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INFINITE TENSOR PRODUCTS OF VON NEUMANN
ALGEBRAS, 1

By Yosuiomr Nakacami

§1. Introduction.

For the purpose of studying lattice systems of quantum statistical mechanics
and representations of CCR and CAR, infinite tensor products of von Neumann
algebras due to von Neumann [12] have been frequently used as shown in [1], [4],
[6] and others. The problems of types of infinite tensor products of von Neumann
algebras have been investigated by many authors [2], [3], [7], [9], [11]. Infinite
tensor products of normal positive linear functionals have been studied by Takeda
[10] and symmetric states of infinite tensor products have been recently studied
by Stgrmer [8]. Most of these results have been treated in the cases of incom-
plete infinite tensor products and of factors.

When we study infinite tensor products of von Neumann algebras, we set a
problem what kind of relations has a finite normal trace given in the infinite
tensor product of von Neumann algebras, with a finite measure on an infinite
product space of some topological spaces corresponding to given von Neumann
algebras? We encounter this problem in the course of studying infinite dimen-
sional measures such as weak distributions, cylindrical measures and integrations
of functionals. In the present paper we prepare some results on infinite tensor
products of operators and those of normal positive linear functionals, which are
defined in complete infinite tensor products of Hilbert spaces, in order to give
some informations on that problem. By utilizing the results of this paper a par-
tial answer will be given in the subsequent paper*> of the same title. In Theorem
3.1 some conditions by which infinite tensor products of operators can be defined
will be discussed, and in Theorem 3.2 the conditions that infinite tensor products
of operators belong to a given infinite tensor product of von Neumann algebras or
to its commutor will be obtained. In Theorem 4.1 a sufficient condition that
infinite tensor products of normal positive linear functionals can be defined will
be given by introducing a concept of characteristic numbers. The similar results
together with the necessary condition for finite normal traces will be given in
Theorem 4.2 with the aid of coupling operators. Beside this theorem will in-
dicate a finite part of infinite tensor product of von Neumann algebras as shown

in Corollary 4. 2.
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§2. Preparatory notations and definitions.

In what follows we will have to assume that the reader is familiar with the
elementary properties of von Neumann algebras which are given in [5] and those
of infinite tensor products of Hilbert spaces which are given by von Neumann
[12]. In this section we prepare some notations and definitions used through this
paper. Some elementary facts have also been explained in the additional contexts.

von Neumann algebra: Let § be a Hilbert space, x a vector in § and % a
von Neumann algebra on . Cy and ¥(9) stand for von Neumann algebras of all
scalar operators and all operators on § respectively. Denote by E, x) the projec-
tion onto the subspace [, x] generated by {Ax: AeWN}. Let 0 and 1 denote the
zero and the identity operators on § respectively and A* the non-negative part of
a self-adjoint operator A. By v (resp. A*, AP) we mean the set of all unitary (resp.
non-negative, projection) operators in . We say z is cyclic (resp. separating) for
W if B x)=1 (resp. EA', z)=1). w, is a positive linear functional defined by
0 (A)=(Az, ) for Aed. Let ¢, be a normal positive linear functional on N, for
e/, where J is a finite set, and denote the tensor product of ¢, by ®s¢. Then
®ye. is a normal positive linear functional.

Infinite tensor product of Hibert spaces: Let 7 be an index set. This set is
used universally in this paper and is considered to be infinite if the contrary is
not explicitly stated. Let’s denote jeIl if J is a finite subset of 7. We often
omit the index set I from some symbols such as the sum J}3, the product II, the
union U, the intersection N and the tensor product . Let {9.: ¢eI} be a family
of non trivial Hilbert spaces, e, =z, v, 2, -+ elements of , and employ the same
symbol || || for the norms on all §, for cel. If 0<Ujz||<+oco for z.€9,
then the set {x: cel} is called a Cy-sequence and written by (x,). A pair of Cy-
sequences (z,) and (y.) is equivalent if }|(x.,y.)—1|<-+oco, which we denote by
(x)~(y,). It is already known that this relation satisfies the equivalence relation.
Let Iy, and I” denote respectively the set of all Cy-sequences and the set of all
equivalence classes ¢ of Co-sequences in [y classified by ~.

