KÖDAI MATH. SEM. REP. 22 (1970), 150--158

COMPLETE SURFACES IN E⁴ WITH CONSTANT MEAN CURVATURE

By Takehiro Itoh

On surfaces in Euclidean 3-space with constant mean curvature, Klotz and Osserman [4] proved an interesting result as follows:

Any complete immersed surface with constant mean curvature on which the Gaussian curvature does not change its sign is either a sphere, a minimal surface or a right circular cylinder.

Otsuki [7] introduced a notion that submanifolds in higher dimensional Euclidean spaces are pseudo-umbilical or not, and stated some suggestive results with respect to the above one.

In the present paper, the author will study surfaces in Euclidean 4-space E^4 which are pseudo-umbilical at each point and have non-vanishing constant mean curvature. Our main result is

THEOREM. A complete, connected, oriented and pseudo-umbilical surface immersed in E^4 with non-vanishing constant mean curvature H and the Gaussian curvature K which does not change its sign is necessarily either a Clifford flat torus in E^4 or a sphere with radius 1/H in a hyperplane E^3 .

The author expresses his deep gratitude to Professor T. Ōtsuki who encouraged him and gave him a lot of valuable suggestions.

§1. Preliminaries. In this section we define basic concepts, in the sense of [6] and [7], for surfaces in E^4 . Let M^2 be a 2-dimensional complete oriented Riemannian manifold immersed in Euclidean 4-space E^4 with the induced Riemannian structure through the immersion $x: M^2 \rightarrow E^4$. Let $F(M^2)$ and $F(E^4)$ be the bundles of all orthonormal frames over M^2 and E^4 respectively. Let B be the set of element $b=(p, e_1, e_2, e_3, e_4)$ such that $(p, e_1, e_2) \in F(M^2)$ and $(p, e_1, e_2, e_3, e_4) \in F(E^4)$ whose orientation is coherent with the one of E^4 , identifying $p \in M^2$ with x(p) and e_i with $dx(e_i)$, (i=1, 2). Then B is naturally considered as a differentiable submanifold in $F(E^4)$. We have, as is well known, a system of differential 1-forms $\omega_i, \omega_{ij}, \omega_{ia}, \omega_{34}$ on B associated with the immersion $x: M^2 \rightarrow E^4$ such that

(1.1)
$$\begin{cases} dp = \sum_{i} \omega_{i}e_{i}, \quad de_{i} = \omega_{ij}e_{j} + \sum_{\alpha} \omega_{i\alpha}e_{\alpha}, \\ de_{\alpha} = \sum_{i} \omega_{\alpha i}e_{i} + \omega_{\alpha\beta}e_{\beta}, \\ d\omega_{i} = \omega_{ij} \wedge \omega_{j}, \end{cases}$$

Received November 20, 1969.

$$d\omega_{ij} = \sum_{\alpha} \omega_{i\alpha} \wedge \omega_{\alpha j}, \qquad d\omega_{i\alpha} = \omega_{ij} \wedge \omega_{j\alpha} + \omega_{i\beta} \wedge \omega_{\beta\alpha},$$
$$d\omega_{34} = \sum_{i} \omega_{3i} \wedge \omega_{i4}, \qquad (i \neq j \text{ and } \alpha \neq \beta),$$

and

(1.2)
$$\omega_{i\alpha} = -\omega_{\alpha i} = \sum_{j} A_{\alpha i j} \omega_{j}, \qquad A_{\alpha i j} = A_{\alpha j i},$$

