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COMPLETE SURFACES IN E* WITH CONSTANT
MEAN CURVATURE

BY TAKEHIRO ITOH

On surfaces in Euclidean 3-space with constant mean curvature, Klotz and
Osserman [4] proved an interesting result as follows:

Any complete immersed surface with constant mean curvature on which the
Gaussian curvature does not change its sign is either a sphere, a minimal surface
or a right circular cylinder.

Otsuki [7] introduced a notion that submanifolds in higher dimensional Euclidean
spaces are pseudo-umbilical or not, and stated some suggestive results with respect
to the above one.

In the present paper, the author will study surfaces in Euclidean 4-space E*
which are pseudo-umbilical at each point and have non-vanishing constant mean
curvature. Our main result is

THEOREM. A complete, connected, oriented and pseudo-umbilical surface im-
mersed in E* with non-vanishing constant mean curvature H and the Gaussian
curvature K which does not change its sign is necessarily either a Clifford flat
torus in E* or a sphere with radius 1/H in a hyperplane EB.

The author expresses his deep gratitude to Professor T. Otsuki who encouraged
him and gave him a lot of valuable suggestions.

§ 1. Preliminaries. In this section we define basic concepts, in the sense of
[6] and [7], for surfaces in E\ Let M2 be a 2-dimensional complete oriented
Riemannian manifold immersed in Euclidean 4-space E^ with the induced Rieman-
nian structure through the immersion x\ M2-^E*. Let F(M2) and F(E*} be the
bundles of all orthonormal frames over M2 and E* respectively. Let B be the set
of element b=(p,e1,e2,e3,e4) such that (pJelje2)^F(M2) and (p1elίe2lίe^e^^F(E^
whose orientation is coherent with the one of E*, identifying peM2 with x(p) and
βi with dx(βi), (f=l, 2). Then B is naturally considered as a differentiable sub-
manifold in F(E*). We have, as is well known, a system of differential 1-forms
o)i, a)ij, ωia, ω34 on B associated with the immersion x\ M2—^E4: such that

(1.
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j = Σ

and

(1. 2) ωia= —ωa^=Σ
3

where we use the following ranges of indices: l^f, j^2, 3^ a, /3^4, throughout
this paper. Let Np be the normal space of M2 at pεM2, then Np is clearly
spanned by es and e4. For any normal unit vector e=Σaξaea, Σ«f«=l, the
second fundamental form corresponding to e is given by Φe=Σ<*,ι,jξaAaZjωiωj.
We define a linear map m of A^ into the set R of all real numbers by m(e)
— (l/2)Σα,*£«Arίί for any normal vector £=Σ« <?«£«• Let m~Λ^, be the kernel of m
which is called the minimal normal space at p.

For any unit normal vector e at p, the maximum of m(e) is called the first
curvature at /> and denoted by kι(p\ i.e., k1(p)=max{fn(e)\e€Np) ||0|| = 1}. We say
that M2 is minimal at jί> if m(e)=0 for any eeNp. Then M2 is minimal at p if
and only if &ι(/>)=0. It is clear that the function :̂ M2-*R is continuous on M2

and differentiate on the domain D={p€M2\k1(p)>0}. At a point jί> of Z), we
denote by e(p) the mean curvature normal unit vector uniquely defined by the
equation Σa,ιAanea=kι(p)e(p). Then e determines a differentiate normal unit
vector field on D. The first curvature k^p) is called the mean curvature and
denoted by H, i.e., H=kι(p).

Now, for any frame bzB, consider a linear mapping ψb of Np into the set S2

of all real symmetric matrices defined by ψb(Σ« £<*€<*)= ΣaξaAa, Aa being the matrix
(Aalj). The dimension of the image of m~Np by ψb is called the m-index of M2 at
p and denoted by m-index^M. By the definition of m-index, we have

(1. 3) w-indeXpM^dim™-^.

When a surface M2 is not minimal at a point p of M2, M2 is called pseudo-
umbilical at /> if the second fundamental form corresponding to the mean curva-
ture normal unit vector e(p) satisfies the equation Φew=k1(p)Σi(ί>iωί When a
surface M2 is not minimal and pseudo-umbilical at each point, the immersion x\
M2-^ E*, or rather, the surface M2, is said to be pseudo-umbilical.

