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ON A SECONDARY TURNING POINT PROBLEM
By MiNnoru NAKANO AND TosHIHIKO NISHIMOTO

§1. Introduction.

1. 1. Aspects of the problem. In order to solve the so-called turning point
problem, there may be several methods. One of them is the stretching-matching
method. This method has been improved by some authors, say, Wasow, Iwano
and Sibuya. Especially Wasow has shown that this method is very useful for the
problem in his papers [11] and [12]. Iwano [2] and Iwano-Sibuya [3] showed ex-
plicitly how to decide the stretching transformations for the stretching-matching
method, but did not prove how to match. On the other hand, Wasow [11] showed
implicitly both how to stretch and how to match for the special case, and later
Nishimoto [6]-[8] and Nakano [4] extended results of Wasow to various cases by
applying the theory of Iwano and Sibuya. However, all the cases considered by
them assume that a characteristic polygon for respective differential equations
consists of one segment. (Definition of a characteristic polygon will be given in
the following paragraph.) In this paper we will make a one-segment condition
weaker and analize the case satisfying a two segment condition.

1.2. The characteristic polygon. This paper studies the following type of the
differential equations:

d*y
62"W —a(x, 6)?/:0,
or in the vectoral representation
LAY I o 1
(1) e =Awov,  Awo=[ ] (]

where ¢ is a small parameter, ¢ is an arbitrary positive integer and a(x,é¢) is
holomorphic in both variables x and ¢ in the region

D: |z|=x, 0<l|e|Se, |arge|=e,

and asymptotically expansible such that

a(zx, e)~z" + <Z amx”>e’

=1 \h=m,
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as ¢ tends to zero uniformly on D, with v and =, positive integers.

Since v is an integer, two eigenvalues of the coefficient matrix of (1) inde-
pendent of ¢ are identical for x=0 and differ for x=0. That is to say, the origin
=0 is a turning point of the differential equation (1).

We plot following points:

R=(, -1), Po=<0, %) P,=<%,%), r=1,2, -,
in the (X, Y)-plane with the orthogonal coordinate system.

We construct a polygon, convex downward, in such a way that its vertices are
some of R and P, and that all the points R and
P, are situated either on or over the polygon.
The polygon thus defined is called a characteristic
one for the differential equation (1).» If the charac-
teristic polygon consists of one segment, we say
that the differential equation (1) satisfies the one-
segement condition, and if it consists of two seg-
ments we say that the differential equation (1)
satisfies the two-segment condition, and so on.

Since we shall consider the case which the
equation (1) satisfies the two-segment condition,
we show that this condition is represented by a
simple inequality.

Fig. 1. Characteristic Polygon. Without loss of generality, we can assume

that the characteristic polygon snaps at a point
Py =(a1, B1) whose Y coordinate is situated between »/2 and 0 and whose X coordi-
nate is situated between ¢ and 0. The equations of the straight lines between P, and
P,, and between P,, and R are X+p,(Y—v/2)=0, py=r/(v—my,) and X—o+p(Y+1)
=0, 0:=(20—10)/(mm-,+2) respectively. Therefore the condition which the character-
istic polygon consists of two segments is

r+2 v v _ g
2 T3 o

r=1,2, ..

All the points P, except for P, and P, are situated over the characteristic polygon.
For the sake of simplicity, we consider the case ¢=1 and so 7,=1, and we assume
that the points P, except for P, and Py, do not exist. Then the two-segment con-
dition becomes simply v>2m,+2, or by changing notations it becomes

(2) a(zx, e)=x"+cxe, v>2p+2,

since we take only the principal part of the coefficient of (1).

1) For the general systems, see Iwano [2].
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1. 3. Division of the region D. For the sake of convenience, we divide the
region D into several subregions in each of which the given equation (1) is reduced
to a special form. In the followings M, and x; designate large and small constants
respectively, and A(e, f)=diag [1, *2*] with « and B real.

1° In the region Mle["=|x|=w0, p1=00/(v—m,), the differential equation (1)
is changed by Y=A4(0, 80)Z, po=v/2, to

0 0
0 1
[1 O] +(z=¢» 3)[6 _ _%_ p-2u=D)/2 :I } A

2° In the region x,|e|"=<|x|=M,le|, the transformations x=¢#, Y=A(1,0)U,
71=r0/2(v—my,), change (1) to

au 0 1
—2p=2)/20-p) L
(4) 7 [t”+ct" O]U

az
3 —(v—-p) v/2—p —
3 (x DY T =

Since the exponent of ¢ is positive, this equation is in a same form as the
original equation (1) and has several turning points which are roots of #+c#*=0.
If >0, =0 is a turning point of (4) and it corresponds to the original turning
point x=0. The other turning points, namely the roots except for =0 of the
equation #’'+c¢t*=0, do not explicitly correspond to the original turning point.?

3° In the region Mle|2=|x|=x1le|™, p2=(20—1)/(m,,+2), the transformations
like 2° x=¢"s, Y=A(ey, f1)V, a1=7o/2, fr=m,/2, change (1) to

av
ds

(S" (#+2) (v-ﬂ)/(v-mu—z)e) w=2pu=2)/20-1) g
(%)

0 1
= st4c _%(s-wz)(v-m/(v-zy—z)e)(v—zrz)/z(v—p) V.

4° At the last, in the region |z|=M,le|*?, we transform (1) by z=¢'7,
Y=A2, O W, r2=(0mry+70)/(mr,+2), then (1) becomes

ﬂ— 0 1 O 0 (v=2p—-2)/( +2)}
(6) dr _[[cr" 0]+[r” 0]5 W

Sometimes this differential equation is referred to the inner equation and its
solutions are called inner ones. Similarly, the reduced differential equation (3) is
sometimes called the outer equation and its solutions outer ones. These namings
we use in the following.