where we use the following ranges of indices: $1 \leq i, j \leq 2, 3 \leq \alpha, \beta \leq 4$, throughout this paper. Let N_p be the normal space of M^2 at $p \in M^2$, then N_p is clearly spanned by e_3 and e_4 . For any normal unit vector $e = \sum_{\alpha} \xi_{\alpha} e_{\alpha}, \sum_{\alpha} \xi_{\alpha}^2 = 1$, the second fundamental form corresponding to e is given by $\Phi_e = \sum_{\alpha,i,j} \xi_{\alpha} A_{\alpha i j} \omega_i \omega_j$. We define a linear map \overline{m} of N_p into the set R of all real numbers by $\overline{m}(e)$ $=(1/2)\sum_{\alpha,i} \xi_{\alpha} A_{\alpha i i}$ for any normal vector $e = \sum_{\alpha} \xi_{\alpha} e_{\alpha}$. Let ${}^{m} - N_p$ be the kernel of \overline{m} which is called *the minimal normal space* at p.

For any unit normal vector e at p, the maximum of $\overline{m}(e)$ is called the first curvature at p and denoted by $k_1(p)$, i.e., $k_1(p) = \max\{\overline{m}(e)|e \in N_p, ||e||=1\}$. We say that M^2 is minimal at p if $\overline{m}(e)=0$ for any $e \in N_p$. Then M^2 is minimal at p if and only if $k_1(p)=0$. It is clear that the function $k_1: M^2 \to R$ is continuous on M^2 and differentiable on the domain $D=\{p \in M^2 | k_1(p) > 0\}$. At a point p of D, we denote by $\overline{e}(p)$ the mean curvature normal unit vector uniquely defined by the equation $\sum_{\alpha,i} A_{\alpha ii} e_\alpha = k_1(p)\overline{e}(p)$. Then \overline{e} determines a differentiable normal unit vector field on D. The first curvature $k_1(p)$ is called the mean curvature and denoted by H, i.e., $H=k_1(p)$.

Now, for any frame $b \in B$, consider a linear mapping ϕ_b of N_p into the set S_2 of all real symmetric matrices defined by $\phi_b(\sum_a \xi_a e_a) = \sum_a \xi_a A_a$, A_a being the matrix (A_{aij}) . The dimension of the image of ${}^{m-}N_p$ by ϕ_b is called the *m*-index of M^2 at p and denoted by *m*-index_pM. By the definition of *m*-index, we have

$$(1.3) mummindex_p M \leq \dim^{m-} N_p.$$

When a surface M^2 is not minimal at a point p of M^2 , M^2 is called *pseudo-umbilical* at p if the second fundamental form corresponding to the mean curvature normal unit vector $\bar{e}(p)$ satisfies the equation $\Phi_{\bar{e}(p)} = k_1(p) \sum_i \omega_i \omega_i$. When a surface M^2 is not minimal and pseudo-umbilical at each point, the immersion x: $M^2 \rightarrow E^4$, or rather, the surface M^2 , is said to be *pseudo-umbilical*.

Supposing that a surface M^2 is not minimal at each point, we can consider frames $b \in B$ such that $e_3 = \bar{e}(p)$. If we denote the set of all such frames by B_1 , then B_1 can be considered as a differentiable submanifold of B. Then we have $\bar{m}(e_3) = k_1(p) = H$ and $\bar{m}(e_4) = 0$. Therefore, in this case, we have by (1.3)

$$(1.4) mtext{m-index_pM \leq 1$}$$

at any point $p \in M^2$, because dim^{*m*-} $N_p=1$. Let us suppose that M^2 is pseudoumbilical. Then the unit normal vector fields e_3 and e_4 are differentiable and defined globally on M^2 , since both of M^2 and E^4 are orientable. In this case, we have

(1.5) $\begin{cases} A_4 = 0 & \text{when} & m\text{-index}_p M = 0, \\ A_4 \neq 0 & \text{when} & m\text{-index}_p M = 1. \end{cases}$

We may consider M^2 as a Riemann surface by Chern [2], because M^2 is a 2dimensional oriented Riemannian manifold. According to Ahlfors and Sario [1], we call M^2 to be *parabolic* if there are no non-constant negative subharmonic functions on M^2 . Then, when M^2 is parabolic, if a subharmonic function f on M^2 is bounded from above on M^2 , f must be constant on M^2 . Furthermore, we can easily show that the entire plane E^2 is parabolic.