Supposing that a surface M2 is not minimal at each point, we can consider
frames bsB such that eB=e(p). If we denote the set of all such frames by Bi,
then BI can be considered as a differentiate submanifold of B. Then we have

k±($)-=H and m(04)=0. Therefore, in this case, we have by (1. 3)

(1. 4)

at any point peM2, because dimm~Λ^=l. Let us suppose that M2 is pseudo-
umbilical. Then the unit normal vector fields e% and e± are differentiate and
defined globally on M2, since both of M2 and E* are orientable. In this case, we
have
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^4=0 when
(1. 5)

when ra-indexpM=l.

We may consider M2 as a Riemann surface by Chern [2], because M2 is a 2-
dimensional oriented Riemannian manifold. According to Ahlfors and Sario [1],
we call M2 to be parabolic if there are no non-constant negative subharmonic
functions on M2. Then, when M2 is parabolic, if a subharmonic function / on
M2 is bounded from above on M2, / must be constant on M2. Furthermore, we
can easily show that the entire plane E2 is parabolic.

In order to prove main theorem, we shall provide some basic lemmas in §2
and prove it for the case (i) K^Q in § 3 and the case (ii) K^Q in § 4.

In the following, we may restrict ourselves to the set Bι of frames, because
we consider only surfaces which are not minima). at each point.

§ 2. Basic lemmas. Let M0 be the set of all points whose ra-index are zero
According to (1. 5), we see that m-mάexpM=0 if and only if a global differentiable
function det At vanishes at p. Hence M0 is closed in M2. By virtue of (1. 4), for
any point p€M2—M0, we have

Hence, using this fact, we have the following

LEMMA 2. 1. For a pseudo-umbilical surface M2 in E* the mean curvature H
is constant if and only if the form ω^ vanishes identically.

Proof. First we assume that the ω34 vanishes identically. Then, using the
structure equations (1. 1) for ωiB=kιωit (/=!, 2), we have

( dki Λ <wι — ύλu Λ c«43 = 0,
(2. 1) \

\dkι Λ 0)z — 0) 24 Λ 6)43 = 0,

which imply that the mean curvature H=kι should be constant. Conversely, we
assume that the mean curvature H=kι is constant. Then we have easily from
(2.1) the equation <y34=0 in the open subset M1=M2—Mo of M2. When the set
Mi is dense in M2, we have ωs^=0 everywhere on M2 because of the continuity
of the form ω34 itself. In the next step, we consider the case where Mo has non-
empty open set Ω as its open kernel. Then we have ωί4— 0 in Ω by (1.5). Hence,
by means of the structure equations (1.1) for <yί4> we have k1ω1Λωs^=0 and
&ιω2Λ 6)34=0, which imply immediately ω34=0 in Ω. Summing up, we can con-
clude by virtue of the continuity of α>34 that the differentiable form ω34 vanishes
identically on M2 when the mean curvature H~kι is constant. Thus we have
proved Lemma 2. 1.

LEMMA 2. 2. // a surface M2 in E^ is pseudo-umbilical and the mean curva-
ture H=kι is constant, then M2 is contained in a hyper sphere S3 in E* with
radius 1/H.
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Proof. Consider the mapping ψ: M2-^E* defined by ψ(p)=p+es/kι for any
point p of M2, where p in the right hand side denotes the position vector of the
image M2 in E*. Then, taking account of ω84=0 which is a direct consequence
of Lemma 2.1, we have d(ψ(p))=Q. This means that ψ(p) denotes a fixed point in
E\ Thus M2 lies on a hypersphere S3 with radius I///.

§ 3. The proof of the main theorem in the case (i) jfiί^O.

PROPOSITION 1. A complete, connected, oriented and pseudo-umbilical surface
M2 immersed in E* with constant mean curvature H^O and the Gaussian curva-
ture K which is nowhere positive is a Clifford flat torus S1(ll*/2~H)xSL(ll*/2~H)
in E\

Proof. The Gaussian curvature K is given by the equation dωί2=~Kω1/\ωz.
On the other hand, the structure equations (1.1) imply dωιz=—(
because of w^=k^i, (i=l, 2). Hence we get

(3.1) K=kl+άetAί=kl-(

by means of trace At—0. Since K^O and #1^0, we have

(3.2)

Thus, we find

(3.3)

at each point p of M2. Accordingly, we can choose locally such frames b^Bi that
the matrix At is given by

ih 0
Λ=(

\0 -h

the function h being differentiable and defined globally on M2, because det At=— h2

is a global differentiable function on M2, furthermore we may suppose A>0 on M2.
Then, using the structure equations (1.1) for ωu and Lemma 2.1, we get

(3.4)

Hence we can consider local coordinates (u, v) in an open neighbourhood U of a
point psM such that

I=Edu2+Gdv2, ωι=Λ/Edu, ω2=\/Gdv,

where / is the first fundamental form and E and G are local positive functions on
U. Then the equations (3. 4) are reduced to
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(d(hE)Λdtt=0,
(3. 5)

(d(hG)Λdv=0,

which show that there exists a neighbourhood V of each point p$M2 such that
there exist isothermal coordinates (u, v) in V such that

I=λ{du2+dv2},

where λ=λ(u,v) is a positive function defined on V.

