DEFICIENCIES OF AN ENTIRE ALGEBROID FUNCTION, II

By Kiyoshi Niino and Mitsuru Ozawa

§1. It is well known that there is a big gap between two notions of exceptional values in Picard's sense and in Nevanlinna's. This is still true for an algebroid case in general. The authors [2], however, have obtained some curious results for a two- or three-valued entire algebroid function. A typical one is the following:

Let $f(z)$ be a two-valued entire transcendental algebroid function and a_{1}, a_{2} and a_{3} be different finite numbers satisfying

$$
\sum_{j=1}^{3} \delta\left(a_{j}, f\right)>2 .
$$

Then at least one of $\left\{a_{j}\right\}$ is a Picard exceptional value of f.
Here the curiosity lies in the fact that the condition only on the deficiencies implies the existence of a Picard exceptional value in the two-valued case.

In this paper we shall prove the following results.
Theorem 1. Let $f(z)$ be a four-valued entire transcendental algebroid function defined by an irreducible equation

$$
F(z, f) \equiv f^{4}+A_{3} f^{3}+A_{2} f^{2}+A_{1} f+A_{0}=0,
$$

where A_{ρ} are entire. Let $a_{j}, j=1, \cdots, 6$ be different finite numbers satisfying $\sum_{j=1}^{6} \delta\left(a_{j}, f\right)>5$, where $\delta\left(a_{j}, f\right)$ indicates the Nevanlinna-Selberg deficiency of f at a_{j}. Further assume that any two of $\left\{F\left(z, a_{j}\right)\right\}$ are not proportional. Then two of $\left\{a_{j}\right\}$ are Picard exceptional values of f.

In this theorem the non-proportionality condition for every pair of $\left\{F\left(z, a_{j}\right)\right\}$ cannot be omitted. We shall give a counter example showing this fact in $\S 4$.

Theorem 2. Let $f(z)$ be the same as in the above Theorem 1. Let $\left\{a_{j}\right\}_{j=1}^{7}$ be different finite complex numbers satisfying

$$
\sum_{j=1}^{7} \delta\left(a_{j}, f\right)>6 .
$$

Then at least three of $\left\{a_{j}\right\}$, say a_{1}, a_{2} and a_{3}, are Picard exceptional values of f. Further then $\delta\left(a_{4}, f\right)=\delta\left(a_{5}, f\right)=\delta\left(a_{6}, f\right)=\delta\left(a_{7}, f\right)>3 / 4$ and if there is another deficiency of f at a_{8}, then

Received December 1, 1969.

$$
\delta\left(a_{8}, f\right) \leqq 1-\delta\left(a_{7}, f\right)<\frac{1}{4} .
$$

§ 2. Proof of Theorem 1. We put

$$
g_{j}(z)=F\left(z, a_{j}\right), \quad j=1, \cdots, 6
$$

and assume that all $g_{j}(z), j=1, \cdots, 6$ are transcendental.
We firstly have

$$
\begin{equation*}
\sum_{j=1}^{5} \delta\left(a_{j}, f\right)>4 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}=1 \tag{2}
\end{equation*}
$$

where

$$
\alpha_{j}=1 / \prod_{k=1, k \neq j}^{5}\left(a_{j}-a_{k}\right), \quad j=1, \cdots, 5 .
$$

Applying the method in the proof of Theorem 1 in [2] to our case, we have the linear dependency of $\left\{g_{j}\right\}_{j=1}^{5}$, that is

$$
\begin{equation*}
\alpha_{1}{ }^{\prime} g_{1}+\alpha_{2}{ }^{\prime} g_{2}+\alpha_{3}{ }^{\prime} g_{3}+\alpha_{4}{ }^{\prime} g_{4}+\alpha_{5}{ }^{\prime} g_{5}=0 \tag{3}
\end{equation*}
$$

with constants $\left\{\alpha_{j}{ }^{\prime}\right\}$ not all zero. Here at least two of $\left\{\alpha_{j}{ }^{\prime}\right\}$ are not zero. Hence we may assume that $\alpha_{4}{ }^{\prime} \alpha_{5}{ }^{\prime} \neq 0$ and $\alpha_{5}{ }^{\prime}=\alpha_{5}$. Eliminating g_{5} from (2) and (3) we have

$$
\left(\alpha_{1}-\alpha_{1}{ }^{\prime}\right) g_{1}+\left(\alpha_{2}-\alpha_{2}{ }^{\prime}\right) g_{2}+\left(\alpha_{3}-\alpha_{3}^{\prime}\right) g_{3}+\left(\alpha_{4}-\alpha_{4}^{\prime}\right) g_{4}=1 .
$$

