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THE LAW OF THE ITERATED LOGARITHM FOR STATIONARY

PROCESSES SATISFYING MIXING CONDITIONS

BY HlROSHI OODAIRA AND KEN-ICHI YOSHIHARA

0. Summary.

The law of the iterated logarithm for various stochastic sequences has long
been studied by many authors. Recently, losifescu proved in [5] that the law
holds for stationary sequences satisfying the uniformly strong mixing condition
and Reznik showed in [8] that the one is also valid for stationary processes satis-
fying the strong mixing condition. But, the conditions used in [5] and [8] are
slightly stringent. The purpose of this paper is to weaken those conditions, that
is, to prove the law under as similar as possible requirements to the conditions
in [3].

1. Definitions and notations.

Let {xj, — oo</<oo} be processes which are strictly stationary and satisfy one
of the following conditions :

( I ) sup -j£jr \P(AnB)-P(A)P(B)\=φ(n)^0 (n-*oo)

or

(II) sup \P(AnB)-P(A)P(B)\=a(n) ^0 (»-*oo),

where M, denotes the σ-algebra generated by events of the type

and E is a ^-dimensional Borel set. In line with [4], we shall call Condition (I)
the uniformly strong mixing (u.s.m.) condition and (II) the strong mixing (s.m.)
codition.

In what follows, we assume that all processes {#/} are strictly stationary,
Exj=0 and Exj<oo. We shall agree to denote by the letter Kι a quantity bounded
in absolute value.
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2. A sufficient condition for the validity of the law of the iterated logarithm.

In this and next sections, we write

and put

if the series converges. We shall use σ2 only when σ2 is positive.

THEOREM 1. Let the strictly stationary process {#/} satisfy the s.m. condition.
Suppose that Σ

(1) σ2

n=nσ\l + o(l» (<72>0).

Then, the process {xj} obeys the law of the iterated logarithm, if the following
requirements are fulfilled for some p>Q and for all sufficiently large n:

where

(ii)

where &>1 is an arbitrary number and

( 2 ) 1(n) = (2σ2n log log n)1/2.

Proof. We will use the method of the proof in [7]. The assertion will be
proved if we show that for any ε>0

(3) P(\Sn\>(l+ε)X(n) i.o.)=0

and

(4)

Firstly, we shall prove (3). For an arbitrarily chosen positive number τ, there
exists a non-decreasing sequence of positive integers such that

(5) (nk-l)σ2^(l + τ)k<nkσ
2

for k=ko+l, &o+2, •••, where k0 is a positive integer. So, for all sufficiently
large k
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(6)

and

( 7 )

From (ii)

P( max \
l^Wfc

for any ?<>0), ?Ί (0<7Ί</?) and for all k sufficiently large. Thus

(8) Σ P( max |S,|>(l+r)*(»*))<°°
* lέ/έnft

We note here that for all sufficiently large k

For a fixed number ), choose a positive constant τ such that

Then, from the Borel-Cantelli lemma and (8), we have

^P( max \Sn

k-i) i.o.)

1+β

^f( max |S»

^P( max \Sn

^P( max \Sn

r 1(nk-ι) i.o.)
Γ /

i.o.)=0.

Thus, (3) holds.

Now, we turn to a proof of (4). For a sufficiently large number Λ>Q and
sufficiently small <5>0, let

Let γ be a positive number such that for some ε'>0, 2/\/ίΓ+?'+ε/<<5. From the
s.m. condition (II)

( 9 )
p({\sAi\ ̂ (i-
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While, from (i)

:(log»)(loglogw)

holds for any b>l and for all n sufficiently large. So, noting that AJ—(AJ~1

+ [AJ'*])>A*I2 for all sufficiently large A, we have

(10)
\ \L * J/ /

Tζ
ΛΊ-Λ r / t ί / s π \ \ - ^ •**•!l" J / '=yio gy

and, moreover, from Chebyshev's inequality

(11)

So, using the method of the proof of Theorem 1. 1 in [8], we have

P(\SAi\>(l-δ)I(Aί) for some i, l^i^*)-»l (*->oo),

which implies (4). Hence, the proof is completed.

REMARK 1. For the process {#/}, satisfying the s.m. condition, the require-
ment (ii) is fulfilled if (i) holds and there exists a function r=r(n) such that
r(n)— >oo and

(12) max

for any ε (0<ε<(£— !)/£) where &>1 is an arbitrarily fixed number.

