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THE LAW OF THE ITERATED LOGARITHM FOR STATIONARY
PROCESSES SATISFYING MIXING CONDITIONS

By HirosH: OoDAIRA AND KEN-ICHI YOSHIHARA

0. Summary.

The law of the iterated logarithm for various stochastic sequences has long
been studied by many authors. Recently, losifescu proved in [5] that the law
holds for stationary sequences satisfying the uniformly strong mixing condition
and Reznik showed in [8] that the one is also valid for stationary processes satis-
fying the strong mixing condition. But, the conditions used in [5] and [8] are
slightly stringent. The purpose of this paper is to weaken those conditions, that
is, to prove the law under as similar as possible requirements to the conditions
in [3].

1. Definitions and notations.

Let {x,, —oo<j< oo} be processes which are strictly stationary and satisfy one
of the following conditions :

1
(I) Ae‘%’iilfgeﬂf_m——P( 7y | PAN B)—PAPB)|=¢(n)—0 (n—co)
or
n sup  |P(ANB)—P(A)P(B)|=a(n)—0 (n— oo),

AeH® . BeHT, ,
where 9% denotes the g-algebra generated by events of the type
{(xily "ty xik)eE}: a§21<'<ik§b

and E is a k-dimensional Borel set. In line with [4], we shall call Condition (I)
the uniformly strong mixing (u.s.m.) condition and (II) the strong mixing (s.m.)
codition.

In what follows, we assume that all processes {z;} are strictly stationary,
Ez,=0 and Ez}<oco. We shall agree to denote by the letter K, a quantity bounded
in absolute value.
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2. A sufficient condition for the validity of the law of the iterated logarithm.
In this and next sections, we write

W =Z1F o+ + T, on=var (S,)
and put

o*=Ext+23, Exyx,
1=1
if the series converges. We shall use ¢® only when ¢? is positive.

THEOREM 1. Let the strictly stationary process {x;} satisfy the s.m. condition.
Suppose that 3, a(n)<co and

(1) oi=ns’(1+0(1)) (6*>0).
Then, the process {x;} obeys the law of the iterated logarithm, if the following

requirements are fulfilled for some p>0 and for all sufficiently large n:

. _ 1
(i) _53}200 |P(Sa< 204/ n)—@(z)l=O<W>

where

D(2)= _\/17—7:82_ e-t2 df

(ii) P(lrgljas{(l 1551 ébx(n))=0(@1;)17)

where b>1 is an arbitrary number and
(2) X(n)=(20°n log log #)'/2.

Proof. We will use the method of the proof in [7]. The assertion will be
proved if we show that for any ¢>0

(3) P(|Sa| > +e)A(n) i.0.)=0
and
(4) P(|Sa]| > (1 —e)X(n) i.0.)=1.

Firstly, we shall prove (3). For an arbitrarily chosen positive number z, there
exists a non-decreasing sequence of positive integers such that

(5) (mx—1D)a®> =1+ 1) < nyo?

for k=ko+1, ky+2,---, where k, is a positive integer. So, for all sufficiently
large &
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(6) .

and

( 7 ) nk—nk_1=nk(1 n;;;l >~nk 1:_1: .
From (ii)

P(lg}gx [S31 > 1+ 1) X(mi)) = K(log n4)~ @7 < K[k log (L+7)] -7
sjang
for any y(>0), y: (0<y1<p) and for all % sufficiently large. Thus
(8) 22 P(max (S| >(L+7)(n4)) < co.
k 1sjsng

We note here that for all sufficiently large &

A (nx)
e <A/1+2c.

For a fixed number y(0<y<e), choose a positive constant ¢ such that

1+e¢
v142¢ >1+7.

Then, from the Borel-Cantelli lemma and (8), we have

P(IS| > +e)x(n) .O)=P( max [Sp|>(L+)X(-1) 1.0,

N1 SNEN

=P( max |S,| > +e)A(nx-y) i.0.)
1snsng

1
éP( max |S,| >\/1—+ﬁ‘ X (1x-1) i.o.)

1snsng

=P(max |Sp|>1+7)X(:) i.0.)=0.
1sns=ng

Thus, (3) holds.

313

Now, we turn to a proof of (4). For a sufficiently large number A>0 and

sufficiently small >0, let
E;={|Su|=A—-0)X(AY), i<j; |Sa|>A=0)XAY)} (=12, ).