In order to prove main theorem, we shall provide some basic lemmas in §2 and prove it for the case (i) $K \leq 0$ in §3 and the case (ii) $K \geq 0$ in §4.

In the following, we may restrict ourselves to the set B_1 of frames, because we consider only surfaces which are not minimal at each point.

§ 2. Basic lemmas. Let M_0 be the set of all points whose *m*-index are zero According to (1.5), we see that m-index_pM=0 if and only if a global differentiable function det A_4 vanishes at p. Hence M_0 is closed in M^2 . By virtue of (1.4), for any point $p \in M^2 - M_0$, we have

$$m$$
-index_p $M=1$.

Hence, using this fact, we have the following

LEMMA 2.1. For a pseudo-umbilical surface M^2 in E^4 the mean curvature H is constant if and only if the form ω_{34} vanishes identically.

Proof. First we assume that the ω_{34} vanishes identically. Then, using the structure equations (1.1) for $\omega_{i3} = k_1 \omega_i$, (i=1,2), we have

(2.1)
$$\begin{cases} dk_1 \wedge \omega_1 = \omega_{14} \wedge \omega_{43} = 0, \\ dk_1 \wedge \omega_2 = \omega_{24} \wedge \omega_{43} = 0, \end{cases}$$

which imply that the mean curvature $H=k_1$ should be constant. Conversely, we assume that the mean curvature $H=k_1$ is constant. Then we have easily from (2.1) the equation $\omega_{34}=0$ in the open subset $M_1=M^2-M_0$ of M^2 . When the set M_1 is dense in M^2 , we have $\omega_{34}=0$ everywhere on M^2 because of the continuity of the form ω_{34} itself. In the next step, we consider the case where M_0 has nonempty open set Ω as its open kernel. Then we have $\omega_{i4}=0$ in Ω by (1.5). Hence, by means of the structure equations (1.1) for ω_{i4} , we have $k_1\omega_1 \wedge \omega_{34}=0$ and $k_1\omega_2 \wedge \omega_{34}=0$, which imply immediately $\omega_{34}=0$ in Ω . Summing up, we can conclude by virtue of the continuity of ω_{34} that the differentiable form ω_{34} vanishes identically on M^2 when the mean curvature $H=k_1$ is constant. Thus we have proved Lemma 2. 1.

LEMMA 2.2. If a surface M^2 in E^4 is pseudo-umbilical and the mean curvature $H=k_1$ is constant, then M^2 is contained in a hypersphere S^3 in E^4 with radius 1/H. **Proof.** Consider the mapping $\phi: M^2 \rightarrow E^4$ defined by $\psi(p) = p + e_3/k_1$ for any point p of M^2 , where p in the right hand side denotes the position vector of the image M^2 in E^4 . Then, taking account of $\omega_{34}=0$ which is a direct consequence of Lemma 2.1, we have $d(\psi(p))=0$. This means that $\psi(p)$ denotes a fixed point in E^4 . Thus M^2 lies on a hypersphere S^3 with radius 1/H.

§ 3. The proof of the main theorem in the case (i) $K \leq 0$.

PROPOSITION 1. A complete, connected, oriented and pseudo-umbilical surface M^2 immersed in E^4 with constant mean curvature $H \neq 0$ and the Gaussian curvature K which is nowhere positive is a Clifford flat torus $S^1(1/\sqrt{2}H) \times S^1(1/\sqrt{2}H)$ in E^4 .

