AN APPLICATION OF GREEN'S FORMULA OF A DISCRETE FUNCTION: DETERMINATION OF PERIODICITY MODULI, I

By Hisao Mizumoto

Introduction. Recently Opfer published a very interesting result [6] (also cf. [5]) in which he concerned himself with the problem of determining the modulus of a doubly connected domain by means of the difference method.

In the present paper we shall consider a corresponding problem for a general multiply connected domain. It is known that for a non-degenerated N-ply connected domain ($N \geqq 2$) there exist $N(N-1) / 2$ quantities which are said to be periodicity moduli of the domain, which are conformally invariant, and which have an important meaning in the function theory. We shall concern ourselves with the problem of determining the system of periodicity moduli by means of the difference method (cf. Theorem 3.1 and Corollaries 2.4, 3.1).

Our method making effective use of Green's formula of a discrete function admits to deal with our problem by a unified principle. Also for a harmonic function u and a discrete harmonic function U on a domain G and a lattice R respectively which are constant on each boundary component of G and R, the monotonicity of the Dirichlet integral $D_{G}(u)$ and the summation $S_{R}(U)$ (see § 2. 2) with respect to G and R is effectively utilized (cf. Lemmas 1.1, 2.4, 2.5 and 2.6, and Theorem 2.1).

For $N=2$ our main results (Theorem 3.1 and Corollary 3.1) coincide to Opfer's (Satz 7 of [6]). However even such a special case our method is deferent from his and is more simplified.

§ 1. Periodicity moduli of multiply-connected domain.

1. Periodicity moduli. Let G be an N-ply connected bounded domain on a complex z-plane ($z=x+i y$), where $N \geqq 2$. If there exists a boundary component of G consisting of a point, then G is said to be degenerated. A domain G being not degenerated is said to be non-degenerated. Let $\Gamma_{0}, \cdots, \Gamma_{N-1}$ be boundary components of a non-degenerated domain G, and set $\Gamma=\cup_{j=0}^{N-1} \Gamma_{j}$.

Let $u_{j}(j=0, \cdots, N-1)$ be a harmonic measure of Γ_{j} on G respectively which is defined as a harmonic function on G which has the boundary property

Received December 26, 1969.

$$
u_{\jmath}= \begin{cases}1 & \text { on } \quad \Gamma_{\jmath}, \\ 0 & \text { on } \quad \Gamma-\Gamma_{\jmath} .\end{cases}
$$

Let $u_{j}^{*}(j=0, \cdots, N-1)$ be a conjugate harmonic function of u_{j} on G respectively which is multi-valued. Let $\gamma_{\rho}(j=0, \cdots, N-1)$ be a piecewise analytic Jordan curve in G homotopic to Γ_{\jmath}, respectively. We define

$$
\tau_{j k} \equiv-\int_{r_{k}} \frac{\partial u_{j}}{\partial n} d s=\int_{r_{k}} d u_{j}^{*} \quad(j, k=0, \cdots, N-1)
$$

which is independent of a particular choice of γ_{k}, where by $\partial / \partial n$ and $d s$ we denote the inner normal derivative on γ_{k} and the line element of γ_{k} respectively.

It is easy to see the relations

$$
\sum_{j=0}^{N-1} \tau_{j k}=0 \quad(k=0, \cdots, N-1)
$$

and

$$
\tau_{j k}=\tau_{k j} \quad(j, k=0, \cdots, N-1)
$$

$\tau_{j k}(j, k=1, \cdots, N-1)$ is said to be a system of periodicity moduli of G, and the matrix $\left(\tau_{j k}\right)_{3, k=1, \cdots, N-1}$ is said to be a matrix of periodicity moduli of G, which is symmetric and positive definite.

The following theorem is well known.
Theorem 1.1. Let G and G^{\prime} be two non-degenerated N-ply connected bounded domains. Let $\Gamma_{j}(j=0, \cdots, N-1)$ and $\Gamma_{j}^{\prime}(j=0, \cdots, N-1)$ be the boundary components of G and G^{\prime} respectively. Then G is conformally equivalent to G^{\prime} so that Γ_{j} corresponds to Γ_{\jmath}^{\prime} respectively if and only if

$$
\tau_{j k}=\tau_{j k}^{\prime} \quad(j, k=1, \cdots, N-1),
$$

where $\tau_{j k}(j, k=1, \cdots, N-1)$ and $\tau_{j_{k}}^{\prime}(j, k=1, \cdots, N-1)$ are the systems of periodicity moduli of G and G^{\prime} respectively.

The sufficiency in Theorem 1.1 is called the Torelli theorem.
Remark. It is known that for each non-degenerated N-ply connected domain there exists a system of $1(N=2)$ or $3 N-6(N \geqq 3)$ real parameters as follows:

Two domains are conformally equivalent each other if and only if the systems of real parameters for the domains coincide with each other.
Because a number of different periodicity moduli is $N(N-1) / 2$, we see that for $N \geqq 5$ there exists yet a dependency among the periodicity moduli.