Let y be a positive number such that for some &' >0, 2/+/A +7+¢'<d. From the

s.m. condition (II)

P({|Sal =(1—0)X(AY), i<7}N{|Sar—Sai-11rairn| >A—p)X(A7)})

= P(|Sal=(1—0)X(As), i<j) P(|Sar—Sas-1iraii]| > A=) XA —a([A2]).



314 HIROSHI OODAIRA AND KEN-ICHI YOSHIHARA

While, from (i)

= Ko
PASH > 01 = 5 s tog Tog )

holds for any 5>1 and for all » sufficiently large. So, noting that A7—(As!
+[A7%))> AJ2 for all suffieiently large A, we have

0, = P(|Sa1—Sas-1spaiim| > 1 =7)X(A%)

J
(10) zP(|sAf_A,-1_[Aj/ZJ|>z(1_r)x<[%]>>
. | K
= P(Sar-armcanl > UL A — A = ()2

and, moreover, from Chebyshev’s inequality

1) P(|Sar11pa9rm—Sai-1| Z M AN =K A2,

So, using the method of the proof of Theorem 1.1 in [8], we have
P(|S4i|>1—0)X(A?) for some i, 1=i=k)—1 (k— o0),

which implies (4). Hence, the proof is completed.

REMARK 1. For the process {z;}, satisfying the s.m. condition, the require-
ment (ii) is fulfilled if (i) holds and there exists a function r=7(») such that

r(n)— oo and

n | ”n - 1
12) max <7P(|-’E1| +-t Ixrl =eX(n), 7(1(7’)) —O<(log n)t+e )

for any ¢ (0<e<(b—1)/b) where b>1 is an arbitrarily fixed number.
Proof. We use the method in [6]. For any b>1, let
E,={1Si|<bX(n), i<j; |S;lzbx(m)} (5=, -, )

and k=[n/r]. It follows from the s.m. condition that for any «>0
P(max |S;|= bx(n))=P<,U E ]>
1=jsn =1

k-2 r
§P(Isn} éb(l—s)x(%))+ ZE) P(]L;)l [Etr+j U {lsn_Sir+j| é be(n)}]>

2, PEN{S.—S|zen))

I=(k—1)r+1
=p(s. 2t -1+ 5 P{( 0 )0 1SS =51
13)
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k=2 r
+ 2 (Ul[Eir+jU \]S(i+2)r_ ir+j\%%x(n)}])
=

=0

3T PEN{S—S| = etm)

1=Ck—1)r+1

k=2 r
=Pz + T P( 0 Bovs) P(11—Savnr 25700)
+ka(r)+(k+1)P<l.z‘1|++|xzr|§-§—X(”)>
Since for any i (0=i<k—1)

i r
PAISu—Scssor| Z )= P(1Su-cosnrl Z U S T 550,

so for sufficiently large »
1

14 P(ISu—Saror| Z X(m) =5

Thus, from (12), (13) and (14)

P(max |S;| =bX(n))
1s4sn
1 1
=P(ISal = b(L—e)X(m)) + 5 P( max 1Si1= bX(n))+0(W>-
Hence, from (i) we have

1
Pz 512 000 =0( )

where p, is a positive constant.

ReEMARK 2. For the process {z;}, satisfying the u.s.m. condition (I), the re-
quirement (ii) is satisfied if (i) holds and there exists a function r=7(x) such that
r(n)— oo and

1
(15) 2 P+ +[x,(;sx(n))=o(—W)

for any ¢(0<e<(b—1)/b) where b>1 is an arbitrarily fixed number.

3. The law of the iterated logarithm for the process {x;} satisfying one of
the conditions (I) or (II).

TaeoreMm 1. 1 in [8] may be generalized in two ways:

(a) One way is to weaken the requirement Elz,|?*?<oco retaining the condi-
tion X {p(n)}*'2< oo, (Therem 2);

(b) The other is to weaken the requirement 3 {p(#)}’2<oco retaining the
condition F|x,|**?<oo, (Theorem 3).
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THEOREM 2. Let the process {x;} satisfying the u.s.m. condition have the fol-
lowing properties :

1°. For all sufficiently large N
(16) S xgdP=O<-———1——->
leI>N (log N)®
2°. Zl {p(N}2< 0.
=
Then the law of the iterated logarithm is applicable to the process {x;}.
Proof. We remark first that from 2°

ah=ns*(14+0(1))

(cf. 13] and [4)).
Let

z (lz|=N),
fzv(w)={
0 (J=I>N)
and fy=xz—fxy(xz). Furthermore, let 7(#)=[#*] and N=[#"°]. Then forany
2>0
P(|z| + -+ + || 2 22X(n))
=P(Ifw(@)|+ -+ | F ()] 2 2(n)
+ P(| fw(z)|+ -+ +| ()| 2 2(n))

