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AN APPLICATION OF GREEN'S FORMULA OF A DISCRETE
FUNCTION: DETERMINATION OF

PERIODICITY MODULI, I

BY HISAO MIZUMOTO

Introduction. Recently Opfer published a very interesting result [6] (also cf.
[5]) in which he concerned himself with the problem of determining the modulus
of a doubly connected domain by means of the difference method.

In the present paper we shall consider a corresponding problem for a general
multiply connected domain. It is known that for a non-degenerated N-ply con-
nected domain (W^2) there exist N(N—ϊ)/2 quantities which are said to be
periodicity moduli of the domain, which are conformally invariant, and which have
an important meaning in the function theory. We shall concern ourselves with
the problem of determining the system of periodicity moduli by means of the
difference method (cf. Theorem 3.1 and Corollaries 2. 4, 3.1).

Our method making effective use of Green's formula of a discrete function
admits to deal with our problem by a unified principle. Also for a harmonic
function u and a discrete harmonic function U on a domain G and a lattice R
respectively which are constant on each boundary component of G and R, the
monotonicity of the Dirichlet integral DG(u) and the summation SR(U) (see §2. 2)
with respect to G and R is effectively utilized (cf. Lemmas 1.1, 2. 4, 2. 5 and 2. 6,
and Theorem 2.1).

For N=2 our main results (Theorem 3.1 and Corollary 3.1) coincide to Opfer's
(Satz 7 of [6]). However even such a special case our method is deferent from
his and is more simplified.

§ 1. Periodicity moduli of multiply-connected domain.

1. Periodicity moduli. Let G be an TV-ply connected bounded domain on a
complex 2-plane (z=x+iy\ where N ̂ 2. If there exists a boundary component of
G consisting of a point, then G is said to be degenerated. A domain G being not
degenerated is said to be non-degenerated. Let Γ0, •••, ΓN-ι be boundary components
of a non-degenerated domain G, and set Γ=\J^Γj.

Let Uj (j=Q, ,N~l) be a harmonic measure of Γ 3 on G respectively which
is defined as a harmonic function on G which has the boundary property
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ίl on Γj,
Uj=\

10 on Γ-Γ,.

Let uf 0"=0, '-,N— 1) be a conjugate harmonic function of u3 on G respectively
which is multi-valued. Let γ3 (/=0, •••, TV— 1) be a piece wise analytic Jordan curve
in G homotopic to Γ3 respectively. We define

which is independent of a particular choice of γk, where by d/dn and ds we denote
the inner normal derivative on γk and the line element of γic respectively.

It is easy to see the relations

.7=0

and

τjk (j,k = l,~ ,N—l) is said to be a system of periodicity moduli of G, and the
matrix (rj fc)<;,fc=ι,...,^-ι is said to be a matrix of periodicity moduli of G, which is
symmetric and positive definite.

The following theorem is well known.

THEOREM 1. 1. Let G and G' be two non- degenerated N-ply connected bounded
domains. Let Γ 3 0/=0, - ,N— 1) and Γ'3 O'=0, •••, N— 1) be the boundary components
of G and G' respectively. Then G is conformally equivalent to G' so that Γ 3

corresponds to Γ'3 respectively if and only if

τjk = τfik U,k = l, •-, N—l),

where τj1c (j,k = l,~ ,N—ϊ) and τf

jk (j, k = l, --,N— 1) are the systems of periodicity
moduli of G and G' respectively.

The sufficiency in Theorem 1. 1 is called the Torelli theorem.

REMARK. It is known that for each non-degenerated TV-ply connected domain
there exists a system of 1 (N=2) or 3 N— 6 (Λ/^3) real parameters as follows:

Two domains are conformally equivalent each other if and only if the systems
of real parameters for the domains coincide with each other.
Because a number of different periodicity moduli is N(N—Ϊ)I2, we see that for
Λ/^5 there exists yet a dependency among the periodicity moduli.

Let us define

(1. 1) σjk=Da(uj+uk)=( d(u*+uί) = τjj+2τjk+τkk (j,k = l, - N—l),
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where by DG(u) we denote the Dirichlet integral of a function u over G. Obviously
σjk>0, σjk=σkj and a3]=kc33 (j, k = l, •-•, N— 1). σjk ( j , k = l, ~',N—l) is said to be
a system of modified periodicity moduli. Obviously the system σjk (j, k = I, •••, N— 1)
is found from the system τjk (j,k=l, •• ,ΛΓ— 1), and vice versa.

