KŌDAI MATH. SEM. REP. 22 (1970), 82-88

GAUSS MAP IN A SPHERE

By Ryoichi Takagi

0. Introduction.

To a surface M^2 of a Euclidean 3-space E^3 there is associated the Gauss map which assigns to a point of M^2 the unit normal vector at the point. This is a mapping of M^2 into the unit sphere S^2 about the origin of E^3 . Chern and Lashof gave a generalization of this classical Gauss map in [2] as follows. Let M^n be an *n*-dimensional Riemannian manifold isometrically immersed into a Euclidean (n+N)-space E^{n+N} $(N \ge 1)$ and B be the bundle of unit normal vectors of M^n (dim B=n+N-1). Then a mapping of B into the unit sphere S^{n+N-1} about the origin of E^{n+N} can be naturally defined.

Furthermore, Willmore and Saleemi [5] and Chen [1] generalized this mapping to the case where M^n is an *n*-dimensional Riemannian manifold isometrically immersed into an (n+N)-dimensional, complete, and simply connected Riemannian manifold M^{n+N} with non-positive sectional curvature. The manner can be stated as follows. Let q be a point of M^n and B be the pseudo-normal bundle of M^n (for the definition, see [1]). The parallel displacement of $\nu \in B$ along the shortest geodesic segment joining the foot point of ν and q gives a mapping of B into the unit sphere in the tangent space of M^{n+N} at q.

With the same ideas as the one of Willmore and Saleemi and Chen we can associate to an *n*-dimensional Riemannian manifold M^n isometrically immersed into the Euclidean unit (n+N)-sphere S^{n+N} the mapping analogous to the above Gauss map in the following way. Let p a point of M^n and B be the bundle of unit normal vectors of $M^n - \{-p\}$ in S^{n+N} . Then the parallel displacement Γ_p of $\nu \in B$ along the shortest geodesic segment joining the foot point of ν and p gives a mapping of B into the unit sphere S_p^{n+N-1} in the tangent space of S^{n+N} at p. We shall call Γ_p the Gauss map associated to M^n immersed into S^{n+N} , and p the base point. The purpose of this note is to relate the Gauss map Γ_p with the geometrical structure of M^n . The main results obtained is the following

THEOREM 1. Let M^n be an n-dimensional, complete Riemannian manifold isometrically immersed into the Euclidean unit (n+N)-sphere S^{n+N} . Let p be a point of S^{n+N} and Γ_p be the Gauss map: $B \rightarrow S_p^{n+N-1}$ associated to M^n . Then Γ_p has rank m at $\nu \in B$ if and only if $\langle \nu, p \rangle / (1 + \langle x, p \rangle)$ is an eigenvalue of the second fundamental form whose multiplicity is equal to n+N-1-m, where \langle , \rangle is the canonical inner product of E^{n+N} and x is the foot point of ν .

Received October 24, 1969.

THEOREM 2. Let N=1 in addition to the assumption of Theorem 1. Suppose that the Jacobian of Γ_p has constant rank n-m on B $(0 \le m \le n)$.

(1) Let m=0. If M^n is compact and $-p \notin M^n$, then M^n is diffeomorphic to the n-sphere.

(2) Let $1 \leq m \leq n-1$. Then M^n is a locus of a moving m-sphere.

(3) Let m=n. Then there exist a real number ξ ($|\xi| < 1$) and a point q of M^n such that $M^n = \{x \in S^{n+1}; \langle x, q \rangle = \xi\}$ and $\langle p, q \rangle = -\xi$. The converse of this is also true.

As seen from these results, Γ_p is different from the ordinary Gauss map in that it depends on a choice of the base point p as well as the immersion of M^n and it is not defined for normal vectors at the point -p (if $-p \in M^n$) because pand -p can not be uniquely joined by the shortest geodesic segment on S^{n+1} . A large part of this note is devoted to proofs of Theorem 1 and 2.