=P(|f w(@)| 4+ | F wlzn)| = ()

IA

1 ro_ 2
T ()

lIA

r = 2 =1 - -
| EVFa@o +2 3 Bl atenl - Fateal

_r _
X ()

lIA

{Elfzv(wo)l2+27(EIfzv(:vo)l)2+4(Elfzv(xo)I2)g{so(j)}"z}

lIA

4 f 2 1 F 2 = 1172
WEVN(-”O)I {1+27"WE|fN(xo)| +4§1{90(J)} }

7 1
=Koy og ny
and so

n 1
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Thus, (15) holds.
Next, we shall prove that (i) in Theorem 1 is satisfied. Define

1

ov'n

Sp= z (f (@)~ Ef azs)

and

St= o & Fnted—EF sta

=1

For a small a(0<a<1/2), put

)=, qlm)=[n"~"], k=[ ; ]

b+q
and set
k=1 » 1 k
Tim 5 3% o oo s) = Evoipossd), 4= 50
where
1 .
Ci=§ o (fv@iprorp ) —Efn@iprp+pe))  @=0,1, -, B=1),
1
Cr= xR o (fv(xs)—Ef w(xy)).
Then
1 _ i
Es:.'2=;2—[E(fNuo)—EfN(xo»Z
n—1 ] - - - _
an 423, (1L B a0~ EF e Fnted— EF e |
2 7 2 kKSs el — 1
= LB |142E ()| =0( )
and

ET;/2=E('°§ ci)z

i=0

=

=

k= k-
L {e—mae2r T B+ Ba+ 2 7 Bl

Q

lIA

k-1
| P URBG S (i 0+ B

Q

=
(18) +41§: VEG VEG Ap((k—i)p+ ) *+2vVEG - VEG, }
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S Bt ot k0t 5 otip +o0)
=0

ko g+ 5 oo+ o)
=0(n""2)
for some y,>0. Since
| E¢itSn/ e/ n— FeitTn|
< |Beitsn’ 03— itsn’ | 4| Bettsn’ — EeitTn'|

= Ee|tsn” —1|+E|etTn" —1|

=S| -EISY |+t -E| T | = 1tV ETSY P+~ E | TH %},
so, from (17) and (18)

(logn)s/4 [ FpitSn’a v __ EeitTn’
I 1= S

(19) —(log n)5/4 t
<S(logn)5/4 \/E S77|2 \/E T 2 dt—'O(_"—l—‘)
= _(logn)5/4{ l nl + l nl } = (log n)su .

Furthermore, let 5o, 71, -+, 7x-1 be independent random variables distributed in the
same way as the corresponding

L S Fv@iorprd) —Efs(@imosd) (=0, 1, -y k—1).

73 n =

From Condition (I)

k-1
] EeitTn’ — ,l;[o Eei|=kp(q)=Fk -O(g=%)=0(n""3)

for some 7;>0 and for all # sufficiently large. On the other hand

k-1 2
Eerw ] Ees| <7 (EIThl*+ k)
7=0

for all sufficiently small |#]. So

EoitTn' — FgiZyiny '
t J

(log n)5/4
2= S

—(log n)5/4
n-1/4 it )
S Ee?Tn’ — FeottXj=0"j

—n—1/4 t

( EeTn' —E Dy

IIA

Sn—ms |t] S Clog n)s 1) ¢

(20
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—1/4 dt

§1<E|T:.|2+kEvs)S" Itldt+0(n"3)g ar
2 —n—1/4 n-1/45 |¢] <(log ) /e | £

=0(‘a—ogin>‘ﬂ>

Next, let

=V n (7=0,1, -, k—1).

Ni= W’?i

Then, by the analogous argument, we have

Eeizz;‘; ](j’/j_ Eeitzf;ér/j' ldt—o 1
¢ B ( (log n)*4 )

(log n)5/4
3 =S

(21)
—(logn)5/4
for all sufficiently large 7.
Finally, by applying Esseen’s lemma to the sum };%zi»} we obtain

KE [7i]**?
= O‘ng"s/z |tl1+ae-t2/4éKk-a/zmlwe—ﬂu

Eeitzf;évj' —p-t2
¢

for all # such that
\/'J{Eln“z}(zﬂ)/z ﬁKz\/Z

ltl= / =
24E|yi[*+?

