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GAUSS MAP IN A SPHERE
By Ryoicur TAKAGI

0. Introduction.

To a surface M? of a Euclidean 3-space E® there is associated the Gauss map
which assigns to a point of M? the unit normal vector at the point. This is
a mapping of M? into the unit sphere S? about the origin of E3®. Chern and
Lashof gave a generalization of this classical Gauss map in [2] as follows. Let
M™ be an n-dimensional Riemannian manifold isometrically immersed into a Eucli-
dean (n+N)-space E**¥ (N=1) and B be the bundle of unit normal vectors of
M™ (dim B=n+N—1). Then a mapping of B into the unit sphere S™*¥-* about
the origin of E»*¥ can be naturally defined.

Furthermore, Willmore and Saleemi [5] and Chen [1] generalized this mapping
to the case where M” is an n-dimensional Riemannian manifold isometrically
immersed into an (n+N)-dimensional, complete, and simply connected Riemannian
manifold M"**¥ with non-positive sectional curvature. The manner can be stated
as follows. Let ¢ be a point of M™ and B be the pseudo-normal bundle of M"
(for the definition, see [1]). The parallel displacement of veB along the shortest
geodesic segment joining the foot point of v and ¢ gives a mapping of B into the
unit sphere in the tangent space of M"*¥ at gq.

With the same ideas as the one of Willmore and Saleemi and Chen we can
associate to an z-dimensional Riemannian manifold M” isometrically immersed
into the Euclidean unit (z+N)-sphere S®*¥ the mapping analogous to the above
Gauss map in the following way. Let p a point of M” and B be the bundle of
unit normal vectors of M”»—{—p} in S**¥. Then the parallel displacement I", of
ve B along the shortest geodesic segment joining the foot point of v and p gives a
mapping of B into the unit sphere Sp*¥~' in the tangent space of SV at p. We
shall call I', the Gauss map associated to M” immersed into S**¥, and p the base
point. The purpose of this note is to relate the Gauss map I', with the geo-
metrical structure of M™ The main results obtained is the following

TrEOREM 1. Let M™ be an n-dimensional, complete Riemannian manifold
isometrically immersed into the Euclidean wunit (n+N)-spheve S™¥. Let p be a
point of S™¥ and I'p be the Gauss map: B—Si¥~* associated to M. Then Iy
has vank m at veB if and only if v, p)|(1+ <z, p)) is an eigenvalue of the second
Sundamental form whose multiplicity is equal to n-+N—1—m, where {,) is the
canonical inner product of E™¥ and x is the foot point of v.
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THEOREM 2. Let N=1 in addition to the assumption of Theorem 1. Suppose
that the Jacobian of I'p has constant rank n—m on B (0=m=n).

(1) Let m=0. If M"™ is compact and —p¢ M™, then M™ is diffeomorphic to
the n-sphere.

(2) Let 1=m=n—1. Then M" is a locus of a moving m-sphere.

(3) Let m=n. Then there exist a rveal number & (|£|<1) and a point q of
M™ such that M"={xeS™*; {x,q)=¢} and {p,qd=—¢&. The converse of this is
also true.

As seen from these results, I', is different from the ordinary Gauss map in
that it depends on a choice of the base point p as well as the immersion of M™
and it is not defined for normal vectors at the point —p (if —peM™) because p
and —p can not be uniquely joined by the shortest geodesic segment on S**1. A
large part of this note is devoted to proofs of Theorem 1 and 2.

1. Moving frames.

Throughout this note, let M™ be an #-dimensional, connected, complete Rieman-
nian manifold isometrically immersed into the unit hypersphere S**¥ in a Euclidean
(n+N+1)-space E»*¥+1  We choose a locally defined orthonormal frame field
e, -, enry 1n S™V such that, restricted to M?», ey, -+, e, are tangent to M. We
shall agree on the following ranges of indices:

1=i,7,k=n, n+l=a,B,r=n+N, 1=A,B C=n+N.

