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ON PRIME ENTIRE FUNCTIONS

BY MlTSURU OZAWA

§1. An entire function F(z)=f°g(z) is said to be prime (pseudo-prime) if
every factorization of the above form implies that one of the functions f(z) or
g(z) is linear (a polynomial). It is almost trivial that zp with a prime p is prime.
However it is hard to say that known examples of prime transcendental entire
functions are rich in number. It is known that ez+z is prime, which had been
stated in Rosenbloom's pioneering paper [7] without proof and was explicitely
proved by Gross [3]. For the pseudo-primeness we had published several papers
[5]. Our methods may be classified two types. One depends upon the Picard
theorem and the other the following elegant theorem due to Edrei [2]:

LEMMA. Let f(z) be an entire function. Assume that there exists an un-
bounded sequence {hv}™=l such that all the roots of the equations f(z)=hv, v=l,2, •••

of degree at most two.

However we need another consideration in order to assure the primeness of
individual functions.

In this paper we shall give a method, which guarantees the primeness. This
method has close connection with the famous Wiman theorem. In the last part
we shall give several examples of prime functions, whose proof depends upon
their special forms.

§ 2. We shall prove the following criterion of primeness.

THEOREM 1. Let F(z) be an entire function of order less than one:

00 / z \pι
Π l - - > ^>0> f f z + ι > 0 z1=1 \ aι /

Suppose that there are two indices j and k such that (pj,pk)=l. Further suppose
that there is a sequence {rn} such that an-ι<rn<an and \imn¥00F(rn) = oo. Then
F(z) is prime.

Proof. Let F(z) be f°g(z). Assume that f(w) is transcendental. Then its
order must be less than or equal to the order of F(z). Hence /(&;)= 0 has an
infinite number of roots {wn}> wn-*°° as n-*oo. Consider the equations g(z)=wn,
n=l,2,- . All their roots lie on the real positive axis. Then by Edrei's theorem
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g(z) is a polynomial of degree at most two. If g(z) is a polynomial of degree two,
then g(z)=wn has two roots zι,n, z2>n satisfying almost zljn^—z2,n for any suffi-
ciently large n. This is plainly a contradiction. Thus g(z) is linear. Therefore
we may put aside this case.

Assume that f(w) is a polynomial. Then

In this case any zero of F(z) is not divided into two or more different factors of
F(z). Thus we may put

Pl'l

where {ajtι} is a subset of {at} and {/>y,z} is a subset of {/>J such that a^ι=as for
a certain 5 and simultaneously pj,ι=ps Of course {aJlι}Γ\{ai,m}=φ for y^f and
U?=ι{tf.7,z} = {#«}. Since QJ(Z) has its order less than one,

ιrir) = m n g^z)
\z\ = r

Further m^(r}—\Wj—Wi\^m^(r)^m^(r) -\-\Wj~-Wi\, i^j. Thus wii*(r), m^(r) tend
to co simultaneously. Since F(rw)— >oo as n-*oo, mj*(rn) tends to oo as n— >oo for
every y. Consider the sequence {0ι,z}, the set of zeros of ι̂(̂ ). We denote it {a^}.
Consider the sequence of intervals JZl: (nα, n1+ι). Then g2(^) does not have any
zero in the annulus n1<\z\<n1+1. By the maximum modulus principle

in rz^l^Knj+i Especially Iggfe^l^min^*^), w2*(rZl+ι)). Thus flr2(ύrZl)-*oo as
/!— >cx5. However 0ι(tfZl)=0. This implies that g(aι1)-^oo but g(aι1)=w1. Clearly
this is a contradiction. Thus we have

In this case (£/,/>*) ̂ /i Thus /ι = l, which implies that F(2:)=^4(g(^)— ̂ i). Thus
/ is linear, q.e.d.

We cannot omit the condition on the existence of {rn} or the condition
(pj,pk)=l. This is shown by the following examples:

F=f(f-ά), /=π(l+4 ). «>2, β: real.
w=l \ /ϊ /

To prove this we need Wiman's observation [8]. He found
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log \f(reiφ}\ = -??— cos pφ--£- log 2πrp+ θ(log— }
sin Ttp Δp \ r /

where p=l/a and δ shows the distance from z=relφ to the nearest zero — na.
Another support is given by Besicovitch's work [1].

Now we list two typical examples of prime functions:

It is very plausible to state a conjecture that

and Ί./Γ(z) are prime. Our method does not work.

§3. We shall give two methods to construct prime functions.

THEOREM 2. Let L(z) be an entire function satisfying the condition in Theorem
1 and with the same notations.

l i mloglog|L(nO|
r r

^ an entire function having only negative zeros and being of order less
than p. Then F(z)=L(z)M(z) is prime.