1. Moving frames.

Throughout this note, let M^n be an *n*-dimensional, connected, complete Riemannian manifold isometrically immersed into the unit hypersphere S^{n+N} in a Euclidean (n+N+1)-space E^{n+N+1} . We choose a locally defined orthonormal frame field e_1, \dots, e_{n+N} in S^{n+N} such that, restricted to M^n , e_1, \dots, e_n are tangent to M^n . We shall agree on the following ranges of indices:

$$1 \leq i, j, k \leq n, \quad n+1 \leq \alpha, \beta, \gamma \leq n+N, \quad 1 \leq A, B, C \leq n+N.$$

Let $\omega_1, \dots, \omega_{n+N}$ be the dual of the frame field chosen above and ω_{AB} be the connection forms for S^{n+N} . Then the structure equations of S^{n+N} are given by

(1)
$$d\omega_A = \sum_B \omega_{AB} \wedge \omega_B, \qquad \omega_{AB} + \omega_{AB} = 0$$

(2)
$$d\omega_{AB} = \sum_{C} \omega_{AC} \wedge \omega_{CB} - \omega_{A} \wedge \omega_{B}.$$

Restricting these forms to M^n , we have

(3)
$$\omega_{\alpha}=0$$

Hence the equation (1) gives

$$(4) \qquad \qquad \sum_{i} \omega_{\alpha i} \wedge \omega_{i} = 0$$

From this we may write as

(5)
$$\omega_{\alpha i} = \sum_{j} h_{\alpha i j} \omega_{j}, \quad h_{\alpha i j} = h_{\alpha j i}$$

The quadratic form $\sum_{i,j} h_{\alpha i j} \omega_i \omega_j$ is the second fundamental form of M^n with respect to e_q .

RYOICHI TAKAGI

2. Explicit expression of Γ_p and a proof of Theorem 1.

First we shall express explicitly the Gauss map Γ_p : $B \rightarrow S_p^{n+N-1}$ associated to M^n . Set $\Gamma = \Gamma_p$ for simplicity and let π : $B \rightarrow M^n$ be the projection. We assert that Γ is given by

(6)
$$\Gamma(\nu) = \nu - \frac{\langle \nu, p \rangle}{1 + \langle x, p \rangle} p - \frac{\langle \nu, p \rangle}{1 + \langle x, p \rangle} x$$

where $\nu \in B$ and $x = \pi(\nu)$. In fact, if x = p, then $\Gamma(\nu) = \nu$. If $x \neq p$, then we decompose into the component $\nu_p p + \nu_x x$ of the 2-plane Π spanned by p and x and the component ν_0 normal to Π : $\nu = \nu_0 + \nu_p P + \nu_x X$. Then it is evident that $\Gamma(\nu) = \nu_0 + Z$, where $Z \in S_p^{n+N-1}$ is the vector parallel to $\nu_p P + \nu_x X$ along the geodesic joining p and x. Since $\nu_p = \langle \nu, p \rangle / (1 - \langle x, p \rangle^2)$,

$$\nu_x = -\langle \nu, p \rangle \langle x, p \rangle / (1 - \langle x, p \rangle^2)$$

and

$$Z = \nu_p(2\langle x, p \rangle p - x) + \nu_x p,$$

after a simple computation we have (6).

The differential $d(\Gamma(\nu))$ of Γ at ν is given by

(7)
$$d(\Gamma(\nu)) = d\nu - \frac{\{(1 + \langle x, p \rangle) \langle d\nu, p \rangle - \langle \nu, p \rangle \langle dx, p \rangle\}(x + p)}{(1 + \langle x, p \rangle)^2} - \frac{\langle \nu, p \rangle}{1 + \langle x, p \rangle} dx.$$

Since (6) is valid for a tangent vector of S^{n+N} , we have

(8)
$$\Gamma(e_A) = e_A - \frac{\langle e_A, p \rangle}{1 + \langle x, p \rangle} p - \frac{\langle e_A, p \rangle}{1 + \langle x, p \rangle} x.$$