Since any three of $\left\{\alpha_{j}-\alpha_{j}{ }^{\prime}\right\}$ are not zero simultaneously, it is sufficient to study the following subcases:

Case 1). $\alpha_{1} \neq \alpha_{1}{ }^{\prime}, \quad \alpha_{2} \neq \alpha_{2}{ }^{\prime}, \quad \alpha_{3} \neq \alpha_{3}{ }^{\prime}, \quad \alpha_{4} \neq \alpha_{4}{ }^{\prime}$.
Case 2). $\quad \alpha_{1} \neq \alpha_{1}{ }^{\prime}, \quad \alpha_{2} \neq \alpha_{2}{ }^{\prime}, \quad \alpha_{3} \neq \alpha_{3}{ }^{\prime}, \quad \alpha_{4}=\alpha_{4}{ }^{\prime}$,
(i) $\quad \alpha_{1}{ }^{\prime}=\alpha_{2}{ }^{\prime}=\alpha_{3}{ }^{\prime}=0$,
(ii) $\quad \alpha_{1}{ }^{\prime}=\alpha_{2}{ }^{\prime}=0, \quad \alpha_{3}{ }^{\prime} \neq 0$,
(iii) $\quad \alpha_{1}{ }^{\prime}=0, \quad \alpha_{2}{ }^{\prime} \neq 0, \quad \alpha_{3}{ }^{\prime} \neq 0, \quad \alpha_{3} \alpha_{2}{ }^{\prime}-\alpha_{2} \alpha_{3}{ }^{\prime}=0$,
(iv) $\quad \alpha_{1}{ }^{\prime}=0, \quad \alpha_{2}{ }^{\prime} \neq 0, \quad \alpha_{3}{ }^{\prime} \neq 0, \quad \alpha_{3} \alpha_{2}{ }^{\prime}-\alpha_{2} \alpha_{3}{ }^{\prime} \neq 0$,
(v) $\quad \alpha_{1}{ }^{\prime} \neq 0, \quad \alpha_{2}{ }^{\prime} \neq 0, \quad \alpha_{3}{ }^{\prime} \neq 0, \quad \alpha_{2} \alpha_{1}{ }^{\prime}-\alpha_{1} \alpha_{2}{ }^{\prime}=\alpha_{3} \alpha_{1}{ }^{\prime}-\alpha_{1} \alpha_{3}{ }^{\prime}=0$,
(vi) $\quad \alpha_{1}{ }^{\prime} \neq 0, \quad \alpha_{2}{ }^{\prime} \neq 0, \quad \alpha_{3}{ }^{\prime} \neq 0, \quad \alpha_{2} \alpha_{1}{ }^{\prime}-\alpha_{1} \alpha_{2}{ }^{\prime}=0, \quad \alpha_{3} \alpha_{1}{ }^{\prime}-\alpha_{1} \alpha_{3}{ }^{\prime} \neq 0$,
(vii) $\quad \alpha_{1}{ }^{\prime} \neq 0, \quad \alpha_{2}{ }^{\prime} \neq 0, \quad \alpha_{3}{ }^{\prime} \neq 0, \quad \alpha_{2} \alpha_{1}{ }^{\prime}-\alpha_{1} \alpha_{2}{ }^{\prime} \neq 0, \quad \alpha_{3} \alpha_{1}{ }^{\prime}-\alpha_{1} \alpha_{3}{ }^{\prime} \neq 0$.

Case 3). $\alpha_{1} \neq \alpha_{1}{ }^{\prime}, \quad \alpha_{2} \neq \alpha_{2}{ }^{\prime}, \quad \alpha_{3}=\alpha_{3}{ }^{\prime}, \quad \alpha_{4}=\alpha_{4}{ }^{\prime}$,
(i) $\quad \alpha_{1}{ }^{\prime}=\alpha_{2}{ }^{\prime}=0$,
(ii) $\quad \alpha_{1}{ }^{\prime}=0, \quad \alpha_{2}{ }^{\prime} \neq 0$,
(iii) $\quad \alpha_{1}{ }^{\prime} \neq 0, \quad \alpha_{2}{ }^{\prime} \neq 0, \quad \alpha_{2} \alpha_{1}{ }^{\prime}-\alpha_{2}{ }^{\prime} \alpha_{1}=0$,
(iv) $\quad \alpha_{1}{ }^{\prime} \neq 0, \quad \alpha_{2}{ }^{\prime} \neq 0, \quad \alpha_{2} \alpha_{1}{ }^{\prime}-\alpha_{2}{ }^{\prime} \alpha_{1} \neq 0$.

