ON THE MINIMUM MODULUS OF AN ENTIRE ALGEBROID FUNCTION OF LOWER ORDER LESS THAN ONE

By Mitsuru Ozawa

§1. Kjellberg [1] extended the famous Wiman theorem in the following manner:

Let $f(z)$ be an entire function of lower order $\mu(0 \leqq \mu<1)$. Then

$$
\lim _{r \rightarrow \infty} \sup \frac{\log m^{*}(r)}{\log M(r)} \geqq \cos \pi \mu,
$$

where

$$
M(r)=\max _{|z|=r}|f(z)|, \quad m^{*}(r)=\min _{|z|=r}|f(z)| .
$$

In this paper we shall extend this theorem to an n-valued entire algebroid function of lower order less than one. Our theorem is the following:

Theorem. 1) Let $y(z)$ be an n-valued entire algebroid function of lower order $\mu, 0 \leqq \mu<1 / 2$. Then

$$
\limsup _{r \rightarrow \infty} \frac{n^{2} \log m^{*}(r)}{\log M(r)} \geqq \cos \pi \mu,
$$

where, denoting the j-th determination of y by y_{j},

$$
M(r)=\max _{|z|=r} \max _{1 \leq j \leq n}\left|y_{j}\right|, \quad m^{*}(r)=\min _{|z|=r} \max _{1 \leq J \leq n}\left|y_{j}\right| .
$$

2) Let $1 / 2 \leqq \mu<1$. Then

$$
\lim _{r \rightarrow \infty} \sup \frac{n \log m^{*}(r)}{\log M(r)} \geqq \cos \pi \mu
$$

§ 2. Preliminary considerations. Let $F(z, y)=y^{n}+A_{1} y^{n-1}+\cdots+A_{0}=0$ be the defining equation of y. Let A, y^{*} be

$$
\max \left(\left|A_{1}\right|, \cdots,\left|A_{n}\right|\right), \quad \max \left(\left|y_{1}\right|, \cdots,\left|y_{n}\right|\right)
$$

respectively. Then Valiron [2] proved

$$
n T(r, y)-m(r, A)=O(1)
$$

Evidently
Received November 27, 1969.

$$
\left|A_{j}(z)\right| \leqq \Sigma\left|y_{1} \cdots y_{j}\right|
$$

where the summation is taken over all products formed by j different $y_{\beta_{l}}, l=1$, \cdots, j among y_{1}, \cdots, y_{n}. Hence

$$
\begin{aligned}
\log \left|A_{j}(z)\right| & \leqq \log \sum\left|y_{1} \cdots y_{j}\right| \\
& \leqq \log \left|y_{\alpha_{1}} \cdots y_{\alpha_{j}}\right|+\log \binom{n}{j} \\
& \leqq j \log y^{*}+\log \binom{n}{j} .
\end{aligned}
$$

Thus

$$
\log A \leqq \max _{1 \leq j \leq n}\left(j \log y^{*}+\log \binom{n}{j}\right)
$$

which implies

$$
\min _{|z|=r} \log A \leqq \min _{|z|=r} \max _{1 \leq j \leqq n}\left(j \log y^{*}+\log \binom{n}{j}\right) .
$$

If 1) is the case, then

$$
\begin{equation*}
\log m^{*}(r, A) \leqq n \log ^{+} m^{*}(r)+O(1) \tag{1}
\end{equation*}
$$

Assume that 2) is the case. The following fact is worth while to be remarked. If $m^{*}(r)$ does not tend to zero as $r \rightarrow \infty$, then there is a sequence $\left\{r_{p}\right\}$ for which $m^{*}\left(r_{p}\right) \geqq c>0$. Then

$$
\limsup _{r \rightarrow \infty} \frac{\log m^{*}(r)}{\log M(r)} \geqq \lim _{p \rightarrow \infty} \sup _{p \rightarrow 0} \frac{\log m^{*}\left(r_{p}\right)}{\log M\left(r_{p}\right)} \geqq 0 .
$$

