GAUSS MAP IN A SPHERE

By Ryoichi Takagi

0. Introduction.

To a surface M^{2} of a Euclidean 3 -space \boldsymbol{E}^{3} there is associated the Gauss map which assigns to a point of M^{2} the unit normal vector at the point. This is a mapping of M^{2} into the unit sphere S^{2} about the origin of \boldsymbol{E}^{3}. Chern and Lashof gave a generalization of this classical Gauss map in [2] as follows. Let M^{n} be an n-dimensional Riemannian manifold isometrically immersed into a Euclidean $(n+N)$-space $E^{n+N}(N \geqq 1)$ and B be the bundle of unit normal vectors of M^{n} ($\operatorname{dim} B=n+N-1$). Then a mapping of B into the unit sphere S^{n+N-1} about the origin of E^{n+N} can be naturally defined.

Furthermore, Willmore and Saleemi [5] and Chen [1] generalized this mapping to the case where M^{n} is an n-dimensional Riemannian manifold isometrically immersed into an $(n+N)$-dimensional, complete, and simply connected Riemannian manifold M^{n+N} with non-positive sectional curvature. The manner can be stated as follows. Let q be a point of M^{n} and B be the pseudo-normal bundle of M^{n} (for the definition, see [1]). The parallel displacement of $\nu \in B$ along the shortest geodesic segment joining the foot point of ν and q gives a mapping of B into the unit sphere in the tangent space of M^{n+N} at q.

With the same ideas as the one of Willmore and Saleemi and Chen we can associate to an n-dimensional Riemannian manifold M^{n} isometrically immersed into the Euclidean unit $(n+N)$-sphere S^{n+N} the mapping analogous to the above Gauss map in the following way. Let p a point of M^{n} and B be the bundle of unit normal vectors of $M^{n}-\{-p\}$ in S^{n+N}. Then the parallel displacement Γ_{p} of $\nu \in B$ along the shortest geodesic segment joining the foot point of ν and p gives a mapping of B into the unit sphere S_{p}^{n+N-1} in the tangent space of S^{n+N} at p. We shall call Γ_{p} the Gauss map associated to M^{n} immersed into S^{n+N}, and p the base point. The purpose of this note is to relate the Gauss map Γ_{p} with the geometrical structure of M^{n}. The main results obtained is the following

Theorem 1. Let M^{n} be an n-dimensional, complete Riemannian manifold isometrically immersed into the Euclidean unit $(n+N)$-sphere S^{n+N}. Let p be a point of S^{n+N} and Γ_{p} be the Gauss map: $B \rightarrow S_{p}^{n+N-1}$ associated to M^{n}. Then I_{p} has rank m at $\nu \in B$ if and only if $\langle\nu, p\rangle /(1+\langle x, p\rangle)$ is an eigenvalue of the second fundamental form whose multiplicity is equal to $n+N-1-m$, where \langle,$\rangle is the$ canonical inner product of E^{n+N} and x is the foot point of ν.

Received October 24, 1969.

Theorem 2. Let $N=1$ in addition to the assumption of Theorem 1. Suppose that the Jacobian of Γ_{p} has constant rank $n-m$ on $B(0 \leqq m \leqq n)$.
(1) Let $m=0$. If M^{n} is compact and $-p \not \equiv M^{n}$, then M^{n} is diffeomorphic to the n-sphere.
(2) Let $1 \leqq m \leqq n-1$. Then M^{n} is a locus of a moving m-sphere.
(3) Let $m=n$. Then there exist a real number $\xi(|\xi|<1)$ and a point q of M^{n} such that $M^{n}=\left\{x \in S^{n+1} ;\langle x, q\rangle=\xi\right\}$ and $\langle p, q\rangle=-\xi$. The converse of this is also true.

As seen from these results, Γ_{p} is different from the ordinary Gauss map in that it depends on a choice of the base point p as well as the immersion of M^{n} and it is not defined for normal vectors at the point $-p$ (if $-p \in M^{n}$) because p and $-p$ can not be uniquely joined by the shortest geodesic segment on S^{n+1}. A large part of this note is devoted to proofs of Theorem 1 and 2.