Now, we get the following

LEMMA. The universal covering surface M of M2 is conformally equivalent to
the entire plane, and hence M2 is parabolic.

Proof of Lemma. Since k\ is positive constant, the conformal metric kil is
complete on M2. However, since ki^h, the conformal metric hi is also complete
on M2. Furthermore, the metric hi is flat from (3. 6). Hence, the covering
surface M with the lifted metric from hi on M2 is isometric to the entire plane.
Thus, M is conformally equivalent the entire plane with respect to 7.

We shall prove that M2 is parabolic. Suppose that M2 is not parabolic. Then,
by the definition of parabolicity stated in § 1, there is a non-constant negative
subharmonic function on M2. Since the existence of a negative non-constant
subharmonic function on M2 implies the one on M, M must be also non parabolic.

/V ^ /N/

On the other hand, M is conformally equivalent to the entire plane and hence M
is parabolic, contradicting the consequence induced from the assumption that M2

is not parabolic. Thus, M2 is parabolic.

Going back to the proof of Proposition 1, as is well known, the Gaussian
curvature K is given by

K=-±

with respect to the isothermal coordinates (u, v). Hence the condition K^Q with
hλ=l implies

(3.7) JlogA=-Jlog^O.

This inequality (3. 7) implies that the function log (I/A) is a subharmonic function
on M2. On the other hand, since K=k\—h2 from (3. 1), we have 0<&ι^A. Hence
the subharmonic function log (I/A) on M2 is bounded from above by log (1/ftι), i.e.,

logl=log-έ
However, since M2 is parabolic by Lemma, a subharmonic function bounded from
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above on M2 must be constant. Hence the subharmonic function log (I/A) on M2

is identically constant on M2. Therefore

is identically zero on M2. Since log λ= log (I/A) is constant, λ is also constant on
V. Hence we can choose the isothermal coordinates (u,v) such that

I=du2 }~dv2, o)ι= du, o)2— dv.

Then, taking account of α>ι2=0 and k=klt we get the following Frenet formulas:

(3. 8)

Now, we introduce new frames b*=(p,e?,e?,ef,ef) such that e?=βι, ef=e2,
and eϊ=(ll*/2)(—eι+eύ. Then the equations (3.8) reduce to

dp = e*du + efdv,

de2=kι(eB~e^dvf

dβz= —kι(eιdu+ezdv),

de*=-*/2^k1e*dv,(3.9)

def=\/2kιeγdv.

These equations (3. 9) clearly show that efAef and ef/\ef determine constant
bivectors respectively. Hence the plane El(p) spanned by ef and ef is parallel to
a fixed plane El in E*. The plane El(p) spanned by ef and ef is also parallel to
a fixed plane El in E"4. El and El are clearly perpendicular to each other. Along
the ^-curve defined by v= const., we have from (3.9)

dp=e?du, def = \/2 ki = — \/2 ktf

Thus p describes a circle in E\(p) with radius l/\/2kι, because the ^-curve is
geodesic through p and M2 is complete. Analogously, along the z -curve defined
by &=const., P describes a circle in E\(p) with radius l/*/2kι.

Now, to find the loci of the centers of these two circles, we consider two
mapping ψi and ψ2: M2~^Ei defined respectively by ψι(p)=p-\-efl\/2kι and by
ψ2(p)=p—efl\/2k1 for any point p of M2, where p denotes the position vector
indicating a point p of M2 in E4. Using (3. 9), we have
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(d(φl(py)=efdv, def = — \/2k^efdv, def=\/2 ki
(3.10)

d(ψt(py)=efdu, def=A/2 kiefdu, def = - */2k±e*du.