The cases 1); 2) (ii), (iv), (vi), (vii); 3) (ii), (iv) lead to an identity of the following type
(A)

$$
\lambda_{1} g_{1}+\lambda_{2} g_{2}+\lambda_{3} g_{3}+\lambda_{4} g_{4}=1, \quad \lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} \neq 0 .
$$

The cases 2) (v); 3) (iii) lead to the following type
(B)

$$
\left\{\begin{array}{l}
\lambda_{1} g_{1}+\lambda_{2} g_{2}+\lambda_{3} g_{3}=1, \\
\lambda_{4} g_{4}+\lambda_{5} g_{5}=1, \quad \lambda_{1} \cdots \lambda_{5} \neq 0 .
\end{array}\right.
$$

The case 3) (i) leads to
(C)

$$
\left\{\begin{array}{l}
\alpha_{1} g_{1}+\alpha_{2} g_{2}=1, \\
\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}=0 .
\end{array}\right.
$$

The case 2) (iii) leads to
(D)

$$
\left\{\begin{array}{l}
\alpha_{1} g_{1}+\left(\alpha_{2}-\alpha_{2}^{\prime}\right) g_{2}+\frac{\alpha_{3}}{\alpha_{2}}\left(\alpha_{2}-\alpha_{2}^{\prime}\right) g_{3}=1, \\
\alpha_{1} g_{1}+\frac{\alpha_{4}}{\alpha_{2}^{\prime}}\left(\alpha_{2}^{\prime}-\alpha_{2}\right) g_{4}+\frac{\alpha_{5}}{\alpha_{2}^{\prime}}\left(\alpha_{2}^{\prime}-\alpha_{2}\right) g_{5}=1 .
\end{array}\right.
$$

The case 2) (i) leads to
(E)

$$
\left\{\begin{array}{l}
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}=1, \\
\alpha_{4} g_{4}+\alpha_{5} g_{5}=0 .
\end{array}\right.
$$

By our assumption the case (E) may be omitted.
In the first place we remark that Valiron [3] proved

$$
T(r, f)=\mu(r, A)+O(1),
$$

where $A=\max _{0 \leqq \jmath \leqq 3}\left(1,\left|A_{j}\right|\right)$ and

$$
4 \mu(r, A)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log A d \theta
$$

Further we have

$$
\begin{aligned}
4 \mu(r, A) & =m(r, g)+O(1), \\
g & =\max _{1 \leq j \leq 4}\left(1,\left|g_{j}\right|\right) .
\end{aligned}
$$

The case (A). In this case we have

$$
\sum_{j=1}^{4} \delta\left(a_{j}, f\right)>3
$$

and

$$
4 T(r, f)=m(r, g)+O(1)=m\left(r, g_{1}^{*}\right)+O(1)
$$

where $g_{1}{ }^{*}=\max _{1 \leq \jmath \leq 3}\left(1,\left|g_{j}\right|\right)$. Therefore the reasoning in the proof of Theorem 2 in [2] leads to the following type

$$
\left\{\begin{array}{l}
\lambda_{1} g_{1}+\lambda_{2} g_{2}=1 \tag{4}\\
\lambda_{3} g_{3}+\lambda_{4} g_{4}=0
\end{array}\right.
$$

Further we have

$$
\begin{equation*}
\beta_{1} g_{1}+\beta_{2} g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{6} g_{6}=1 \tag{5}
\end{equation*}
$$

where $\beta_{\jmath}=1 / \Pi_{k=1, k \neq j, 5}^{6}\left(a_{j}-a_{k}\right), j=1,2,3,4,6$. Eliminating g_{1} and g_{3} from (4), (2) and (5), we have

$$
\left\{\begin{array}{l}
\left(\alpha_{2}-\frac{\lambda_{2}}{\lambda_{1}} \alpha_{1}\right) g_{2}+\left(\alpha_{4}-\frac{\lambda_{4}}{\lambda_{3}} \alpha_{3}\right) g_{4}+\alpha_{5} g_{5}=1-\frac{\alpha_{1}}{\lambda_{1}} \\
\left(\beta_{2}-\frac{\lambda_{2}}{\lambda_{1}} \beta_{1}\right) g_{2}+\left(\beta_{4}-\frac{\lambda_{4}}{\lambda_{3}} \beta_{3}\right) g_{4}+\beta_{6} g_{6}=1-\frac{\beta_{1}}{\lambda_{1}}
\end{array}\right.
$$