(cf. Lemma 1. 9 in |3]). So

k=1
(log n)5/4 Eeitzj=ov1_e—t1/2
4=S 2Ll ar=0k.

¢

(22)
—(logn)s/4
Combining (19)-(22), we have from Esseen’s theorem

sup |F(Su<zo8/7)—B(2)|

—00<2< 0
(logn)s/4 Eei:s”/ yno__ o=tz K2
(23) = S —(logn)5/4 t di+ (log n)s“
K 1
=KL+ L+ L+ 1)+ (log n)""* ——-O( (log )% )

Thus, from Theorem 1 and Remark 2, we have the theorem.
THEOREM 3. The process {x;}, satisfying the u.s.m. condition, obeys the law of
the iterated logarithm, if the following requivements ave fulfilled:

E\zj|*** <o for some 6>0;

1°.
2°. o(n)=0(/n'*") for some ¢>1[(1+4).

Proof. Without loss of generality, we may assume that e<1. Let
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_ A+91+0)—(2+40) _ (140)—1

BE+y) - 2ot

@9

We define fy(x) and fy(x) as before. For any positive integer j, put N,=js"
Then from the inequalities in [3]

|Ezoz;| = | Ezo(fx (@)= Efw (@) + | Exo( fv @)= E F v ()]
SAN;E| 20| () +2(E | 2o|*+0) @B | f iy ()
— B ()| G+ Qrn)asa/ @i g ) a+o @

§4N1E{x0[¢(j)+4N;6Elx0[2+6{¢(j)}(1+6)/(2+d)
1

S4Bzl oy H(a 5 TAE ol s e e
Since e—p>0 and
145 3{e(1+8)—1
[a+ogi5 | 1= Sty >0

SO

1 1
(25) Z lEx0x1|<]Z {4E|x0| “rramry TAE |zol*? FATO WD/ @+ }<°°'

Thus, the series
=FExi+2 i’ Exoz,
=1

converges absolutely.
Next, we shall show that for some >0

(26) ot =na*(L+0(n")).
It follows from (25) that

o —lEs; =23 lExox,l+ z;;lbxom

J=n

1
=8 lElel Z Jrre- +E!xo|2+" Zn FATOA*D/ @+ +Ps ]

1=
8 n-1 1 n—1 1
+_n—[EIx°|,§1 o) +E|:c0|2+“j§l FeEara-1/2a+0) }

and so we have (26).
Now, we define p, ¢ and k£ by the formulas

p=tw, q=br, k=]

n
bt+q

] (a>0)
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and set
(i+1)p+ig .
Ei= Z Xy Z=0, 1, seey k—l,
j=i(p+)+1
G+ +0 . n
ni= Z X gy l=0, 1, “eey k—]., Ne= Z Zge
F=C+Dp+rg+1 j=k(@+@)+1

Then, it follows from (26) that for some y>0

P

=CnT"
no? -

and

!Eexp (it—g—\l/—ﬁjg ¢ ,> -—j]:[: Eexp (z j— > ‘ =dko()=Cn"

t J
g n
where &, &/, ---, &, are independent random variables distributed in the same way

as the corresponding &;. Thus, the method of the proof of Lemma 1 in [8] can
be completely carried over to this case, and we obtain the theorem.

Two theorems below are concerned with the processes satisfying the s.m.
condition.

THEOREM 4. The process {x;}, satisfying the s.m. condition, obeys the law of
the itevated logarithm if the following requivements are fulfilled:

1. |z;l<c with probability one;
2. an)=0Q[n***) for some ¢>0.

Proof. Define p, q, k£ and » by

pm)y=[n'"?log*n], q(m)=r(n)=[n'"*log=*nl, k(n):['p—’iq]'

Then, for any 5>0
ZP(|as] 4+l 2 B2() =0
and for some y;>0

%a(r)éKm"z(log ny? —O(n-").

1
So, (12) holds. Thus, from Remark 1 to Theorem 1, it is enough to prove Condi-
tion (i) in Theorem 1. Put &, -+, &x—1, &b **+y Ef=1, 0y ***» Wky Smy S» aS the same ones
in the proof of Theorem 3.
Since from Condition (II)
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lE(exp it%) 1 E(exp it 5 )
J=

=0

=ka(g)=0(n""),

so from Esseen’s lemma

@27 dt=0(n""?)