Let ®9. denote the complete infinite tensor product of §, for (el and ®*9.
the incomplete one with respect to cel’. The vector ®x, which corresponds to
(z.) is called a tensor product vector. If Iljjz||=0, we define ®x,=0. Zero vector
which we denote by 0 is assumed to be a tensor product vector. Let (9. be the
set of all finite linear combinations of tensor product vectors in ®9.. Then O9.
is a pre-Hilbert space being dense in ®9..

Infinite tensor product of von Neumann algebras: Let %, be a von Neumann
algebra on 9, for each cel. Denote the zero operator and the identity operator on
9, by 0, and 1,, sometimes without suffix. Moreover 1(J) is the identity on ®;9.
for JcI. When %, =Cy, we write C. instead of it. If an operator A.e%. is given,
then there exists a unique operator A.e(9) with H=®$, such that for all (z,)el
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A(@z)=4 ;(x;®(g<2 2))=A2Q(Q .-

We shall often denote such an operator A, by A4 «®(®.=:1) and denote the set of
all A, for A%, by %, or AR(®.+.C.). Then %, is a von Neumann algebra.
Indeed, since the correspondence @,: A,—A, is an isomorphism of %, to %, for the
structure of x-algebra and it carries the operator 0, and 1, into 0 and 1 (zero and
identity operator on ®9,), the correspondence @, is an isomorphism of von Neumann
algebra %, into L) such that 0,1,)=1. Thus X.=0.) is a von Neumann
algebra [5; p 57].

PEFINITION 1.1. Denote by @, the von Neumann algebra on ®$, generated
by A. satisfying A,e¥, for all (el

Let O be the union of ILYA, for all Jel. Then O, is a weakly dense
sub-x-algebra of ®U..

§ 3. Infinite tensor products of operators.

LemMmA 3.1. Let U, be a partially isometric operator on 9. for each ccl.
Then there exists umiquely a partially isometric operator U on Q9. such that
U®z)=QU.x. for every (z)el.

Proof. Let ®, and R, be the initial and final spaces of U, respectively. The
tensor products ®=RD, and R=QR, are canonically identified with the subspace
of ®9.. Then, (I) for every (x)el’, with z.€D, an element Uz, of R is de-
fined; A1) (®U.x,, QUy)=I(z,y.) for every (x) and (y)el, with z, and y.€D,;
(III) all the finite linear combinations of ®U,x, forms a dense linear subset of R.
It follows from Theorem IV in [12; p 33] that there exists uniquely an isomor-
phism V of ® onto R such that V(®z)=QU.xz.. Define an operator U on Q9.
by U=V on ® and U=0 on ®L. Then U is a desired partially isometric operator
on ®9, satisfying UQzx.)=QR Uz, for (z.)el,, because it is obvious that if ®z,ecDL
then QU.x,=

In the following we shall denote by @ U, the partially isometric operator U
obtained in the above.

LemMA 3.2. Let T, be a bounded operator on 9, for each t€l. Assume that

)| T} < +co.
(i) If (x)~() and (T.x) and (Ty)els, then (T.x)~(Ty.), and
(i) if (x) and (T.x)els, and T,=U,|T.| the polar decomposition, then (T.x.)

~(U.z).
Proof. (i) Since (T.x.)el'y, it follows that 0<II(T.*T.z, x)<-+oco and hence
O<I| To* Lo || = (|| T DCAT)| Tomc| ),
that is, (T*T.x)el. Since (Tix.)el, it follows 0<I(T*T.x., )< -+co and hence
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(T*T.x)~(x). Since (z,)~(y.), it follows that (T.*T.z.)~(v.).