2. Monotonicity. With the notations in 1, let {Gn}%=0 be an exhaustion of a
non-degenerated TV-ply connected bounded domain G (N^2) such that a boundary
component Γn

3 (j=Q, - , N—I) of each Gn consists of a piecewise analytic Jordan
curve and Γn

3 is homo topic to Γ3 on G respectively. Let un

3 O'=0, ~,N— 1) be the
harmonic measure of ΓJ on Gw (n=Q, 1, •••) respectively. Let τn

jk (j, k = 1, ~,N— l)be the
system of periodicity moduli of Gw («=0, 1, •••) respectively, and σn

jk (j, k = I, ~ ,N— 1)
be the system of modified periodicity moduli of Gn (#=0,1, •••) respectively.

LEMMA 1. 1. Let Ci, •••, CΛ -I ^ ^ system of real numbers being not simultane-
ously zero. Then

(1-2) Σ cjckτfk> Σ cjwh (n>m)
J,k=l j,k=l

and

N-l N-l

(1- 3) Σ CjCkτ?k\ Σ CjCkτjk («-»oo).
J,*=l J,*=l

Proof. It is due to a standard method. Set

ΛΓ— 1

^— Σ CM-
J=l J=ί

Then

The equality

on

(n>m; Γn=

implies

which implies (1.2) and the strong convergence of un to u; limn.>00DGn(u—un')=Q,
where by DGm(um, un) we denote the mixed Dirichlet integral of um and un over
Gm. Analogously we see that

DGn(u - un) = DGn(un) - DG(u) - Dβ-Gn(u).
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Hence

DGn(un)\DG(u) (»-*oo).

When we set Cj = Ck=l and cι=Q (l^j, k) in Lemma 1. 1, we obtain the corollary.

COROLLARY 1. 1.

( i )

(ϋ)

(iii) τ"t-*r/* (»->oo).

§2. Monotone convergence of summation SR(U).

1. Definitions. By Lh we denote the set {h(m+in)\mtn: integers} (A>0) on
the 2-plane (2=0?+^). By a m^sA M in Lh we call a set {z,z+h,z+ih,z+h(l+i)}
for a point ^cL^. Let G be a non-degenerated bounded domain on the 2-plane of
which the boundary consists of the segments each of which joins two points of
Lh and is parallel to one of the coordinate axes. Then G is said to be a lattice
domain with mesh width h. Obviously a lattice domain with mesh width h is one
with mesh width hjn for each positive integer n.

Let G be an TV-ply connected lattice domain with mesh width h, Γ0 (y=0, •••, JV— 1)
be boundary components of G and set Γ=[J^~0

lΓj. We set R=GnLh, G being the
closure of G. The sets Λ=ΓnR, Λ j = Γ j Γ ( R (j=Q, •»,#-!) and R°=R-A are said
to be the boundary of Rt the boundary components of R and the interior of R
respectively. Here we agree that a point of R, A and Λj (j=Q, •••, TV— 1) respectively
through which Γ runs for k- times, is counted for k- times. A point zeR° is said
to be an inner point of R and a point zzΛ is said to be a boundary point of R.
When J?° is connected (see p. 345 of Collatz [1] for the definition), R is said to be
a lattice with mesh width h. If G is TV-ply connected, then R is said to be N-pίy
connected. A point zsLh is said to be neighboring to a point z'$Lh or is said to
be a neighboring point of 2', if \z—z'\=h.

Let ^ be a lattice with mesh width h, and let U be a real function on R.
Let 20 be an inner point of R, and z3 O'=l, 2, 3, 4) be four neighboring points of
z0. If the equation

(2. 1) 4C7Co)-(C/'

holds for every z^R0, then £7 is said to be discrete harmonic on R, where ί/^ = U(zj)

(;=o,-,4).