Hence by $\cos \pi \mu \leqq 0$ the desired result holds trivially. Therefore we may assume that $m^{*}(r) \rightarrow 0$ as $r \rightarrow \infty$. In this case we have for $r \geqq r_{0}$

$$
\log m^{*}(r, A) \leqq \log m^{*}(r)+O(1)
$$

instead of (1).
On the other hand as Valiron [2] did by

$$
\log \left|y_{1} \cdots y_{n}\right|=\log \left|A_{n}\right|
$$

$$
\begin{equation*}
\log ^{+} y^{*}+O(1) \leqq \sum_{1}^{n} \log \left|y_{j}\right|+O(1) \leqq \log ^{+}\left|A_{n}\right| \leqq \log ^{+} A \tag{2}
\end{equation*}
$$

Further

$$
\begin{equation*}
\log g \leqq \stackrel{+}{\log } A+O(1) \leqq \stackrel{+}{\log } g+O(1) \tag{3}
\end{equation*}
$$

where $g_{j}=F\left(z, a_{j}\right)$ and $g=\max \left|g_{j}\right|$. Therefore, if 1) is the case, then by (1), (2), (3)

$$
\begin{aligned}
\frac{n^{2} \log ^{+} m^{*}(r)}{\log M(r)} & \geqq \frac{n \log m^{*}(r, A)+O(1)}{\log M(r, A)+O(1)} \\
& \geqq \frac{n \min _{|z|=r}^{+} \log g+O(1)}{\max _{|z|=r}^{+} \log ^{+} g+O(1)} \geqq \frac{\sum_{j=1}^{n} \log m^{*}\left(r, g_{j}\right)+O(1)}{\sum_{j=1}^{n} \log M\left(r, g_{j}\right)+O(1)} .
\end{aligned}
$$

If 2) is the case, then by the remark already mentioned and by (1^{\prime}), (2), (3)

$$
\begin{aligned}
\frac{n \log m^{*}(r)}{\log M(r)} & \geqq \frac{n \min _{|z|=r} \log A+O(1)}{\max _{|z|=r}^{+} \log A+O(1)} \\
& \geqq \frac{\sum_{j=1}^{n} \log m^{*}\left(r, g_{j}\right)+O(1)}{\sum_{j=1}^{n} \log M\left(r, g_{j}\right)+O(1)} .
\end{aligned}
$$

In both cases we may consider the same expression

$$
\frac{\sum_{j=1}^{n} \log m^{*}\left(r, g_{j}\right)}{\sum_{j=1}^{n} \log M\left(r, g_{j}\right)}
$$

Since

$$
\begin{aligned}
\sum_{j=1}^{n} \log M\left(r, g_{j}\right) & \leqq n \max _{|z|=r} \log g+O(1) \\
& \leqq n \max _{|z|=r}^{+} \log ^{+} g+O(1) \leqq n \sum_{j=1}^{n} \log M\left(r, g_{j}\right)+O(1),
\end{aligned}
$$

the lower order of $\Pi M\left(r, g_{j}\right)$ is equal to μ. Hence there is a sequence $\left\{r_{n}\right\}$ along which

$$
\xrightarrow[\log \prod_{j=1}^{n} M\left(r, g_{j}\right)]{r^{\mu+\delta}} \rightarrow 0
$$

for an arbitrary positive number δ.
In what follows we shall give a proof along Kjellberg's idea, borrowing his several estimates for various quantities, for the two-valued case. The general n valued case can be handled quite similarly.
§3. Case $\mu<1 / 2$.
Let $b_{j}, j=1, \cdots, N$ be the zeros of $g_{1}(z)$ in $|z|<R$. Assume that $g_{1}(0)=1$. Let

$$
\begin{aligned}
& g_{1}^{1}(z) \equiv \prod_{n=1}^{N}\left(1-\frac{z}{b_{n}}\right), \\
& g_{1}^{2}(z) \equiv \prod_{n=1}^{N}\left(1-\frac{z}{\left|b_{n}\right|}\right),
\end{aligned}
$$