Proof. We use the method in [6J. For any £>1, let

and k = [n/r]. It follows from the s.m. condition that for any

/ n \

P(max \Sj\ ^ W(w))=P( U ̂
l&£n \7=1 /

U [fir+y

(13)
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Σ
ί=C*-l>+l

Since for any t (O^t^A— 1)

P(IS,-S<,+»,| Ξg

so for sufficiently large w

(14) P(|Sw-Scί+2)r| ̂  ε%W)^~

Thus, from (12), (13) and (14)

\U°S^ /

Hence, from (i) we have

where ^i is a positive constant.

REMARK 2. For the process {xj}, satisfying the u.s.m. condition (I), the re-
quirement (ii) is satisfied if (i) holds and there exists a function r=r(ri) such that

oo and

(15)

for any ε(0<ε <(b—l)lb) where b>l is an arbitrarily fixed number.

3. The law of the iterated logarithm for the process [xj] satisfying one of
the conditions (I) or (II).

THEOREM 1. 1 in [8] may be generalized in two ways:

(a) One way is to weaken the requirement E\x<>\*+*<oo retaining the condi-
tion Σ{φ(n)}1/2<oo, (Therem 2);

(b) The other is to weaken the requirement 2 {φ(n)}1/2<oo retaining the
condition E\x0\

2+δ<oo, (Theorem 3).
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THEOREM 2. Let the process {xj} satisfying the u.s.m. condition have the fol-
lowing properties :

1°. For all sufficiently large N

(16) ( a*dP=θ(n *
J !*!>*• V(lθgΛO

2°. Σ M;)}"2<oo.
J=l

Then the law of the iterated logarithm is applicable to the process {xj}.

Proof. We remark first that from 2°

(cf. 13] and [4]).
Let

\x (\χ\£N),
/*(*)=

10 (\x\>N)

and /N~X—/N(X) Furthermore, let r(n)=[nιn] and N=[n1/β]. Then forany

_
.7=1

— r 1

and so
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Thus, (15) holds.
Next, we shall prove that (i) in Theorem 1 is satisfied. Define

Σ (fχ(*j)-Efw(xj))
σv n J=

and

S"=77T Σ </*fo)-£/

For a small α(0<α<l/2), put

and set

k-l p 1 Jc

ή - Σ Σ —7=r (/Vfecί>+<?)+y) - EfN(xup+φ+j)\ T'n' = Σ Ct
1=0.7 = 1 O V H t=0

where

1

f Vζfc= 2j

Then

(17) +2 2 (l--}E(fN(xo)-EfN(xo))(fN(xj)-EfN(xj)) \
3=ι\ n/ J

and

Γi'2=£(Σ
\i=0

i=0

-4-1 *£δ+4*SS *Σ {φσ n [ 1=1

(18) +4*Σ
t=0
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for some 7-2 >0. Since

so, from (17) and (18)

/! =

Klogn)5/4
(19)

EeίtSn/σ vrn
dt

Furthermore, let ^0,571, •••, yn-\ be independent random variables distributed in the
same way as the corresponding

—7= Σ (A
(TV A? j = l

From Condition (I)

EeitTn>-
fc-l

^ kφ(q) = k O(q~2)=O(n~rή

for some γs>0 and for all n sufficiently large. On the other hand

EeUT*'-*\l

for all sufficiently small \t\. So

S
(logrί)5/4

-(lθgw)5/4

^Γ"4

J-n-ι/4

dt

dt+

(20)
Jn-ι/4

dt
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dt^
Λt\

Next, let

O'=0,l, ...,&-

Then, by the analogous argument, we have

f(logn)5/4

(21) /8 =
-(logn)5/4 t

for all sufficiently large .̂
Finally, by applying Esseen's lemma to the sum we obtain

for all t such that

(cf. Lemma 1. 9 in 13]). So

S
(logn)5/4

-(logn)5/4

Combining (19)-(22), we have from Esseen's theorem

sup \F(Sn<zσ^n)-Φ(z)\
-oo<2<oo

S
(logn)5/4

-(log 7l)5 /4
dt+

K2(23)

Thus, from Theorem 1 and Remark 2, we have the theorem.

THEOREM 3. The process {#,}, satisfying the u.s.m. condition, obeys the law of
the iterated logarithm, if the following requirements are fulfilled'.

1°. £|̂  |2+δ<oo for some <5>0;

2°. φ(n)=O(lln1+ε) for some ε>l/(l+<S).