@)  Since II|| |T.|z||=II||T.x,||, it follows that (|7.|x)el,. Suppose that
(z) and (T.z)els. Denote z/=|z|=z, and T./=||TJ)|"*T.. Then (|T/|%z/,z.)
=(T/|=’,x/). Since XI|(|T/[*x/,x/)—1]<+oo, it follows that 3|(|TV|.,x.)
—1|< +4oco and hence (|T/|z)~(x/), that is, (|T.|xz)~(z.). Let z,=z 42?2 be the
decomposition such that z!eR! and z2e%,, where %N, is the kernel of 7. Since
T.x,=Twxr, follows that II||T.x||=d1|T|D||z]) and so (x!)el,. Since (T.x.)
=(U/|T.|z)el,, it follows from the above that (T.x)~(U.x!)=(U.x,).

Before going into the following lemma, recall that, for any 0<¢<1 and Je],
if Jgla—1|<e/2, then I a,—1]<e.

Lemma 3.3. Let (x) and (y.) be elements of I'. Then (z)~(y.) is necessary
and sufficient that for any 0<e<1l there is JE€I such that

ll@x;—®’.l/:||<$
K K
for every K&J°¢
Proof. Necessity: For any 0<e<1 there exists /€I such that for any KeJ¢

2 2 2
Slelr-1< =,  Dllwlr-1< = and 3 |(z,v)—1]< .
K 8 & 8 T 8

The first two inequalities follow from the facts that (x) and (y)el, and the last
inequality from (x,)~(y.). Combining these inequalities, we have

“(?xt—@y:” <e.

Sufficiency: Since for any 0<e<1/4 there exists /&I such that for any KeJ°
I®z—®uvll<e, |I®zlP—1]<e and |[®vy/l—1]<e.
K K K K

Combining these three inequalities and combining the last two inequalities, we have

[1—RTII (2., v.)| <e+ %62
K

and
(2, 9| <1+

1) Another proof (due to Araki): Since
O0<TINT .l - |1 Tl <=TT( Tl 2o 2)=(TTN Tee| (TT] ] ) < +-o0
it follows that (z.)~(y.), where y.=|T.|z.. Since
0< [T Tl @)= TT(Uyer Um)=(TT| U)X TT]Iw. 1D,
it follows that (U.z.)ely and (U.x.)~(Uy.)=(T.x.).
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respectively. Hence

Il'—lI;I(xn y:)’ <2€+4€2.

Consequently X |(z., y.)—1]|<+oco and so (z)~(y.).

THEOREM 3.1. Let T.€(9.) with T.x0 for each ccl and let T,=U,|T.| be the
polar decomposition.

I Denoting T7=(R;T.)RQ(RcU,) for JEL.

(i) If O|TJ||< +co, then {T7: JEI} converges strongly to a unique TeRD.)
and ||T||=1)|T.||; and

(ii) if {T7: Jel} converges strongly to some TeRD.), then I||T.x|<+co
and T(Qx)=QRT,x. for every (x,)el.

II. The following four conditions are equivalent:

(1) O<I||T)I<+oco and there is (x)el's with (T.xz)el;

(ii) O<IN|TJ|<+oo and each |T.| except for a countable® number of s in I
has a proper value 1,

(iii) there exists uniquely TeR(RD.) such that Tx0 and {T7: JEI} converges
strongly to T; and

(iv) there exists uniquely Te(R9D.) such that Tx0, I||T.z||<+oco and
T(Qx)=RT.x. for every (z)el,.

In the case 11, ||T||=1||T..

Proof. 1. (i) Let (xi.)el’y and a;eC for i=1,2,---,n. If 37, ai(®=zx);=0 for
(®=x)i=QRx;., then for any (y.)el’,

0= ( 3 a( @), ®T,*y,) = $ia(®a) @T)

=1

E]

aill(zs, THy)= f_.' (T .xiy y.)®
1 =1

(2

Il
M=

(@ T.vsy Q)= (z @ Tos), @y,)

=1

and therefore 7., a;(®7T.x:;)=0. Thus we may define an an operator 7' on
©9. by

n

T<il ai(®x)i> = ) ai(@T.xs.).