Saogn)an 5 nz;‘;},ej/ Vi FiEy s sl Ve
e
t

—(log n)3/2

for some 7,>0.
Secondly, from the proof of Lemma 18. 5.2 in [4]

n 4 n
E(32,) =0(n* 5 jati)) =00,
=1 =1
So, if we choose a positive number ¢ such that 0<§<2 and §(1+¢)>2, then from
Esseen’s lemma

Eeicz:;‘;})ej'/ VEEER _ g-t2/2
t

_ &EIEOIZH _ I{]{Eég}(zw)u _ Kl(ps_S)(zﬂ)M
=T R = R 2gpre k2 (p(L+0Q))

S(log n)3/2

—(log n)8/2

(28)

=0(n~1).

Finally,

=Kikp? Z a((=1)(p+)+Kekp Z alg+))

kg, 'f‘i

=Ko

and

k 2 k-1 7 k-1
B( L) =12k 5 (1 Bro Pt 2 3, Euge
=0 1=1 1=

k-1 n=k(p+q)

k-2 q ¢ q
=(k—DE7+2k Zl Z Z |ExpiiZicprey+il +051q+2 Zl Zi 2 EZjcprgp+iTrcprar+t
1=11=1 i=1 7=11=

=1

<k0'q+K5 (p+q)s +K“p1+6 +0p+q.

Hence, we have

I kEE

(29)

e A2
7

—ES
g2

1
72 772 712
+2\/ES,. ES -I—ES } O( (1 )3/2)
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On the other hand,

} { )3 lnleoxj|+ZZ|Exox]]
(30)
éi{ }:Ja<])+K92a<1)} )

a®

Combining (29) and (30) and using Esseen’s lemma, we have

1
ar=0( (log )" )

Thus, from (27), (28) and (31), Condition (i) in Theorem 1 follows, and the proof
is completed.

EotENCis' Vmo _ [itEy_3ei' /eBE

@3 .

S(log n)8/2

—(log n)3/2

THEOREM 5. The process {x;}, satisfying s.m. condition, obeys the law of the
iterated logarithm if the following rvequivements are fulfilled for some 6 and &' such
that 0<6'<é:

1°. Elzj|**?<co;
20, Z {a(n)}?’ @+ L oo,
n=1

Proof. Define fx(z) and fx(x) as before. Let

N= n1/2(1+a')(log n)—3
and
r(n)=[n?"23+9(log n)*].

Then, for any >0

2P|+ -+ ] 2= BE) = 2P| F (@)l 4+ | ()] =610

EifN<xo>|2+22ElfN<xo); lfzv(svj)l}

n
= it 2 (5 ) S
= iy | BVl +2 S {17 sl +S(E = v atiy o] |
1 2+4 2 2+6 2 K 2+8\1/(2+4
= e | 3 EV vl i (BT w10+ s (B el ) |
=0xn"")

holds for some >0 and

2 o ="LLo- ey — <——1 >
Fa(=700- ) =0( o ).
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Hence, Remark 1 to Theorem 1 it suffices to show

=( w7 )

P(ﬁZ::1 ;< ﬁaz) —0(z)

sup

—0Lz<00

Define p, ¢ and k& by
1/2+a —[yl/2-a — n
pm)y=[n"**], qn)=[n"**] and k(n) [ Pt q]

where « is a small positive number. Let N'=#n?"/160+ if 0<§=2 and N’ =n1/161+"
if 6>2. Put
1

g

Si= s B Fnle) = Efwie), S¥= e 33 (Fula)—Ef wia)

P

Gi= Zl(fN'(x(i—l)(p+q)+j)"'EfN’(x(i—-l)(p+q)+j)) =12, -, k),
=

T = ]_-_ A{'C T =S!— T’

n— ‘\/nd = 2] n n ne

Then, it is easily proved that for some >0
E|IS!|2< 1 1 7 246 K, z 2+45)2/(2+8") | — ~7
IS¥*= — Ja Bl v @l + a7y (B f (2o ) =0(n™),

(32)
E|TY*=0(n"") and |ET2—1]=0(n"")

Now, let f.(¢) be the characteristic function of S,/+/#c. Then

| Ful) =2 S | fult)— BeSn'| 4 | Eetsn’ — Egitrn'|

+

k
EetTa’ — [| Eeitti/ /B
=1

L3
+‘e—t2/2_ H Eettii/ VEE?
J=1

(33)

13
EettTn’ n Eetttj/ VEEG?
=1

Z[HEISHI+HE|TH |+

k
e—t¥2 [1 Eetteit V¥E?
1=1

+

From Esseen’s lemma

—t2/2 - it i/ JEEG?E | < E1G[*? 246,-12/4
(34) e —J];]lEe i 0 =KWI” e
holds for all # such that
E|o|*?
H=n [ 2 Gryar