Proof. Without loss of generality, we may assume that ε^l. Let
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~ 2δ(2+δ) ~~ 2δ(2+δ)

We define fN(x) and /#(#) as before. For any positive integer /, put
Then from the inequalities in [3]

\ExQx j\ ̂  \ExQ(fNj(xj)-EfNj(x

Since s— ̂ >0 and

SO

(25)

Thus, the series

converges absolutely.
Next, we shall show that for some

(26) σ*n=nσ*

It follows from (25) that

oo o n—1

^2Σ\ExoXj\+—ΣJ

and so we have (26).
Now, we define ,̂ # and k by the formulas
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*= Σ X3> i=0, 1,— ,4—1;

and set

5?t= Σ #/> i=0, 1, —, ft— 1;
y=(<+ι)p+tg+ι

Then, it follows from (26) that for some

and

where £{, f j, • ••, ££_! are independent random variables distributed in the same way
as the corresponding &. Thus, the method of the proof of Lemma 1 in [8] can
be completely carried over to this case, and we obtain the theorem.

Two theorems below are concerned with the processes satisfying the s.m.
condition.

THEOREM 4. The process {xj}, satisfying the s.m. condition, obeys the law of
the iterated logarithm if the following requirements are fulfilled'.

1. |#/|<c with probability one]

2. a(n)=O(l/n1+ε) for some ε>0.

Proof. Define p, q, k and r by

p(n)=[n1/2 log3n\ q(n)=r(n)=[n1/2 log"3 w], ft(^)=

Then, for any £>0

w

and for some 7*1 >0

So, (12) holds. Thus, from Remark 1 to Theorem 1, it is enough to prove Condi-
tion (i) in Theorem 1. Put £0, •••, £*-i, f βι " ι fί-i, 370, - , ̂ , Si, S4r as the same ones
in the proof of Theorem 3.

Since from Condition (II)
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so from Esseen's lemma

Γ» (lOg 71)3/2

(27) S
(lOg 71)3

-(log n.•(logn)3/2
Eeil

*= Iξjl Vrcσ_

for some 7-2 >0.
Secondly, from the proof of Lemma 18. 5.2 in [4]

So, if we choose a positive number d such that 0<<5<2 and 5(l+e)>2, then from
Esseen's lemma

(28)
S

(lθgw)3/!

-(logn)i

[»(lθgw)3/2

n)3/2

Finally,
fc-1 \

,ι=0 V

k~1 p p
=2k Σ Σ Σ

dt

and

,=2

Σ

(P+Φ*

Hence, we have

kEξl
(29)

nσ*
—ESy

α(ί+0

fc-1 q n-

Σ Σ Σ
j=i 1=1 1=1
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On the other hand,

(30)

-2U--1
nσ2

—i n

~HΣJC
n .7=ι

Combining (29) and (30) and using Esseen's lemma, we have

J-(lθgtt)3/2 t

Thus, from (27), (28) and (31), Condition (i) in Theorem 1 follows, and the proof
is completed.

THEOREM 5. The process {#/}, satisfying s.m. condition, obeys the law of the
iterated logarithm if the following requirements are fulfilled for some δ and δ' such
that 0<δ'<δ:

1°. E\XJ\*+'<OQ;

2°. Σ{a(n)}δ>/«+δ'><oo.
n=l

Proof. Define fN(x) and fN(x) as before. Let

and

Then, for any b>Q

= -Λ^^

b*{X(n)?r

n
b*{*(ri)Y

n

=0(n-')

holds for some and

— a(r) = -
r r -̂(log w)3
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Hence, Remark 1 to Theorem 1 it suffices to show

sup
-TO<z<oo

Define p, q and k by

p(n)=[n1/2+a], q(n)=[n1/z-a] and
LP+4

where α is a small positive number. Let jv'=wί'/ιβα+ί'> if 0<<5^2 and
if <5>2. Put

i =— Σ (/*<(*/)-£/W<fo)λ S;'=— 7= Σ (fN (xA-EfN,
(TV 72 j=ι (TV A? j=ι

/px -L v r rp/r o/ ^/
ln~ V^σh^' n~ n~ "'

Then, it is easily proved that for some j->0

(32)
2=O(w-r) and

Now, let /„(#) be the characteristic function of Snl

\fn(t)-e-^\ g \fn(t)-Eeus»' |

. Then

(33)

From Esseen's lemma

(34)

holds for all t such that

Since

\t\^Vn
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Σr2

and

for all sufficiently large n, so

(£ζί)(2 + »/4

holds for all sufficiently large n where p=mm(2, S) and γ is a positive number.
Consequently, from (34)

(35)

holds for all sufficiently large n and for all / such that \t\^Vn. From Con-
dition (II)

(36) EeίtTn'-

Using (31)-(36), we have

S
(logn)3

-(log??)