1= =1

If ®T.x,=0 for (x)el’, then for any &>0 there exists J/y&l such that for any
JelI with J,cJ we have II,||T.z,]|]<e and hence

“ TJ(®$,)—®71,$,”§M16,

A YZ)W ““Countable” is either finite or countably infinite.
3) The convergence of [[(zi., Te¥y.) and [[(Twv:., ¥.) 1s 1n the sense of quasi-convergence.
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where Mi=sup gllgllz|l. If ®T.x,x0 for (x,)el’, then (T.z)~(U.z) by Lemma
3.2. It follows from Lemma 3. 3 that for any 0<e<1 there exists Jy,&I such that
for any K& J¢

|]®[th:'—®1"z:v:ll <$
K K

and therefore for any JeI with J,cJ
1T7(®z)—QTox | <Mse

where M,=sup .II;||T.x||. Hence for any (x;)el’y and a;€C, i=1,2, .-, n, define
M= 2 |ai|(sup Hf|zs|| +sup || T.zsl)).
1=1 J J J J
Then for any 0<e<1 there exists /o€l such that for any jel with J,c]/.

< Me.

1=

T7 z: a(Qz)i— z: a(@T.x2,)

Since ||TV||=I1;||T.||, it follows that ||T||<lim ||7V||=1I||T}||, that is, T is bounded.
Thus T on (O9, has a unique continuous extension to ®9,, which we denote by
the same letter 7. Consequently {T7: J&I} converges strongly to T.

(i) Suppose that T is a strong limit of {7Y: JeI}. If (x)el, then II||T.x.||
=lim ||77(®Rz)||< +oo. If ®T.x,=0, then lim T7(®=x)=0 similarly as in (i), and
hence T(®z)=QT.xz. If ®T.x.x0, then (T,x)~(Ux) by Lemma 3.2 and
therefore

T(@z)=lm (®T.2)Q(QU.r)=QT.z..

II. (i) implies (ii): Since 0<II||T||<+4+c0 and (z,) and (T.x.)el’, it follows
that ||7.||=|z.||=||T.x.]|=1 except for a countable number of /’s. Let’s denote such
a countable set by I,. In general, if A=0 and ||A]|=|lz||=]||Az||=1, then Az=ux.
Since ||| T ||=|IT.]| and || |T.|x.||=||T.x]|, it follows that |T.|z,=z, for e I—1I,.

(ii) implies (iii): Since the unique existence follows from (i) of 7, it suffices
to show that 7x0. Let I, be the set of (/s such that |7.|z,=z. for some ||z ||=1
and ||T||=1. Then I,=I—1I, is a countable subset, I,={1,2,:-,1,---} say, by (ii).
For any ¢>0 and i€, there exists x;€9; such that ||z;||=1 and ||T3||—e/2°<|| Ti:l|
and so % ;,(1—||Tsxil))<e, which implies || T.2.||=0, if ¢/2<inf [|7}||. Hence

1T (@@=l =% | Te|| =11 Toz.|| %0

and so T=0.

(iii) implies (iv): It is clear from (ii) of I.

@iv) implies (i): Since T(®z.)=Q7T.x. and T=:0, there exists (x,)el, such that
IT(Q@x)lx0. It follows that

0<I|| Tz | = T( Q| = | T| L]z
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and hence (T.x,)el's and O<IL| T ||=||T)|. Q.E.D.

In the last theorem, if II||T.||< +co and if any condition in II are not satisfied,
then 7=0. Thus T is considered to be an infinite tenson product of operators 7.

DerINITION 3.1. The operator T obtained in the last theorem is denoted by
® 7, symbolically.

The following corollary is an immediate consequence of the last theorem.

CoroLLARY 3.1. (i) (RT)*=RT*

(i) (®@THRS)=RT.S,;

(iii) if Ha, is convergent, then @a,T.=la)RT.)

(iv) if T, is invertible for all eI and || TY|<+oo, then (QT) '=QT, .

This corollary tells us that the set of all finite linear combinations of &7,
satisfying 7,e€%, for (el forms a normed x-algebra on ®$., which depends on the
choice of W, for cel. Thus its weak closure is a von Neumann subalgebra of
URY,). But we have few knowledges about this algebra such as its type, its
commutor, its relation to ®¥,, its interpretation in physics and so on.