Let us define

$$
\begin{equation*}
\sigma_{j k} \equiv D_{G}\left(u_{j}+u_{k}\right)=\int_{r_{j}+\gamma_{k}} d\left(u_{j}^{*}+u_{k}^{*}\right)=\tau_{j j}+2 \tau_{j k}+\tau_{k k} \quad(j, k=1, \cdots, N-1), \tag{1.1}
\end{equation*}
$$

where by $D_{G}(u)$ we denote the Dirichlet integral of a function u over G. Obviously $\sigma_{j k}>0, \sigma_{j k}=\sigma_{k \jmath}$ and $\sigma_{\jmath \jmath}=4 \tau_{\jmath \jmath}(j, k=1, \cdots, N-1) . \quad \sigma_{j k}(j, k=1, \cdots, N-1)$ is said to be a system of modified periodicity moduli. Obviously the system $\sigma_{j k}(j, k=1, \cdots, N-1)$ is found from the system $\tau_{j k}(j, k=1, \cdots, N-1)$, and vice versa.
2. Monotonicity. With the notations in $\mathbf{1}$, let $\left\{G_{n}\right\}_{n=0}^{\infty}$ be an exhaustion of a non-degenerated N-ply connected bounded domain $G(N \geqq 2)$ such that a boundary component $\Gamma_{j}^{n}(j=0, \cdots, N-1)$ of each G_{n} consists of a piecewise analytic Jordan curve and Γ_{j}^{n} is homotopic to Γ_{j} on G respectively. Let $u_{j}^{n}(j=0, \cdots, N-1)$ be the harmonic measure of Γ_{j}^{n} on $G_{n}(n=0,1, \cdots)$ respectively. Let $\tau_{j k}^{n}(j, k=1, \cdots, N-1)$ be the system of periodicity moduli of $G_{n}(n=0,1, \cdots)$ respectively, and $\sigma_{j k}^{n}(j, k=1, \cdots, N-1)$ be the system of modified periodicity moduli of $G_{n}(n=0,1, \cdots)$ respectively.

Lemma 1.1. Let c_{1}, \cdots, c_{N-1} be a system of real numbers being not simultaneously zero. Then

$$
\begin{equation*}
\sum_{j, k=1}^{N-1} c_{j} c_{k} \tau_{j k}^{m}>\sum_{j, k=1}^{N-1} c_{j} c_{k} \tau_{j k}^{n} \quad(n>m) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j, k=1}^{N-1} c_{j} c_{k} \tau_{j k}^{n} \searrow \sum_{j, k=1}^{N-1} c_{j} c_{k} \tau_{j k} \quad(n \rightarrow \infty) \tag{1.3}
\end{equation*}
$$

Proof. It is due to a standard method. Set

$$
u^{n}=\sum_{j=1}^{N-1} c_{j} u_{j}^{n} \quad \text { and } \quad u=\sum_{j=1}^{N-1} c_{j} u_{j} .
$$

Then

$$
D_{G_{n}}\left(u^{n}\right)=\sum_{j, k=1}^{N-1} c_{j} c_{k} \tau_{j k}^{n} \quad \text { and } \quad D_{G}(u)=\sum_{j, k=1}^{N-1} c_{j} c_{k} \tau_{j k}
$$

The equality

$$
\begin{aligned}
D_{G_{m}}\left(u^{m}, u^{n}\right)=-\int_{\Gamma^{m}} u^{m} \frac{\partial u^{n}}{\partial n} d s=-\int_{\Gamma^{n}} u^{n} \frac{\partial u^{n}}{\partial n} & d s=D_{G_{n}}\left(u^{n}\right) \\
& \left(n>m ; \Gamma^{n}=\cup_{j=0}^{N=1} \Gamma_{j}^{n}\right)
\end{aligned}
$$

implies

$$
D_{G_{m}}\left(u^{n}-u^{m}\right)=D_{G_{m}}\left(u^{m}\right)-D_{G_{n}}\left(u^{n}\right)-D_{G_{n}-G_{m}}\left(u^{n}\right),
$$

which implies (1.2) and the strong convergence of u^{n} to $u ; \lim _{n \rightarrow \infty} D_{G_{n}}\left(u-u^{n}\right)=0$, where by $D_{G_{m}}\left(u^{m}, u^{n}\right)$ we denote the mixed Dirichlet integral of u^{m} and u^{n} over G_{m}. Analogously we see that

$$
D_{G_{n}}\left(u-u^{n}\right)=D_{G_{n}}\left(u^{n}\right)-D_{G}(u)-D_{G-G_{n}}(u) .
$$

Hence

$$
D_{G_{n}}\left(u^{n}\right) \backslash D_{G}(u) \quad(n \rightarrow \infty) .
$$

When we set $c_{\jmath}=c_{k}=1$ and $c_{l}=0(l \neq j, k)$ in Lemma 1.1, we obtain the corollary.
Corollary 1.1.

$$
\begin{equation*}
\sigma_{j k}^{m}>\sigma_{j k}^{n} \quad(n>m) ; \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{j k}^{n} \searrow \sigma_{j k} \quad(n \rightarrow \infty) ; \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{j k}^{n} \rightarrow \tau_{j k} \quad(n \rightarrow \infty) \tag{iii}
\end{equation*}
$$

§ 2. Monotone convergence of summation $S_{R}(U)$.

1. Definitions. By L_{h} we denote the set $\{h(m+i n) \mid m, n$: integers $\}(h>0)$ on the z-plane $(z=x+i y)$. By a mesh M in L_{h} we call a set $\{z, z+h, z+i h, z+h(1+i)\}$ for a point $z \in L_{h}$. Let G be a non-degenerated bounded domain on the z-plane of which the boundary consists of the segments each of which joins two points of L_{h} and is parallel to one of the coordinate axes. Then G is said to be a lattice domain with mesh width h. Obviously a lattice domain with mesh width h is one with mesh width h / n for each positive integer n.