Set $\nu = e_{n+N}$. Then making use of the fact that

$$(9) dx = \sum_{i} \omega_i e_i, x \in M^n$$

(10)
$$de_A = \sum_B \omega_{AB} \cdot e_B,$$

(11)
$$\langle x, e_A \rangle = 0,$$

we obtain

(12)
$$\langle d(\Gamma(\nu)), \Gamma(e_i) \rangle = \omega_{n+N,i} - \frac{\langle \nu, p \rangle}{1 + \langle x, p \rangle} \omega_i$$

(13)
$$\langle d(\Gamma(\nu)), \Gamma(e_{\alpha}) \rangle = \omega_{n+N,\alpha}$$

Since $\Gamma(e_1), \dots, \Gamma(e_{n+N-1})$ forms a basis for the tangent space of S^{n+N-1} at $\Gamma(\nu)$, (12), (13) and (5) imply that the Jacobian matrix of Γ at ν is of the form

(14)
$$\begin{pmatrix} H_{n+N} - \frac{\langle \nu, p \rangle}{1 + \langle x, p \rangle} I_n & \mathbf{0} \\ \hline \mathbf{0} & I_{N-1} \end{pmatrix}$$

where $H_{n+N} = (h_{n+N,ij})$ and I_r denotes the identity matrix of degree r. This proves Theorem 1.

3. A proof of Theorem 2.

In this section we assume that the Gauss map Γ associated to M^n has constant rank n+N-1-m $(0 \le m \le n)$, in other words, for every $\nu \in B$, the second fundamental form with respect to ν has the eigenvalue $\lambda = \langle \nu, p \rangle / (1 + \langle x, p \rangle)$ of multiplicity m.

Proof of Theorem 2. (1). Since Γ is nonsingular everywhere and $M^n - \{-p\} = M^n$ is compact, the image $\Gamma(B)$ of B under Γ is an open and closed subset of S_p^{n+N-1} , and so $\Gamma(B) = S_p^{n+N-1}$. Hence (Γ, B) is a covering space of S_p^{n+N-1} . If $N \ge 2$, Γ must be one-to-one because B is connected. Hence Γ is a diffeomorphism. If N=1, one of two connected components of B is diffeomorphic to S_p^n , and also to M^n . q.e.d.

From now on let N=1 and $0 < m \le n$. In this case there arises an *m*-dimensional distribution Λ on M^n which assigns to each point x of $M^n - \{-p\}$ the space of principal vectors corresponding to the principal curvature $\lambda = \langle \nu, p \rangle / (1 + \langle x, p \rangle)$ at x. To prove (2) and (3) of Theorem 2 we shall establish the following

THEOREM 3. Let M^n be a hypersurface immersed into the unit (n+1)-sphere S^{n+1} . Suppose that the multiplicity m of principal curvature λ is constant. Then the distribution Λ of the space of principal vectors corresponding to λ is completely integrable.

Proof. We shall agree on the following ranges of indices:

$$1 \leq a, b, c \leq m, \quad m+1 \leq r, s, t \leq n$$

We may choose a frame field e_1, \dots, e_{n+1} in §1 so that e_1, \dots, e_m forms a basis for Λ , that is, setting $h_{ab} = h_{n+1,ab}$ and $h_{rs} = h_{n+1,rs}$,

$$(15) h_{ab} = \delta_{ab}\lambda, h_{ra} = 0$$

or equivalently

(16)
$$\omega_{n+1,a} = \lambda \omega_a$$

(17)
$$\omega_{n+1,r} = \sum_{s} h_{rs} \omega_{s}.$$

RYOICHI TAKAGI

Taking exterior differentiation of (16), we have from (1)

