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GAUSS MAP IN A SPHERE

BY RYOICHI TAKAGI

0. Introduction.

To a surface M2 of a Euclidean 3-space Es there is associated the Gauss map
which assigns to a point of M2 the unit normal vector at the point. This is
a mapping of M2 into the unit sphere S2 about the origin of E*. Chern and
Lashof gave a generalization of this classical Gauss map in [2] as follows. Let
Mn be an /^-dimensional Riemannian manifold isometrically immersed into a Eucli-
dean O+Λ/>space En+N C/V^l) and B be the bundle of unit normal vectors of
Mn (άimB=n+N—l). Then a mapping of B into the unit sphere Sn+N~1 about
the origin of En+N can be naturally defined.

Furthermore, Willmore and Saleemi [5] and Chen [1] generalized this mapping
to the case where Mn is an ^-dimensional Riemannian manifold isometrically
immersed into an (n+N)-dimensional, complete, and simply connected Riemannian
manifold Mn+N with non-positive sectional curvature. The manner can be stated
as follows. Let q be a point of Mn and B be the pseudo-normal bundle of Mn

(for the definition, see [1]). The parallel displacement of usB along the shortest
geodesic segment joining the foot point of v and q gives a mapping of B into the
unit sphere in the tangent space of Mn+N at q.

With the same ideas as the one of Willmore and Saleemi and Chen we can
associate to an ^-dimensional Riemannian manifold Mn isometrically immersed
into the Euclidean unit (n+N)-sphere Sn+N the mapping analogous to the above
Gauss map in the following way. Let p a point of Mn and B be the bundle of
unit normal vectors of Mn—{— p} in Sn+N. Then the parallel displacement Γp of
vzB along the shortest geodesic segment joining the foot point of v and p gives a
mapping of B into the unit sphere Sp+N~l in the tangent space of Sn+N at p. We
shall call Γp the Gauss map associated to Mn immersed into Sn+N, and p the base
point. The purpose of this note is to relate the Gauss map Γp with the geo-
metrical structure of Mn. The main results obtained is the following

THEOREM 1. Let Mn be an n-dimensional, complete Riemannian manifold
isometrically immersed into the Euclidean unit (n+N)-sphere Sn+N. Let p be a
point of Sn+N and Γp be the Gauss map: B-^Sξ™-1 associated to Mn. Then Γp

has rank m at u^B if and only if <y,^>/(l+<#,/>» is an eigenvalue of the second
fundamental form whose multiplicity is equal to n+N—l—m, where < , > is the
canonical inner product of En+N and x is the foot point of u.
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THEOREM 2. Let N=l in addition to the assumption of Theorem 1. Suppose
that the Jacobian of Γp has constant rank n—m on B (Q^m^n).

(1) Let m=Q. If Mn is compact and —p$Mn, then Mn is diffeomorphic to
the n-sphere.

(2) Let Ifgm^i^—1. Then Mn is a locus of a moving m-sphere.
(3) Let m=n. Then there exist a real number ξ (|£|<1) and a point q of

Mn such that Mn={χζSn+1; <#,#>=<?} and <A #> = —<?• The converse of this is
also true.

As seen from these results, Γp is different from the ordinary Gauss map in
that it depends on a choice of the base point p as well as the immersion of Mn

and it is not defined for normal vectors at the point —p (if —pzMn) because p
and —p can not be uniquely joined by the shortest geodesic segment on Sn+1. A
large part of this note is devoted to proofs of Theorem 1 and 2.

1. Moving frames.

Throughout this note, let Mn be an ^-dimensional, connected, complete Rieman-
nian manifold isometrically immersed into the unit hypersphere Sn+N in a Euclidean
(w+A7"+l)-space En+N+1. We choose a locally defined orthonormal frame field
eι,~ ,en+N in Sn+N such that, restricted to Mn, eι, ,en are tangent to Mn. We
shall agree on the following ranges of indices:

l^ί,y, k^n, n+l^a, β, γ^n+N, l^A, B, C^n+N.

