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ON THE MINIMUM MODULUS OF AN ENTIRE
ALGEBROID FUNCTION OF LOWER ORDER LESS THAN ONE

BY MlTSURU OZAWA

§1. Kjellberg [1] extended the famous Wiman theorem in the following
manner:

Let f(z) be an entire function of lower order μ (0^iμ<l). Then

where

Γ o g r a r
lim sup & , ^cos πu,

r-*co ^ log M(r) ^

M(r) = max | f(z) \, ra*(r)=min | f(z) \.
\z\=r |z|=r

In this paper we shall extend this theorem to an ^-valued entire algebroid
function of lower order less than one. Our theorem is the following:

THEOREM. 1) Let y(z) be an n-valued entire algebroid function of lower order
μ, 0^μ<l/2. Then

lim sup — ——-— > cos πμ,
r-.ee ^ logM(r) - ^

where, denoting the j-th determination of y by yjf

M(f)=max max \yA, m*(r)=min max \yλ.
\z\=r l^j^n |0|=r l^j^n

2) Let l/2gμ<l. Then

Λ. nlogm*(r)
lim sup „,,' ^cos πμ.

r->oo log M(r) Γ

§2. Preliminary considerations. Let F(z, y)=yn+A1y
n-1-i f-A>=0 be the

defining equation of y. Let A, y* be

max (|Λ|, —, I Ail), max (toil, —, tonl),

respectively. Then Valiron [2] proved

nT(r,y)-m(r,A)=O(ΐ).

Evidently

Received November 27, 1969.

166



MINIMUM MODULUS OF ENTIRE ALGEBROID FUNCTION 167

\Aj(z)\£Σ\yι - yj\,

where the summation is taken over all products formed by j different yβl,l=l,
~-,j among yι,—,yn. Hence

\yι yj\

aι ••• yaj\+log( H.

^ logι/*+logί n\

Thus

log Λ^ max (j log 2/*+log( n. \\
I*ΛS» \ \J II

which implies

min log A < min max ( / log v*+log ( ? ) ).
M=r |«|«r l^y^n \ \J //

If 1) is the case, then

( 1 ) log m*(r, ^4)^^ log m*(r)+O(l).

Assume that 2) is the case. The following fact is worth while to be remarked.
If m*(r) does not tend to zero as r-^oo, then there is a sequence {rp} for which

0. Then

lim sup * ^ lim sup
log M(r) ι>->~ log

Hence by cos πμ^O the desired result holds trivially. Therefore we may assume
that m*(r)— >0 as r— »oo. In this case we have for r^n

( 1' ) log m*(r, A)^\og w*(r)+O(l)

instead of (1).
On the other hand as Valiron [2] did by

log \yι ••• yn\=log\An\,

(2) logτ/*+0(l)^ Σlog|τ/, |+0(l)^log|^|^log A
1

Further

( 3 ) log g^
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where gJ=F(z> aj) and g=max |gy|. Therefore, if 1) is the case, then by (1), (2), (3)

n2lo+gm*(r) ^ nlogm*(r, A)+O(ΐ)

log M(r) " log M(r, A)+O(l)

n min log g+O(ΐ) Σ Io2 m*(r> ^)+O(l)

max log 0+0(1) £ log M(r, g, )+O(l)
l* l=r J=ι

If 2) is the case, then by the remark already mentioned and by (10, (2), (3)

n log m*(r) n min log A+O(l)
^ \z\=r

log M(r) max log A+O(ΐ)
\z\=r

Σlog»f*(r,flry)+0(l)

In both cases we may consider the same expression

log w*(r,

Since

log M(r, flfy)g

(7y)+O(l),^^ max log flf+0(l)
\z\=r

the lower order of ΠM(r, gy) is equal to μ. Hence there is a sequence {rw} along
which

logf[M(r,<7y)

γ μ+δ

for an arbitrary positive number δ.

In what follows we shall give a proof along Kjellberg's idea, borrowing his
several estimates for various quantities, for the two-valued case. The general n~
valued case can be handled quite similarly.
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§3. Case μ<l/2.

Let bj,j=l, •••, N be the zeros of QI(Z) in \z\<R. Assume that 0ι(0) = l. Let

N / ? \

=Π(ι--r- ,
w=l \ PΛ /

and

The minimum and the maximum of \gι(z)\, v = 1, 2, 3, on \z =r are denoted by
mι(r) and Mι(τ). Similarly we introduce the corresponding quantities for g2(z).
Now we can make use of several estimations due to Kjellberg [1]. Kjellberg's
fundamental inequality is his (23):

Γ^2 log m/(r)—cos πλ log M3

2(r)
V __ βγ

Here ^ should be μ-\-δ in our case. Let

log m/(r)-cos π(μ+δ) log M/(r) 7- --δ - ar,

log

Let I(Rlt R2)=I1(R1, R*)+I*(Rι, Λ), ^( î, Λ) = AX^, 7?2)+A2(^ι, R*). Then

7?^^ , ,Λ log MftRjMSdti) K( , svlog
, R2)>k(μ+δ) - 5̂ ^̂  -- K(μ+δ)

(A)

Let R be a sufficiently large value belonging to {rn} for which

log M(2R, g1)M(2R,

for an arbitrary given ε>0. Let Rz=Rβ. By the same method as in Kjellberg's
paper we finally have
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-K(μ + δ)ε21+2(1+2δ~ -—
1 — μ—ΰ

Now we chose ε sufficiently small for which

-— 2
L—μ—δ

<-ξ-k(μ+S)-

Next we choose R satisfying

log M(2R,

and

^_κ logJflgi,

Thus we have

A(R — R\> — k( I 5} lθg M^Rl' vw^"i> ™ y Q

Hence there is a sequence {r%} such that

Iogm1

2(r)m1

8(r)m2

2(r)m2

3(r)-cos π(μ+δ) logM1

2(r)M1

3(r)M2

2(r)M2

3(r)>0

along {rw*}, rn*->oo as n->oo. By

m*(r, g^m3\r}m3\r)^m3\r)m3\r\

M(r, gj)^Mj\r)MjB(r)^Mjz(r)Mj\r)

and by cos π(μ+δ)>0,

log m*(r, flfι)w*(r, g^2)-cos π(μ-H) log M(r, flfι)M(r,

along K*}. Thus

lim sup - - >cos
r-oo F log Λf(r, ~

Letting δ->0, theorem follows for 0^

§4. Case 1/2^ μ<l.

As Kjellberg did we replace I(Rly R2) by
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in (A). Then we arrive at the final result similarly.
Further we can remove the assumptions g1(0) = l) flfa(0)=l as in Kjellberg's.
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