Since
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BUSK(N')'# 3 i) SKN) 8 355+
= =
=Ky (N")‘p? max (1, p~#7)
and

EG=po*(1+0(1))
for all sufficiently large #», so

E’IC0[2+5 - (Ecg)(2+6)/4
kP/z(EC(Z’)(2+P)/2 = kPlz(Ecg)(Z-{—P)/Z

=0(n"")

holds for all sufficiently large » where p=min (2, §) and y is a positive number.
Consequently, from (34)

13
e—cZ/z_ l‘[ Eettii/ VEEL?
J=1

(35) =< Kn—rltlzne—wm

holds for all sufficiently large » and for all ¢ such that |{{=+/#. From Con-
dition (II)
(36)

k
Eeitrn'__ ﬂ Ee”CJ'/JkECo’ §ka(q)=n”2_“-0({%1/2‘"}“(2”')/").

=1

Using (31)-(36), we have

[P(z+ 4+ 2,<20 8 1) —D(2)|

Goem? | f,(t)—e~t* c
= dt
- S-—(log n)3 t ’ + (log n)3
(log n)3 (log n)3
@7 §S Kn"[tl‘*"dt+g (E|Sy|+E|Ty|) dt
—(logn)3 —(log n)3
ka(q) G
+C [ S dt+ 8 =L
2 o< |t] Sn-1/4 n-1/15)t|sQognye |2 (log »)?
_ 1
“O< (log n)® )

Hence, from Theorem 1, we have the theorem.

4. Functions of processes.

Let {x,,7=0, =1, £2, ---} be strictly stationary and satisfy one of the require-
ments (I) or (II). Let f be a measurable mapping from the space of doubly
infinitely sequences (---, a1, ao, ay, ---) Of real numbers into the real line. Define
random variables
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(39) f;=f(“'7 Ty-1y gy Tys1y **)

where z, occupies the Oth place in the argument of f. It is obvious that {f;} is a
strictly stationary process. We shall prove theorems establishing the law of the
iterated logarithm for the process {f;} (see [3] and [4]).

Let
(40) Si=fi++f,
and
(41) 02=Ef§+2§}1 Efof;

if the series converges. In what follows, we use ¢% only when ¢? is positive.
The following theorem is a generalization of Theorem 1. 2 in [8].

THEOREM 6. Let the stationary process {x;} satisfy the wu.s.m. condition and let
the process {f;} be obtained by the method indicated above. Further, let the follow-
ing requirements be fulfilled:

1. Ef=0 and FE|f|*°<co  for some 6>0;

1 1
2. go(n)=0(—n—l;> for some s>m;
3. E{lf—E{fI Mt =¢(R)=0n"*)  for some 6,>0.
Then, the processs {f;} obeys the law of the iterated logarithm.
Proof. The series in (41) converges under the conditions of Theorem 6. (cf.
[3]). In fact, as in [8] (cf. [3] and [4]), let
£ =E{f;| Ms*3}
and
" =fi—E.

Then the stationary process {£{} satisfies Condition (I) with the function ¢.(#)=1
for n=2s, p{(n)=¢(n—2s) for n>2s. Since

EIEP P =E{|E{f | MR} = EAEA| F51* | M =E | f|*+2 <o

the stationary process {¢} satisfies all the conditions of Theorem 3. Furthermore,
as before,

|Efofjl p— ]E(Eétj/al) _I_,?stj/s]))(é:;[j/s]) +7]§[j/3:|))'

| BEE | 4 2B 6 [ B [ [+ E 7]

3 )(l+e)(1+5>/(2+5)+p5

14(—p)
+4E| gé[j/sl)lzw . (_
J

(42) =1p e (2)

rawieemrrelo )]+l 5])
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=84 (5) D]

_e(1+0)—1
T 20(2+96)

where

>0.