2. Green's formula. Let 7? be an TV-ply connected lattice with mesh width h,
let Λ be its boundary, and let Γ be the boundary of the domain G which defines
R. Let {zn}n=ι be the set of points of R, and let {zn}ί=ι (μ<v) be the set of points
of R°. Let U and U' be functions on R, and set U^ = ϋ(zn) and U'w = U'(zn)
(n=l, •••, y). We consider a bilinear form
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SR(U, U>)= Σ (Z7cm)- E/ c«>)

Furthermore, we consider the partial sum SR(U, U') of SR(U, Ur) which is obtained
by elimination of the terms with respect to two points neighboring along the
boundary Γ. Here a point zmsΛ is said to be neighboring to a point znsΛ along
Γ if and only if \zm—zn\=h and the segment i^cΓ. If U or Uf is constant on
each boundary component A3 (j=0, ~,N— 1) of R, then we see immediately that

SR(U, U')=SR(U, U').

Furthermore by SR(U) and SR(U) we denote SR(U, U) and SR(U, U) respectively.

LEMMA 2. 1. (Cf. pp. 34-36 of Courant, Friedrichs and Lewy [2].) Let U and
U f be two functions on a lattice R. Then the formula

Si(U, U

(2. 2)

U = μ+l

holds. Here znj (j=l, 2,3,4) are four neighboring points of zn, znιk (k=l, --,κ;
£=0,1,2, or 3) are the points of R neighboring to zn which lie on the left of zn

with respect to the oriented curve Γ and which are not neighboring to zn along Γ,
and the summation corresponding to κ—0 is taken to be vacuous.

COROLLARY 2.1. If U' in Lemma 2. 1 is discrete harmonic, then

S°R(U, t/') =

COROLLARY 2. 2. If U is a function on R with the boundary property
for zsΛ, and U' is a discrete harmonic function on R, then

(2.3) Sn(U,U')=S&U,U')=0.

Conversely, if a function U' on R satisfies the relation (2. 3) for every function U
on R with the boundary property U(z)=0 for zzΛ, then Uf is discrete harmonic
on R.

Proof. The first assertion is obvious by Corollary 2.1.
If there existed a point zm$R° such that U^+U^ + U^+U^-W'^^Q,

then we would choose the function U so that ί7(m)=l and £/cw )=Ofor each zn*?zm,
and by Lemma 2.1 we would see that SR(U, U')=SR(U, U')*Q.

COROLLARY 2. 3. If U is a discrete harmonic function on Ry then

Σ (tfί/oo— Σ Z7cnzA>) =0.
n=μ+l \ fc=l /
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3. Boundary value problem, Minimum problem.

LEMMA 2. 2. (Cf. pp. 203-207 of Milne [4].) Let f be an arbitrarily given
function on the boundary Λ of a lattice R. Then there exists one and only one
discrete harmonic function U on R which has the boundary property U(z) =f(z) for

Let R be an TV-ply connected lattice (TV^2), and let A3 C/=0, •••, TV-1) be its
boundary components. A discrete harmonic function U3 0/=0, •••, TV— 1) on R which
has the boundary property

Γl for
\
10 for zsA-Aj (A=\J?-0

lAj),

is said to be a discrete harmonic measure of A3 on R respectively.

LEMMA 2. 3. (Cf. p. 206 of Milne [4].) Let W be a function on a lattice R, and
let U be a discrete harmonic function on R with the boundary property U(z) = W(z)
for zzA. Then the inequality

holds, where the equality appears if and only if W= U.

Lemmas 2. 2 and 2. 3 can be also easily proved by making use of Corollary 2. 2.

4. Monotonicity with respect to lattices with common mesh width. Let R!
and R2 be two TV-ply connected lattices (TV^2) which have the properties:

(i) Ri and R2 have a common mesh width Λ;
(ii) #ιC#2;
(iii) A boundary component Γ] (j=Q, •••, N— 1) of Gi is homo topic to a boundary

component Γ] C/=0, •••, N— 1) of G2 respectively on G2, where GI and G2 are the
lattice domains which define R! and R2 respectively.

LEMMA 2. 4. Let Rι and R2 be the lattices defined as above. Let c3 C/=l, •••,
TV— 1) be a system of real numbers being not simultaneously zero. Let Uk (k = I,2)
be a discrete harmonic function on Rjc respectively which has the boundary property

Uk(z)=cj for z€Λ5=Γ5nfo 0'=0,-,^-l; c0=0).

Then the inequality

holds.