Let G be an N-ply connected lattice domain with mesh width $h, \Gamma_{j}(j=0, \cdots, N-1)$ be boundary components of G and set $\Gamma=\cup_{j=0}^{N-1} \Gamma_{\jmath}$. We set $R=\bar{G} \cap L_{h}, \bar{G}$ being the closure of G. The sets $\Lambda=\Gamma \cap R, \Lambda_{j}=\Gamma_{j} \cap R(j=0, \cdots, N-1)$ and $R^{\circ}=R-\Lambda$ are said to be the boundary of R, the boundary components of R and the interior of R respectively. Here we agree that a point of R, Λ and $\Lambda_{j}(j=0, \cdots, N-1)$ respectively through which Γ runs for k-times, is counted for k-times. A point $z \in R^{\circ}$ is said to be an inner point of R and a point $z \in \Lambda$ is said to be a boundary point of R. When R° is connected (see p. 345 of Collatz [1] for the definition), R is said to be a lattice with mesh width h. If G is N-ply connected, then R is said to be N-ply connected. A point $z \in L_{h}$ is said to be neighboring to a point $z^{\prime} \in L_{h}$ or is said to be a neighboring point of z^{\prime}, if $\left|z-z^{\prime}\right|=h$.

Let R be a lattice with mesh width h, and let U be a real function on R. Let z_{0} be an inner point of R, and $z_{j}(j=1,2,3,4)$ be four neighboring points of z_{0}. If the equation

$$
\begin{equation*}
4 U_{(0)}-\left(U_{(1)}+U_{(2)}+U_{(3)}+U_{(4)}\right)=0 \tag{2.1}
\end{equation*}
$$

holds for every $z_{0} \in R^{\circ}$, then U is said to be discrete harmonic on R, where $U_{(j)}=U\left(z_{j}\right)$ ($j=0, \cdots, 4$).
2. Green's formula. Let R be an N-ply connected lattice with mesh width h, let Λ be its boundary, and let Γ be the boundary of the domain G which defines R. Let $\left\{z_{n}\right\}_{n=1}$ be the set of points of R, and let $\left\{z_{n}\right\}_{n=1}^{\mu}(\mu<\nu)$ be the set of points of R°. Let U and U^{\prime} be functions on R, and set $U_{(n)}=U\left(z_{n}\right)$ and $U_{(n)}^{\prime}=U^{\prime}\left(z_{n}\right)$ ($n=1, \cdots, \nu$). We consider a bilinear form

$$
S_{R}\left(U, U^{\prime}\right)={ }_{\left|z_{m}-z_{n}\right|=n, m<n}\left(U_{(m)}-U_{(n)}\right)\left(U_{(m)}^{\prime}-U_{(n)}^{\prime}\right)
$$

Furthermore, we consider the partial sum $S_{R}^{\circ}\left(U, U^{\prime}\right)$ of $S_{R}\left(U, U^{\prime}\right)$ which is obtained by elimination of the terms with respect to two points neighboring along the boundary Γ. Here a point $z_{m} \in \Lambda$ is said to be neighboring to a point $z_{n} \in \Lambda$ along Γ if and only if $\left|z_{m}-z_{n}\right|=h$ and the segment $\overline{z_{m} z_{n}} \subset \Gamma$. If U or U^{\prime} is constant on each boundary component $\Lambda_{,}(j=0, \cdots, N-1)$ of R, then we see immediately that

$$
S_{R}^{\circ}\left(U, U^{\prime}\right)=S_{R}\left(U, U^{\prime}\right)
$$

Furthermore by $S_{R}(U)$ and $S_{R}^{\circ}(U)$ we denote $S_{R}(U, U)$ and $S_{R}^{\circ}(U, U)$ respectively.
Lemma 2. 1. (Cf. pp. 34-36 of Courant, Friedrichs and Lewy [2].) Let U and U^{\prime} be two functions on a lattice R. Then the formula

$$
\begin{align*}
& S_{R}^{\circ}\left(U, U^{\prime}\right)+\sum_{n=1}^{\mu} U_{(n)}\left(U_{\left(n_{1}\right)}^{\prime}+U_{\left(n_{2}\right)}^{\prime}+U_{\left(n_{3}\right)}^{\prime}+U_{\left(n_{4}\right)}^{\prime}-4 U_{(n)}^{\prime}\right) \\
= & \sum_{n=\mu+1}^{\nu} U_{(n)}\left(\kappa U_{(n)}^{\prime}-\sum_{k=1}^{\kappa} U_{\left(n l_{k)}\right)}^{\prime}\right) \tag{2.2}
\end{align*}
$$

holds. Here $z_{n_{j}}(j=1,2,3,4)$ are four neighboring points of $z_{n}, z_{n l_{k}}(k=1, \cdots, \kappa$; $\kappa=0,1,2$, or 3) are the points of R neighboring to z_{n} which lie on the left of z_{n} with respect to the oriented curve Γ and which are not neighboring to z_{n} along Γ, and the summation corresponding to $\kappa=0$ is taken to be vacuous.