Since $1-\alpha_{1} / \lambda_{1}$ and $1-\beta_{1} / \lambda_{1}$ are not zero simultaneously, we may assume $1-\alpha_{1} / \lambda_{1} \neq 0$. We consider the following subcases:

$$
\begin{align*}
& \alpha_{2}-\frac{\lambda_{2}}{\lambda_{1}} \alpha_{1}=\alpha_{4}-\frac{\lambda_{4}}{\lambda_{3}} \alpha_{3}=0, \tag{i}\\
& \alpha_{2}-\frac{\lambda_{2}}{\lambda_{1}} \alpha_{1}=0, \quad \alpha_{4}-\frac{\lambda_{4}}{\lambda_{3}} \alpha_{3} \neq 0, \\
& \alpha_{2}-\frac{\lambda_{2}}{\lambda_{1}} \alpha_{1} \neq 0, \quad \alpha_{4}-\frac{\lambda_{4}}{\lambda_{3}} \alpha_{3}=0, \tag{iii}
\end{align*}
$$

(ii)
(iv)

$$
\alpha_{2}-\frac{\lambda_{2}}{\lambda_{1}} \alpha_{1} \neq 0, \quad \alpha_{4}-\frac{\lambda_{4}}{\lambda_{3}} \alpha_{3} \neq 0 .
$$

The case (i) gives trivially a contradiction.
The case (ii) leads to

$$
\left\{\begin{array}{l}
\lambda_{1} g_{1}+\lambda_{2} g_{2}=1 . \\
\left(\alpha_{4}-\frac{\lambda_{4}}{\lambda_{3}} \alpha_{3}\right) g_{4}+\alpha_{5} g_{5}=1-\frac{\alpha_{1}}{\lambda_{1}} .
\end{array}\right.
$$

In this case we have

$$
\delta\left(a_{1}, f\right)+\delta\left(a_{2}, f\right)+\delta\left(a_{4}, f\right)+\delta\left(a_{5}, f\right)>3
$$

and

$$
4 T(r, f)=m\left(r, g_{2}^{*}\right)+O(1)
$$

where $g_{2}{ }^{*}=\max \left(1,\left|g_{1}\right|,\left|g_{4}\right|\right)$. By the reasoning of the case (B) in the proof of Theorem 2 in [2] we arrive at a contradiction.

The case (iii) leads to

$$
\left\{\begin{array}{l}
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{6} g_{5}=1 \\
\alpha_{3} g_{3}+\alpha_{4} g_{4}=0
\end{array}\right.
$$

which is the type of case (E). Hence this case may be omitted by our assumption.
Consider the case (iv). In this case we have

$$
\delta\left(a_{2}, f\right)+\delta\left(a_{4}, f\right)+\delta\left(a_{5}, f\right)>2
$$

and

$$
4 T(r, f)=m\left(r, g_{3}^{*}\right)+O(1)
$$

where $g_{3}{ }^{*}=\max \left(1,\left|g_{2}\right|,\left|g_{4}\right|\right)$. Hence by virtue of the argument in the case (A) in the proof of Theorem 2 in [2] we arrive at a contradiction.

The case (B). In this case we have

$$
4 T(r, f)=m\left(r, g_{4}^{*}\right)+O(1)
$$

where $g_{4}{ }^{*}=\max _{2 \leq \jmath \leq 4}\left(1,\left|g_{j}\right|\right)$. By virtue of the argument in the case (B) in the proof of Theorem 2 in [2], we similarly have a contradiction.

The case (C). Eliminating g_{1} from (C) and (5) we have

$$
\frac{1}{\alpha_{1}}\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{6} g_{6}=1-\frac{\beta_{1}}{\alpha_{1}} \neq 0
$$

Since $\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) \neq 0$ and $4 T(r, f)=m\left(r, g_{4}{ }^{*}\right)+O(1)$, this case reduces to the case (A), which is a contradiction.

The case (D). Eliminating g_{1} from (D) and (5), we have

$$
\left\{\beta_{1}\left(\alpha_{2}-\alpha_{2}^{\prime}\right)-\alpha_{1} \beta_{2}\right\} g_{2}+\left\{\beta_{1} \frac{\alpha_{3}}{\alpha_{2}}\left(\alpha_{2}-\alpha_{2}{ }^{\prime}\right)-\alpha_{1} \beta_{3}\right\} g_{3}-\alpha_{1} \beta_{4} g_{4}-\alpha_{1} \beta_{6} g_{6}=\beta_{1}-\alpha_{1} \neq 0 .
$$