Let @, -+, oy be the dual of the frame field chosen above and w4z be the con-
nection forms for S**¥. Then the structure equations of S**¥ are given by

(L) dos= %} ®aB/\W3, @4+ wa13=0,
(2) dwap= § w0 AwcE— 04 \Wp.
Restricting these forms to M™, we have

(3) 0.=0

Hence the equation (1) gives

(4) z?_. O A©;=0

From this we may write as

(5) Woi= ; Rerj®sy  Mery=Hajie

The quadratic form 3,.; Awjm; is the second fundamental form of M™ with
respect to e,.
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2. Explicit expression of I', and a proof of Theorem 1.

First we shall express explicitly the Gauss map I',: B—Si*¥~! associated to
Mm. Set I'=I", for simplicity and let z: B—M™ be the projection. We assert
that I" is given by

R SR
(6) = 5 P Tiay ©

where veB and z==(v). In fact, if x=p, then I'(v)=v. If z=p, then we de-
compose into the component v,p+v,x of the 2-plane I/ spanned by p and zx and
the component v, normal to II: v=vy+v,P+v,X. Then it is evident that I'(v)
=vo+Z, where ZeS§*¥' is the vector parallel to v,P+v,X along the geodesic
joining p and x. Since v,=<{y, pp/(1—<x, p)?),

Vg=— <Vy p><x7 p>/(1_ <J7, p>2)

and
Z=vy(2x, pyp—x)+vap,

after a simple computation we have (6).
The differential d(I"(v)) of I" at v is given by

{(1—‘—(.7/‘, p>)<du’ p> - <’Jy p> <d3$', P}K”"‘P) . <”7 p> dz.

() dTe)=dv— L+, 2)° 1<z,

Since (6) is valid for a tangent vector of S**¥, we have

{lea, D) {les, D

) Hed=e T i ™ T ™

Set y=en,y. Then making use of the fact that

(9) do= Y ww, oeM"

10) deq= %} ®4p°€p,

an @, esy=0,

we obtain

a2 IO, Te)y =onvim 22,
13) WO, Tedy=onr.c

Since I'(ey), -+, I'(en.y_1) forms a basis for the tangent space of S**¥-1 at I'(»),
(12), (13) and (5) imply that the Jacobian matrix of 7" at v is of the form
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o B
[ oo™ T m l 0 ]
L0 [

where Hu,x=(hn,n..;) and I, denotes the identity matrix of degree . This proves
Theorem 1.

(14)

3. A proof of Theorem 2.

In this section we assume that the Gauss map I associated to M™ has con-
stant rank #+N—1—m (0=m=#), in other words, for every veB, the second
fundamental form with respect to » has the eigenvalue 1=<{y, p)/(1+<z,p)) of
multiplicity »s.

Proof of Theorem 2. (1). Since I' is nonsingular everywhere and M"—{—p}
=M™ is compact, the image I'(B) of B under I" is an open and closed subset of
S3*¥-1, and so I'(B)=S3+*¥-', Hence (I", B) is a covering space of Sz+¥=!, If N=2,
I" must be one-to-one because B is connected. Hence I' is a diffeomorphism. If
N=1, one of two connected components of B is diffeomorphic to S%, and also to
M™. q.ed.

From now on let N=1 and 0<m=#xn. In this case there arises an m-dimen-
sional distribution 4 on M™ which assigns to each point x of M"—{—p} the space
of principal vectors corresponding to the principal curvature A=<y, p)/(1+<{x, p))
at z. To prove (2) and (3) of Theorem 2 we shall establish the following

THEOREM 3. Let M™ be a hypersurface immersed into the unit (n+1)-sphere
S, Suppose that the multiplicity m of principal curvature A is constant. Then
the distribution A of the space of principal vectors corresponding to A is completely
integrable.

Proof. We shall agree on the following ranges of indices:
1=<a,b, c=m, m+1=r,s,t=n

We may choose a frame field ey, -+, €541 in §1 so that ey, .-+, e, forms a basis for
A, that is, Setting hap="Nni1,00 A0 Frs=hns1, s,

(15) }lab =5ab2, }lm=0
or equivalently
(16) Ct)n+1,a,=zwa,

an WOni1,r= 2, Mrsws.
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Taking exterior differentiation of (16), we have from (1)
dwni1,a=dANwg+dw,

(18)
=§I s ANwa+ 23 Arwr Awa~+2 %} Was AWp+2 Y War Ny

where we set di=3, bws+ X r Ao, On the other hand, we have from (2), (16)
and (17)

