛN.

It is well-known that uQΛ(l—u0)=0 for any harmonic measure u0. We get Vω(z)=0
and thus / is of type Bl.

7. Valence of /*.1} To investigate the valence of /, we consider the Dirichlet
norms \\duQ\\R, \\dv\\s of u0, v. It is well-known that \\duQ\\*=hR(c), since uϋ is the
harmonic measure of B of a regular partition (A, B). Let vf(w) be the valence
function of / on S. Then vf(w)=const except for at most an Fσ set of capacity
zero, say E, by the properties of a mapping of type Bl mentioned in No. 5. Let
/ be any positive integer not greater than the constant value of vf. We have

dvΛdv*.
S-E

Since E is of area zero, this in turn means \\dv\\s^\\duQ\\R and that vf is domi-
nated by \\du<>\\21\\dv\\*. Clearly \\dv\\2>0 and thus / is of finite, valence, which
completes the proof.

8. Conformal rigidity. In this section we shall discuss a property of a plane
region referred to as "conformal rigidity". A plane region Ω is said to be rigid
if every analytic mapping of Ω into itself is either one-to-one onto, or else takes
some cycle not homologous to zero onto one which is homologous to zero [2]. By
definition every non-compact simply-connected region is not rigid. We now show
that a criterion of conformal rigidity of Dirichlet regions due to Landau and
Osserman [2] is valid for arbitrary plane regions.

THEOREM 3. Let Ω be a plane region. Suppose that there exists a (positive)
minimum of the harmonic lengths of all dividing cycles c relative to regular parti-
tions. Then Ω is rigid.

Proof. Let c0 be a dividing cycle which attains the minimum. It is known that
h(cQ) is the minimum of harmonic lengths of all cycles not homologous to zero in Ω [2].
Let f(z) be au analytic mapping of Ω into itself. Then we have h(co)=h(f(c0y), which
implies, from Theorem 2, that / is m-to-l onto itself except for at most a closed set of
capacity zero. Let UQ and v0 be the extremal functions for c0 and f(c0) respecti-
vely. We have also vQ^u^f and similarly as in No. 7 \\dvo\\2=m\\duo\\2. It follows
that m=l since \\du0\\2=h(c0) and \\dv<>\\2=h(f(c0)). It suffices to show f(Ω)=Ω.
Suppose f(Ω)ξ^ Ω and set E=Ω—f(Ω). Since E is totally disconneted, there exists
a dividing cyle c relative to a regular partition (C, D) of df(Ω) such that Cc£
in the Stoilow compactification of f(Ω). The inverse image of c, denoted by c', is

1) The author is indebted to Mr. M. Sakai for this shorter proof than his original.
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dividing cycle relative to the partition (f~\C\ f~\D)\ since / is conformal. We
get /z(c')=0 which is a contradiction to the existence of a positive minimum.
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