2) ‘These roots are not turning points of the given differential equation and they are
called secondary turning points in the Wasow [13].
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1.4. The simplest case. In the above case, as already mentioned, the two-
segment condition is v>2p+2, and the simplest may be the case p=0 and v=3.
Because the reduced equations (4) and (5) coincide. In the present paper we will
analyse this case. The characteristic polygon in this case snaps just on the X-axis,
and the function a(z,&)=x*—e by putting ¢=—1. The assumption ¢=—1 does not
lose generality but it is only convenient. Thus the above reduced equations are
written as:

1° In the region M|e|*?=|z| =,

0 0
—3 3/2 dZ _— 0 1 -3 "
(7) (@%e)a dx _{[1 0]+(x 2 {—1 ——g—xl’{| Z

2° In the region Mle|*?=|x|=M|e|?,

aUu 0 1
/6 —_— o
(8) ¢ dt [ts—l O]U'

and
3° In the region |x|=M,|¢|?,

(9) | I G R |12

As mentioned in 7.3.4°, the original turning point x=0 corresponds to the
point #=0 for the equation (8). However, the point =0 is clearly not a turning
point of (8) and then a solution of (8) may give us the value at the original turning
point x=0.

If we could obtain the solution of the equation (8) in the region of # for all ¢
such that 0=|t|<co (except for neighborhoods of roots of #—1=0), this solution
would play a role of the inner one. Hence, naturally the third equation, i.e., (9) is
unnecessary for our turning point problem.

1.5. The problem. Under the above situation, we set the problem.
The differential equation to be considered in the present paper is

av [ o 1
(10) s _[ 0] Y,

zP—e
or equivalently

2 4y

S —(&* =)y =0,

(109

in the (z, ¢)-region such as
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D: |z|=», 0<e=s.

The problem is to get the solution of (10) in the full neighbourhood of the
origin as ¢ tends to zero. In order to do it, we shall use the matching method.
1° In the region Me“*=<|z|=ux,, the differential equation (10) is reduced by

the transformation

1 0
11) Y= [O xa/z]Z
to
0 0
(12) (z%e)/? Zf = [g é:l +(z%) [__1 _ _?’_xl/z] A
2

or by changing a notation x % =3,

o 0
01
K 0]“{—1 —%x:,

2° For all ¢ such as |f|<oco except for neighbourhoods of the roots of #2—1=0,
we shall consider

az
19/ 3/2 -
(127 Az dx

Z.

dU 0 1
we Y
(13 G =Lot1 o]
where
(14 t=xe?, Y= [(1) 6(1)/2] U.

The former we call the outer differential equation and the later the inner one.
Since two regions overlap for all ¢ sufficiently small, the outer and the inner so-
lutions can be matched if they are obtained.

Thus we shall obtain the formal outer solutions in §2 and the formal inner so-
lutions in § 3. In § 4 we shall consider the topological properties of the inner region,
because the formal solutions obtained in § 3 are asymptotic expansions of the actual
solutions in the subsets of the inner region called canonical regions.

In §§5 and 6, the existence of actual outer and inner solutions will be showed.
Since the canonical regions are subsets of the inner region and the existence of
actual solutions is proved in each canonical region, we must relate all the inner
solutions if we wish to know the properties of the solutions in the full neighbour-
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hood of the origin. Therefore in §7 we shall get the relations between inner
solutions, i.e., the connection matrices between inner solutions in one canonical
region and another canonical region. In §8 the inner and the outer solutions will
be matched. The last section (§9) summarizes the results.

§2. Formal outer solutions.

In this section we consider the differential equation 7.5.(12) defined outside
the turning point x=0, and we shall obtain formal outer solutions, whose asymp-
toticity will be given in §5.

2. 1. Simplification. First of all, we notice that the constant coefficient of
1.5.(12) possesses two different eigenvalues 1 and —1. Thus, if we transform
it by

(1) z=qv, e=[} ']

it is changed to

(2) Ll ={[3 G Z]l v

where A=x"%, a=—1/2—3x"%/4 and b=1/2—3x'%/4.
Let us write (2) in

@) zxm% AV, Al )= Adz)+1Ax).

Furthermore let us transform (2) by
(3) V=PW, Pz, )= iP,(x)z’, Py=1I (the 2-by-2 unit matrix).
r=0

Then we have

(4) sz% —BW, Bz, )=P-*AP—ig"*P-'P' = ' B(a)I.

r=0
Equating the same powers of 2 of the second equality of (4), we get

AoPo_‘PoBo =O, AoPl_PlBo=xP6—A1P0 +POBI,

APt APy y— Y PiB, y=2°Phy  (r=2,3,-),
7=0
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or, by remembering Py=I,

(5)0 BOZAO’
( 5 )1 AOPI_P1A0=BI_A1)

-1
( 5 )r AoPr—PrAa =[$3/2P7/-—1“A1P'r—1 + Z PjBr—j] +Br (7'=2, 3; ).
J=1

We want to determine B, and P, such types as

B: 0 B [0 P (o ..
B,_[O Bi] r=0,1,2,~), and P,_-[Pi 0] r=1,2, ).

That is to say, we want to choose the transformation (3) so that the matrix of the

coefficient B of (4) is diagonal. In fact, we can show at once from (5); that
Bl=[g 2] by choosing Pl:[a(/)Z _(i)/ 2]. Other B,’s will be determined successive-

ly by (5),. Because, since the bracket of the right side of (5), contains By, By, -,
B, and P, Py, -, P, the P, and B, would be determined in desired forms if
we assume that B,, P, (=0,1,2, .-,v—1) were known already. Thus follow the
equalities

Bi=bP}_s, Bi=aP;-,

r—1
Pi= —;—{P;’_lxs’z—aP}-l +J§P§Bi-1 }’

and

=1
pie_ —;-{Pi’_lxs’z—bPi-l + 3, PBiy }
p2

Therefore we could get the differential equation (4) with B the diagonal coefficient
by the formal transformation (3).