Since the coefficients of g_{2} and g_{3} are not zero simultaneously, we consider the following subcases:
(i) $\quad \beta_{1}\left(\alpha_{2}-\alpha_{2}{ }^{\prime}\right)-\alpha_{1} \beta_{2} \neq 0, \quad \beta_{1} \alpha_{3}\left(\alpha_{2}-\alpha_{2}{ }^{\prime}\right)-\alpha_{1} \alpha_{2} \beta_{3} \neq 0$,
(ii) $\quad \beta_{1}\left(\alpha_{2}-\alpha_{2}{ }^{\prime}\right)-\alpha_{1} \beta_{2}=0, \quad \alpha_{1} \alpha_{3} \beta_{2} \neq \alpha_{2} \beta_{1} \beta_{3}$,
(iii) $\quad \beta_{1}\left(\alpha_{2}-\alpha_{2}{ }^{\prime}\right)-\alpha_{1} \beta_{2}=0, \quad \alpha_{1} \alpha_{3} \beta_{2}=\alpha_{2} \beta_{1} \beta_{3}, \quad \beta_{4}\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) \neq \alpha_{4} \beta_{2}\left(\beta_{1}-\alpha_{1}\right)$,
(iv) $\quad \beta_{1}\left(\alpha_{2}-\alpha_{2}^{\prime}\right)-\alpha_{1} \beta_{2}=0, \quad \alpha_{1} \alpha_{3} \beta_{2}=\alpha_{2} \beta_{1} \beta_{3}, \quad \beta_{4}\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right)=\alpha_{4} \beta_{2}\left(\beta_{1}-\alpha_{1}\right)$,
(v) $\quad \beta_{1} \alpha_{3}\left(\alpha_{2}-\alpha_{2}{ }^{\prime}\right)-\alpha_{1} \alpha_{2} \beta_{3}=0, \quad \alpha_{1} \alpha_{2} \beta_{3} \neq \alpha_{3} \beta_{1} \beta_{2}$,
(vi) $\quad \beta_{1} \alpha_{3}\left(\alpha_{2}-\alpha_{2}{ }^{\prime}\right)-\alpha_{1} \alpha_{2} \beta_{3}=0, \quad \alpha_{1} \alpha_{2} \beta_{3}=\alpha_{3} \beta_{1} \beta_{2}, \quad \beta_{4}\left(\alpha_{3} \beta_{1}-\alpha_{1} \beta_{3}\right) \neq \alpha_{4} \beta_{3}\left(\beta_{1}-\alpha_{1}\right)$,
(vii) $\quad \beta_{1} \alpha_{3}\left(\alpha_{2}-\alpha_{2}{ }^{\prime}\right)-\alpha_{1} \alpha_{2} \beta_{3}=0, \quad \alpha_{1} \alpha_{2} \beta_{3}=\alpha_{3} \beta_{1} \beta_{2}, \quad \beta_{4}\left(\alpha_{3} \beta_{1}-\alpha_{1} \beta_{3}\right)=\alpha_{4} \beta_{3}\left(\beta_{1}-\alpha_{1}\right)$.

All of these cases reduce to the case (A), which is a contradiction.
Thus we obtain a desired contradiction in every case. Therefore at least one of $\left\{g_{j}\right\}_{j=1}^{6}$ must be a polynomial.

Next we assume that one of $\left\{g_{j}\right\}_{j=1}^{6}$, say g_{1}, is a polynomial. Further assume that the others g_{ρ} are transcendental. If $\alpha_{1} g_{1} \equiv 1$, then the identity (5) implies

$$
\beta_{2} g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{6} g_{6}=1-\frac{\beta_{1}}{\alpha_{1}} \neq 0
$$

which is the type of our case (A). This is a contradiction. If $\alpha g_{1} \neq 1$, then the identity (2) implies

$$
\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}=1-\alpha_{1} g_{1} .
$$

By the reasoning in the proof of Theorem 1 in [2], this case can be handled in the same method as our case (A). Hence we have a contradiction. Therefore at least one of $\left\{g_{j}\right\}_{j=2}$ must be a polynomial and the proof of our Theorem 1 is complete.
§ 3. Proof of Theorem 2. We set

$$
g_{j}(z)=F\left(z, a_{j}\right), \quad j=1, \cdots, 7,
$$

and assume that all $g_{j}(z), j=1, \cdots, 7$ are transcendental. Then by the proof of Theorem $1 \sum_{j=1}^{\epsilon} \delta\left(a_{j}, f\right)>5$ leads to the following type
(E)

$$
\left\{\begin{array}{l}
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}=1, \\
\alpha_{4} g_{4}+\alpha_{5} g_{5}=0 .
\end{array}\right.
$$