We can easily verify that φι(p) (resp φz(P)) describes a circles with radius l/\/2 ki
in a plane parallel to E\(p) (resp El(p)). Furthermore, we can find that the center
of the circle described by φι(p) coincides with the one of the circle described by
φz(p). Thus M2 in £4 may be considered as a Riemannian product of two circles
lying on planes parallel to El and E\ respectively.

§4. The proof of the main theorem in the case (ii) K^Q.

PROPOSITION 2. A complete, connected, oriented and pseudo-umbilical surface
M2 immersed in E^ with the constant mean curvature H^Q and the Gaussian
curvature K which is nowhere negative must be either a Clifford flat torus in E*
or a sphere with radius 1/H in a hyperplane E3.

Proof. We first prove

LEMMA. —K is a subharmonic function on M2.

Proof of Lemma. M0H£€M2|w-mdexpM=0} is closed in M2. Hence Mι=M2

—Mo is open in M2. Then, analogously in § 3, we can choose a neighbourhood U
of a point />eMι in which there exist isothermal coordinates (u,v) such that

•I=λ{du2+dv2}, ωι = \/λdu, ω2—\/λdv,

(4.1) / h 0 \
Ai=[ 1, h>0, hλ=l,

\ 0 -hi

where h is a differentiate function in CΛ Hence, as is well known,

K=- ^r Δ log λ= 4Δ log h^O
L-lA LJ

from (4.1), which implies JAgO because h>0. Then we have in U

(4.2) Δh*=

On the other hand, since K=kl—h2 in U, we have

(43) ΔK=-Δh*^Q in U.

Thus we have ΔK^Q in MI. Finally, we shall prove that ΔK^Q at any point of M0.
Take a point pi of M0 and consider the isothermal coordinates (u, v) in a neigh-
bourhood E/i of p! such that



COMPLETE SURFACES IN £4 157

(4.4) I=λ{du*+dv*}, ωί

In this case, Λ^ may be represented by

&ι h2\

h2 -hi I<h2

where hi and h2 are functions in ί/i. Then we have

(4.5) K=kl-(h\+hί) in K

Hence we have in Ui

(4.6) ΔK=~2

with respect to the isothermal coordinates (u,v). Since hi and A2 attain zero at
p!, we have

(4.7) J#^0.

Thus we have ΛK^O at a point of M0. Since the sign of the Laplacian zfX is
invariant with respect to the isothermal coordinates, we have

(4.8) ΔK^Q on M2

with respect to the isothermal coordinates. Thus — K is a subharmonic function
on M2. We have proved Lemma.

Going back to the proof of Proposition 2, if M2 is compact, the subharmonic
function —K on M2 attains its maximum at some point on M2. Hence, —K must
be constant on M2, and hence K is constant on M2.

On the other hand, if M2 is not compact, M2 is parabolic by Theorem 15 in
Huber [3], since K^Q. Since —K is a negative subharmonic function on M2, — K
must be constant on M2 by the definition of parabolicity stated in § 1. Thus,
whether M2 is compact or not, K is constant on M2. Since K is given by K=kl
+detAt=&ι—IMull2, det At^ —||Aι||2 must be constant on M2. Hence we can
cosider the following two cases:

Case (a): M0 is not empty

and

Case (b): M0 is empty.

Case (a). If Mo is not empty, det Aι= — ||Aι||2 attains zero at points of Mo.
Hence det At= — ||At||2 is identically zero on M2, because det At= — ||-A4]|2 is con-
stant on M2. This implies M0=M2. Hence d<?4=0 on M2 because of ω^=Q.
Therefore, there exists a hyperplane E* in £4 such that M2 is immersed in E3

with the immersion x: M2-*E\ Since ωi8=k1ωi9 (i=l,2), M2 is umbilical in E*.
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Furthermore, M2 is complete by our assumption. Hence, as is well known, M2 in
E* is immersed in E3 as a sphere with radius l/H.

Case (b). If M0 is empty in M2, m-index^M^l at any point p€M2. Analo-
gously in § 3, we can choose a neighbourhood U of a point p of M2 in which
there exist isothermal coordinates (u, v) such that

I=λ{du*+dv*},

(4.9) / h 0\
,= ( ,

\ 0 -A/
A>0,

where h is a positive and differentiable function on M2 Then, since det Aι= — h2

is constant on M2, /? is also constant on M2. On the other hand, as stated in § 3,
K is given by K=(hj2)Δ\ogh. Hence K is identically zero on M2. Therefore M2

is immersed in E4 as a Clifford flat torus in E^ by means of Proposition 1. Thus
we have proved Proposition 2.
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