2. 2. Formal solutions. Let
= . =[Biz) 0 ],_[Bl 0]
B=55wr=5[%7 polr=lo 5

and

=5 r@ir=[g 1]+ 5 ey el )

wt 0]

From (4) it follows, by putting W:[ 0w
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k
me%:BkW" (k=1,2).

Since the above differential equations are of the first order we obtain their solutions:

W1=x—3/4 eXp l:% % x5/2+x-—1/2] . [1_|_ <_ _8_90_ x—5/2+ 218 —7/2>s+ O(EZ)],

We=g-3/4 exp [%%xsxz_x—uz] . [1+ <_ _%_x—sw._ zis x-7/2>$+ O(e? )]

where O(¢?)’s represent functions of ¢ of order two with coefficients bounded for x

such that M3 =|z| = .
By combining two transformations (1) and (3), we obtain the formal solutions
of (2), Z=(@QP)W, that is to say,

|:le ZIZ:I [1_P2 _1+P1:| [Wl 0 ] [(I_PZ)WI _(I_PI)WZ}
- Zzl 222 - 1_|_P2 1+P1 O W2 - (1+P2)W1 (1+P1)W2 ’

where

1£Pi=14 3 P =14 3 o PLe =1 Fe(20-— 3258+ O(cY),
r=1 r=1
14 Pr=14 3 P =1F o202 +32-72)/8-+ O(eY),
=1

and O(e?)’s represent functions with the same property as already mentioned. Hence
we get the fundamental matrix of the differential equation 7.5.(12) and it consists

of

(6 )1 T p—3/4 exp| — %x5/2+x—1/2] [1+ <§18— x_7/2+-£]1;.76 +%x_5/2>€+0(62):|,

( 6 )2 le_..x-S/Al exp e _i_ 5/2 __ —1/2] I: 1+ ( 218 —-7/2____L]_i_x—3+%(.9)_x—5/2)€+0(€2):|’
1 1

12 39
21 _ —3/4 5/2 —1/2 —-7/2 —3 —5/2 2
(6) Z*=z"%*exp [—e T +z ] [1+ (—28 e it >s+0(e )],

12 1 1 21
22 _ ,,—3/4 5/2 __ —-1/2 -7/2 —3 —~5/2 2
(6)y Z%®=zx exp[————e 5 ] [1+<— o5 T +—80:c )e—l—O(s )],

where O(¢?)’s have the obvious meaning. Therefore, the given equation 1.5.(10)
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has the solution Y=diag (1, x*?]Z, ie.,
(7) yiu=71 yi=712 Yr=g272 V2= 32722
Summing up the above statements we have proved the following

THEOREM A. [Formal outer solution]. The differential equation 1.5.(12)
possesses the formal solution (6), then (7) is the formal outer solutions of the
differential equation 1.5.(10):

8[-101 .
Y(z, e)=:c4[° LY (x, e)~exp{<l 3:cs’z—i-:c‘l’z)[l 0 ]},
e b 0 -1

where

~ §i_
Pz, )= [mi *ﬁ 11] +0()
and O(e) represents a formal power series of ¢ beginning with the degree ome with
coefficients bounded for x containing in the whole outer region Me?=|x|=x,.

§3. Formal inner solutions.

In this section, we shall consider the differential equation 7.5.(13) and obtain
their formal solutions, which are formal inner solutions of 7.5.(10). The technique
used here is very similar to one in the previous section.

3.1. Simplification. Let us write 1.5.(13) as

dUu 0 1
(1) o =cu. co=| 0 o)

where p=¢¢, p(H)=1*—1 and U is a 2-by-2 matrix or a 2-dim. vector.

If we consider (1) outside neighbourhoods of the roots of p(f)=0 (as mentioned
in 1.5.2°), the matrix C has always two different eigenvalues.

Transforming (1) by

1 —1
(2) U=RX,  RO=| )
we have
(3) 0B =DX, DU =DiO+0Di),

where
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S P I Vo (]

Further, let S be a matrix of formal power series of p and transform (3) by
(4) X=SH, S p)='go SAe"

Then (3) becomes

(5) pi’g =EH, E{ p)=S"DS—pS-'5'= 3 E(t)0".
r=0

We want to determine matrices S and £ so that they have forms

1
S=[12 S].] So'l-Z[O So]pr, So=1

r=1

and

ey - EY mol

Such choices are possible as performed in the previous section. Indeed, we get
the following recurrence formulae:

DySo—SoEo =0, (DOSI +D1So) - (SoE1 +S1Eo) =S$,
(Dosr+D1Sr—l) - Z SjEr—j=S:'—1 (1’=2, 3: " ')‘
7=0

From the above formulae we see

_ _ L1 0 _ 1, L1 0
B=Do E= _“Ml[o 1] Ea= 32“’”[0 —1]’
and
—_ _i X O 1 —1/2 ! =372 I[O 1J
SO_I’ Sl—' Spp 3/2[_1 O:I’ 16p (pp ) 0 )
in general
Ei=— —p’p“sr-l» Eﬁ: — %p’p‘IS}_l;

r—1
St= g ]Stk 12 Sk BSVEL
2 4 =1
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and
1 _ 1 r—1
S2=— ?p v21S:  + —Z—p’p‘lSi_l + ZSiE;_J}, r=1,2,...
Ji=1
As shown easily by short calculation, the following relations are valid:
S=(-1)Sz, Bi=(-1)""E3} (r=1,2, ).
3. 2. Formal solutions. Since the coefficient of the differential equation (5) is

diagonal, we get at once its solutions and hence the solutions of (1) by considering
transformations (2) and (4). The matrix

(A-SHH*  —(1-SHH
U=(RS)H=[ }

pl/2(1 +SZ)H1 pl/Z(l +SI)H2

is a solution of the differential equation (1) and its elements are given by

(6)  U=(1—SHH! = pity exp[ Spa)l'zdt] [+ (B +0(e")],

(6) U= =p) exp| ==\ )t |- 114000100
2 /2 2\ 71 1/4 1 ( 172, 2
(6)s Un=p2(1+ SHH = p(2) exp[p p(t) dt] [1=¢@)p+00"],