and

$$
g_{1}(z) \equiv g_{1}{ }^{1}(z) g_{1}{ }^{3}(z) .
$$

The minimum and the maximum of $\left|g_{1}{ }^{\nu}(z)\right|, \nu=1,2,3$, on $|z|=r$ are denoted by $m_{1}{ }^{\nu}(r)$ and $M_{1}^{\nu}(r)$. Similarly we introduce the corresponding quantities for $g_{2}(z)$. Now we can make use of several estimations due to Kjellberg [1]. Kjellberg's fundamental inequality is his (23):

$$
\begin{gathered}
\int_{R_{1}}^{R_{2}} \frac{\log m_{\jmath}{ }^{2}(r)-\cos \pi \lambda \log M_{j}{ }^{2}(r)}{r^{1+\lambda}} d r \\
>k(\lambda) \frac{\log M_{j}{ }^{2}\left(R_{1}\right)}{R_{1}{ }^{\wedge}}-K(\lambda) \frac{\log M_{\jmath}{ }^{2}\left(R_{2}\right)}{R_{2}{ }^{\lambda}} .
\end{gathered}
$$

Here λ should be $\mu+\delta$ in our case. Let

$$
\begin{aligned}
& I_{j}\left(R_{1}, R_{2}\right)=\int_{R_{1}}^{R_{2}} \frac{\log m_{j}{ }^{3}(r)-\cos \pi(\mu+\delta) \log M_{j}{ }^{3}(r)}{r^{1+\mu+\delta}} d r \\
& A_{j}\left(R_{1}, R_{2}\right)=\int_{R_{1}}^{R_{2}} \frac{\log m_{j}{ }^{2}(r) m_{j}{ }^{3}(r)-\cos \pi(\mu+\delta) \log M_{j}{ }^{2}(r) M_{j}{ }^{3}(r)}{r^{1+\mu+\delta}} d r .
\end{aligned}
$$

Let $I\left(R_{1}, R_{2}\right)=I_{1}\left(R_{1}, R_{2}\right)+I_{2}\left(R_{1}, R_{2}\right), A\left(R_{1}, R_{2}\right)=A_{1}\left(R_{1}, R_{2}\right)+A_{2}\left(R_{1}, R_{2}\right)$. Then
(A)

$$
A\left(R_{1}, R_{2}\right)>k(\mu+\delta) \frac{\log M_{1}^{2}\left(R_{1}\right) M_{2}^{2}\left(R_{1}\right)}{R_{1}^{\mu+\delta}}-K(\mu+\delta) \frac{\log M_{1}{ }^{2}\left(R_{2}\right) M_{2}{ }^{2}\left(R_{2}\right)}{R_{2}^{\mu+\delta}}
$$

$$
+I\left(R_{1}, R_{2}\right)
$$

Let R be a sufficiently large value belonging to $\left\{r_{n}\right\}$ for which

$$
\log M\left(2 R, g_{1}\right) M\left(2 R, g_{2}\right)<\varepsilon(2 R)^{\alpha+\delta}
$$

for an arbitrary given $\varepsilon>0$. Let $R_{2}=R / 2$. By the same method as in Kjellberg's paper we finally have

$$
A\left(R_{1}, \frac{1}{2} R\right)>k(\mu+\delta) \frac{\log M\left(R_{1}, g_{2}\right) M\left(R_{1}, g_{2}\right)}{R_{1}^{\mu+\delta}}-k(\mu+\delta) \varepsilon 2^{\mu+\delta+2}\left(\frac{R_{1}}{R}\right)^{1-\mu-\delta}
$$

$$
-K(\mu+\delta) \varepsilon 2^{1+2 \mu+2 \delta}-\frac{\varepsilon}{1-\mu-\delta} 2^{2 \mu+2 \delta+2} .
$$