Proof. Let F(z) be f°g(z). Assume that f(w) is transcendental. Then by
Edrei's theorem g(z) must be a polynomial of degree at most two. If g(z) is
quadratic, then g(z)=wn for f(wn)=0 has two roots zn,ι, zn,2 in general. If n is
sufficiently large, then znt2~—zn,ι. One of them must be a zero of L(z) and the
other a zero of M(z). All the zeros of F(z) can be obtained in this manner.
Hence M(z) has the same order as the one of L(z), which is at least p. This is a
contradiction. Thus g(z) is linear, which may be put aside.

Assume that f(w) is a polynomial. Then we have

Here any zero of F(z) cannot be divided into two or more different factors of
F(z). Let F(z) be

A ft CjLj(z)Mj(z)9
3=1

where Lj(z) and Mj(z) are factors of L(z) and M(z\ respectively and CjLj(z)Mj(z)
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is gj(z)1*. Here g\(z), •••, gk(z) tend to oo simultaneously and have the same growth
along the same sequence. Since M(rn) tends to oo as n—*oo, F(rn) tends to oo.
Then

loglog|F(r»)| ,

implies

^̂  log rn

If

limloglog|L,(r.)|
^=^ log rn

 r

then

^̂  log rn

log 2 max (lθg 1 '̂̂ ^ log

log rw

^ lim max
"TZ-^S- \

since

P— loglog|Afy(rn)| ^
lim - - < p.

log rw

 r

This is a contradiction. Thus

ί̂ zΓ^ log rw

This remains true for each j. Now by the same process as in Theorem 1 we can
find a sequence {an,ι} such that

as n-*oo, by making use of the maximum modulus principle. Hence CιLι(an,ι)Mι(an,ι)
=0 but c2L2(«n,ι)M2(^n,ι)— »oo as -̂̂ oo. Thus g(z)— Wί=Q and g(z)— w<>,—>oo along
{^»,ι} This is a contradiction. Thus we have

The existence of two indices./ and k for which (/>j, />*)=! implies /ι=l. Thus
)—^!), which is the desired result.

THEOREM 3. Let L(z) be an entire function satisfying the condition in Theorem
1. Suppose that for an arbitrary
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r \L(rn)\
km rκ ==co

n-»oo in

and that there is a sequence {s} such that as+^—as^at+\—at for any t^s. Let
P(z) be a polynomial having the form

Let Q(z) be a polynomial whose zeros are different from those of P(z). Further
suppose that

F(z)=L(z)L(-z)-Q(z}

P(z)

has two zeros tvhose multiplicities are coprime. Then F(z) is prime.

Proof. Let F(z) be f°g(z). Assume that f(w) is transcendental. Then g(z) is
a polynomial of degree at most two. If g(z) is quadratic, then we put Az2+Bz+C.
Let wn be a zero of f(w), whose modulus is sufficiently large. Then Az2+Bz+C
=wn has two roots #K7θ, bι^, which satisfy aιw+bιw = —B/A. For ai^+i we
have aιw+ι+bun)*=—B/A. Hence a^n^i—ai^ =—(b^n^~bi^\ Between biw* and
biw there is no bx satisfying bx+at=—B/A. Hence /(«)*=/(«)+!. By the assump-
tion on the existence of {s} we have

bs=—as, bs+i = — as+ι

for a certain s. Thus B=0. For l^t^N we have

A(-at)
2+C=Aat

2+C,

which leads us to a fact that at is also a zero of F(z) with the same multiplicity
as the one of — at. This is a contradiction. Therefore g(z) is linear, which may
be put aside.

Assume that f(w) is a polynomial. Then

Since

is monotone increasing for ^€(0, π/2) and is symmetric with respect to the real
axis and the imaginary axis,

for -π/2^φ^π/2 and for π/2^φ^3π/2. Further \L(-r)\^\L(r)\. Hence
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Thus

n)l \P(rn)\

as n—>oo for ^e(—ττ/2, π/2). Further

|F(±n)|= max \L(z)L(-z)\
|p(±n)|

Mfr,

as r— >oo. Let Cn be the boundary curve of the following domain

Dn: rn<\z\<rn+1, - |-<arg z< -|.

Then we have

lim F(z)-*oo.
Z->oo
z€Cn

By the factorization of F(z) each 0/2)— »oo as 2^00, zeCw. Any zero of F(z) is
not divided into two or more different factors. Let {an,ι} be the set of zeros of
0ι(z). Applying the minimum modulus principle for g2(z) in Dn,ι, we have

lim |gr2(z)|^ lim \gz(z)\=oo.
Z->oo Z->oo

2€Z?n,ι Z€θnιί

Thus especially

This is a contradiction. Thus F(z)= .4(0(2)— ̂ ι)Zl. By the existence of two indices
j,k for which ( ,̂̂ 0=1, /ι=l. This is the desired result.