In what follows we shall denote by P. the projection of ®$,. onto the in-
complete infinite tensor product @9, for cel’. Then it is easily vertified that
P.e(®@N) by the similar methods in [12; p 54].

THEOREM 3. 2.  Assume that 11||T,|| <+ oo.

L If T.eN, then the following three conditions are equivalent:

(1) RT.eRU;

(i) for any ceI’ and any (x)ec, (T.x)ec or ®T.x,=0; and

(iii) T, is a strong lLimit of {Ty. JEI}, where Ty=(QRsT)RL(JC) for JEL
IL. If T.eN*, then QT.e(@A)*.

L. If T.eN/, then QT.e(@A).

Proof. 1. (i) implies (ii): Suppose ®7.e®A, and ®7,z.>x0 for (z)ec. Since
P(R®T.x)=P(RT)XRx)=RT,x,, it follows that (T.x,)ec.

(i) implies (@ii): Applying the similar methods as the proof of (i) of I in
Theorem 3.1, we can find for any 0<e<1 a finite subset J,&/ such that for any
Jel with J,cJ

”TJ(@.?C‘,)—@I‘,J},“<8,

where Ty=(QsT)R1(J°.

(iii) implies (i): Since T;e®N,, it follows that the strong limit ®7,e QN..

II. It is clear from I and the proof of Lemma 3. 2.

III. An operator A of the form (RsA)R1(J%) for some /el commutes with
T, for T,eN,’, because

ARTY®z)=AQT.x)=QA L.
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where A,=1 for ¢eJ—], and so
ARTY®z)=QT.Ax=QRTHR®Az)=(QT)AQx).
Hence ®7, belongs to (OW.)’ =(XN.)’.
The following corollaries are easily verified.

COoROLLARY 3.2. Let Ae¥N, and A,>x0 for each ccl. If Y ||A.—1]||<+co, then
A;=(QRsA)RQL(]) converges uniformly to QA.cRN. If U.eN* for each eI and
RU.eQU,, then Z||U.—1||<+co.

CorOLLARY 3.3. Let E.eN° and E, =0 and let &, be the projected subspace of
.. Then

(i) E=QE.c(@N)r; and

(ii) the range of E coincides with QR..

CorOLLARY 3.4. Let W||T\||<+co and T.=U.|T.| be the polar decomposition
of T.. Then (XT)=(QU)RI|T.) is the polar decomposition of QT..

§4. Infinite tensor products of normal positive linear functionals.

Let % be a von Neumann algebra on $ and ¢ a normal positive linear func-
tional on . Then it is well known that ¢ can be written in the form o=, o,
for z:€9 (1=1,2, ) and [lo||= XL |2l

DerFINITION 4.1. Let ¢ be a normal positive linear functional on a von Neumann
algebra A on 9. 7 is a characteristic number of ¢ with respect to U, if

r=SuP{HxIII23 =3 wzi},

where the supremum is taken over all expansions of ¢. Particularly, if y=ws,(1)
and =3 wsy, 1 s called a characteristic vector of ¢ with respect to %. Let %L,
be a von Neumann algebra and ¢, a normal positive linear functional on 2, having
a characteristic vector z, of ¢,.. The equivalence class cel” which contains (z,) is
called a characteristic class of (¢,) whenever (x,) is a C,-sequence.

THEOREM 4. 1. Let N, be a von Neumann algebra and ¢, a normal positive linear
Sfunctional on W, whose characteristic number is y, for each cel. If 0<Ilp, (1)< +oo
and there is a countable subset J, of I such that X5 (e.(1)—7)<+oc0 and ¢.=ws,
for ceI—Jo, then there exists uniquely a normal positive linear functional ¢ on QU,
such that o(gA)=lgp(A))xep, (1)) for A.eN, and every KeI.