Corollary 2.1. If U^{\prime} in Lemma 2.1 is discrete harmonic, then

$$
S_{R}^{\circ}\left(U, U^{\prime}\right)=\sum_{n=\mu+1}^{\nu} U_{(n)}\left(\kappa U_{(n)}^{\prime}-\sum_{k=1}^{\kappa} U_{\left(n l_{k}\right)}^{\prime}\right) .
$$

Corollary 2.2. If U is a function on R with the boundary property $U(z)=0$ for $z \in \Lambda$, and U^{\prime} is a discrete harmonic function on R, then

$$
\begin{equation*}
S_{R}\left(U, U^{\prime}\right)=S_{R}^{\circ}\left(U, U^{\prime}\right)=0 \tag{2.3}
\end{equation*}
$$

Conversely, if a function U^{\prime} on R satisfies the relation (2.3) for every function U on R with the boundary property $U(z)=0$ for $z \in \Lambda$, then U^{\prime} is discrete harmonic on R.

Proof. The first assertion is obvious by Corollary 2.1.
If there existed a point $z_{m} \in R^{\circ}$ such that $U_{\left(m_{1}\right)}^{\prime}+U_{\left(m_{2}\right)}^{\prime}+U_{\left(m_{3}\right)}^{\prime}+U_{\left(m_{4}\right)}^{\prime}-4 U_{(m)}^{\prime} \neq 0$, then we would choose the function U so that $U_{(m)}=1$ and $U_{(n)}=0$ for each $z_{n} \neq z_{m}$, and by Lemma 2.1 we would see that $S_{R}\left(U, U^{\prime}\right)=S_{R}^{\circ}\left(U, U^{\prime}\right) \neq 0$.

Corollary 2.3. If U is a discrete harmonic function on R, then

$$
\sum_{n=\mu+1}^{\nu}\left(\kappa U_{(n)}-\sum_{k=1}^{k} U_{\left(n l_{k}\right)}\right)=0 .
$$

3. Boundary value problem, Minimum problem.

Lemma 2.2. (Cf. pp. 203-207 of Milne [4].) Let f be an arbitrarily given function on the boundary Λ of a lattice R. Then there exists one and only one discrete harmonic function U on R which has the boundary property $U(z)=f(z)$ for $z \in \Lambda$.

Let R be an N-ply connected lattice ($N \geqq 2$), and let $\Lambda_{j}(j=0, \cdots, N-1)$ be its boundary components. A discrete harmonic function $U_{J}(j=0, \cdots, N-1)$ on R which has the boundary property

$$
U_{j}(z)=\left\{\begin{array}{ll}
1 & \text { for } z \in \Lambda_{j} \\
0 & \text { for } z \in \Lambda-\Lambda_{j}
\end{array} \quad\left(\Lambda=\cup_{j=0}^{N-1} \Lambda_{j}\right),\right.
$$

is said to be a discrete harmonic measure of $\Lambda_{\text {, }}$ on R respectively.
Lemma 2.3. (Cf. p. 206 of Milne [4].) Let W be a function on a lattice R, and let U be a discrete harmonic function on R with the boundary property $U(z)=W(z)$ for $z \in \Lambda$. Then the inequality

$$
S_{R}(U) \leqq S_{R}(W)
$$

holds, where the equality appears if and only if $W \equiv U$.
Lemmas 2.2 and 2.3 can be also easily proved by making use of Corollary 2.2.
4. Monotonicity with respect to lattices with common mesh width. Let R_{1} and R_{2} be two N-ply connected lattices ($N \geqq 2$) which have the properties:
(i) R_{1} and R_{2} have a common mesh width h;
(ii) $R_{1} \subset R_{2}$;
(iii) A boundary component $\Gamma_{J}^{1}(j=0, \cdots, N-1)$ of G_{1} is homotopic to a boundary component $\Gamma_{j}^{2}(j=0, \cdots, N-1)$ of G_{2} respectively on G_{2}, where G_{1} and G_{2} are the lattice domains which define R_{1} and R_{2} respectively.

Lemma 2.4. Let R_{1} and R_{2} be the lattices defined as above. Let $c_{j}(j=1, \cdots$, $N-1)$ be a system of real numbers being not simultaneously zero. Let $U^{k}(k=1,2)$ be a discrete harmonic function on R_{k} respectively which has the boundary property

$$
U^{k}(z)=c_{j} \quad \text { for } \quad z \in \Lambda_{j}^{k}=\Gamma_{j}^{k} \cap R_{k} \quad\left(j=0, \cdots, N-1 ; \quad c_{0}=0\right) .
$$

Then the inequality

$$
S_{R_{1}}\left(U^{1}\right) \geqq S_{R_{2}}\left(U^{2}\right)
$$

holds.
Proof. We continue U^{1} to R_{2} by setting $U^{1}(z)=c_{3}$ for each point z of R_{2} between Γ_{J}^{1} and $\Gamma_{j}^{2}(j=0, \cdots, N-1)$ respectively. Then by Lemma 2.3

$$
S_{R_{1}}\left(U^{1}\right)=S_{R_{2}}\left(U^{1}\right) \geqq S_{R_{2}}\left(U^{2}\right) .
$$

5. Monotonicity with respect to subdivision of meshes. Let R be an N-ply connected lattice ($N \geqq 2$), and let R^{\prime} be the lattice which is obtained by dividing each mesh of R to four equal meshes with half width respectively. Let $\Lambda_{\text {, }}$ $(j=0, \cdots, N-1)$ and $\Lambda_{j}^{\prime}(j=0, \cdots, N-1)$ be boundary components of R and R^{\prime} respectively with $\Lambda_{j} \subset \Lambda_{j}^{\prime}$.