Further we have

$$
\begin{equation*}
\gamma_{1} g_{1}+\gamma_{2} g_{2}+\gamma_{3} g_{3}+\gamma_{4} g_{4}+\gamma_{7} g_{7}=1 \tag{6}
\end{equation*}
$$

where $\gamma_{\jmath}=1 / \Pi_{k=1, k \neq \jmath, 5,6}^{7}\left(a_{j}-a_{k}\right), j=1,2,3,4,7$. Firstly eliminating g_{1} from (E), (5) and (6) we have

$$
\begin{align*}
& \left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) g_{2}+\left(\alpha_{1} \beta_{3}-\alpha_{3} \beta_{1}\right) g_{3}+\alpha_{1} \beta_{4} g_{4}+\alpha_{1} \beta_{6} g_{6}=\alpha_{1}-\beta_{1}, \tag{7}\\
& \left(\alpha_{1} \gamma_{2}-\alpha_{2} \gamma_{1}\right) g_{2}+\left(\alpha_{1} \gamma_{3}-\alpha_{3} \gamma_{1}\right) g_{3}+\alpha_{1} \gamma_{4} g_{4}+\alpha_{1} \gamma_{7} g_{7}=\alpha_{1}-\gamma_{1} \tag{8}
\end{align*}
$$

All the coefficients of these terms are not zero. It is sufficient from (7) and the argument of our case (A) to consider the following cases:

$$
\left\{\begin{array}{l}
\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) g_{2}+\left(\alpha_{1} \beta_{3}-\alpha_{3} \beta_{1}\right) g_{3}=\alpha_{1}-\beta_{1} \tag{i}\\
\beta_{4} g_{4}+\beta_{6} g_{6}=0
\end{array}\right.
$$

(ii)

$$
\left\{\begin{array}{l}
\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) g_{2}+\alpha_{1} \beta_{4} g_{4}=\alpha_{1}-\beta_{1} \\
\left(\alpha_{1} \beta_{3}-\alpha_{3} \beta_{1}\right) g_{3}+\alpha_{1} \beta_{6} g_{6}=0
\end{array}\right.
$$

(iii)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) g_{2}+\alpha_{1} \beta_{6} g_{6}=\alpha_{1}-\beta_{1}, \\
\left(\alpha_{1} \beta_{3}-\alpha_{3} \beta_{1}\right) g_{3}+\alpha_{1} \beta_{4} g_{4}=0,
\end{array}\right. \\
& \left\{\begin{array}{l}
\alpha_{1} \beta_{4} g_{4}+\alpha_{1} \beta_{6} g_{6}=\alpha_{1}-\beta_{1}, \\
\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) g_{2}+\left(\alpha_{1} \beta_{3}-\alpha_{3} \beta_{1}\right) g_{3}=0 .
\end{array}\right.
\end{aligned}
$$

Assume that the case (i) occurs. Then eliminating g_{2} from (8) and (i) we have

$$
\begin{aligned}
& \left\{\alpha_{1}\left(\beta_{2} \gamma_{3}-\beta_{3} \gamma_{2}\right)-\alpha_{2}\left(\beta_{1} \gamma_{3}-\beta_{3} \gamma_{1}\right)+\alpha_{3}\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)\right\} g_{3} \\
& \quad+\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) \gamma_{4} g_{4}+\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) \gamma_{7} g_{7}=\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right)-\left(\alpha_{1} \gamma_{2}-\alpha_{2} \gamma_{1}\right)+\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right) .
\end{aligned}
$$

All the coefficients of these terms are not zero. Hence we have a contradiction.
In the cases (ii) and (iii) we have

$$
\begin{gathered}
4 T(r, f)=m\left(r, g_{5}^{*}\right)+O(1), \quad g_{5}^{*}=\max \left(1,\left|g_{1}\right|,\left|g_{3}\right|\right), \\
\alpha_{1} g_{1}+\alpha_{2} g_{2}+\alpha_{3} g_{3}=1
\end{gathered}
$$

and

$$
\delta\left(a_{1}, f\right)+\delta\left(a_{2}, f\right)+\delta\left(a_{3}, f\right)>2
$$

which gives similarly a contradiction.
The case (iv) leads to our case (B). Hence we have a contradiction.
Thus we obtain a desired contradiction in every case. Therefore at least one of $\left\{g_{j}\right\}_{j=1}^{\gamma_{1}}$ must be a polynomial. We may suppose without loss in generality that g_{1} is a polynomial. Further suppose that the others g_{j} are transcendental. Then we have

$$
\left\{\begin{array}{l}
\alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}=1-\alpha_{1} g_{1} \\
\beta_{2} g_{2}+\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{6} g_{6}=1-\beta_{1} g_{1} \\
\gamma_{2} g_{2}+\gamma_{3} g_{3}+\gamma_{4} g_{4}+\gamma_{7} g_{7}=1-\gamma_{1} g_{1}
\end{array}\right.
$$