It follows from (42) that the series in (41) converges.
Moreover, from (42) we easily obtain that
o =ns*(L+0(1)).
Next, we shall prove that

43) P(max |S;| 26a(m) =2P(|S| éax(%>>+0(’aog1 ny? )

holds for all sufficiently large »n. Let
1’(%) =p¥/2@2+0), (log n)—a

and

fi Afil=N), .
g;(N)= §i(N)=fi—g;(N)  (4=0,1,2, )
0 (fsI>N);

where N=#»'@+»_ Then

ZP(fil+ -+ £ 2 b1n)
=2 PUBD I+ + 0N 2 20

+P<|g1<N>|+-~+|gr<N>l-z—§—x<n»}

(44)

4
b*ne?
4r
b?*ng?

lIA
MIE R

E(|g:(N)|+ - +]3:(V)])?

lIA

E|go(N)|*(1+2r)

K
N

=

(L+29)=0(n-2@+),

Now, as in [1], define
Ui=E{Si—zr| M
and
V.= E{Sn - Si+2n|<_m?+r}-

Here, we adopt the conventions that S;_,,=0 if i<2r and S,—S;2r=0 if i+2r>n.
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If we put

45) )= 3 g ()
then p(r)=0(n"") for some y>0, and
E|Sy— E{Se| MESY P ={p(N)}?,
(46) E|Ui—Si|*=2ES%+2{u(n)}?,
E|Vi—(Sp—S) 2 =2E5%+2{pn(r)}?
for all 2 and i. Thus
P(|Si— Ui| =z ax(n))

=P(|S;- Zr—E{Sz-zrlﬁw_rH>CZX(n)—bU\/Z)
47
+P(|fil 4+ for| Zbo v/ 1)

Hp(n)?

N/ —06/2(2+06 .1___
E(cz)((n) ba\/n)+ O = O( )

n(log #n)®

and similarly
P(| Vi—(Sn—Si)| = ax(n))

4{p(n)? —5/2(2+8 —1
= (ax(n)— bm/n)2+ O )= O( n(log n)? >

49

Because of uniform integrability of S:/n, (cf. the proof of Theorem 21. 1 in [1])
there exists a 2>1 such that

(49) P(|sj|zzm/7‘)§;—z

for all j, where ¢>0 is arbitrarily small. Let

E1,={n;133(|Uj]<5(l%(ﬂ)§|Ui|}.
<
As Eie M and V,yar is measurable HSsr, so from (44), (48) and (49)

P("[f E;n{V,]| zZax(n)}])
=1

ézo P(O (s ] V@mpgax(n)}]) 2 PRI+ forl @)

< §P<[]U B |01 Viasno|= @t )+ 0a—219)
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< "iP( ¥ E) (P Veasar sl = at(m)+o(r)}+On-22+)

=0 J=1

r

k-2
= 3 P(U B ) (PUSv-s0l 2 10/ 7= GFDID + 00 40017
where y>0 is a positive number. Thus, for all # sufficiently large
n—1
(50) P( U1 [E;n{|V,] 22(1%(%)}) é-;—P( E;X |U, | =5ax(n))+0(n")
J= =j=n

and so from (47), (48) and (50)

P(max |U;| = 5ax(n))
1si=n
= P52 oo+ P U 18N (15, Uy 2 atioy))

= P(ISu| = at()+ 3 P(ISu—Si— V| = ax(n)
=1

&
+P('U 1B, 01V, |2 210001 )+ 5 PSi— Uil = atn)

dnfp(n)?

=P(|S,] édx(”))-l-W

Anlp@)}

Ty

+ {—;—P( max | U, | =5aX(n))+O@#n")
1sjsn

Consequently, we have

(52) P( max | U, | 25ax(n)) =2P(|Sa| = aX(n))+0(n="1)

for some 7;(>0). Combining (52) and (47), we obtain
1
P(lnéljasii [S;|= 6aX(%))§P(II;1f;i | U, | =5ax(n))+ O(W)

er(sizam+o{ ko)

Next, we shall prove that

— 1

By the same method of estimation of (42)

3\ lte=s [\ QHOA+D/@+0)+ps 7 172
(53) Bl =gl () +(2) (D
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Taking into account of (53), we have

1
Q72 —
BIS/ =

=g Bl (G (3) (5]

1

av'n

n—1
(Bl P+2 S -p B
=1

where

n
J (8)
Sa'= 2177: .
=

Putting N=#'2-?"t and r=n2"", where ¢;>0 is a sufficiently small number,
we obtain that
(54) E|S7[*=0(n"")

for some y>0. Furthermore, with the same s, let

1

’— < (s)
Sa= ov'n J;l&
and
di=EIE1+2 5 EEVE.
j=1

Then

di _
(55) - —1’ —0(~)

for some y>0. Thus, noting that
[Eeitsn/a,/ﬁ_e—tz/zl = |t[{E|S,’,’|2}1/2

+ ‘ Eeusn' —e (t2/2) (dn2/02) l n Ie_ t2/2)(dn /o) e—LZ/Z l

and using the method of the proof of Theorem 3, we have

— 1
o _sup 1P e/ 7)~091=0{ g )

Hence, we obtain
P(|Sa| > (1480) x(r2) i.0.)=0.
Now, we shall prove that

P(lSn[>(1—50)X(n) i.O.):]..