Lemma 2.5. (Cf. p. 163 of Lelong-Ferrand [3].) Let R and R^{\prime} be the lattices defined as above. Let $c_{3}(j=1, \cdots, N-1)$ be a system of real numbers being not simultaneously zero. Let U and U^{\prime} be discrete harmonic functions on R and R^{\prime} respectively which have the boundary properties

$$
U(z)=c_{3} \quad \text { for } \quad z \in \Lambda_{j} \quad\left(j=0, \cdots, N-1 ; c_{0}=0\right)
$$

and

$$
U^{\prime}(z)=c_{3} \quad \text { for } \quad z \in \Lambda_{j}^{\prime} \quad\left(j=0, \cdots, N-1 ; \quad c_{0}=0\right)
$$

Then

$$
S_{R}(U)>S_{R^{\prime}}\left(U^{\prime}\right)
$$

Proof. Our proof of which a part is used afterward, is due to Opfer (see Satz 4 of [6]).

The function U is continuously continuable to a function \tilde{U} on the domain G definining R so that for each mesh M of R

$$
\tilde{U}=a x y+b x+c y+d \quad(z=x+i y)
$$

on the domain \tilde{M} defining M, where a, b, c and d are so determined that $\tilde{U}(z)=U(z)$ for $z \in M$. Especially we can take \tilde{U} as a function on R^{\prime}. Let z_{1}, z_{2}, z_{3} and z_{4} be four points of M numbered to the positive oriented direction of M. Then an elementary calculation yields

$$
\begin{equation*}
S_{R}(U)-S_{R^{\prime}}(\tilde{U})=\frac{1}{4} \sum_{M \subset R}\left(U_{(1)}-U_{(2)}+U_{(3)}-U_{(4)}\right)^{2}>0 \tag{2.4}
\end{equation*}
$$

where $U_{(j)}=U\left(z_{j}\right)(j=1,2,3,4)$. Hence by Lemma 2.3 we see that

$$
S_{R}(U)>S_{R^{\prime}}(\tilde{U}) \geqq S_{R^{\prime}}\left(U^{\prime}\right)
$$

6. $\lim _{m, n \rightarrow \infty} S_{R_{n}}\left(U_{n}-\tilde{U}_{m}\right)=0$. Let R_{0} be an N-ply connected lattice on the z plane ($N \geqq 2$), and $R_{n}(n=1,2, \cdots)$ be the lattice which is obtained by dividing each mesh of R_{n-1} to four equal meshes with half width respectively. Let $\Gamma_{j}(j=0, \cdots$, $N-1)$ be the boundary components of the domain G defining R_{0}, and set $\Lambda_{j}^{n}=\Gamma_{j} \cap R_{n}$ $(j=0, \cdots, N-1 ; n=0,1, \cdots)$. Let $c_{\jmath}(j=1, \cdots, N-1)$ be a system of real numbers being not simultaneously zero. Let $U^{n}(n=0,1, \cdots)$ be a discrete harmonic function on R_{n} which has the boundary property $U^{n}(z)=c_{\jmath}$ for $z \in \Lambda_{\jmath}^{n}\left(j=0, \cdots, N-1 ; c_{0}=0\right)$
respectively. The function U^{n} is continuously continuable to a function \tilde{U}^{n} on G so that for each mesh M of R_{n}

$$
\tilde{U}^{n}=a x y+b x+c y+d \quad(z=x+i y)
$$

on the domain \tilde{M} defining M, where a, b, c and d are so determined that $\tilde{U}^{n}(z)=U^{n}(z)$ for $z \in M$. Especially we can take \widetilde{U}^{n} as a function on $R_{n+j}(j \geqq 0)$.

By Corollary 2.2 we see that

$$
\begin{equation*}
S_{R_{n}}\left(U^{n}-\tilde{U}^{m}, U^{n}\right)=0 \quad(n>m) \tag{2.5}
\end{equation*}
$$

Further by an iteration of the calculation of (2.4) we see that

$$
\begin{equation*}
S_{R_{n}}\left(\tilde{U}^{m}\right)<S_{R_{m}}\left(U^{m}\right) \quad(n>m) \tag{2.6}
\end{equation*}
$$

(2.5) and (2.6) imply that

$$
S_{R_{n}}\left(U^{n}-\tilde{U}^{m}\right)=S_{R_{n}}\left(\tilde{U}^{m}\right)-S_{R_{n}}\left(U^{n}\right)<S_{R_{m}}\left(U^{m}\right)-S_{R_{n}}\left(U^{n}\right) \quad(n>m) .
$$

Hence we have that there exist the limits

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{R_{n}}\left(U^{n}\right)=\lim _{m, n \rightarrow \infty} S_{R_{n}}\left(\tilde{U}^{m}\right) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} S_{R_{n}}\left(U^{n}-\tilde{U}^{m}\right)=0 \tag{2.8}
\end{equation*}
$$

7. Relation between $S_{R}(U)$ and $D_{G}(\tilde{U})$. Let R be an N-ply connected lattice on the z-plane ($N \geqq 2$), and $\Lambda_{j}(j=0, \cdots, N-1)$ be boundary components of R. Let $c_{j}(j=1, \cdots, N-1)$ be a system of real numbers being not simultaneously zero. Let U be a function on R which has the boundary property $U(z)=c_{j}$ for $z \in \Lambda_{j}(j=0, \cdots$, $N-1 ; c_{0}=0$). The function U is continuously continuable to a function \tilde{U} on the domain G defining R by the same method as \tilde{U}^{n} in 6 .