Proof. The Gaussian curvature K is given by the equation $d\omega_{12} = -K\omega_1 \wedge \omega_2$. On the other hand, the structure equations (1.1) imply $d\omega_{12} = -(k_1^2 + \det A_4)\omega_1 \wedge \omega_2$, because of $\omega_{i3} = k_1\omega_i$, (i=1,2). Hence we get

$$(3.1) K = k_1^2 + \det A_4 = k_1^2 - (A_{411}^2 + A_{412}^2),$$

by means of trace $A_4=0$. Since $K \leq 0$ and $k_1 \neq 0$, we have

$$(3.2) 0 < k_1^2 \le A_{411}^2 + A_{412}^2$$

Thus, we find

at each point p of M^2 . Accordingly, we can choose locally such frames $b \in B_1$ that the matrix A_4 is given by

$$A_4 = \begin{pmatrix} h & 0 \\ 0 & -h \end{pmatrix}$$

the function h being differentiable and defined globally on M^2 , because det $A_4 = -h^2$ is a global differentiable function on M^2 , furthermore we may suppose h>0 on M^2 . Then, using the structure equations (1.1) for ω_{i4} and Lemma 2.1, we get

(3. 4)
$$\begin{cases} 2hd\omega_1 + dh \wedge \omega_1 = 0, \\ 2hd\omega_2 + dh \wedge \omega_2 = 0. \end{cases}$$

Hence we can consider local coordinates (u, v) in an open neighbourhood U of a point $p \in M$ such that

$$I = E \, du^2 + G \, dv^2, \qquad \omega_1 = \sqrt{E} \, du, \qquad \omega_2 = \sqrt{G} \, dv,$$

where I is the first fundamental form and E and G are local positive functions on U. Then the equations (3.4) are reduced to

(3.5)
$$\begin{cases} d(hE) \wedge du = 0, \\ d(hG) \wedge dv = 0, \end{cases}$$

which show that there exists a neighbourhood V of each point $p \in M^2$ such that there exist isothermal coordinates (u, v) in V such that

(3. 6)
$$\begin{cases} I = \lambda \{ du^2 + dv^2 \}, & \omega_1 = \sqrt{\lambda} du, & \omega_2 = \sqrt{\lambda} dv, \\ h\lambda = 1, \end{cases}$$

where $\lambda = \lambda(u, v)$ is a positive function defined on V.

Now, we get the following

LEMMA. The universal covering surface \tilde{M} of M^2 is conformally equivalent to the entire plane, and hence M^2 is parabolic.

Proof of Lemma. Since k_1 is positive constant, the conformal metric k_1I is complete on M^2 . However, since $k_1 \leq h$, the conformal metric hI is also complete on M^2 . Furthermore, the metric hI is flat from (3.6). Hence, the covering surface \tilde{M} with the lifted metric from hI on M^2 is isometric to the entire plane. Thus, \tilde{M} is conformally equivalent the entire plane with respect to I.

We shall prove that M^2 is parabolic. Suppose that M^2 is not parabolic. Then, by the definition of parabolicity stated in §1, there is a non-constant negative subharmonic function on M^2 . Since the existence of a negative non-constant subharmonic function on M^2 implies the one on \tilde{M}, \tilde{M} must be also non parabolic. On the other hand, \tilde{M} is conformally equivalent to the entire plane and hence \tilde{M} is parabolic, contradicting the consequence induced from the assumption that M^2 is not parabolic. Thus, M^2 is parabolic.

Going back to the proof of Proposition 1, as is well known, the Gaussian curvature K is given by

$$K = -\frac{1}{2\lambda} \Delta \log \lambda$$

with respect to the isothermal coordinates (u, v). Hence the condition $K \leq 0$ with $h\lambda = 1$ implies

$$(3.7) \qquad \qquad \Delta \log h = -\Delta \log \lambda \leq 0.$$

This inequality (3.7) implies that the function $\log(1/h)$ is a subharmonic function on M^2 . On the other hand, since $K = k_1^2 - h^2$ from (3.1), we have $0 < k_1 \le h$. Hence the subharmonic function $\log(1/h)$ on M^2 is bounded from above by $\log(1/k_1)$, i.e.,