Let ωi, ~',ωn+π be the dual of the frame field chosen above and WAB be the con-
nection forms for Sn+N. Then the structure equations of Sn+N are given by

= Σ
B

(2) do)AB c

Restricting these forms to Mn, we have

(3) ω«=0

Hence the equation (1) gives

(4) ΣωαιΛύ>ί=0
τ

From this we may write as

( 5 ) ωaί= Σ haijMj, haτj=haji.
3

The quadratic form Σι,j h^jωiωy is the second fundamental form of Mn with
respect to e«.
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2. Explicit expression of Γp and a proof of Theorem 1.

First we shall express explicitly the Gauss map Γp: B-^Sp

+N~l associated to
Mn. Set Γ=Γp for simplicity and let π: B—*Mn be the projection. We assert
that Γ is given by

where usB and x=π(v). In fact, if x=p, then Γ(v)=v. If x^p, then we de-
compose into the component vpp-\-vxx of the 2-plane 77 spanned by p and x and
the component y0 normal to 77: v=vQ+vpP+vxX. Then it is evident that Γ(v)
=v0+Z, where Z^Sp+N~l is the vector parallel to upP-\-uxX along the geodesic
joining p and x. Since vp =<y, />>/(!— (x,PY\

and

after a simple computation we have (6).
The differential α7(Γ(») of Γ at v is given by

Since (6) is valid for a tangent vector of Sn+N, we have

r, v
Γ(eA)=eA

Set v=^n+jv. Then making use of the fact that

(9)

(10)

(11)

we obtain

(12)

(13)

Since Γ(e1\ •••, Γ(en+N-ι) forms a basis for the tangent space of Sn+N~1 at Γ(v\
(12), (13) and (5) imply that the Jacobian matrix of Γ at v is of the form



(14)
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<y,P> τ
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Hn+N~

o
0

where Hn+N=(hn+N,ιj) and Ir denotes the identity matrix of degree r. This proves
Theorem 1.

3. A proof of Theorem 2.

In this section we assume that the Gauss map Γ associated to Mn has con-
stant rank n+N—Ί.—m (Q^m^ri), in other words, for every v$B, the second
fundamental form with respect to v has the eigenvalue Λ = <v, />>/(!+<#,/>» of
multiplicity m.

Proof of Theorem 2. (1). Since Γ is nonsingular everywhere and Mn— {— p]
=Mn is compact, the image Γ(E) of B under Γ is an open and closed subset of
Sn

p

+N~l, and so Γ(B)=S^+N~1. Hence (Γ,B) is a covering space of Si**'1. If N^2,
Γ must be one-to-one because B is connected. Hence Γ is a diίfeomorphism. If
N=l, one of two connected components of B is diffeomorphic to S?, and also to
Mn. q.e.d.

From now on let N=l and Q<m^n. In this case there arises an m-dimen-
sional distribution A on Mn which assigns to each point x of Mn— {— p} the space
of principal vectors corresponding to the principal curvature Λ=<y, />>/(! +<^,/>»
at x. To prove (2) and (3) of Theorem 2 we shall establish the following

THEOREM 3. Let Mn be a hypersurface immersed into the unit (n+V)-sphere
Sn+1. Suppose that the multiplicity m of principal curvature λ is constant. Then
the distribution Λ of the space of principal vectors corresponding to λ is completely
integrable.

Proof. We shall agree on the following ranges of indices:

I^a, b, c^m, m+l^r, s, t^n

We may choose a frame field βi, •• ,en+ι in §1 so that eι, ,em forms a basis for
A> that is, setting λα&=/fcn+ι,α&

(15)

or equivalently

(16)

(17)
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Taking exterior differentiation of (16), we have from (1)

dωn+ι,a
(18)

where we set d2=Σbfa<*>ι>+ΣrλrQ>r On the other hand, we have from (2), (16)
and (17)

,
δ

(19)
— /I Σ ωδΛft>δα + Σ hrsO)s/\0)ra

b r,s

since <£>w+ι=0 on M7*. Comparing (18) and (19) we obtain

(20) Σfaωb/\ωa=Q,
δ

(21) Σ(Σ hrsMsa — λωra — 2rO)a)Awr = Q
Ί S

It follows from (21) and Cartan's lemma that we may write as

(22) Σ hrsωsa — λωra — Ar(*>a=Σ ^αrs<^s, 0ars — θasr
s s

Set here ω rα=Σδtfrαδωδ+Σs0>αsω s. Substituting this into (22), we have

(23)

(24)
s

Since det(Ars— /ίlm)^ΰ by the assumption, (23) implies that

(25) σy 1 1 = = σrmm

and (24) implies that

(26) <7rαδ=0 (tf =*=&).