1. Moving frames.

Throughout this note, let M^{n} be an n-dimensional, connected, complete Riemannian manifold isometrically immersed into the unit hypersphere S^{n+N} in a Euclidean $(n+N+1)$-space E^{n+N+1}. We choose a locally defined orthonormal frame field e_{1}, \cdots, e_{n+N} in S^{n+N} such that, restricted to $M^{n}, e_{1}, \cdots, e_{n}$ are tangent to M^{n}. We shall agree on the following ranges of indices:

$$
1 \leqq i, j, k \leqq n, \quad n+1 \leqq \alpha, \beta, \gamma \leqq n+N, \quad 1 \leqq A, B, C \leqq n+N .
$$

Let $\omega_{1}, \cdots, \omega_{n+N}$ be the dual of the frame field chosen above and $\omega_{A B}$ be the connection forms for S^{n+N}. Then the structure equations of S^{n+N} are given by

$$
\begin{gather*}
d \omega_{A}=\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{A B}=0, \tag{1}\\
d \omega_{A B}=\sum_{C} \omega_{A C} \wedge \omega_{C B}-\omega_{A} \wedge \omega_{B} \tag{2}
\end{gather*}
$$

Restricting these forms to M^{n}, we have

$$
\begin{equation*}
\omega_{\alpha}=0 \tag{3}
\end{equation*}
$$

Hence the equation (1) gives

$$
\begin{equation*}
\sum_{\imath} \omega_{\alpha \imath} \wedge \omega_{i}=0 \tag{4}
\end{equation*}
$$

From this we may write as

$$
\begin{equation*}
\omega_{\alpha i}=\sum_{\jmath} h_{\alpha \imath j} \omega_{\jmath}, \quad h_{\alpha \imath \jmath}=h_{\alpha j i} . \tag{5}
\end{equation*}
$$

The quadratic form $\sum_{i, j} h_{\alpha \imath j} \omega_{i} \omega_{j}$ is the second fundamental form of M^{n} with respect to e_{α}.

2. Explicit expression of Γ_{p} and a proof of Theorem 1.

First we shall express explicitly the Gauss map $\Gamma_{p}: B \rightarrow S_{p}^{n+N-1}$ associated to M^{n}. Set $\Gamma=\Gamma_{p}$ for simplicity and let $\pi: B \rightarrow M^{n}$ be the projection. We assert that Γ is given by

$$
\begin{equation*}
\Gamma(\nu)=\nu-\frac{\langle\nu, p\rangle}{1+\langle x, p\rangle} p-\frac{\langle\nu, p\rangle}{1+\langle x, p\rangle} x \tag{6}
\end{equation*}
$$

where $\nu \in B$ and $x=\pi(\nu)$. In fact, if $x=p$, then $\Gamma(\nu)=\nu$. If $x \neq p$, then we decompose into the component $\nu_{p} p+\nu_{x} x$ of the 2 -plane Π spanned by p and x and the component ν_{0} normal to $\Pi: \nu=\nu_{0}+\nu_{p} P+\nu_{x} X$. Then it is evident that $\Gamma(\nu)$ $=\nu_{0}+Z$, where $Z \in S_{p}^{n+N-1}$ is the vector parallel to $\nu_{p} P+\nu_{x} X$ along the geodesic joining p and x. Since $\nu_{p}=\langle\nu, p\rangle /\left(1-\langle x, p\rangle^{2}\right)$,

$$
\nu_{x}=-\langle\nu, p\rangle\langle x, p\rangle /\left(1-\langle x, p\rangle^{2}\right)
$$

and

$$
Z=\nu_{p}(2\langle x, p\rangle p-x)+\nu_{x} p,
$$

after a simple computation we have (6).
The differential $d(\Gamma(\nu))$ of Γ at ν is given by

$$
\begin{equation*}
d(\Gamma(\nu))=d \nu-\frac{\{(1+\langle x, p\rangle)\langle d \nu, p\rangle-\langle\nu, p\rangle\langle d x, p\rangle\rangle(x+p)}{(1+\langle x, p\rangle)^{2}}-\frac{\langle\nu, p\rangle}{1+\langle x, p\rangle} d x . \tag{7}
\end{equation*}
$$

Since (6) is valid for a tangent vector of S^{n+N}, we have

$$
\begin{equation*}
\Gamma\left(e_{A}\right)=e_{A}-\frac{\left\langle e_{A}, p\right\rangle}{1+\langle x, p\rangle} p-\frac{\left\langle e_{A}, p\right\rangle}{1+\langle x, p\rangle} x . \tag{8}
\end{equation*}
$$