Proof. We continue U1 to R2 by setting U\z)=Cj for each point z of R2

between Γ] and Γj (j=Q, •••, N— 1) respectively. Then by Lemma 2. 3
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5. Monotonicity with respect to subdivision of meshes. Let R be an JV-ply
connected lattice (N^2), and let R' be the lattice which is obtained by dividing
each mesh of R to four equal meshes with half width respectively. Let A3

(j=Q,'~,N—l) and Λj (j=Q, ,N—l) be boundary components of R and R'
respectively with

LEMMA 2. 5. (Cf. p. 163 of Lelong-Ferrand [3].) Let R and Rf be the lattices
defined as above. Let c3 (j=l,- ,N—l) be a system of real numbers being not
simultaneously zero. Let U and Ur be discrete harmonic functions on R and Rf

respectively which have the boundary properties

Cj for z s Λ j C/=0, •• ,ΛΓ-1; c0=0)

and

U'(z)=Cj for zsΛ'3 (j = 0,' ,N-l; c0 = 0).

Then

SR(U}>SR,(Uf).

Proof. Our proof of which a part is used afterward, is due to Opfer (see Satz
4 of [6]).

The function U is continuously continuable to a function 0 on the domain G
definining R so that for each mesh Λf of R

U=axy+bxJ

Γcy+d (z=x+iy)

on the domain M defining M, where a, b, c and d are so determined that U(z)= U(z)
for zsM. Especially we can take 0 as a function on Rf. Let zl} z2, ZB and 24 be
four points of M numbered to the positive oriented direction of M. Then an
elementary calculation yields

(2. 4) &(#)-&*(#)=-£• Σ

where Uφ=U(zj) (./=1, 2, 3, 4). Hence by Lemma 2.3 we see that

6. limm,n_>00SRn(Un—Um)=0. Let R0 be an JV-ply connected lattice on the z-
plane (N^2), and Rn (n—l,2, •••) be the lattice which is obtained by dividing each
mesh of Rn-ι to four equal meshes with half width respectively. Let Γ3 (/=0, •••,
N—l) be the boundary components of the domain G defining Ro, and set A^=Γj ί~]Rn

(j=Q,'-,N—l', w=0, !,•••)• Let Cj (j = l, --,N— 1) be a system of real numbers
being not simultaneously zero. Let Un (n=Q, !,-••) be a discrete harmonic function
on Rn which has the boundary property Un(z)=Cj for ^e^ (y=0, •••, JV— 1; c0=0)
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respectively. The function Un is continuously continuable to a function Un on G
so that for each mesh M of Rn

Un=axy+bx+cy+d (z=x+iy)

on the domain M defining M, where a, b, c and d are so determined that Un(z)= Un(z)
for zsM. Especially we can take Un as a function on Rn+J G/^0).

By Corollary 2. 2 we see that

(2. 5) SRn(Un-Um, Un)=0 (n>m).

Further by an iteration of the calculation of (2. 4) we see that

(2. 6) SRn(Um)<SRm(Um) (n>m\

(2. 5) and (2. 6) imply that

SRn(Un-Um)=SRn(Um)-SRn(Un)<SRm(Um)-SRn(Un) (n>m\

Hence we have that there exist the limits

(2.7) limSΛre(ί7n)=limSΛn(#ro)
n-+oo m,w— >oo

and

(2.8) limSRn(Un-Om)=Q.
w,n-»oo

7. Relation between SR(U) and DG(U). Let R be an ΛΓ-ply connected lattice
on the z-plane (N^2), and A3 (;=0, ••-, N— 1) be boundary components of J?. Let
cj (y=l, •••, A/"— 1) be a system of real numbers being not simultaneously zero. Let
ί/ be a function on 7? which has the boundary property U(z)=c3 for zeΛj 0/=0, •••,
JV— 1; Co=0). The function U is continuously continuable to a function /7 on the
domain G defining R by the same method as Un in 6.