Denoting (25) by σr, we found

(27) ωrα — σrωa + Σ <Jrasωs
s

Hence

dωr = Σ ω rαΛα>α+Σ ωrsΛω sα s

(28) = Σ # rαs^s Λ ίOa + Σ < r̂s Λ ωs
a, s s

ΞΞU (mod a>ί).
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This means that Λ is completely integrable. q.e.d.

COROLLARY 4. Under the assumption of Theorem 3, if m is greater than 1,
then λ is constant on each integral manifold of Λ and each integral manifold of
A is a totally umbilic submanifold of Sπ+1.

Proof. The first assersion follows from (20) and the second from (16) and
(27). q.e.d.

REMARK 5. In general, Theorem 3 and Corollary 4 hold also in the case
where Mn is immersed as a hypersurface into a Riemannian manifold of constant
curvature. The proof is entirely analogous. Thus Theorem 3 (resp. Corollary
4) is a slight generalization of a theorem of Otsuki ([4] Theorem 2) (resp. his
Corollary).

For x€Mn—{— p] we denote by Λx the maximal integral manifold of Λ through
x. Clearly we may assume that Λ-p is defined if —p£Mn.

LEMMA 6. Σrrt is constant on Λx.

Proof. Restrict the forms under consideration on Ax. Then

(29) ωr=Q

and from (27)

(30) ωrα=(7rωα.

Taking exterior differentiation of (30) and using (1), (2) and (29) we have

(31) (dσr— Σtf*ω«)Λ<ϋα=0 for all a.
s

This means that

(32) dσr=Σ <rs(t>rs>
s

Hence

(33) d Σ tfr=2 2 σrdσr=2 Σ wso)rs=Q- q.e.d.
r r r,s

Proof of Theorem 2. (2). By Lemma 6 and Corollary 4, Ax is either a totally
geodesic submanifold of Sn+1 or else not totally geodesic at every point.

In the former case Λx is a unit m-sphere. In the latter case Λx is totally
umbilic and not totally geodesic at every point also as a submanifold of En+2.
Therefore by menas of a theorem of Otsuki ([3], Theorem 1) Ax is an w-sphere in
a linear subspace Em+1. q.e.d.

There is a following relation between the base point p and an arbitrary
Ay
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LEMMA 7. There exist a number ξ (|f|<l) and a point q€Sn+1 such that Ay is
contained in a hypersphere {xcSn+1; (x,q)=ξ] and (p,q> =—ζ.

Proof. Since Λ=<y, />>/(!+<#,/>» is constant on Λy by Corollary 4, v— λx is a
constant vector on Λy by the definition of A. Thus we can set on Ay

(34) v-λx = -*/ΐ+P q, f o r a qsSn+1

Taking the inner product of (34) with x and p, we obtain

(35) <Λ7,g>

(36) (p,4> = -λl*/τ+V. q e.d.

Proof of Theorem 2. (3). Let w=^ in Lemma 7. Then Mπ must be con-
tained in Λy (yGMn). By completeness, we conclude Mn=Ay. The converse of
this is a straightforward computation.

REMARK 8. Consider the special case m=n— 1 in Theorem 2. In this case
the locus of all centers in EnΛ2 of Ay (yζMn) is a curve C: E-*En+2, where C is
parametrized by arc length, λ is a function on C.

We assert that there is no open interval of E on which λ vanishes identically.
In fact, assume Λ=0 on an open interval U.

Then it follows from Lemma 7 that both the base point p and Ay whose
centers lies in C(U) are contained in a unit hypersphere Sn. Thus Mn must
contain an open subset of Sn, which contradicts the assumption m=n—l.
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