$$\log \frac{1}{h} \leq \log \frac{1}{k_1}.$$

However, since M^2 is parabolic by Lemma, a subharmonic function bounded from

154

155

above on M^2 must be constant. Hence the subharmonic function $\log(1/h)$ on M^2 is identically constant on M^2 . Therefore

$$K = \frac{-1}{2\lambda} \Delta \log \lambda = \frac{h}{2} \Delta \log h$$

is identically zero on M^2 . Since $\log \lambda = \log (1/h)$ is constant, λ is also constant on V. Hence we can choose the isothermal coordinates (u, v) such that

$$I=du^2+dv^2, \qquad \omega_1=du, \qquad \omega_2=dv.$$

Then, taking account of $\omega_{12}=0$ and $h=k_1$, we get the following Frenet formulas:

(3.8)
$$\begin{cases} dp = e_1 du + e_2 dv, \\ de_1 = k_1 (e_3 + e_4) du, \\ de_2 = k_1 (e_3 - e_4) dv, \\ de_3 = -k_1 (e_1 du + e_2 dv), \\ de_4 = -k_1 (e_1 du - e_2 dv). \end{cases}$$

Now, we introduce new frames $b^* = (p, e_1^*, e_2^*, e_3^*, e_4^*)$ such that $e_1^* = e_1, e_2^* = e_2, e_3^* = (1/\sqrt{2})(e_3 + e_4)$ and $e_4^* = (1/\sqrt{2})(-e_3 + e_4)$. Then the equations (3.8) reduce to

(3.9)
$$\begin{cases} dp = e_1^* du + e_2^* dv, \\ de_1^* = \sqrt{2} k_1 e_3^* du, \\ de_2^* = -\sqrt{2} k_1 e_4^* dv, \\ de_3^* = -\sqrt{2} k_1 e_1^* du, \\ de_4^* = \sqrt{2} k_1 e_2^* dv. \end{cases}$$

These equations (3.9) clearly show that $e_1^* \wedge e_s^*$ and $e_2^* \wedge e_4^*$ determine constant bivectors respectively. Hence the plane $E_1^2(p)$ spanned by e_1^* and e_3^* is parallel to a fixed plane E_1^2 in E^4 . The plane $E_2^2(p)$ spanned by e_2^* and e_4^* is also parallel to a fixed plane E_2^2 in E^4 . E_1^2 and E_2^2 are clearly perpendicular to each other. Along the *u*-curve defined by v=const., we have from (3.9)

$$dp = e_1^* du, \quad de_1^* = \sqrt{2k_1} e_3^* du, \quad de_3^* = -\sqrt{2k_1} e_1^* du.$$

Thus p describes a circle in $E_1^2(p)$ with radius $1/\sqrt{2}k_1$, because the *u*-curve is geodesic through p and M^2 is complete. Analogously, along the *v*-curve defined by u=const., p describes a circle in $E_2^2(p)$ with radius $1/\sqrt{2}k_1$.

Now, to find the loci of the centers of these two circles, we consider two mapping ϕ_1 and ϕ_2 : $M^2 \rightarrow E^4$ defined respectively by $\phi_1(p) = p + e_3^*/\sqrt{2} k_1$ and by $\phi_2(p) = p - e_4^*/\sqrt{2} k_1$ for any point p of M^2 , where p denotes the position vector indicating a point p of M^2 in E^4 . Using (3.9), we have

(3.10)
$$\begin{cases} d(\phi_1(p)) = e_2^* dv, & de_2^* = -\sqrt{2} k_1 e_4^* dv, & de_4^* = \sqrt{2} k_1 e_2^* dv, \\ d(\phi_2(p)) = e_1^* du, & de_1^* = \sqrt{2} k_1 e_3^* du, & de_3^* = -\sqrt{2} k_1 e_1^* du \end{cases}$$

We can easily verify that $\phi_1(p)$ (resp $\phi_2(p)$) describes a circles with radius $1/\sqrt{2}k_1$ in a plane parallel to $E_2^{\circ}(p)$ (resp $E_1^{\circ}(p)$). Furthermore, we can find that the center of the circle described by $\phi_1(p)$ coincides with the one of the circle described by $\phi_2(p)$. Thus M^2 in E^4 may be considered as a Riemannian product of two circles lying on planes parallel to E_1° and E_2° respectively.