We proceed as the proof of Theorem 1. 2 in [8]. Let A>0 be sufficiently large
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and ¢>0, §,>0 sufficiently small. We write
(= BEP+- )
and
X'(n)=(20%(s) log log a7(s))*"?

where s=#nY2"% (¢; being the same defined above). Then, it follows from
(55) that

x'(n)

Ty )0

i
for some y>0. Put s;=A%?~"t and for some positive numbers §,<d; <

At
Ek={ Sego
=1

Ak
>A—a)X(AY), i<k; X &F®
=1

>(1—52)x'(Ak>},

c=ﬁ[
1

=1

At 1 .
Sy |<Lo—aowas]
J=1 2
and

ﬁk=P<

At
D& ]>(1—62)X’(Ai) for at least one i, 1§i§k)
=1

k
=2, P(E))
j=1
Then, from Chebyshev’s inequality and (54)

P(C)=1—P (_J"l[

£o0 [z Lo

4t 2
B(Zn0)

J=1

(58)

%

= (36— aowcan)

=1-K 3 (A)(1— A"
=1
Thus, from (58) we obtain that

Un=p( 0 1> 0 -02049))

zP(gnsm><1—51)x'<Ai>1)
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P8l
(O[5

=14 Un+PC)=U,—KA-(1—A-)1,

llV

(59

Sero [>a-awan)n[E || Zare =5 G- |)

v

(s3)
7

> A=) (Ai)] n C>

Next, let ¢;=A*? and choose §;>0 such that for some &’>0, 2/+/A+d:+¢ <Bs.

Then
A Ak
p([[Seso |sa-sovean, i<k|n[| T em[>a-awan])
=1 7=AK=14+Cpt+y

At Ak
gP( $1e00 | < (1—sy (A9, i<k>P< 5 s;%)|>(1—53)x'(Ak>)—go(ck—Zsk).
i=1 = AT Chiy

Since from (56)

-1

for some §,>0 and o%4(s)=ns%(1+0(1)) for all sufficiently large », so

Ak

S g

]:Ak—1+0k+1

—(1+e)(1-64)2

> (L=3)1/(A49)| 2(0g oie--0(50)

o= K==

where 2,>0 and does not depend on k.. Noting that from (42)

Ak—14Cy 2
E( Z fj) =Kck

g=Ak—141
and from (53)

Ak—140

Ak=14 0y
E( f 77‘“"’) =(A% 1+Ck){E]770(sk)12+2 2 |En P "’l}

= (45140 N+ D50+ Ko ka” (B + (&) ([ D))

éKSAk—l-kT

for some y (0<y<1), where N=A*?2-%1, we obtain

Ak—-1+0y Ak—-1
B(" % e p e °)

Il

Ak=140y Ak—-14-0 Ak—1
B8 =" n e D )

g=4k+1 J=
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Ak-140p 2 Ak-14-Cy 2 4k—1 2
ss|e(" S ) B (T Z )+ ) |
J=1 J=1

J=Ak—141

é&Ak—l—kT

and so from Chebyshev’s inequality

(
Hence, as in [8], we have Uy—1 as £—oo and consequently Uy—1 as k— co.

The proofs of the following two theorems are carried out by the method of
that of Theorem 6. (cf. [3], [4] and [8])

Ak—1+04 Ak—1

S(Sk) _— (8k-1)

gelxl(Ak)> éKsA_l—-k—r-

THEOREM 7. Let {x;} be a stationary process satisfying Condition (1), f a
random vaviable which is measurable with respect to M., and assume that the
process {f;} is obtained from f by the method stated above. Let {f;} have the fol-
lowing properties:

1. Ef,=0 and |f;|<C with probability 1;

2. am)=Cn=*  where §,>0;

8. B(f—E{f| M) =0k-+), where 3,>0.

Then the law of the itevated logarithm is applicable to the sequence {f;}.

THEOREM 8. Let the stationary process {x;} satisfy Condition (II), let f be
measurable with vespect to M=, and let the process {f;} be obtained from f in the
same way stated above. Moreover, suppose that

1. Ef=0 and for some 6>0, E|f|?**<co,
2. E{f—E{f|M3}=0k2")  (5,:>0),
3. Y{a(r/erd oo for some 0§ <.

=1

Then the law of the iterated logarithm is applicable to the sequence {f;}.
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