(18)
$$d\omega_{n+1,a} = d\lambda \wedge \omega_a + \lambda d\omega_a$$
$$= \sum_b \lambda_b \omega_b \wedge \omega_a + \sum_r \lambda_r \omega_r \wedge \omega_a + \lambda \sum_b \omega_{ab} \wedge \omega_b + \lambda \sum_r \omega_{ar} \wedge \omega_b$$

where we set $d\lambda = \sum_b \lambda_b \omega_b + \sum_r \lambda_r \omega_r$. On the other hand, we have from (2), (16) and (17)

(19)
$$d\omega_{n+1,a} = \sum_{b} \omega_{n+1,b} \wedge \omega_{ba} + \sum_{r} \omega_{n+1,r} \wedge \omega_{ra} - \omega_{n+1} \wedge \omega_{a}$$
$$= \lambda \sum_{b} \omega_{b} \wedge \omega_{ba} + \sum_{r,s} h_{rs} \omega_{s} \wedge \omega_{ra}$$

since $\omega_{n+1}=0$ on M^n . Comparing (18) and (19) we obtain

(20)
$$\sum_{b} \lambda_{b} \omega_{b} \wedge \omega_{a} = 0,$$

(21)
$$\sum_{\gamma} (\sum_{s} h_{rs} \omega_{sa} - \lambda \omega_{ra} - \lambda_{r} \omega_{a}) \wedge \omega_{r} = 0$$

It follows from (21) and Cartan's lemma that we may write as

(22)
$$\sum_{s} h_{rs} \omega_{sa} - \lambda \omega_{ra} - \lambda_{r} \omega_{a} = \sum_{s} \theta_{ars} \omega_{s}, \qquad \theta_{ars} = \theta_{asr}.$$

Set here $\omega_{ra} = \sum_{b} \sigma_{rab} \omega_{b} + \sum_{s} \sigma_{ras} \omega_{s}$. Substituting this into (22), we have

(23)
$$\sum_{s} (h_{rs} - \delta_{rs} \lambda) \sigma_{saa} = \lambda_{rs}$$

(24)
$$\sum_{s} (h_{rs} - \delta_{rs} \lambda) \sigma_{sab} = 0 \quad (a \neq b).$$

Since $\det(h_{rs} - \lambda I_m) \neq 0$ by the assumption, (23) implies that

$$\sigma_{r11} = \cdots = \sigma_{rmm}$$

and (24) implies that

(26)
$$\sigma_{rab} = 0 \qquad (a \neq b).$$

Denoting (25) by σ_r , we found

$$\omega_{ra} = \sigma_r \omega_a + \sum_s \sigma_{ras} \omega_s$$

Hence

(28)
$$d\omega_{r} = \sum_{a} \omega_{ra} \wedge \omega_{a} + \sum_{s} \omega_{rs} \wedge \omega_{s}$$
$$= \sum_{a,s} \sigma_{ras} \omega_{s} \wedge \omega_{a} + \sum_{s} \omega_{rs} \wedge \omega_{s}$$
$$\equiv 0 \pmod{\omega_{t}}.$$

This means that Λ is completely integrable. q.e.d.

COROLLARY 4. Under the assumption of Theorem 3, if m is greater than 1, then λ is constant on each integral manifold of Λ and each integral manifold of Λ is a totally umbilic submanifold of S^{n+1} .

Proof. The first assersion follows from (20) and the second from (16) and (27). q.e.d.

REMARK 5. In general, Theorem 3 and Corollary 4 hold also in the case where M^n is immersed as a hypersurface into a Riemannian manifold of constant curvature. The proof is entirely analogous. Thus Theorem 3 (resp. Corollary 4) is a slight generalization of a theorem of \overline{O} tsuki ([4] Theorem 2) (resp. his Corollary).

For $x \in M^n - \{-p\}$ we denote by Λ_x the maximal integral manifold of Λ through x. Clearly we may assume that Λ_{-p} is defined if $-p \in M^n$.

 $\omega_r = 0$

LEMMA 6. $\sum_r \sigma_r^2$ is constant on Λ_x .