Here we may assume that $\left(1-\alpha_{1} g_{1}\right)\left(1-\beta_{1} g_{1}\right) \neq 0$. It is sufficient from the argument of our case (A) to consider the following two cases:
(i) $\left\{\begin{array}{l}\alpha_{4} g_{4}+\alpha_{5} g_{5}=1-\alpha_{1} g_{1}, \\ \alpha_{2} g_{2}+\alpha_{3} g_{3}=0,\end{array}\right.$
(ii) $\left\{\begin{array}{l}\alpha_{2} g_{2}+\alpha_{3} g_{3}=1-\alpha_{1} g_{1}, \\ \alpha_{4} g_{4}+\alpha_{5} g_{5}=0 .\end{array}\right.$

In the case (i) we have

$$
\frac{1}{\alpha_{2}}\left(\alpha_{2} \beta_{3}-\alpha_{3} \beta_{2}\right) g_{3}+\beta_{4} g_{4}+\beta_{6} g_{6}=1-\beta_{1} g_{1} \neq 0
$$

which is a contradiction by our standard method.
In the case (ii) we have

$$
\begin{aligned}
& \left(\alpha_{2} \beta_{3}-\alpha_{3} \beta_{2}\right) g_{3}+\alpha_{2} \beta_{4} g_{4}+\alpha_{2} \beta_{6} g_{6}=\alpha_{2}-\beta_{2}-\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) g_{1}, \\
& \left(\alpha_{2} \gamma_{3}-\alpha_{3} \gamma_{2}\right) g_{3}+\alpha_{2} \gamma_{4} g_{4}+\alpha_{2} \gamma_{7} g_{7}=\alpha_{2}-\gamma_{2}-\left(\alpha_{2} \gamma_{1}-\alpha_{1} \gamma_{2}\right) g_{1} .
\end{aligned}
$$

Since the right hand side terms of the above identities are not zero simultaneously, we similarly have a contradiction. Hence at least one of $\left\{g_{j}\right\}_{j=2}^{7}$ must be a polynomial.

We may suppose that g_{2} is a polynomial. Further suppose that $g_{j}, j=3, \cdots, 7$ are transcendental. Then we have

$$
\left\{\begin{array}{l}
\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}=1-\alpha_{1} g_{1}-\alpha_{2} g_{2} \\
\beta_{3} g_{3}+\beta_{4} g_{4}+\beta_{6} g_{6}=1-\beta_{1} g_{1}-\beta_{2} g_{2} \\
\gamma_{3} g_{3}+\gamma_{4} g_{4}+\gamma_{7} g_{7}=1-\gamma_{1} g_{1}-\gamma_{2} g_{2}
\end{array}\right.
$$

Since the right hand side terms of the above identities are not zero simultaneously, we similarly have a contradiction.

Therefore at least one of $\left\{g_{j}\right\}_{j=3}$, say g_{3}, must be a polynomial. Since f is transcendental, it clearly follows that all $g_{j}, j=4,5,6,7$ are transcendental. And we have

$$
4 T(r, f)=m\left(r, g_{4}\right)+O(1)
$$

and

$$
\delta\left(a_{4}, f\right)+\delta\left(a_{j}, f\right)>1, \quad j=5,6,7 .
$$

Hence by virtue of our standard method we obtain

$$
\left\{\begin{array}{l}
\alpha_{4} g_{4}+\alpha_{5} g_{5}=1-\alpha_{1} g_{1}-\alpha_{2} g_{2}-\alpha_{3} g_{3}=0 \tag{9}\\
\beta_{4} g_{4}+\beta_{6} g_{6}=1-\beta_{1} g_{1}-\beta_{2} g_{2}-\beta_{3} g_{3}=0 \\
\gamma_{4} g_{4}+\gamma_{7} g_{7}=1-\gamma_{1} g_{1}-\gamma_{2} g_{2}-\gamma_{3} g_{3}=0
\end{array}\right.
$$

Therefore we obtain a part of the desired result:

$$
\delta\left(a_{4}, f\right)=\delta\left(a_{5}, f\right)=\delta\left(a_{6}, f\right)=\delta\left(a_{7}, f\right)>\frac{3}{4} .
$$

Suppose that there is another deficiency $\delta\left(a_{8}, f\right)$ satisfying

$$
\delta\left(a_{1}, f\right)+\delta\left(a_{2}, f\right)+\delta\left(a_{3}, f\right)+\delta\left(a_{4}, f\right)+\delta\left(a_{8}, f\right)>4
$$