Proof. Since J, is at most countable, we may identify J, with {i: i=1,2, .}
in the following. For any &>0 we have x;€9; for i€/, such that ¢,—w.=0 and
0=y;—||z|]2<e/2. Tt follows that
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Sllpe—os 1= T llg.—os,lI= 3 o~ o)

= Z_ﬁ (oi(D)— ) +e< +oo,

and hence };|1—||z[?|<+oo, that is, (.)€l Since (x,)el’y and 0<IIp,(1)< o0,
there is M>0 such that

Ollz|P<M and Mlell=M
K K

for any KcI. Since for every JjeI
K. =Qlwz, +(p. —wz,)}
J J

= Qs+ 3 (® 0:)R(9—0s)+ -+ +@lp.—w),

x€J

and since for any 0<e<1/2 there is J,&€l such that [lp,—ws||<e for cefs’, it
follows that

“®§0:—®wx,”§2M8
K K

for every Ke&/,°. Denote ¢;=(®,;0.)Q(Qewz,) for J€l. Then for any J and J’el
with focJ and J/

llos —@rll=MA(| @ 0. — & ws |l 41| @ 02,— Q pl[)=4M .
J=J° J=r J=J J=J

Therefore we get a Cauchy net {p;: JE€I}, whose uniform limit is a normal
positive linear functional ¢ on ®¥,. If Ae®x¥, for any K&I, then o(ARQI(K?))
=1im p;(AQLK®)) =(Rx¢)(A)Ikep,(1). The uniqueness follows from the coincidence
of ¢ on a weakly dense subset O, of ®U..

DeriNiTION 4. 2. Denote by ®g¢. the normal positive linear functional ¢ which
is obtained in the last theorem. The equivalence class ¢ which contains the C,-
sequence (x,) in the last proof is called a characteristic class of (¢,) and each z, is
called a guasi-characteristic vector of ¢,.

It is not clear whether the converse of this theorem holds or not;

Let ¢ be a normal positive linear functional on @, with ¢(1)=1 and ¢, a
normal positive linear functional corresponding to the restriction of ¢ to %A, by the
natural isomorphism between %, and .. If o(IIxA,)=Ixp.(A,) for A€, and every
Kel, then there is a countable subset J, of I such that X, (1—7.)<+4co and
¢.=wy, for (eI—J,, where y, is a characteristic number of ¢..

However if ¢ is a trace, then we can show in the following that the converse
is valid.
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Let A be a von Neumann algebra on $ and 3 the center of . It is well
known that, since 8 is abelian, there exist a locally compact Hausdorff space Z, a
positive Radon measure v on Z with the carrier Z and an isometric isomorphism
of a normed #-algebra 3 onto a normed *-algebra L>(Z,v). Since this isomorphism
is compatible with the usual order relation, 3* is mapped into the set B+ of non
negative measurable functions on Z classified by the null set difference. Utilizing
this mapping we can identify 3* with a subalgebra of B+ Let ¢ be a Radon
measure on Z corresponding to a normal state ¢ on 3 and C»3 the operator cor-
responding to fe?,*“. Then we may denote o(C)=pu(f). Let @ (resp. @’) be a
canonical §-mapping of % (resp. A’). Then there is one and only one element f in
3* such that for all ze$ we have DEQ,z)=f0(EQ, z)). The operator C
which corresponds to fe3* is called a coupling operator of A. Now we extend
the concept of coupling operator in more general case where % is finite and 2’ is
not necessarily finite and assume that the operator admits +oco as follows. If %
is finite and W' is not finite, we will decompose it into a finite part A and a
properly infinite part W,_¢ by the projection G in the center of A. Using the
coupling operator C¢ of g, we define the coupling operator C of U such that C is
Cg on G and +oo on (1-G)9.

LemMA 4.1. Let N be a finite von Neumann algebra with the coupling operator
Con . If ¢ is a finite normal trace on N, then theve exists a characteristic vector
z of ¢ such that

() —Il][*= (1) — (B, 2)) =((1 —C)).