§4. The proof of the main theorem in the case (ii) $K \ge 0$.

PROPOSITION 2. A complete, connected, oriented and pseudo-umbilical surface M^2 immersed in E^4 with the constant mean curvature $H \neq 0$ and the Gaussian curvature K which is nowhere negative must be either a Clifford flat torus in E^4 or a sphere with radius 1/H in a hyperplane E^3 .

Proof. We first prove

LEMMA. -K is a subharmonic function on M^2 .

Proof of Lemma. $M_0 = \{p \in M^2 | m \text{-index}_p M = 0\}$ is closed in M^2 . Hence $M_1 = M^2 - M_0$ is open in M^2 . Then, analogously in § 3, we can choose a neighbourhood U of a point $p \in M_1$ in which there exist isothermal coordinates (u, v) such that

(4.1)
$$\begin{cases} I = \lambda \{ du^2 + dv^2 \}, & \omega_1 = \sqrt{\lambda} \, du, & \omega_2 = \sqrt{\lambda} \, dv, \\ A_4 = \begin{pmatrix} h & 0 \\ 0 & -h \end{pmatrix}, & h > 0, & h\lambda = 1, \end{cases}$$

where h is a differentiable function in U. Hence, as is well known,

$$K = -\frac{1}{2\lambda} \varDelta \log \lambda = \frac{h}{2} \varDelta \log h \ge 0$$

from (4.1), which implies $\Delta h \ge 0$ because h > 0. Then we have in U

(4. 2)
$$\Delta h^2 = 2\left\{\left(\frac{\partial h}{\partial u}\right)^2 + \left(\frac{\partial h}{\partial v}\right)^2\right\} + 2h\Delta h \ge 0.$$

On the other hand, since $K = k_1^2 - h^2$ in U, we have

$$(4.3) \qquad \qquad \Delta K = -\Delta h^2 \leq 0 \qquad \text{in} \quad U.$$

Thus we have $\Delta K \leq 0$ in M_1 . Finally, we shall prove that $\Delta K \leq 0$ at any point of M_0 . Take a point p_1 of M_0 and consider the isothermal coordinates (u, v) in a neighbourhood U_1 of p_1 such that

156

(4.4)
$$I = \lambda \{ du^2 + dv^2 \}, \quad \omega_1 = \sqrt{\lambda} du, \quad \omega_2 = \sqrt{\lambda} dv$$

In this case, A_4 may be represented by

$$A_4 = \begin{pmatrix} h_1 & h_2 \\ h_2 & -h_1 \end{pmatrix},$$

where h_1 and h_2 are functions in U_1 . Then we have

$$(4.5) K = k_1^2 - (h_1^2 + h_2^2) in U.$$

Hence we have in U_1

(4.6)
$$\Delta K = -2\left\{\left(\frac{\partial h_1}{\partial u}\right)^2 + \left(\frac{\partial h_1}{\partial v}\right)^2 + \left(\frac{\partial h_2}{\partial u}\right)^2 + \left(\frac{\partial h_2}{\partial v}\right)^2\right\} - 2h_1\Delta h_1 - 2h_2\Delta h_2$$

with respect to the isothermal coordinates (u, v). Since h_1 and h_2 attain zero at p_1 , we have

$$(4.7) \qquad \qquad \Delta K \leq 0.$$

Thus we have $\Delta K \leq 0$ at a point of M_0 . Since the sign of the Laplacian ΔK is invariant with respect to the isothermal coordinates, we have

$$(4.8) $\Delta K \leq 0 \text{ on } M^2$$$

with respect to the isothermal coordinates. Thus -K is a subharmonic function on M^2 . We have proved Lemma.