Let M be a mesh of R, let z_{1}, z_{2}, z_{3} and z_{4} be four points of M numbered to the positive oriented direction of M, and let us denote $U\left(z_{j}\right)=U_{(j)}(j=1,2,3,4)$. An elementary calculation yields

$$
\begin{gathered}
D_{\widetilde{M}}(\tilde{U})=\frac{1}{3}\left(\left(U_{(1)}-U_{(2)}\right)^{2}+\left(U_{(2)}-U_{(3)}\right)^{2}+\left(U_{(3)}-U_{(4)}\right)^{2}+\left(U_{(4)}-U_{(1)}\right)^{2}\right. \\
\left.-\left(U_{(1)}-U_{(2)}\right)\left(U_{(3)}-U_{(4)}\right)-\left(U_{(2)}-U_{(3)}\right)\left(U_{(4)}-U_{(1)}\right)\right),
\end{gathered}
$$

where \tilde{M} is the domain defining M. We set

$$
T_{M}(U)=\left(U_{(1)}-U_{(2)}\right)^{2}+\left(U_{(2)}-U_{(3)}\right)^{2}+\left(U_{(3)}-U_{(4)}\right)^{2}+\left(U_{(4)}-U_{(1)}\right)^{2}
$$

Then

$$
\frac{1}{2} T_{M}(U)-D_{\widetilde{M}}(\tilde{U})=\frac{1}{3}\left(U_{(1)}-U_{(2)}+U_{(3)}-U_{(4)}\right)^{2}
$$

Hence we have that

$$
\begin{align*}
S_{R}(U)-D_{G}(\tilde{U}) & =\frac{1}{2} \sum_{M \subset R} T_{M}(U)-\sum_{M \subset R} D_{\widetilde{M}}(\tilde{U}) \\
& =\frac{1}{3} \sum_{M \subset R}\left(U_{(1)}-U_{(2)}+U_{(3)}-U_{(4)}\right)^{2}>0 . \tag{2.9}
\end{align*}
$$

8. $\lim _{n \rightarrow \infty} S_{R_{n}}\left(U^{n}\right)=D_{G}(u)$. With the notations in 6 , let u be a harmonic function on G which has the boundary property $u=c_{j}$ on $\Gamma_{j}(j=0, \cdots, N-1)$. (2. 8) and (2.9) imply that

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} D_{G}\left(\tilde{U}^{n}-\tilde{U}^{m}\right)=0 \tag{2.10}
\end{equation*}
$$

On the other hand, by a consequence of Courant, Friedrichs and Lewy (see pp. 47-54 of [2]) we see that $\left\{\partial \tilde{U}^{n} / \partial x\right\}$ and $\left\{\partial \tilde{U}^{n} / \partial y\right\}$ uniformly converge to the functions $\partial u / \partial x$ and $\partial u / \partial y$ respectively almost everywhere on every compact subregion of G. Hence we obtain that

$$
\lim _{n \rightarrow \infty} D_{G}\left(u-\tilde{U}^{n}\right)=0
$$

which implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} D_{G}\left(\tilde{U}^{n}\right)=D_{G}(u) . \tag{2.11}
\end{equation*}
$$

By (2.4), (2.7) and (2.9) we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{R_{n}}\left(U^{n}\right)=\lim _{n \rightarrow \infty} D_{G}\left(\tilde{U}^{n}\right) \tag{2.12}
\end{equation*}
$$

(2.11) and (2.12) yield that

$$
S_{R_{n}}\left(U^{n}\right) \backslash D_{G}(u) \quad(n \rightarrow \infty)
$$

Lemma 2.6. Let R_{0} be an N-ply connected lattice, let $R_{n}(n=1,2, \cdots)$ be the lattice which is obtained by dividing each mesh of R_{n-1} to four equal meshes with half width respectively, let G be the lattice domain which defines R_{0}, and let Γ_{J} ($j=0, \cdots, N-1$) be boundary components of G. Let $c_{j}(j=1, \cdots, N-1)$ be a system of real numbers being not simultaneously zero. Let $U^{n}(n=0,1, \cdots)$ be a discrete harmonic function on R^{n} respectively which has the boundary property $U^{n}(z)=c_{\text {, }}$ for $z \in \Lambda_{j}^{n}=\Gamma_{j} \cap R_{n}\left(j=0, \cdots, N-1 ; c_{0}=0\right)$, and let u be a harmonic function on G which has the boundary property $u=c_{j}$ on $\Gamma_{j}(j=0, \cdots, N-1)$. Then

$$
S_{R_{n}}\left(U^{n}\right) \searrow D_{G}(u) \quad(n \rightarrow \infty)
$$

9. Monotone convergence theorem of $S_{R_{n}}\left(U^{n}\right)$. Let G be a non-degenerated N-ply connected bounded domain ($N \geqq 2$). For each sufficiently small $h>0$ there exists a maximal N-ply connected lattice domain $G_{0} \subset G$ with mesh width h which has the properties:
(i) A boundary component $\Gamma_{j}^{0}(j=0, \cdots, N-1)$ of G_{0} is homotopic to a boundary component $\Gamma_{J}(j=0, \cdots, N-1)$ of G respectively on G;
(ii) G_{0} defines a lattice R_{0}.