Proof. Let C=[2dE; be the spectral resolution of C and define G=[;<,dE,.
Then we have

iegg {e(1)—(EQ, e))}
= £2£ o(1—-G)(1L—EQ, e))) +i£§ P(GL—E®X, €)))

and since in the range of 1—G we have C=1 so that there exists a separating
vector y for ¢ in the intersection of the carrier of ¢ and the range of 1-G
such that the restriction of ¢ to ¢ is @, and y=0 if the intersection is {0}.
Hence the first term of the right side is 0 and therefore

ielelg {p)—p(EQV, )} =¢(G) —Selelg o(GO(E, e))),

where @ is the canonical f-mapping of 2. Since C<1 in the intersection of the
carrier of ¢ and the range of G, we have a cyclic vector z for s in it such that
the restriction of ¢ to Ugz.e is w, where E=FE¥g, z). Particularly z=0 if the
intersection is {0}. That is p(GO(EQ, 2)))=¢(GC). Thus we have

lerelg {pM)—p(EQ, )} =¢(G) — p(GC)=p((1 - C)*).
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Define x=y+z. Then
sup p(EQ, e)=p(1) —p(1-C))=p(EW, x))
and
0s(1)=wy(1—G)+w:G) =91 = G) +9(CG) = (1) — (1 - C)*).

If ||#|[?<y where 7 is a characteristic number of ¢, then there is 2’e$ such that
[l2’||>|lz]] and ¢—w=0. Then

o(EQ, 2") =||2>> ||x112=31€121)3 o(EQ, e)),
ecs
which is a contradiction. Thus x is a characteristic vector, for ¢p—w,=0.

THEOREM 4.2. Let U, be a finite von Neumann algebra with the coupling
operator C, for every t€l.

(1) Let ¢, be a normal trace on N, for each c€l such that 0<Ilp,(1)<+oco.
If Do (1-=C)")<+oo, then there is one and only one novmal trace ¢ on QN, such
that o(UgA)=Mxp(A)) e, 1)) for AN, and every K&l

(ii) Let ¢ be a mormal trace on ®‘2L_ with o(1)=1 and ¢. a normal trace cor-
responding to the restriction go[Q_I, of ¢ to W, by the natural isomorphism between
A and A.. If o(MxA)=Hgp,(A,) for A.e¥, and every KEI, then Yo ((1—C.))< +oco.

Proof. (i) Let 7. be a characteristic number of ¢,, then by Lemma 4.1 there
exists a characteristic vector x, such that r.=|lz|]* and ¢.1)—7.=.(1-C)").
Hence by Theorem 4.1 the desired normal positive linear functional ¢=Qpg, is
obtained. It suffices to show that ¢ is a trace. If Ae@¥, and Be®¥,, then there
exist Cauchy nets A; and B; which converges weakly to A and B respectively as
J tends to I, where A;=A(J)XR1(J®) and B;=B(J)RL(J®) for some A(J) and B(J)
in ®;UA.. Hence by a fixed /€I, A;B;. converges weakly to ABj;., and therefore

9(ABy)=lim o(A;B) =lim (B A7) =¢(Br .

It follows that

o(AB)=lim g(AB,)=lim o(By. A)=¢(BA).

Thus ¢ is a normal trace.
(ii) Since E(Q), ®z2)=QEMN/,z) for every (z.)e€l’, and ¢ is normal, it
follows that there is (y.)el’, satisfying o(QE®./,v.))>0. Thus

0<§0(®E@I:I; y:))ég SDz(E@I:'; y:))

for every KeI and hence 0<IIp(EQ/,y))=¢(1), that is, Z(1—p(EQL',.)) <400,
Define
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P(A) =0 AEQ/, v.)

for Ae,.. Then ¢.=w,, for some z,€9, and ¢,—w:,=0. Since EQ/,y)=EX/, z.),
it follows that ws,(1)=¢.(EM./,%.)). Hence by Lemma 4.1,

(,Dt((l - c:)+) = §01(1) - SD;(E(%I,/, y/)),
which implies Zo.(1—-C)*)<+oco. QED.

The relation between infinite tensor products of operators and that of normal
positive linear functionals is given in the following corollary.