Going back to the proof of Proposition 2, if M^2 is compact, the subharmonic function -K on M^2 attains its maximum at some point on M^2 . Hence, -K must be constant on M^2 , and hence K is constant on M^2 .

On the other hand, if M^2 is not compact, M^2 is parabolic by Theorem 15 in Huber [3], since $K \ge 0$. Since -K is a negative subharmonic function on M^2 , -Kmust be constant on M^2 by the definition of parabolicity stated in § 1. Thus, whether M^2 is compact or not, K is constant on M^2 . Since K is given by $K=k_1^2$ $+\det A_4=k_1^2-||A_4||^2$, $\det A_4=-||A_4||^2$ must be constant on M^2 . Hence we can cosider the following two cases:

Case (a):
$$M_0$$
 is not empty

and

Case (b):
$$M_0$$
 is empty.

Case (a). If M_0 is not empty, det $A_4 = -||A_4||^2$ attains zero at points of M_0 . Hence det $A_4 = -||A_4||^2$ is identically zero on M^2 , because det $A_4 = -||A_4||^2$ is constant on M^2 . This implies $M_0 = M^2$. Hence $de_4 = 0$ on M^2 because of $\omega_{43} = 0$. Therefore, there exists a hyperplane E^3 in E^4 such that M^2 is immersed in E^3 with the immersion $x: M^2 \rightarrow E^4$. Since $\omega_{i3} = k_1 \omega_i$, $(i=1, 2), M^2$ is umbilical in E^3 .

Furthermore, M^2 is complete by our assumption. Hence, as is well known, M^2 in E^4 is immersed in E^3 as a sphere with radius 1/H.

Case (b). If M_0 is empty in M^2 , *m*-index_pM=1 at any point $p \in M^2$. Analogously in § 3, we can choose a neighbourhood U of a point p of M^2 in which there exist isothermal coordinates (u, v) such that

(4.9)
$$\begin{cases} I = \lambda \{ du^2 + dv^2 \}, & \omega_1 = \sqrt{\lambda} \, du, & \omega_2 = \sqrt{\lambda} \, dv, \\ A_4 = \begin{pmatrix} h & 0 \\ 0 & -h \end{pmatrix}, & h > 0, & h\lambda = 1, \end{cases}$$

where h is a positive and differentiable function on M^2 Then, since det $A_4 = -h^2$ is constant on M^2 , h is also constant on M^2 . On the other hand, as stated in § 3, K is given by $K = (h/2) \Delta \log h$. Hence K is identically zero on M^2 . Therefore M^2 is immersed in E^4 as a Clifford flat torus in E^4 by means of Proposition 1. Thus we have proved Proposition 2.

References

- [1] AHLFORS L., AND L. SARIO, Riemann surfaces. Princeton Univ. Press. Princeton (1960).
- [2] CHERN S. S., An elementary proof of existence of isothermal parameter on a surface. Proc. Amer. Math. Soc. 6 (1955), 771-782.
- [3] HUBER A., On subharmonic functions and differential geometry in the large. Comm. Math. Helv. 32 (1957), 13-72.
- [4] KLOTZ T., AND R. OSSERMAN, Complete surfaces in E³ with constant mean curvature. Comm. Math. Helv. 41 (1966-67), 313-318.
- [5] ÖTSUKI T., On the total curvature of surfaces in Euclidean spaces. Japan. Journ. Math. 35 (1966), 61-71.
- [6] _____, A theory of Riemannian submanifolds. Ködai Math. Sem. Rep. 20 (1968), 282-295.
- [7] —, Pseudo-umbilical submanifolds with *m*-index ≤1 in Euclidean spaces. Kōdai Math. Sem. Rep. 20 (1968), 296-304.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.

158