§ 4. From now on we shall prove the primeness of several functions.

THEOREM 4. Suppose that exp H(z) is of hyperorder less than one, where the
hyperorder of f(z) stands for

,.-loglogT(r,/)
Jim
r_oo log r

Then zeH( z:> is prime.

Proof. Let F(z*)=zeH<iz:> be f°g(z). If f(w) is a polynomial of degree greater
than two. If f(tv)=a(w—Wι)Pl, pι^2, then f°g(z) has an infinite number of roots.
If f(w)=a(w—wλY

l, pι^2, then g(z)—wλ has either an infinite number of roots or
only a finite number of roots. Anyway all roots of f°g(z)=Q have their multi-
plicities at least pi. This is untenable. Assume that f(w) is transcendental. In
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this casef(w) has just one zero of multiplicity one. Hence f(w)=B(w—w0) ex.pL(w).
Then g(z)=tVo+CzexpM(z). If M(z) is a constant, then the result follows. Thus
we may assume the nonconstancy of M(z). Then

A slight analysis leads us to a fact that the right hand side term has its hyper-
order not less than one. This is untenable.

If the right hand side term has its hyperorder one, then M(z) must be linear
and L(w) must be of order at most zero. Hence

H(z)=Az+B+L(w, +CzeAz+B)+2pπi.

If H(z)—ez and if L is transcendental, then

,. T(r,L(w0+CzeAz+B))
lim - Tpr, — =r - =00

T(r, ez)

shows a contradiction. If L is a polynomial, we need a little bit long discussion
based upon Borel's impossibility proof of his identity, for which Nevanlinna [4]
gave an extension. Then we have the primeness of zexpexpz.

THEOREM 5. Let H(z) be transcendental of order less than one. Suppose that
there is at least one simple zero and all its zeros lie on the positive real axis.
Then H(z)ez is prime.

Proof. Let He* be f°g(z). If f(w) and g(z) are transcendental, then by Pόlya's
theorem [6] f ( w ) must be of order zero. If f(w) is transcendental and g(z) is a
polynomial of degree n^2, then f(w) must be of order 1/n. Hence f(w) has an
infinite number of zeros {wm}. Consider g(z)=wm, m = l, 2, •••. They must have
only zeros on the positive real axis. Hence by Edrei's theorem and by a slight
precise observation g(z) must be linear, which is untenable. Assume that f(w) is
a polynomial. Then

In this case g(z) must be of order one. Hence at least one of g(z)—Wj=Q, j=l, ~,k
has zeros, whose Af-f unction N(r;tVj,g) must be of order 1 if k^2. This is un-
tenable, since N(r',Q,H) is of order less than one. Hence f(w)=A(w—w\fl. If
^ι^2, then every zero of H(z)ez has its multiplicity at least pi. This contradicts
the existence of a simple zero. Thus we have the desired result.

Finally we prove the primeness of

\e-tPdt,
Jo

(^2): an integer.

In this case the derived functional equation Ff(z)=g'(z)f'°g(z) together with the
original functional equation F(z)=f°g(z) is useful. Assume that / is transcen-
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dental. If g is transcendental, then the order of / is zero. Thus f'(w}=ΰ has an
infinite number of roots {wn} and hence at least one of g(z)=wn has an infinite
number of roots, which must satisfy F'(z)=Q. But F'(z) does not have any zero,
which is untenable. Hence g must be a polynomial. If its degree is not less than
2, then g'(z) has a zero. This is a contradiction. Thus g is linear, which may be
put aside. Assume that f(w) is a polynomial. Then

Here g(z) is of order p. If k^2, then there is an infinite number of zeros of a
factor g(z)—Wj. This is untenable. Hence Ff(z)=Agf(z)(g(z)—w1Y

1. In this case
g'(z) and g(z)—Wι do not have any zero. Hence g'(z) =BexpL(z) and g(z)—Wι=C
expM(z) with constants 5 and C. Here L(z) and M(z) must be polynomials.
However 0'(z)=CM'(z)expM(z). Here M'(z) must be a constant. Thus M(z) is
linear. Thus F'(z)=ACDexpDzCPlexpp1Dz^exp(—zp). This is a contradiction.

By a closer examination we can find several prime functions in a class of
functions having the form

(* P(f)e-w>dt, deg P^deg Q-2.
Jo
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