CoroLLARY 4.1. () (Re)®A)=Ip.(A) for RA.cQU,; and
() if Qe )NRA)>0 then for any >0 there exists o€l such that for any
JeI with J,cJ

QAT —1] <e,

where A(K)=QxA, for KcI.

The expression of the central carrier of P. which is given in the following
Lemma is suggested by Araki.

LEMMA 4. 2. Let’s denote
P(o) =1Jlélrl L(HRQEATY, =(J9)

wherve x(K)=Qxzx. for (z)ec and NK)=QzU, for KcI. Then P(c) is the central
carrier of P.

Proof. Since EQ(J¢), z(J¢) is a projection in A(J¢), it follows that P(c) is a
projection in ®%,. Since P(c) commutes with every element of (O, it follows
that P(c¢) is an element of (QU,)’. Thus P(c) is a central projection of @, and it
majorates P.. This is because the set of all ®y, such that (y,)ec and {te: y. >z}
is finite, is total in ®9, and moreover for such @y, we have

PO®@y)=lim ANSEQAY, 2(JN(@y)=y..

On the other hand, denote by P the central carrier of P.. Since EQI)Y, y(I)=P
for every (y.)ec, it follows that L(/)QE®(J®), x(J9))=P, which implies P(c)<P
and hence P=P(c).

CorROLLARY 4.2. Let W, be a von Neumann algebra and ¢. a normal positive
linear functional on W, for each tcl. Let G, and G be the carrier projections of

o, and Q. respectively. Let ¢ be a characteristic class of (o). Then G=(QG.)P(c).

Proof. Let (z.)ec and =z, a quasi-characteristic vector of ¢, for each ¢cel. For
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any >0 there is /o€l such that |lp;—Q®e.l|<e for all J&l with J,cJ, where
2r=(Qsp)Rwaey and z(J)=Qgex.. Let Gr=(QRsGIQEQATY, =(J%). Then G;
is the carrier projection of ¢ satisfying G;=G and {G;: J€I} is a monotone in-
creasing Cauchy net, because ¢p;=¢s if JcJ’€l. Put the limit Go=1im G;. Then
(®9)(Go)=1 and so G=G,. On the other hand, since ¢p;=®¢, and G=QG,, it
follows that G;=®G, and hence ’

Gr=(@GIUNREQTCY, =(J*)).
Consequently Go=(®G,)P(0).

CoroLLARY 4.3. Let (z)ec. Then
(i) EQAID), z(I))=(QE®X,, x)P.; and
(ii) EQUIY, x(I)=(QE®/, x.))P().

Proof. (i) Let &, be the range of E,.=E®Q./, z) for (x.)ec. By Corollary 3.3,
the range of QFE, is ®K.. Since ®RK, is generated by the tensor product vectors
®y. with y.e® for all cel and (y)el,, if (y)ec then (RE)P.(Ry.)=QRwv.
=P(RE)N®y.) and if (y.)éc then (RE)P.(Ry.)=0=P(RE)Ry.). Since the
orthogonal complement of ®&, in ®9, is generated by the tensor product vectors
®y. with y,eR* for some ¢el and (y.)els, (RE)P.(Ry.)=0=P,(RE)Ry.). Con-
sequently (RFE,)P.=P.(RE.) and the range of (RE.)P. is generated by {Ry.: y.€ K.
and (y)ec). If (w)~(x) and y.€[A,z], we have Qy.€[®V, ®z] and hence
(REN)P.=EAU), z(I)). Since A, is dense in @A, the converse inequality
follows.

(ii) Define ¢.=w.,. Then ¢, is a normal positive linear functional on ..
Since the carrier of ¢, is EQ/, ), the carrier of ®g, is (RE®/, z))P(c) by
Corollary 4.2. On the other hand, since ®¢.=wgs, its carrier is E(Q@N), Qz.).
The desired equality follows.

CorOLLARY 4.4. Let (z)ec and (e)elo. If wge(EQUIY, x(I)))>0, then
P)(®e)=Re..
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