^

(logn)3

(log??)3

(logn)3

-(logn)3

(log nf

-(logn)3

+ -
(log ^)3

= 0V(logn) j

Hence, from Theorem 1, we have the theorem.

4. Functions of processes.

Let (xj, y=0, ±1, ±2, •••} be strictly stationary and satisfy one of the require-
ments (I) or (II). Let / be a measurable mapping from the space of doubly
infinitely sequences (—, α-i, «0, «ι, •••) of real numbers into the real line. Define
random variables
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w*v Jj=J\"> Ήj-ly £31 %j + l) "')

where x3 occupies the Oth place in the argument of /. It is obvious that {//} is a
strictly stationary process. We shall prove theorems establishing the law of the
iterated logarithm for the process {//} (see [3] and [4]).

Let

(40) S

and

(41) σ2=.

if the series converges. In what follows, we use σ2 only when σ2 is positive.
The following theorem is a generalization of Theorem 1. 2 in [8],

THEOREM 6. Let the stationary process {xj} satisfy the u.s.m. condition and let
the process {//} be obtained by the method indicated above. Further, let the follow-
ing requirements be fulfilled:

1. Ef=Q and E|/|2+δ<oo for some

I 1 \ 12. φ(n)—O\—^ Λ for some

3. E{\f-E{f\Mk-H}\*}=<P(k)=O(n-2-*<) for some 5ι>0.

Then, the processs {//} obeys the law of the iterated logarithm.

Proof. The series in (41) converges under the conditions of Theorem 6. (cf.
[3]). In fact, as in [8] (cf. [3] and [4]), let

and

Then the stationary process {ξjs)} satisfies Condition (I) with the function φξ(n)=\.
for n^2s, φζ(ri)=φ(n—2s) for n>2s. Since

E\ξ?\M=E{\E{fj\3i&^

the stationary process {f£°} satisfies all the conditions of Theorem 3. Furthermore,
as before,

\Ef*fj\ = |

/ Q \ ! + («-/>) / Q \ (l+ )
(42) ^4E\ξP'™\ ί 4-j +4^| ̂ /3])|2+a. / 4\
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where

2δ(2+δ)

It follows from (42) that the series in (41) converges.
Moreover, from (42) we easily obtain that

Next, we shall prove that

(43)

holds for all sufficiently large n. Let

and

where N=n1/^+s\ Then

O'=0, 1, 2,

(44)

b2nσ
-E\g0(N)\\l+2r)

Now, as in [1], define

and

Here, we adopt the conventions that Si_2r=0 if z'<2r and Sn— Sί+2r=0 if i+2r>n.
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If we put

(45)
k=r

then μ(r)=O(n~r) for some γ>0, and

(46) E\ K-

E\ Vi-(Sn-Si)\^

for all k and i. Thus

(47)

n(\ogn)3

and similarly

P(
(48)

_
n(logn)B )

Because of uniform integrability of S2

n/n, (cf. the proof of Theorem 21. 1 in [1])
there exists a Λ>1 such that

(49)

for all y, where ε>0 is arbitrarily small. Let

£i={max I Uj\ <5aX(ri)^\Ui\}.
j<ί

As EiGJA*-* and Vl+2r is measurable ^Γ+sr, so from (44), (48) and (49)

+

s *Σ ̂ (Γ u E n {
1=0 \Lj=ι
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^ Σ \P( U E
1=0 \j=l

j=l

where ?->0 is a positive number. Thus, for all n sufficiently large

(50) pfu [Ej n{\Vj\ ^2al(ri)}\ ^P( max | U, \ ̂
\J=1

and so from (47), (48) and (50)