Adwni1,6=23 Oni1,6 A@Wpat 23 Oni1,r AWra— Oni1 \Og
b r

19)
=1 %: o A Wpa+ Z;ghrsws/\wm

since wny1=0 on M™ Comparing (18) and (19) we obtain

(20) ; Asws Awg=0,
(21) Z(Z krswsa—/?a)ra—irwa) Aw,=0

It follows from (21) and Cartan’s lemma that we may write as

(22) Z hrswsa“zwm—zrﬂ)a: Z Oarsws, Oars=0asr.
$ 8

Set here wro=Y orapws+ D5 orasws. Substituting this into (22), we have

(23) 22(Prs—0rsA)0s00=Ar,
24) 21 (Brs— 075050y =0 (a=D).

Since det(/,s—Al,)>0 by the assumption, (23) implies that
(25) Or11="""=0rmm
and (24) implies that
(26) orap=0 (a=Db).
Denoting (25) by ¢,, we found
@n Wra=0,0g+ Zsl Oras®s.
Hence
dwr=§ wra/\wa—stZ Wrs \ws
(28) =2 omsws/\wa+§ wrs Aws

=0 (mod ;).
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This means that 4 is completely integrable. q.e.d.

COROLLARY 4. Under the assumption of Theorem 3, if m is greater than 1,
then 2 is constant on each integral manifold of A and each integral manifold of
A is a totally umbilic submanifold of S™**.

Proof. The first assersion follows from (20) and the second from (16) and
27). q.ed.

REMARK 5. In general, Theorem 3 and Corollary 4 hold also in the case
where M™ is immersed as a hypersurface into a Riemannian manifold of constant
curvature. The proof is entirely analogous. Thus Theorem 3 (resp. Corollary
4) is a slight generalization of a theorem of Otsuki ([4] Theorem 2) (resp. his
Corollary).

For xeM"—{—p} we denote by A, the maximal integral manifold of A through
z. Clearly we may assume that A_, is defined if —peM™

LEMMA 6. 3,02 is constant on As.

Proof. Restrict the forms under consideration on 4,. Then
(29) w,=0
and from (27)
30 Wra=0,Wq-

Taking exterior differentiation of (30) and using (1), (2) and (29) we have

(31) (do,— Zsl oswrs) Awe=0  for all a.

This means that

(32) do,= § O5Wrs.

Hence

(33) d ZT: oi=2 Zr: ordor=2 rZ}S g050,s=0.  q.e.d.

Proof of Theorem 2. (2). By Lemma 6 and Corollary 4, A, is either a totally
geodesic submanifold of S™*! or else not totally geodesic at every point.

In the former case /, is a unit m-sphere. In the latter case A, is totally
umbilic and not totally geodesic at every point also as a submanifold of E™*2
Therefore by menas of a theorem of Otsuki ([3], Theorem 1) 4, is an m-sphere in
a linear subspace E™*'. q.e.d.

There is a following relation between the base point p and an arbitrary
Ay (ye M™)
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LEMMA 7. There exist a number & (|§|<1) and a point qeS™* such that A, is
contained in a hypersphere {xeS™*Y; (z,qd=E} and {p,q)=—E¢.

Proof. Since A=<y, p)/(1+<{x, p») is constant on A, by Corollary 4, v—iz is a
constant vector on 4, by the definition of 4. Thus we can set on 4,

(34) v—iz=—a/1+22¢q  for a geS*

Taking the inner product of (34) with x and p, we obtain
(35) (e, Q=ATFR,  zedy,

(36) P, d=—2TIF22 qed

Proof of Theorem 2. (3). Let m=n in Lemma 7. Then M™ must be con-
tained in 4, (ye M™). By completeness, we conclude M"=/A, The converse of
this is a straightforward computation.

RemArk 8. Consider the special case m=n—1 in Theorem 2. In this case
the locus of all centers in £7'% of A, (yeM™) is a curve C: E—FE"*?, where C is
parametrized by arc length. 2 is a function on C.

We assert that there is no open interval of £ on which 2 vanishes identically.
In fact, assume 21=0 on an open interval U.

Then it follows from Lemma 7 that both the base point p and A, whose
centers lies in C(U) are contained in a unit hypersphere S® Thus M™ must
contain an open subset of S®, which contradicts the assumption m=7n—1.
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