The lattice R_{0} is said to be an inner maximal lattice of G with mesh width h.
Let $\left\{R_{n}\right\}_{n=0}^{\infty}$ be a sequence of inner maximal lattices of G with mesh width $h / 2^{n}$ $(n=0,1, \cdots)$ respectively, and let $G_{n}(n=0,1, \cdots)$ be the domain defining R_{n} respectively. If the sequence $\left\{G_{n}\right\}_{n=0}^{\infty}$ is an exhaustion of G, then $\left\{R_{n}\right\}_{n=0}^{\infty}$ is said to converge to G, denoted by $R_{n} \nearrow G(n \rightarrow \infty)$ (Cf. Opfer [6]).

By Lemmas 1.1, 2.4 and 2.6 we can easily conclude the theorem.
Theorem 2.1. Let G be a non-degenerated N-ply connected bounded domain ($N \geqq 2$), and $\left\{R_{n}\right\}_{n=0}^{\infty}$ be a sequence of inner maximal lattices of G with mesh width $h / 2^{n}(n=0,1, \cdots)$ respectively. Let $\Gamma_{j}(j=0, \cdots, N-1)$ be boundary components of G, and let $\Gamma_{j}^{n}(j=0, \cdots, N-1)$ be boundary components of the domain G_{n} defining R_{n} $(n=0,1, \cdots)$ respectively so determined that Γ_{\jmath}^{n} is homotopic to Γ_{\jmath} on G respectively. Let $c_{j}(j=1, \cdots, N-1)$ be a system of real numbers being not simultaneously zero. Let $U^{n}(n=0,1, \cdots)$ be a discrete harmonic function on R_{n} respectively which has the boundary property $U^{n}(z)=c_{\jmath}$ for $z \in \Lambda_{1}^{n}=\Gamma_{\jmath}^{n} \cap R_{n}\left(j=0, \cdots, N-1 ; c_{0}=0\right)$, and let u be a harmonic function on G which has the boundary property $u=c_{\jmath}$ on $\Gamma_{\jmath}(j=0, \cdots$, $N-1$). Then

$$
S_{R_{n}}\left(U^{n}\right)>D_{G}(u) \quad(n=0,1, \cdots),
$$

and if $R_{n} \nearrow G(n \rightarrow \infty)$,

$$
S_{R_{n}}\left(U^{n}\right) \searrow D_{G}(u) \quad(n \rightarrow \infty) .
$$

Corollary 2.4. With the notations of Theorem 2.1 , let $U_{j}^{n}(j=1, \cdots, N-1)$ be a discrete harmonic measure of Λ_{j}^{n} on $R_{n}(n=0,1, \cdots)$ respectively, and $\sigma_{j k}(j, k=1$, $\cdots, N-1)$ be the system of modified periodicity moduli of G. Then

$$
S_{R_{n}}\left(U_{j}^{n}+U_{k}^{n}\right)>\sigma_{j k} \quad(j, k=1, \cdots, N-1 ; n=0,1, \cdots),
$$

and if $R_{n} / G(n \rightarrow \infty)$,

$$
S_{R_{n}}\left(U_{j}^{n}+U_{k}^{n}\right) \backslash \sigma_{j k} \quad(n \rightarrow \infty ; j, k=1, \cdots, N-1) .
$$

$\S 3$. Monotone convergence of periodicity moduli.

1. Period of conjugate discrete harmonic function. Let M be a mesh $\{z, z+h, z+i h, z+h(1+i)\}$ in L_{h}. The point $z+h(1+i) / 2$ is said to be a middle point of M. A middle point z_{1} is said to be neighboring to a middle point z_{2}, if $\left|z_{1}-z_{2}\right|$ $=h$. Let R be a lattice with mesh width h, and let U be a discrete harmonic function on R. Let γ be a Jordan curve which consists of the segments each of which joins two neighboring middle points of meshes of R, and let $z_{0}, z_{1}, \cdots, z_{\mathrm{t}}=z_{0}$ be the middle points through which γ runs and which are numbered successively in positive direction of γ. Then the points

$$
z_{j_{r}}=\frac{z_{j-1}+z_{j}}{2}+i \frac{z_{j-1}-z_{j}}{2} \quad \text { and } \quad z_{\jmath_{l}}=\frac{z_{j-1}+z_{j}}{2}+i \frac{z_{j}-z_{j-1}}{2} \quad(j=1, \cdots, \iota)
$$

belong to R. We set

$$
\delta t_{(j)}=U\left(z_{j_{r}}\right)-U\left(z_{j_{l}}\right) \quad(j=1, \cdots, \ell)
$$

and

$$
t_{r}=\sum_{j=1}^{i} \delta t_{(j)} .
$$

Lemma 3.1. (Cf. Satz 1 of Opfer [6].) If γ and γ^{\prime} are two Jordan curves defined as above and which are homotopic each other on the domain G defining R, then $t_{r}=t_{r^{\prime}}$.