ϊ) [Ej Π {\Sn- Uj\

n-St- V^
3 = 1

(51)

u [E, U {| V3 1 έ
.)=1

+ P( max ] ϋi I ^5βZ(»))+ 0(»-0 +

Consequently, we have

(52) P(max | ϋ} \ ̂
l^ ̂ n

for some ?-ι(>0). Combining (52) and (47), we obtain

P(max \Sfe

Next, we shall prove that

By the same method of estimation of (42)

o \ι+t-p / Q \(ι+θ(ι+3)/(2+δ)+pa
(53)

r / o \ι+t-p / Q \ (
I «,[(}) + f)
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Taking into account of (53), we have

a n 3=\

1+ε~'° / Q\(ι+0(ι+*)/(2+ί)+/»ί

where

Putting N=n1/2~2£i and r=n1/2~Sl, where ει>0 is a sufficiently small number,
we obtain that

(54) E\Sί'\*=0(n-r)

for some γ>Q. Furthermore, with the same s, let

•1 n
o/_ JL XT' P (S)

and

d

Then

(55)

for some γ>0. Thus, noting that

4-ι

+ 1 EeitSn' — e~ (ί2/2) ^w2/σ2) i _j_ i g_ ct 2/2) wn /βt) _ ^-

and using the method of the proof of Theorem 3, we have

(56)

Hence, we obtain

i.o.)=0.

Now, we shall prove that

We proceed as the proof of Theorem 1. 2 in [8], Let A>0 be sufficiently large
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and ε>0, dι>0 sufficiently small. We write

and

where s=n1/2~h (ει being the same defined above). Then, it follows from
(55) that

1- *'(»)
*(«)

for some f>0. Put Sί=Aί/2~ει and for some positive numbers <52<<5ι<<5o

Mfc

lj=ι >J

u== IJ IIZj^J" ^ '

and

for at least one f, 1^/g

Then, from Chebyshev's inequality and (54)

(58) Φ*ϊ

Thus, from (58) we obtain that

=ι
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j=ιt = ι j = ι

ι = ι j = ι

Next, let ck=Ak/2 and choose <53>0 such that for some ε'>0, 2/VA+ds+ε'<δ2.
Then

-«*'on i<*lnΠ Σ #•*>
J Llj=4»-ι+(7A+ι

;#"
, 3=1

Since from (56)

.Σ

Ak

Σ

for some <54>0 and σ2

n(s)=nσz(l+o(iy) for all sufficiently large n, so

where Λι>0 and does not depend on k. Noting that from (42)

E^'Σ^f^Kc,
and from (53)

\ 3=1 J I ~ ( 3=1

^-±TV/3-ι+ck / / q \Λ+ -P / q \ (ι+.
Σ ((f) +(f)

for some γ (0<^<1), where N=Ak/2~2ει, we obtain

s^lp^-l V'')'

( Ak-l + Cjf Ak-l+Cic Λ*-l \ 2
V -Γ V -^(Sfc-i) ι_ V ΛSJC-Λ) \
2-1 Λ'~ 2j ^> + 2j ^ )
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Γ / Ak-ι+Ck \ 2 /^fc-ι+ί7fc \ 2 /Ak-1 \ 2η

^3 £•( Σ Λ )+4 Σ ?H+£(Σ^-"
L Vj^jfc-i+i / \ j=ι / \ j=ι / J

and so from Chebyshev's inequality

~l + Ck A%-1
V £(sfc) — V t

Hence, as in [8], we have Uk-^l as k^oo and consequently Uk—>1 as &—»oo.
The proofs of the following two theorems are carried out by the method of

that of Theorem 6. (cf. [3], [4] and [8])

THEOREM 7. Let {#/} be a stationary process satisfying Condition (II), / a
random variable which is measurable with respect to JM-^, and assume that the
process {/}} is obtained from f by the method stated above. Let {//} have the fol-
lowing properties:

1. Efj=0 and \fj\<C with probability 1;

2. α(w)^C^-(1+δl), where δι>0;

3. E{\f-E{f\JH1Lk}\z}=0(k-^δ^ where <52>0.

Then the law of the iterated logarithm is applicable to the sequence {//}.

THEOREM 8. Let the stationary process {#/} satisfy Condition (II), let f be
measurable with respect to J ί̂ϋoo, and let the process {/}} be obtained from f in the
same way stated above. Moreover, suppose that

1. Ef=0 and for some <5>0, £|/|2+δ<oo,

2. E{\f-E{f\Mk-m=0(k-*-*<) (A>0),

3. Σ{α(Λ}a//C2+'/)<oo for some 0<δ'<δ.
J = l

Then the law of the iterated logarithm is applicable to the sequence {/}}.
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