Now we chose ε sufficiently small for which

$$
\begin{aligned}
& K(\mu+\delta) \varepsilon 2^{1+2 \mu+2 \delta}+\frac{\varepsilon}{1-\mu-\delta} 2^{2 \mu+2 \delta+2} \\
< & \frac{1}{4} k(\mu+\delta) \frac{\log M\left(R_{1}, g_{1}\right) M\left(R_{1}, g_{2}\right)}{R_{1}{ }^{\mu+\delta}} .
\end{aligned}
$$

Next we choose R satisfying

$$
\log M\left(2 R, g_{1}\right) M\left(2 R, g_{2}\right)<\varepsilon(2 R)^{\mu+\delta}
$$

and

$$
\begin{aligned}
& k(\mu+\delta) \varepsilon 2^{2+\mu+\delta}\left(\frac{R_{1}}{R}\right)^{1-\mu-\delta} \\
< & \frac{1}{4} k(\mu+\delta) \frac{\log M\left(R_{1}, g_{1}\right) M\left(R_{1}, g_{2}\right)}{R_{1}^{\mu+\delta}} .
\end{aligned}
$$

Thus we have

$$
A\left(R_{1}, \frac{1}{2} R\right)>\frac{1}{2} k(\mu+\delta) \frac{\log M\left(R_{1}, g_{1}\right) M\left(R_{1}, g_{2}\right)}{R_{1}^{\mu+\delta}}>0 .
$$

Hence there is a sequence $\left\{r_{n}^{*}\right\}$ such that
$\log m_{1}{ }^{2}(r) m_{1}{ }^{3}(r) m_{2}{ }^{2}(r) m_{2}{ }^{3}(r)-\cos \pi(\mu+\delta) \log M_{1}{ }^{2}(r) M_{1}{ }^{3}(r) M_{2}{ }^{2}(r) M_{2}{ }^{3}(r)>0$
along $\left\{r_{n}{ }^{*}\right\}, r_{n}{ }^{*} \rightarrow \infty$ as $n \rightarrow \infty$. By

$$
\begin{aligned}
& m^{*}\left(r, g_{j}\right) \geqq m_{j}{ }^{1}(r) m_{j}{ }^{3}(r) \geqq m_{\jmath}{ }^{2}(r) m_{j}{ }^{3}(r), \\
& M\left(r, g_{j}\right) \leqq M_{j}{ }^{1}(r) M_{j}{ }^{3}(r) \leqq M_{j}{ }^{2}(r) M_{j}{ }^{3}(r)
\end{aligned}
$$

and by $\cos \pi(\mu+\delta)>0$,

$$
\log m^{*}\left(r, g_{1}\right) m^{*}\left(r, g_{2}\right)-\cos \pi(\mu+\delta) \log M\left(r, g_{1}\right) M\left(r, g_{2}\right)>0
$$

along $\left\{r_{n}{ }^{*}\right\}$. Thus

$$
\lim _{r \rightarrow \infty} \sup \frac{\log m^{*}\left(r, g_{1}\right) m^{*}\left(r, g_{2}\right)}{\log M\left(r, g_{1}\right) M\left(r, g_{2}\right)} \geqq \cos \pi(\mu+\delta) .
$$

Letting $\delta \rightarrow 0$, theorem follows for $0 \leqq \mu<1 / 2$.
§4. Case $1 / 2 \leqq \mu<1$.
As Kjellberg did we replace $I\left(R_{1}, R_{2}\right)$ by

$$
J\left(R_{1}, R_{2}\right)=\int_{R_{1}}^{R_{2}} \frac{(1-\cos \pi(\mu+\delta)) \log m_{1}{ }^{3}(r) m_{2}{ }^{3}(r)}{1+\mu+\delta} d r
$$

in (A). Then we arrive at the final result similarly.
Further we can remove the assumptions $g_{1}(0)=1, g_{2}(0)=1$ as in Kjellberg's.

References

[1] Kjellberg, B., On the minımum modulus of entire functions of lower order less than one. Math. Scand. 8 (1960), 189-197.
[2] Valiron, G., Sur la dérivée des fonctions algébroides. Bull. Soc. Math. 59 (1931), 17-39.

Department of Mathematics,
Tokyo Institute of Technology.