Let M be a mesh of R, let zi, 22, zs and 24 be four points of M numbered to
the positive oriented direction of M, and let us denote U(zj)=Uφ (y=l, 2, 3, 4).
An elementary calculation yields

where M is the domain defining M. We set

T^tf)=(tfα)-%))2+(tf(2)-%)^

Then
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Hence we have that

DG(0)=~
•ώ

(2.9)

= 4- Σ (Uw-U(*>+um-uwγ>o.
O MCR

8. limn->ooSRn(Un)=DG(u). With the notations in 6, let u be a harmonic func-
tion on G which has the boundary property U=GJ on Γ3 C/=0, •• ,ΛΓ—1). (2.8)
and (2. 9) imply that

(2.10) lim DG(Un-Um)=0.
m,n—»oo

On the other hand, by a consequence of Courant, Friedrichs and Lewy (see pp.
47-54 of [2]) we see that {3Un/dx} and {8Un/dy} uniformly converge to the functions
dujdx and du/dy respectively almost everywhere on every compact subregion of G.
Hence we obtain that

limDG(u-Un)=0,
W-»oo

which implies that

(2.11) limDG(Un)=DG(u).
n-*oo

By (2. 4), (2. 7) and (2. 9) we see that

(2.12) lim SBn( Un)=lim Da(0n).
n—>oo n—»oo

(2.11) and (2.12) yield that

SRn(Un)\DG(u) (n-κx>).

LEMMA 2.6. L ί̂ J?0 ^ an N-ply connected lattice, let Rn (n=l, 2, •••) ^ the
lattice which is obtained by dividing each mesh of Rn-ι to four equal meshes with
half width respectively, let G be the lattice domain which defines Ro, and let Γ3

O'=0, •••, N— 1) be boundary components of G. Let c3 (j=Ί9 ,N—l.) be a system
of real numbers being not simultaneously zero. Let Un (n=Q, !,-••) be a discrete
harmonic function on Rn respectively which has the boundary property Un(z)=c3 for
zGΛ"=Γj Γ\Rn (y=0, •••, JV—l;co=0), and let u be a harmonic function on G which
has the boundary property u—c3 on Γ3 (j=Q, •••, N— 1). Then

SRn(Un)\DG(u) (n-*oo).

9. Monotone convergence theorem of SRn(Un). Let G be a non-degenerated
AΓ-ply connected bounded domain (N^2). For each sufficiently small h>0 there
exists a maximal N-ply connected lattice domain G0cG with mesh width h which
has the properties:
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(i) A boundary component Γ] 0"=0, •••, N—l) of G0 is homotopic to a boundary
component Γ3 (j=Q, ~,N—l) of G respectively on G;

(ii) Go defines a lattice R0.
The lattice 7?0 is said to be an inner maximal lattice of G with mesh width h.

Let {Rn}n=o be a sequence of inner maximal lattices of G with mesh width h/2n

(«=0, !,•••) respectively, and let Gn (n=Q, !,-••) be the domain defining ^w re-
spectively. If the sequence {Gw}£=0 is an exhaustion of G, then {Rn}n=o is said to
converge to G, denoted by Rn/G (n—>oo) (Cf. Opfer [6]).

By Lemmas 1. 1, 2. 4 and 2. 6 we can easily conclude the theorem.

THEOREM 2. 1. Let G be a non-degenerated N-ply connected bounded domain
(Λ^2), and {Rn}n=Q be a sequence of inner maximal lattices of G with mesh width
h/2n (#=0, 1, •••) respectively. Let Γ3 (y=0, --,N— 1) £0 boundary components of G,
dwJ /#£ jΓJ O'=0, " ,N— 1) £0 boundary components of the domain Gn defining Rn

(n=Q,l, •••) respectively so determined that Γn

3 is homotopic to Γ3 on G respectively.
Let Cj (j=l,'-,N—l) be a system of real numbers being not simultaneously zero.
Let Un (n=Q, !,-••) be a discrete harmonic function on Rn respectively which has
the boundary property Un(z)=c3 for zsA*i=F;t\Rn (j=Q,—,N—l;c0=Q), and let u
be a harmonic function on G which has the boundary property u=Cj on Γ3 (j— 0, •••,
N-l). Then

SRn(Un)>DG(u) (n=0,l,- ),

and if Rn/G («-*oo),

SRn(Un)\DG(u) (n-oo).