Proof. It is immediately shown by making use of Corollary 2.3.
t_{r} is said to be a period of the conjugate discrete harmonic function of U along γ.
2. Periodicity moduli of N-ply connected lattice. Let R be an N-ply connected lattice ($N \geqq 2$), and let $\Lambda_{j}(j=0, \cdots, N-1)$ be its boundary components. Let U_{j} ($j=0, \cdots, N-1$) be the discrete harmonic measure of Λ_{j} on R respectively. Let γ_{j} ($j=0, \cdots, N-1$) be a Jordan curve which consists of the segments each of which joins two neighboring middle points of meshes of R, and which is homotopic to Γ_{J} respectively on the domain G defining R, where Γ_{ρ} is a boundary component of G such that $\Gamma_{j} \cap R=\Lambda_{j}$. By $t_{j k}(j, k=0, \cdots, N-1)$ we denote the period of the conjugate discrete harmonic function of U_{J} along γ_{k} respectively. By Lemma 3.1, $t_{j k}$ is independent of a particular choice of γ_{k}. It is immediately seen that

$$
\sum_{j=0}^{N-1} t_{j k}=0 \quad(k=0, \cdots, N-1) .
$$

Furthermore by Corollary 2.1 we see that

$$
\begin{equation*}
S_{R}\left(U_{\jmath}, U_{k}\right)=S_{R}^{\circ}\left(U_{\jmath}, U_{k}\right)=\sum_{z_{n} \in A_{\jmath}}\left(\kappa U_{k(n)}-\sum_{p=1}^{\kappa} U_{k\left(n l_{p}\right)}\right)=t_{k \jmath} \tag{3.1}
\end{equation*}
$$

which implies

$$
t_{j k}=t_{k j} \quad(j, k=0, \cdots, N-1),
$$

where $U_{k(n)}=U_{k}\left(z_{n}\right)$. The collection of $t_{j k}(j, k=1, \cdots, N-1)$ is said to be a system of periodicity moduli of R. Furthermore a system of modified periodicity moduli of R is defined by a collection of quantities

$$
s_{j k} \equiv S_{R}\left(U_{j}+U_{k}\right)=t_{j j}+2 t_{j k}+t_{k k} \quad(j, k=1, \cdots, N-1) .
$$

By Corollary 2.1 we see that $s_{j k}$ is a period of the conjugate discrete harmonic
function of $U_{j}+U_{k}$ along $\gamma_{j}+\gamma_{k}$ respectively.
3. Monotone convergence theorem of periodicity moduli.

Theorem 3.1. Under the same condition as Theorem 2.1, the following hold:

$$
\begin{equation*}
\sum_{j, k=1}^{N-1} c_{j} c_{k} t_{j k}^{n}>\sum_{j, k=1}^{N-1} c_{j} c_{k} \tau_{j k} \quad(n=0,1, \cdots) \tag{i}
\end{equation*}
$$

(ii) If $R_{n} \nearrow G(n \rightarrow \infty)$, then

$$
\sum_{j, k=1}^{N-1} c_{j} c_{k} t_{j k}^{n} \searrow \sum_{j, k=1}^{N-1} c_{j} c_{k} \tau_{j k} \quad(n \rightarrow \infty)
$$

where by $t_{j k}^{n}(j, k=1, \cdots, N-1)$ and $\tau_{j k}(j, k=1, \cdots, N-1)$ we denote the systems of periodicity moduli of R_{n} and G respectively.

Proof. When we note that in Theorem 2.1

$$
S_{R_{n}}\left(U^{n}\right)=\sum_{j, k=1}^{N-1} c_{j} c_{k} t_{j k}^{n} \quad \text { and } \quad D_{G}(u)=\sum_{j, k=1}^{N-1} c_{j} c_{k} \tau_{j k}
$$

because of (3.1), Theorem 2.1 implies the present theorem.
When we set $c_{J}=c_{k}=1$ and $c_{l}=0 \quad(l \neq j, k)$ in Theorem 3.1, we obtain the corollary.

Corollary 3.1. With the notations of Theorem 3.1 , let $s_{j k}^{n}(j, k=1, \cdots, N-1)$ and $\sigma_{j k}(j, k=1, \cdots, N-1)$ be the systems of modified periodicity moduli of R_{n} and G respectively. Then the following hold:

$$
\begin{equation*}
s_{j k}^{n}>\sigma_{j k} \quad(j, k=1, \cdots, N-1 ; n=0,1, \cdots) \tag{i}
\end{equation*}
$$

(ii) If $R_{n} \nearrow G(n \rightarrow \infty)$, then

$$
s_{j k}^{n} \searrow \sigma_{j k} \quad(n \rightarrow \infty ; j, k=1, \cdots, N-1)
$$

and thus

$$
t_{j k}^{n} \rightarrow \tau_{j k} \quad(n \rightarrow \infty ; j, k=1, \cdots, N-1)
$$

If $N=2$, then Theorem 3.1 and Corollary 3.1 coincide to Satz 7 of Opfer [6].

References

[1] Collatz, L., The numerical treatment of differential equations. 3rd ed. SpringerVerlag, Berlin-Göttingen-Heidelberg (1960).
[2] Courant, R., K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann, 100 (1928), 32-74,
[3] Lelong-Ferrand, J., Représentation conforme et transformations à intégrale de Dirıchlet bornée. Gauthier-Villars, Parıs (1955).
[4] Milne, W. E., Numerical solution of differential equations. Wiley \& Sons, New York-London (1953).
[5] Opfer, G., Untere, beliebıg verbesserbare Schranken für den Modul eines zweifach zusammenhängenden Gebietes mit Hilfe von Differenzenverfahren. Dissertation, Hamburg (1967).
[6] Opfer, G., Die Bestimmung des Moduls zweifach zusammenhängender Gebiete mit Hilfe von Differenzenverfahren, Arch. Rat. Mech. Anal. 32 (1969), 281297.

School of Engineering,
Okayama University.