Set $\nu=e_{n+N}$. Then making use of the fact that

$$
\begin{gather*}
d x=\sum_{i} \omega_{i} e_{i}, \quad x \in M^{n} \tag{9}\\
d e_{A}=\sum_{B} \omega_{A B} \cdot e_{B}, \tag{10}\\
\left\langle x, e_{A}\right\rangle=0, \tag{11}
\end{gather*}
$$

we obtain

$$
\begin{align*}
& \left\langle d(\Gamma(\nu)), \Gamma\left(e_{i}\right)\right\rangle=\omega_{n+N, i}-\frac{\langle\nu, p\rangle}{1+\langle x, p\rangle} \omega_{i}, \tag{12}\\
& \left\langle d(\Gamma(\nu)), \Gamma\left(e_{\alpha}\right)\right\rangle=\omega_{n+N, \alpha} . \tag{13}
\end{align*}
$$

Since $\Gamma\left(e_{1}\right), \cdots, \Gamma\left(e_{n+N-1}\right)$ forms a basis for the tangent space of S^{n+N-1} at $\Gamma(\nu)$, (12), (13) and (5) imply that the Jacobian matrix of Γ at ν is of the form

$$
\left(\begin{array}{c|c}
H_{n+N}-\frac{\langle\nu, p\rangle}{1+\langle x, p\rangle} I_{n} & 0 \tag{14}\\
\hline 0 & I_{N-1}
\end{array}\right)
$$

where $H_{n+N}=\left(h_{n+N, 2 j}\right)$ and I_{r} denotes the identity matrix of degree r. This proves Theorem 1.

3. A proof of Theorem 2 .

In this section we assume that the Gauss map Γ associated to M^{n} has constant rank $n+N-1-m(0 \leqq m \leqq n)$, in other words, for every $\nu \in B$, the second fundamental form with respect to ν has the eigenvalue $\lambda=\langle\nu, p\rangle /(1+\langle x, p\rangle)$ of multiplicity m.

Proof of Theorem 2. (1). Since Γ is nonsingular everywhere and $M^{n}-\{-p\}$ $=M^{n}$ is compact, the image $\Gamma(B)$ of B under Γ is an open and closed subset of S_{p}^{n+N-1}, and so $\Gamma(B)=S_{p}^{n+N-1}$. Hence (Γ, B) is a covering space of $S_{p}^{n+N=1}$. If $N \geqq 2$, Γ must be one-to-one because B is connected. Hence Γ is a diffeomorphism. If $N=1$, one of two connected components of B is diffeomorphic to S_{p}^{n}, and also to M^{n}. q.e.d.

From now on let $N=1$ and $0<m \leqq n$. In this case there arises an m-dimensional distribution Λ on M^{n} which assigns to each point x of $M^{n}-\{-p\}$ the space of principal vectors corresponding to the principal curvature $\lambda=\langle\nu, p\rangle /(1+\langle x, p\rangle)$ at x. To prove (2) and (3) of Theorem 2 we shall establish the following

Theorem 3. Let M^{n} be a hypersurface immersed into the unit $(n+1)$-sphere S^{n+1}. Suppose that the multiplicity m of principal curvature λ is constant. Then the distribution Λ of the space of principal vectors corresponding to λ is completely integrable.

Proof. We shall agree on the following ranges of indices:

$$
1 \leqq a, b, c \leqq m, \quad m+1 \leqq r, s, t \leqq n
$$

We may choose a frame field e_{1}, \cdots, e_{n+1} in $\S 1$ so that e_{1}, \cdots, e_{m} forms a basis for Λ, that is, setting $h_{a b}=h_{n+1, a b}$ and $h_{r s}=h_{n+1, r s}$,

$$
\begin{equation*}
h_{a b}=\delta_{a b} \lambda, \quad h_{r a}=0 \tag{15}
\end{equation*}
$$

or equivalently

$$
\begin{gather*}
\omega_{n+1, a}=\lambda \omega_{a} \tag{16}\\
\omega_{n+1, r}=\sum_{s} h_{r s} \omega_{s} .
\end{gather*}
$$