(6) 22 =1>1/2(1 +SYHH? =p(t)1’4 exp S p(t)1’2dt:| 1 +¢(t)p+0(p2)],

'bll—l

where

oty =5 0000+ 5 (e
‘1 7 —3/2__5_ 1(£\2 ~5/2
({5 - rorso-la

o= |3 900y — o0 at

and O(p?)’s are to be understood to posses the similar nature to the O(?)’s in the
previous section though the regions of definition are different.
Thus we have proved the following

TueoreMm B. [Formal inner solution]. The differential equation (1) possesses
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the formal solutions (6), which are related to the formal inner solutions of the
differential equation 1.5.(10) by 1.5.(14):

R T T A e

t=zxe V8, p=e"",

where

7e0=[; 7']+ow

and O(p) represents a formal power series of o beginning with the degree one with
coefficients bounded for t such that |t|<oo except for the neighbourhoods of zeros

of p(@).

§4. Canonical regions.

In order to state the asymptotic nature of the inner solutions, we have to
choose appropriate integration paths of integral equations presentted in the section
six. For this purpose, we shall consider some properties of the #-plane in slight
detail. Also, we choose appropriate sectors for outer solutions in accordance with
canonical regions for inner solutions.

4. 1. Turning points and Stokes curves. We consider the following second
order linear ordinary differential equation containing a positive small parameter p,

(1) o™y —p)y=0,

where p(f) is a polynomial and especially p(t)=¢—1.

The point #, is called a (secondary) turning point of (1) if it is a zero of p(z),
ie., p(ts)=0. The order of the turning point #, is the multiplicity of the zero of
p@) at t=t,.

A Stokes curve of (1) is a curve proceeding from a turning point ¢=#, along
which

t
Reg P2t =0.
to

By a short calculation, we can show that there proceed m+2 Stokes curves from
a turning point of order m, and neighbouring curves meet at an angle 2z/(m-2).
Let

£t f)= S pOear,
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Fig. 2. Stokes curves for p(t)=t3—1 are represented by solid curves.

For the case p(¥)=#*—1, the Stokes curves are roughly sketched in Fig. 2. Since
each turning point is of order one, there proceed three Stokes curves and neighbour-
ing curves make an angle 2z/3.

In the figure, small numbers near the turning points and Stokes curves repre-
sent respectively angles of tangents of the Stokes curves at the turning points and
angles of asymptotes as ¢ tends to infinity. Dotted lines are curves proceeding
from turning points along which Im &%, #)=0.

4. 2. Canonical regions. Let D; be an unbounded open set whose boundaries
are Stokes curves /'s. A set sum of some D;’s and /;’s would be transformed
into a set in the &-plane with the orthogonal coordinate system (Reé, Im &) by the
transformation &=£&(#,,#) for a fixed turning point #. If a sum of neighbouring
Di’s and /;’s is mapped all over the &-plane simply or not doubly even in a part,
then the sum is called the canonical region of (1). For instance, consider the case
p)=t*—1 and see Fig. 2. Let

Do=DsUloss UD;Ulss UDsUlss U Ds.
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Then 9, is a canonical region of (1) for p(f)=#—1. Here we must notice the set
D, is mapped onto the &-plane in two different ways corresponding to the choice
of the branches of p(#)*'2. Indeed, if the branch is chosen so that Im &(1,#)=0 on
a5, J2s and /Jse, then the point set @), is transformed as shown in Fig. 3. On the
other hand, if the branch is chosen such that Im &(1,#£)=<0 on all of them, &9,)
is illustrated as in Fig. 4, where &(D¢)= U ea, £(1, 2).

I I I )| I Bl |k
Dy Df D¥ D¥
’ ’ : ’ D¥ Df Dy D¥
w* 1% o**
Pl 1* oF Reé e \J‘/ \ T\ J EP_T Reé
7| 5
o (143 s\ oA s Ik 3 : i
Fig. 3. Image of g,. Fig. 4. Image of g),.®

For the case p(#)=¢*—1, we want to choose the canonical regions of the type
not in Fig. 3, but in Fig. 4, namely, of the type such that all the cuts are situated
in the upper half plane. Moreover we choose several canonical regions so that
neighbouring canonical regions overlap each other and all of them cover doubly
all the &-plane. This reason will be clarified in the section seven.

All of our canonical regions &, are as follows:

Do=DsUlzsUD:UlosUD3sUlssUDs, D1=D;Uls;UD3sN 13U Dy,
Ds=DyUl1,UD:UlzsU Dy, Ds=DsUls;U Dy, Di=D;UlisU Ds.

These images in the &-plane are similar to ¢,. Other choices of canonical regions
are possible, but the above choice appears to be most convenient.

Many properties about the canonical regions of the entire functions are analyzed
in Evgrafov-Fedoryuk [1]. In this paragraph, we have mentioned only a few proper-
ties necessary for the later studies.

4. 3. Outer regions. As shown later, the formal outer solutions obtained in
the second section are asymptotic power series expansions of the actual solutions
in sectors, i.e., angular regions which we call the owter regions. Choose the outer
regions ®; according to the canonical regions 9; as follows:

D, ={2: 3u/5+0=<arg z=Tx[5—0, S M=|z|=<2z, z¢CS0},

Di={x: —2z/5+0=arg x=r/5—0, " M=|z|=x,, ¢S},

3) D¥ designates the image of D; by é=£(1,¢), i.e., D¥=¢(D;), and similarly [f=£w).
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Dpy={x: —n/5+0=arg x=2z/5—0, ¢*M=|z|=w, v¢S,},
Dy={x: —r+0=arg x=—x/5—0, *M=|z|=x0, x¢S;},

Dy={x: n/5+0=arg x=n—0, ¢*M=|z|=x,, v¢ES4}.