Then we have

$$
\begin{equation*}
\mu_{1} g_{1}+\mu_{2} g_{2}+\mu_{3} g_{3}+\mu_{4} g_{4}+\mu_{8} g_{8}=1 \tag{10}
\end{equation*}
$$

where $\mu_{j}=1 / \prod_{k=1, k \neq 7,5,6,7}^{8}\left(a_{j}-a_{k}\right)$. Eliminating g_{1}, g_{2} and g_{3} from (9) and (10) we have

$$
\mu_{4} g_{4}+\mu_{8} g_{8}=-\left|\begin{array}{cccc}
1 & \alpha_{1} & \alpha_{2} & \alpha_{3} \\
1 & \beta_{1} & \beta_{2} & \beta_{3} \\
1 & \gamma_{1} & \gamma_{2} & \gamma_{3} \\
1 & \mu_{1} & \mu_{2} & \mu_{3}
\end{array}\right| \neq 0,
$$

which is a contradiction. Hence we have

$$
\delta\left(a_{1}, f\right)+\delta\left(a_{2}, f\right)+\delta\left(a_{3}, f\right)+\delta\left(a_{4}, f\right)+\delta\left(a_{8}, f\right) \leqq 4,
$$

that is

$$
\delta\left(a_{8}, f\right) \leqq 1-\delta\left(a_{4}, f\right)=1-\delta\left(a_{7}, f\right)<\frac{1}{4} .
$$

Thus the proof of Theorem 2 is complete.
§4. A counter-example. We shall give here a counter-example showing that the non-proportionality condition for every pair of $\left\{F\left(z, a_{j}\right)\right\}$ in Theorem 1 cannot be omitted.

Let g_{1} be a transcendental entire function, whose modulus satisfies

$$
\left|g_{1}\left(r e^{i \theta}\right)\right|=o\left(e^{r^{2}}\right) .
$$

Let g_{4} be the famous Lindelöf function $f(z ; 2, \alpha)$ with $0<\alpha<1$ (cf. [1]). We set

$$
\begin{array}{ll}
g_{2}=\frac{1}{2} g_{1}+6, & g_{3}=g_{1}-12, \\
g_{5}=-g_{4}, & g_{6}=4 g_{4} .
\end{array}
$$

Now we consider a four-valued entire algebroid function y defined by

$$
F(z, y)=y^{4}+A_{3} y^{3}+A_{2} y^{2}+A_{1} y+A_{0}=0,
$$

where $A_{0}=g_{1}, A_{1}=(1 / 6)\left(12-3 g_{1}+2 g_{2}-g_{3}-g_{4}\right), \quad A_{2}=-(1 / 2)\left(2+2 g_{1}-g_{2}-g_{3}\right)$ and Λ_{3}
$=-(1 / 6)\left(12-3 g_{1}+3 g_{2}+g_{3}-g_{4}\right)$. Then by virtue of the same argument as $\S 6$ in [2] we have

$$
4 T(r, y)=m\left(r, g_{4}\right)(1+\varepsilon(r)), \quad \lim _{r \rightarrow \infty} \varepsilon(r)=0
$$

Since $F(z, 0)=g_{1}, F(z, 1)=g_{2}, F(z,-1)=g_{3}, F(z, 2)=g_{4}, F(z,-2)=g_{5}$ and $F(z, 3)=g_{3}$, we obtain

$$
\delta(0, y)=\delta(1, y)=\delta(-1, y)=\delta(2, y)=\delta(-2, y)=\delta(3, y)=1 .
$$

However there is no Picard exceptional value among $\{0,1,-1,2,-2,3\}$.
Further we know that there is no other deficiency of y. In fact, suppose, to the contrary, that there is another deficiency of y at a_{7}. Then

$$
\delta(0, y)+\delta(1, y)+\delta(-1, y)+\delta(2, y)+\delta(-2, y)+\delta(3, y)+\delta\left(a_{7}, y\right)>6
$$

Hence by Theorem 2 there are at least three Picard exceptional values among $\left\{0,1,-1,2,-2,3, a_{7}\right\}$, which is a contradiction.

References

[1] Nevanlinna, R., Le théorème de Picard-Borel et la théorıe des fonctions méromorphes. Borel Monograph, Paris (1929).
[2] Ninno, K., and M. Ozawa, Deficiencies of an entıre algebroid function. Kōdai Math. Sem. Rep. 22 (1970), 98-113.
[3] Valiron, G., Sur la dérivée des fonctions algébroides. Bull. Soc. Math. 59 (1931), 17-39.