Taking exterior differentiation of (16), we have from (1)

$$
\begin{align*}
d \omega_{n+1, a} & =d \lambda \wedge \omega_{a}+\lambda d \omega_{a} \tag{18}\\
& =\sum_{b} \lambda_{b} \omega_{b} \wedge \omega_{a}+\sum_{r} \lambda_{r} \omega_{r} \wedge \omega_{a}+\lambda \sum_{b} \omega_{a b} \wedge \omega_{b}+\lambda \sum_{r} \omega_{a r} \wedge \omega_{r}
\end{align*}
$$

where we set $d \lambda=\sum_{b} \lambda_{b} \omega_{b}+\sum_{r} \lambda_{r} \omega_{r}$. On the other hand, we have from (2), (16) and (17)

$$
\begin{align*}
d \omega_{n+1, a} & =\sum_{b} \omega_{n+1, b} \wedge \omega_{b a}+\sum_{r} \omega_{n+1, r} \wedge \omega_{r a}-\omega_{n+1} \wedge \omega_{a} \\
& =\lambda \sum_{b} \omega_{b} \wedge \omega_{b a}+\sum_{r, s} h_{r s} \omega_{s} \wedge \omega_{r a} \tag{19}
\end{align*}
$$

since $\omega_{n+1}=0$ on M^{n}. Comparing (18) and (19) we obtain

$$
\begin{gather*}
\sum_{b} \lambda_{b} \omega_{b} \wedge \omega_{a}=0, \tag{20}\\
\sum_{r}\left(\sum_{s} h_{r s} \omega_{s a}-\lambda \omega_{r a}-\lambda_{r} \omega_{a}\right) \wedge \omega_{r}=0 \tag{21}
\end{gather*}
$$

It follows from (21) and Cartan's lemma that we may write as

$$
\begin{equation*}
\sum_{s} h_{r s} \omega_{s a}-\lambda \omega_{r a}-\lambda_{r} \omega_{a}=\sum_{s} \theta_{a r s} \omega_{s}, \quad \theta_{a r s}=\theta_{a s r} \tag{22}
\end{equation*}
$$

Set here $\omega_{r a}=\sum_{b} \sigma_{r a b} \omega_{b}+\sum_{s} \sigma_{r a s} \omega_{s}$. Substituting this into (22), we have

$$
\begin{align*}
& \sum_{s}\left(h_{r s}-\delta_{r s} \lambda\right) \sigma_{s a a}=\lambda_{r}, \tag{23}\\
& \sum_{s}\left(h_{r s}-\delta_{r s} \lambda\right) \sigma_{s a b}=0 \quad(a \neq b) . \tag{24}
\end{align*}
$$

Since $\operatorname{det}\left(h_{r s}-\lambda I_{m}\right) \neq 0$ by the assumption, (23) implies that

$$
\begin{equation*}
\sigma_{r 11}=\cdots=\sigma_{r m m} \tag{25}
\end{equation*}
$$

and (24) implies that

$$
\begin{equation*}
\sigma_{r a b}=0 \quad(a \neq b) . \tag{26}
\end{equation*}
$$

Denoting (25) by σ_{r}, we found

$$
\begin{equation*}
\omega_{r a}=\sigma_{r} \omega_{a}+\sum_{s} \sigma_{r a s} \omega_{s} \tag{27}
\end{equation*}
$$

Hence

$$
\begin{align*}
d \omega_{r} & =\sum_{a} \omega_{r a} \wedge \omega_{a}+\sum_{s} \omega_{r s} \wedge \omega_{s} \\
& =\sum_{a, s} \sigma_{r a s} \omega_{s} \wedge \omega_{a}+\sum_{s} \omega_{r s} \wedge \omega_{s} \tag{28}\\
& \equiv 0 \quad\left(\bmod \omega_{t}\right) .
\end{align*}
$$

This means that A is completely integrable. q.e.d.
Corollary 4. Under the assumption of Theorem 3, if m is greater than 1 , then λ is constant on each integral manifold of Λ and each integral manifold of 1 is a totally umbilic submanifold of S^{n+1}.

Proof. The first assersion follows from (20) and the second from (16) and (27). q.e.d.

Remark 5. In general, Theorem 3 and Corollary 4 hold also in the case where M^{n} is immersed as a hypersurface into a Riemannian manifold of constant curvature. The proof is entirely analogous. Thus Theorem 3 (resp. Corollary 4) is a slight generalization of a theorem of O Otsuki ([4] Theorem 2) (resp. his Corollary).

For $x \in M^{n}-\{-p\}$ we denote by Λ_{x} the maximal integral manifold of Λ through x. Clearly we may assume that Λ_{-p} is defined if $-p \in M^{n}$.