Here ¢ is a fixed small positive constant and &, is small parts of D, near the circle
|z|=e*M called shadow zones, which will be pointed out precisely in the next
section.

§5. Existence of outer solutions.

There exist, in each outer region, actual solutions of the outer differential
equation 7.5.(12) or (12’) expansible asymptotically in the formal outer solutions
obtained in the second section. Since the proof is, however, very similar to the
previous paper by Nishimoto [6], we shall state only the result in the theorems and
the integration paths which play an important role in their proof.

5. 1. Existence theorems.

TuroreMm C. There exists a solution z(x,2) of the outer differential equation
which possesses the following asymptolic nature. For 0<e=¢}=e,,

2(x, 2)=exp[gz (— % +b>x'3/ 2dav]-[1+0(,2)] as A—0 wuniformly for €D,

% 2(x, )= —(Az*?) "l exp [Sz (— % +b> z=3 2dx] [[L+0@Q)] as i—0 uniformly for xeD,

where b=1/2—(3/4)x*?, 2=x"% and D is any one of the outer regions.

THuEOREM C’. There exists a solution z(x,2) of the outer differential equation
which possesses the following asymptotic nature. For 0<e=e}=e,

z(x, ) =exp [Sx (% +a>x‘3’ 2dx]-[l +0)] as A—0 uniformly for e,

%z(x, A= (Az*?) 1 exp [Sz (-}— +a) Fd 2dx] [1+0Q)1 as 2—0 uniformly for x€%D,

where a=—1/2—(3/4)x'?, A=x"% and D is any one of the outer regions.

In order to prove the above theorems we must choose the integration paths
along which both of the following inequalities are valid in every outer region:

Re Szx“s’zl'ldx§0 for all e,

T
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and

Re Sxac'ml‘ldxéo for all €.

T

We shall show in the next paragraph these choices are possible.

5.2. Paths of integration. We have defined five outer regions 9, in 4. 3.
The outer region ® in Theorems C and C’, can be taken any one of ®,’s, in which
paths of integration % satisfying desired conditions can be chosen.

Notice ®, and @, is in position of complex conjugate of ®, and D, respectively.

Let

t=1"2,
and let for any set A
A={# ccA).
Then we see that
Imre

Rer

N> o m e =

=

+3>
&
3}) [

Flg 5. 512@0‘:@3:54
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Dy=5,=8,»
which is a sector defined by
S1={#: —n/2+50/2=<arg ¢=3x/2—50/2, & M =|¢| =&, £¢ 51},
and §)1=§)2,
which is a sector defined by
Se={f: n/2—50/2=arg t=z+50/2, 8"*M=|¢| =&, £¢ S},

where S, and S, are called shadow zones defined later.

The path i‘s; starts from the point &, runs to the real axis along the segment
parallel to the imaginary axis, runs, if necessary, along a part of the circle |2|=|%|
with a center at the origin as far as the real axis and then runs onto the circle
|#|=%, along the real axis in the positive derection.

The path $; is very similar to %; but slightly different. That is, after it
runs, if necessary, on a part of the circle |¢|=|#| it runs either on the negative

Imz

Rer

Fig. 6. &$,=9,=9,.

4) The bar besignates the complex conjugate.
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real axis to the border of S, for the case S, or on the segment with arg ¢=r+456/2
as far as the border of S, for the case S, The figures explain explicitly these
aspects. However we notice that small parts of S; and S, near the circle
|#|=82/1 must be deleted, because if the starting point # of the paths belongs to
one of them the required condition

Re (#—%)=<0 or Re(®@—%)=0

is impossible. These deleted parts S, and S, are called shadow zones which shrink

to the origin as ¢ tends to zero, therefore deleting shadow zones does not affect

our theory. The shadow zones &,’s in the x-plane are inverse images of S; or S».
The paths Pi are defined the inverse images of 3.

§ 6. Existence of inner solutions.

This section is devoted to showing existence of actual inner solutions asymp-
totically expansible in the formal power series solutions.

6. 1. Existence theorem. We shall show the following:
THEOREM D. The differential equation 1.5.(13) possesses solutions such that

(1) ult, 0) =) exp[— %S’p(twdt] [1+0(),

(1) Gt =—p0 exo| - =\ peyat ] 1i+oo,

uniformly for te 9° as p=¢® tends to zero. Here 9’ is a region obtained from a
canonical region by deleting 6-neighbourhoods of the boundary, 6 is an arbitrarily
fixed positive and small constant.

Proof. The equation 1.5.(13) is changed to
o _ [(p*[2 0 « —ﬁ] }
2) =1%o ol Zilefe
by the transformations

U=p~* exp[— % Stp(t)“zdt}RS-(D,

where

e P S PR R 2

LN AN N b ANV SN i
a= 32 ps/z’ :8" 8 (1')3’2> and j)(t)——l‘ 1.
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2}

Then, (2) is equivalent to the integral equations

Let

2 ¢ 1/2 ”
oult) = pgﬂ (@)~ BOpa0)} exp [? SJ’“) dt]dc,,
(3)

soz<t>=—1+SQ (BOPO) — @O}

If the integration path <, is chosen appropriately, the above integral equations
could be solved. Along the path ., we want to have the property

12
Re S p@)V2dt=0.
¢

Indeed, this choice is possible if we remember how to determine the canonical
regions. One way of possible choices is shown in Figures 2 and 3.

If the integration path ¢, with the desired property can be chosen, we can
obtain solutions of (3) as follows.

Let

(3) v=0+50, o= °]

where 4 represents the integral operator defined by (3). Then (3’) is the same as
(3). Furthermore, let

(n)
0®=0, OW=g"0, and q)<n>=[2m].