COROLLARY 2. 4. With the notations of Theorem 2. 1, let Όn

3 (j=l, •••, N— 1) ̂
a discrete harmonic measure of Λj on Rn (n=Q, 1, •••) respectively, and σ3κ ( j , k = l,
•-,N—1) be the system of modified periodicity moduli of G. Then

and if Rn/G («-*oo),

§3. Monotone convergence of periodicity moduli.

1. Period of conjugate discrete harmonic function. Let M be a mesh
{z,z+h,z+ih,z+h(L+ϊ)} in LΛ. The point z+h(l+i)/2 is said to be a middle point
of M A middle point 21 is said to be neighboring to a middle point 22, if \Zι— z2

=h. Let R be a lattice with mesh width h, and let U be a discrete harmonic
function on R. Let 7 be a Jordan curve which consists of the segments each of
which joins two neighboring middle points of meshes of R, and let z0ίzlt •• ,zt=z0

be the middle points through which γ runs and which are numbered successively
in positive direction of γ. Then the points
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-i Zj-ι — Zj - Zj-ι+Zj Zj—Zj-ι . Λ .
zjr= - - -- \-ι - - - and zn= - 2 -- *" -

belong to R. We set

and

LEMMA 3. 1. (Cf. Satz 1 of Opfer [6].) // γ and γf are two Jordan curves
defined as above and which are homotopic each other on the domain G defining R,
then tr=trf.

Proof. It is immediately shown by making use of Corollary 2. 3.

tr is said to be a period of the conjugate discrete harmonic function of U
along γ.

2. Periodicity moduli of N-ply connected lattice. Let R be an ΛΓ-ply connected
lattice (N^2), and let Λ3 0/=0, •••, N—l) be its boundary components. Let Uj
(.7=0, ~ ,N— 1) be the discrete harmonic measure of A3 on R respectively. Let γj
(y=0, •• ,JV— 1) be a Jordan curve which consists of the segments each of which
joins two neighboring middle points of meshes of R, and which is homotopic to Γ 3

respectively on the domain G defining R, where Γ3 is a boundary component of G
such that Γ j Γ ι R = Λ j . By tjk (j,k=Q,—,N—l) we denote the period of the conju-
gate discrete harmonic function of U3 along γk respectively. By Lemma 3. 1, tjk is
independent of a particular choice of γk. It is immediately seen that

.7=0

Furthermore by Corollary 2. 1 we see that

(3. 1) SR(U3, Uk)=S°R(UJf Uύ= Σ

which implies

where Uk^ = Uk(zn). The collection of tjk (j, k=l, •• ,ΛΓ— 1) is said to be a system
of periodicity moduli of R. Furthermore a system of modified periodicity moduli
of R is defined by a collection of quantities

By Corollary 2. 1 we see that s/fc is a period of the conjugate discrete harmonic
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function of Uj+U* along γj+γ* respectively.

3. Monotone convergence theorem of periodicity moduli.

THEOREM 3.1. Under the same condition as Theorem 2.1, the following hold:

N-l N-l

(i) Σ CjCkt
n

ίk> Σ
j,k=l j,k=l

(ii) If Rn/G (w->oo), then

N-l N-l

Σ cjcktjk\ Σ
j,k=l /,*=!

where by tfk (j, k=l, •• ,ΛΓ— 1) and τjk (j, k—\, •••, N— 1) we denote the systems of
periodicity moduli of Rn and G respectively.

Proof. When we note that in Theorem 2.1

S*n( Z7")= Nϊί cjCkηk and />(?(«) - NΣ Wtτj*
• j,k=l j,k=l

because of (3.1), Theorem 2.1 implies the present theorem.

When we set Cj=ck = l and cι=Q (l*?j,k) in Theorem 3.1, we obtain the
corollary.

COROLLARY 3.1. With the notations of Theorem 3.1, let s^ (j,k=\, --,N—1)
and Ojk (j,k=\, •••, JV—1) be the systems of modified periodicity moduli of Rn and
G respectively. Then the following hold:

(i) s*}k>σjk (j,k = l,-,N-l; Λ = 0,l,-);

(ii) If Rn/G (n-*oo\ then

s#\σjk (̂ -^oo; j9k = l,—,N—ϊ),

and thus

t]«-»τjk (H-+OO-, j,k = l, ;N-ΐ).

If N=2, then Theorem 3.1 and Corollary 3.1 coincide to Satz 7 of Opfer [6].
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