Lemma 6. $\Sigma_{r} \sigma_{r}^{2}$ is constant on Λ_{x}.
Proof. Restrict the forms under consideration on Λ_{x}. Then

$$
\begin{equation*}
\omega_{r}=0 \tag{29}
\end{equation*}
$$

and from (27)

$$
\begin{equation*}
\omega_{r a}=\sigma_{r} \omega_{a} . \tag{30}
\end{equation*}
$$

Taking exterior differentiation of (30) and using (1), (2) and (29) we have

$$
\begin{equation*}
\left(d \sigma_{r}-\sum_{s} \sigma_{s} \omega_{r s}\right) \wedge \omega_{a}=0 \quad \text { for all } \quad a \tag{31}
\end{equation*}
$$

This means that

$$
\begin{equation*}
d \sigma_{r}=\sum_{s} \sigma_{s} \omega_{r s} \tag{32}
\end{equation*}
$$

Hence

$$
\begin{equation*}
d \sum_{r} \sigma_{r}^{2}=2 \sum_{r} \sigma_{r} d \sigma_{r}=2 \sum_{r, s} \sigma_{r} \sigma_{s} \omega_{r s}=0 . \quad \text { q.e.d. } \tag{33}
\end{equation*}
$$

Proof of Theorem 2. (2). By Lemma 6 and Corollary 4, A_{x} is either a totally geodesic submanifold of S^{n+1} or else not totally geodesic at every point.

In the former case Λ_{x} is a unit m-sphere. In the latter case Λ_{x} is totally umbilic and not totally geodesic at every point also as a submanifold of E^{n+2}. Therefore by menas of a theorem of O Otsuki ([3], Theorem 1) Λ_{x} is an m-sphere in a linear subspace E^{m+1}. q.e.d.

There is a following relation between the base point p and an arbitrary $\Lambda_{y}\left(y \in M^{n}\right)$

Lemma 7. There exist a number $\xi(|\xi|<1)$ and a point $q \in S^{n+1}$ such that Λ_{y} is contained in a hypersphere $\left\{x \in S^{n+1} ;\langle x, q\rangle=\xi\right\}$ and $\langle p, q\rangle=-\xi$.

Proof. Since $\lambda=\langle\nu, p\rangle /(1+\langle x, p\rangle)$ is constant on Λ_{y} by Corollary 4, $\nu-\lambda x$ is a constant vector on Λ_{y} by the definition of Λ. Thus we can set on Λ_{y}

$$
\begin{equation*}
\nu-\lambda x=-\sqrt{1+\lambda^{2}} q, \quad \text { for a } q \in S^{n+1} \tag{34}
\end{equation*}
$$

Taking the inner product of (34) with x and p, we obtain

$$
\begin{array}{ll}
\langle x, q\rangle=\lambda / \sqrt{1+\lambda^{2}}, & x \in \Lambda_{y}, \tag{35}\\
\langle p, q\rangle=-\lambda / \sqrt{1+\lambda^{2}} . & \text { q.e.d. }
\end{array}
$$

Proof of Theorem 2. (3). Let $m=n$ in Lemma 7. Then M^{n} must be contained in $\Lambda_{y}\left(y \in M^{n}\right)$. By completeness, we conclude $M^{n}=\Lambda_{y}$. The converse of this is a straightforward computation.

Remark 8. Consider the special case $m=n-1$ in Theorem 2. In this case the locus of all centers in E^{n+2} of $\Lambda_{y}\left(y \in M^{n}\right)$ is a curve $C: E \rightarrow E^{n+2}$, where C is parametrized by arc length. λ is a function on C.

We assert that there is no open interval of E on which λ vanishes identically. In fact, assume $\lambda \equiv 0$ on an open interval U.

Then it follows from Lemma 7 that both the base point p and Λ_{y} whose centers lies in $C(U)$ are contained in a unit hypersphere S^{n}. Thus M^{n} must contain an open subset of S^{n}, which contradicts the assumption $m=n-1$.

References

[1] Chen, B. Y., On the total absolute curvature of manifolds immersed in Riemannan manifold. Kodai Math. Sem. Rep. 19 (1967), 299-311.
[2] Chern, S. S., and R. K. Lashof, On the total curvature of immersed manifolds. Amer. J. Math. 79 (1957), 306-318.
[3] Ōtsuki, T., Pseudo-umbilical submanıfolds with M-index 1 in Euclidean spaces. Koda1 Math. Sem. 20 (1968), 296-304.
[4] Ötsuki, T., Minımal hypersurfaces in a Riemannian manıfold of constant curvature. to appear.
[5] Willmore, T. J., and B. A. Saleemi, The total absolute curvature of 1 mmersed manifolds. J. London Math. Soc. 41 (1966), 153-160.