This means that

%(0) =
{¢§°’ =-1
* 13
ng"H) =‘05 (a¢§n) —,Bgoé"’) exp [__i_ S pl/Z dt}dC
P
: n=0,1,2, ).
Pt = pg (Bol™ —api™)dl
Pt
We get an estimate
(4) ISD,(i")|§|2¢Pln (n—':o, 1; 2"";j=]-’ 2):

where
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¢=¢(t>=SQ (lal +1BDIdL].

Notice ¢ is bounded for # in the canonical region except for the neighbourhoods of
the secondary turning points, and so put

¢°=¢Se%g, lgp@)].

Now, we shall prove (4). Clearly it is true for #=0: |p®| =1 (=1, 2). Remembering
how to choose the path, we see, by induction, that

1=l lapto — Btz
+

épggp (Il +18D(pi™ | +gi™ DIdE| = 20| .

Similar calculation is valid for ¢f**b.
Also, by taking p so small that the series X 7o |2¢0p|" converges, we obtain
the following estimates:

lo;l=2 (7=1,2), [o1| =4¢op, loa+ 1| =4¢op.

By noticing the above preparatory estimates and the relation

t P
U=[U1]=p‘1“ exp[—ig pl/Zdt]-Rs-q), vi=Llu, and w=u,
U. P o

we can show (1) and (1’), namely, we get

u—pVtexp [_ %Stpw dt]ié |p—1/4 exp[— % Stplxz dt:ll.4p(|ﬁl +2¢),

1 1 1 1 (¢
u’—l—?pl” exp[__;g pl/zdt:l’é‘?plu exp [—To—g pl/zdt:ll.4p(|‘3]+2¢o).

These two inequalities are equivalent to the relations (1) and (1’) respectively.
Therefore we have proved the theorem. Q.E.D.

Since we can choose the path ¢_ along which the inequality
¢
Re S“p(t)vwzo

is valid in the canonical region, we obtain by the same discussion the following

THEOREM D'. There exist solutions of the differential equation 1.5.(13) pos-
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sessing the following asymptotic nature

0(t, )=ty exp [% [ owreat |-t+oe,

d 1 1/4 l ! 172 .
g 0=ptrexp| - porear |- nrog,

uniformly in t€ 9° as p tends to zero.

6.2. Another asymptotic nature. Theorems D and D’ state the asymptotic
properties of the solutions with respect to the parameter, but if we notice the last
estimates in the preceeding paragraph then we can see that the solutions possess
asymptotic properties with respect to the independent variable. That is to say:

If t—oo so that Re [t p(t)'2dt— + oo,

u(t, p)~p(t)~""* exp [— %Stp(f)‘/zdt],

d 1 1(¢
—u(t, p)~— — D4 ex [__S i3 l/zdt],
77 40 pﬁ() e @)

uniformly in p (0<p=po=e’®).
Similarly, if t—oco so that Re [*p(t)**dt— — oo,

oty p)~p(B)* exp [—;— { orear |
d

ot~y exp| - ( peyear],

uniformly in p 0<p=po=¢y’°).

Clearly, two solutions # and ¢ are independent and possess two asymptotic
natures in any one of canonical regions. Relation between independent solutions
in one canonical region and the other will be obtained in the next section.

§7. Connection between inner solutions.

By applying the theory of Evgrafov-Fedoryuk [1], we can get relations between
solutions in one canonical region and in the others. Although the proof is simple,
we shall state only the result.

7.1. Connection matrices (1). In the preceeding section, we have obtained
the fundamental solutions # and » of the inner equation such that
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u~cp~*exp [% E(t)],

v~cp~V* exp [— %E(i)],

as p tends to zero uniformly for e §° where &(t)=[ip"%dt, p()=#—1 and P’ is
given in Theorem D or D’. The complex constant ¢ is to be chosen such that
le|=1, limu; . arg [cp24]=0, where / is a Stokes curve proceeding from the
secondary turning point #=1. We call the fundamental matrix determined in this
way the elementary fundamental matrix defined by (I,1, @) according to Evgrafov-

Fedoryuk [1].
Uy U
[U ¥ U %’J

Let
be the elementary fundamental matrix defined by (%, 1, Dx), and let 2; be the
matrix of transition from the elementary fundamental matrix defined by (/,, 1, 9;)
to the elementary fundamental matrix defined by (, 1, 9x), that is,

U}lcl U]lcz_ U;I U.liz
[U%: vzl —[U;‘ V;Z] "

Uy | u, ] ®
=0% .
Vg | ?)J
Here /,, [, and /, denote Stokes curves /s, /13 and /;, respectively.
With the above preliminaries we can get the relation between three elementary

fundamental matrices around the secondary turning point #=1. These relations
are stated in the following:

or

TueoreMm E. [Connection matrices around ¢=1]. The connection matrices Qi's

have the forms
-1 -1
Qp=e" @o1 ) Qzg=e"° @12 )
Wiz 0 @20 0

i
— 1
01 = e"m[ @20 ’
Wo1 0

5) AT denotes the transposed matrix of A.
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where w;=1+0(p), as p—0, and w1200we=1.

The proof is given in the Evgrafov-Fedoryuk [1], and so omitted here. The
above theorem tells us all the relation between the solutions around the secondary
turning point #=1. Moreover it enables us to know relations between the solutions
around other secondary turning points, because the structures of regions near the
secondary turning points are very similar from our choice of canonical regions
(cf. 4.2.). Thus the connection matrices around the secondary turning points ¢=w
and f=w* possess all the same forms as the case in the theorem.

7.2. Conmnection matrices (2). In addition to the above theorem, if we got
connection matrices between elementary fundamental matrices around one secondary
turning point and the others, we could get all the relations between any pair of
two elementary fundamental matrices of inner solutions.

Indeed, after a simple calculation, we have connection matrices between two
elementary fundamental matrices definee by (/ss, 1, Do) and (s, @2, Do), (les, 1, Do)
and (lss, 0, 9o) respectively.