Proof. Restrict the forms under consideration on Λ_x . Then

and from (27)

 $\omega_{ra} = \sigma_r \omega_a.$

Taking exterior differentiation of (30) and using (1), (2) and (29) we have

(31)
$$(d\sigma_r - \sum_s \sigma_s \omega_{rs}) \wedge \omega_a = 0$$
 for all a .

This means that

$$d\sigma_r = \sum_s \sigma_s \omega_{rs}.$$

(33)
$$d\sum_{r}\sigma_{r}^{2}=2\sum_{r}\sigma_{r}d\sigma_{r}=2\sum_{r,s}\sigma_{r}\sigma_{s}\omega_{rs}=0. \quad \text{q.e.d.}$$

Proof of Theorem 2. (2). By Lemma 6 and Corollary 4, Λ_x is either a totally geodesic submanifold of S^{n+1} or else not totally geodesic at every point.

In the former case Λ_x is a unit *m*-sphere. In the latter case Λ_x is totally umbilic and not totally geodesic at every point also as a submanifold of E^{n+2} . Therefore by menas of a theorem of Ōtsuki ([3], Theorem 1) Λ_x is an *m*-sphere in a linear subspace E^{m+1} . q.e.d.

There is a following relation between the base point p and an arbitrary A_y ($y \in M^n$)

RYOICHI TAKAGI

LEMMA 7. There exist a number ξ ($|\xi| < 1$) and a point $q \in S^{n+1}$ such that Λ_y is contained in a hypersphere { $x \in S^{n+1}$; $\langle x, q \rangle = \xi$ } and $\langle p, q \rangle = -\xi$.

Proof. Since $\lambda = \langle \nu, p \rangle / (1 + \langle x, p \rangle)$ is constant on Λ_y by Corollary 4, $\nu - \lambda x$ is a constant vector on Λ_y by the definition of Λ . Thus we can set on Λ_y

(34)
$$\nu - \lambda x = -\sqrt{1 + \lambda^2} q$$
, for a $q \in S^{n+1}$

Taking the inner product of (34) with x and p, we obtain

(35)
$$\langle x, q \rangle = \lambda / \sqrt{1 + \lambda^2}, \qquad x \in \Lambda_y,$$

(36)
$$\langle p, q \rangle = -\lambda / \sqrt{1 + \lambda^2}$$
. q.e.d.

Proof of Theorem 2. (3). Let m=n in Lemma 7. Then M^n must be contained in Λ_y ($y \in M^n$). By completeness, we conclude $M^n = \Lambda_y$. The converse of this is a straightforward computation.

REMARK 8. Consider the special case m=n-1 in Theorem 2. In this case the locus of all centers in E^{n+2} of A_y ($y \in M^n$) is a curve C: $E \rightarrow E^{n+2}$, where C is parametrized by arc length. λ is a function on C.

We assert that there is no open interval of E on which λ vanishes identically. In fact, assume $\lambda \equiv 0$ on an open interval U.

Then it follows from Lemma 7 that both the base point p and Λ_y whose centers lies in C(U) are contained in a unit hypersphere S^n . Thus M^n must contain an open subset of S^n , which contradicts the assumption m=n-1.

References

- CHEN, B. Y., On the total absolute curvature of manifolds immersed in Riemannian manifold. Kodai Math. Sem. Rep. 19 (1967), 299-311.
- [2] CHERN, S. S., AND R. K. LASHOF, On the total curvature of immersed manifolds. Amer. J. Math. 79 (1957), 306-318.
- [3] ÖTSUKI, T., Pseudo-umbilical submanifolds with M-index 1 in Euclidean spaces. Kodai Math. Sem. 20 (1968), 296–304.
- [4] ŌTSUKI, T., Minimal hypersurfaces in a Riemannian manifold of constant curvature. to appear.
- [5] WILLMORE, T. J., AND B. A. SALEEMI, The total absolute curvature of immersed manifolds. J. London Math. Soc. 41 (1966), 153-160.

TOKYO UNIVERSITY OF EDUCATION.

88