TureOREM F. The connection matrix from the elementary fundamental matrix
defined by (la3,1, Do) to the elementary fundamental matrix defined by (lss, 0, Do)

is given by
e—r;/ﬂ O
e—23nz/36 R
O erl/P

11=Sw P2t and lim argp 't — lim argp~Vi= — ﬁn_ <_ f_) = 2 .
1

t€lgz, t—1 t€lgp, t—w?2 4 9 36

where

The connection matrix from the elementary fundamenial matrix defined by (I, 0, D)
to the elementary fundamental matrix defined by (las, 1, Do) is given by

¢gr2le 0
exils s
0 ezl

1 . . 23 3
TZ:S Pt and lim argp™** — lim argp=——r— <._ 71_,7;) =

where

t€lgs, t—w t€lgz, t—1 3

§ 8. Matching matrix.

In this section, we will calculate the matching matrix which is a connecting
relation matrix between the inner solution and the outer one.
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8. 1. Matching matrix (1). We shall match the inner solution defined by
(lo, 1, Do) and the outer one in the sector: 3z/5<arg x<7z/5 or 3x/5<arg t<7x/5,
i.e., the sector of the outer region ®, and the corresponding canonical region 9.
In this sector, the fundamental matrix of the outer solutions possesses the following

asymptotic expansion

g3/t 0 211 —Z2i12 1 2 1 0
(1) Gy Fo-Eo= : exp <__x5/2 +x_1/2> ,
0 s 221 2o €0 0 —1

x

where z;;,=1+0(¢) as ¢ tends to zero for x belonging to ®©, and a branch of z**
is arbitrarily chosen. The fundamental matrix of inner solutions defined by

(o, 1, 9y) possesses the asymptotic expansion

(2) Gi-Fi-Ezz[Cp_m ‘ HZ“ _“12}.exp{<%gipmdt>[; _(1)]}

0 CP3P1/4 21 Uz

where u;:=1+0(p) as p tends to zero for ¢ belonging to 9, and ¢ is chosen such
that |c|=1 and arg (cp~*"*)=0 as ¢ tends 1 along the Stokes curve /,, i.e., c=e**"*.
Then the matching matrix M, between the above two solutions is related by

the equation

(3) Go'Fo'Eo‘ED’h:GiFiEz,
or
(3 EMWE T =F;'G5 G E,.

In view of (1), (2) and (3) or (3’), we can calculate M. Indeed, we get:

TureoreM G. [Matching matrix). The maiching matrix W defined by (3) is

of a form
et 0
Ny ~eBriligl/4 ,
0 e«

as ¢ tends to zero, and ¢, is a constant given in the proof.

Proof. First, we notice that the two variables x and # are connected by the
relations z={p* and p=¢"® and that x=yp belongs to the outer region ®, for p
small and #=xp~* belongs to the inner region or to the canonical region 9, for p
small, where 7 is an additional complex parameter whose magnitude may be taken
constant, say, unit. Since, after a simple computation,

g= l£x5/2_|_ x—l/z —_ %W5/2p47/2+7]-—1/2‘0*1/2,

&
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1 t
_‘o_S pl/Zdt=g+O(7]—7/2p5/2)+Cl,
1

where the O-symbol denotes a fractional power series of p and 5! beginning with
order 5~"2p%%, we get

t
exp [i gF % S P2 dt] =eT 14072 %)}
1
and
1 t
exp [i gF ; S p”zdt] =e*oe*20{1 +O(5 "% ?)}.
1

Thus we get, denoting the (j, k)-element of M; by mjz,

e~y eclezgmlz

10
EME 1= Ii ] K and K= [O 1] +0(77_7/205/2),

e‘cle‘z”mﬂ ey,

where the O-symbol denotes a matrix whose components consist of fractional
power series of p and 5! beginning with an order 7 "%°? and we remark that
O@~"20*%)=0(p*’?) for » whose magnitude is constant.

Then the right side of (3’) is

Zu  —2p |t 0 P_IM 0 Uy — Uiz
F3'G7'G.F,=c :
221 222 0 z=3 0 ,03171/4 Usz1 U2

in which c='exp (37i/4) and the first matrix F, and the last one F, are in the form
1 -1
[1 J +0(p)
and z*4p~+* and p*x=*1pr* is p**{1+0O(y~%0%)}, hence we have
10
F;‘G;‘G¢F1=Cp3’2[0 IJ +0(p*?)

by inserting z=yxp and t=7np~".
Remarking that K-! exists for p small and it is of the form I+0(¢*?), we get

1 0} 0
4 :»3/2 + »/2.
(4) } cp [O 1 0

ety efe®n,
e~te™ N1, il

From the above equality (4), we can determine my’s. Indeed, since e i
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=¢p*2+0(0%?), eMze=cp*?+0(p*?), e~“mm;; and e‘um,, are clearly asymptotically
equal to ce'* as p tends to zero for any fixed 7. Hence mu;~ce®e* and tmy~ce 1!
as ¢ tends to zero. As for my, and m,, we can determine them as follows. Since
the matching matrix is not dependent on the independent variable x or #, we can
choose as x or ¢ arbitrary values in the relations

(5) ¥y, =0(p"?),
and
( 6 ) e~y =O<p5/2).

In the equation (5), we choose # on the path ., namely, ¢=|¢f|e®® for |{| large or
p=e%"® for p small. Then, Re [¢*] becomes large for p small, but the right side of
(5) becomes small for p small. Hence the m;, must be asymptotically zero as p
tends to zero. On the other hand, in the equation (6), we choose # on the path -,
namely, ¢=|t|e*"® for |¢| large or p=e®® for p small. Then, Re [¢2] becomes
large for p small but the right side of (6) becomes small for p small. This induces
that the m,, also must be asymptotically zero as p tends to zero. Therefore, we
have completed the theorem. Q.E.D.

8. 2. Matching matrix (2). In the preceding paragraph, we obtained the
matching matrix of the outer solution in ®©, and the inner solution defined by
(lo, 1, D). The matching matrix of the outer solution in ©, and the inner solution
defined by (s, 0 Do) or (Ls, 0, Do) are calculated by the same method in Theorem
G.

Let M, (or M,) be the matching matrix of the fundamental matrix of outer
solutions in the sector ®, and the fundamental matrix of inner solutions defined
by (s, 0%, Do) (or (L, , Do)). Then, noticing that

1

1 1 e ! 1
__S pl/zdtz_s pl/zdt_l__S pl/Zdt=g+O(p5/2)+cl__T1’
0 Jo2 0 J1 0 Jo2 14

and
1 1 1 1
—S Pt == S prdt+ = S PAt=g+0(0" ) 61+ — 13,
0 Jo [ ) 0 Jo 14

where 7; and 7, are constants defined by in Theorem F, and replacing c¢; in the
proof of Theorem G by ¢;—(1/p)r: or ¢i+(1/p)z., We get the asymptotic expansions
of M,. and M,.

Tueorem H. The matching matrices WM,. and M, are given by

e% 0 e 0
M2 ~gFilog1/4 ,
0 efL 0 ee
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er 0 [e?r 0
mm~e23nl/3651/4 ,
0 el 0 e e

as ¢ tends to zero. Here, ¢i, ©, (7=1,2) are constants given in Theorem G and
Theorem F respectively.

8. 3. Matching matrix (3). In the preceding paragraphs, we obtained the
matching matrices in the sector according to ®, or 9,. Since the outer and inner
solutions, however, possess the same asymptotic expansions in the other sectors too,
and there exist paths along which the real part of ¢ tends to +oo as p—0, the
matching matrices in the other sectors must be of the same asymptotic form.
Thus we have completed the relation between the outer solution and the inner one
in each sector according to every canonical region.

§9. Example.

9.1. Summary. We shall summarize the results of the present paper. We
have considered the second order linear ordinary differential equation containing a
small positive parameter (10) in §1. The equation contains a turning point at
the origin and satisfies the (simplest) two segment condition. We have analyzed it
to get solutions in two different regions which are called the outer and the inner
ones and overlap each other. Therefore, we can calculate the matching matrix
between two solutions. In fact, one of the matching matrices is given in Theorem
G in §8. In the outer region, the formal outer solution was easily obtained in §2
because the outer region does not contain the turning point, and its asymptotic
nature was shown in §5.

The inner solution was obtained in the whole #-plane containing the turning
point but except for the neighbourhoods of the secondary turning points (§3) and
its asymptotic nature was shown in §6. However, the asymptoticity is valid only
in the sector with a central angle 4z/5 which is not maximal and the maximal
angle is 6z/5 (cf. Nakano [5].) The region in which the asymptoticity of the inner
solutions are valid is called the canonical region by Evgrafov-Fedoryuk [1] (§ 4).
The canonical region contains the routes or paths along which the exponential
parts of the two independent inner solutions grow as ¢ tends to infinity. This
growth is essential for the proof of the asymptoticity of the solutions (§6) and for
the calculation of the matching matrix (§8).

Relations between inner solutions are given in §7. These relations are presen-
ted in the form of matrices in Theorems E and F.

Thus, if we want to know the relation between two outer solutions in one
outer region and in the other, we have only to calculate the matching matrix from
the first outer solution to the inner one in the first sector, calculate the connection
matrix from the inner solution to an inner solution and calculate, if necessary,
connection matrices from this inner solution to other inner solutions, the last one
of which must belong to the second sector, in which we have only to calculate a
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matching matrix of the last inner solution and the second outer solution (cf. 9. 2).
The value at the origin, i.e.,, at the turning point, can be obtained from the-
inner solution.
Hence, we can get all values of the solution of the given equation in the
region of definition except for the neighbourhoods of the secondary turning points.

9.2. Example. We shall illustrate the relation between two outer solutions
by a simple example.

Let Y; be an outer solution in the sector ©,. Then we can know values
of the solution of the given differential equation in the sector ®; from Y.

Let Y7 be an inner solution in the canonical region ¢, which corresponds to
the outer region ®,. By Theorem G, Y; and Y; are related by the equality

(1) Y;=YMm,

where M- is a matching matrix which matches Y; and Y, and its asymptoticity
property is given by

(2) IN—~oeBriliglr er 0 ,
0 e

as ¢ tends to zero.

The solution Y; may be considered as the elementary fundamental solution
defined by (l, 1, 9,). Then, Y; can be continued by the connection matrix Q¢
onto the inner region &,. If Y is the inner solution, continued from Y, in the
canonical region ¢,, Y; and Y] are related by the equality

(3) Yi=Yi:Q0,

—i 1
(4) 001"’6”“6[ },
1 0

as ¢ tends to zero.

The inner solution Y} enables us to know values in the outer region ®..
Indeed, since Y; is the inner solution defined by (/;,1, 9,) and a constant corre-
sponding to ¢ in (2) (see the proof of Theorem G) is >3, if M* is a matching
matrix in the sector corresponding to 9, or ®, i.e.,

( 5 ) M+ ~e2ril3gl/a e 0
0 e

as ¢ tends to zero, the matrix Y} defined by
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(6) Yi=Yi(mhH
becomes an outer solution in ®,. Thus, Y7 and Y¢ are connected by the relation

Yi=YoM QoM

. 2c
M_901(9ﬁ+)‘1~e”i/{ Lo l]’
e~ ()

as ¢ tends to zero. The above equality is followed from (1), (3) and (6), and the
last asymptotic relation is true from (2), (4) and (5).

Since ®, contains the negative real axis and the outer solution Y; gives us
values on it and since ®; contains the positive real axis, we can know values on
the positive real axis from the values on the negative real axis. The branch of
2%* is to be chosen same both on the positive and negative real axis.
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