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MINIMAL IMMERSIONS OF COMPACT RIEMANNIAN
MANIFOLDS IN COMPLETE AND NON-COMPACT

RIEMANNIAN MANIFOLDS

BY KATSUHIRO SHIOHAMA

§ 0. Introduction.

As is well known a closed surface in a Euclidian 3-space has at least one point
where Gaussian curvature is positive, and hence no closed minimal surface exists
in a Euclidean 3-space. This result was generalized by Myers [3] to higher
dimensions and certain Riemannian manifolds. One of his results in [3] states that
there exists no closed minimal hypersurface in a complete and simply connected
Riemannian manifold of non-positive curvature. One of the essential ideals for
proof of the theorem is "local concavity". This idea was used by Tompkins [4]
in order to investigate the lower bound of the dimension of the Euclidean space in
which a compact and flat Riemannian manifold can be immersed isometrically.

In this paper, we shall observe the idea of Tompkins from another point of
view. We shall find certain property of second fundamental form of a compact
Riemannian manifold immersed in a complete and non-compact Riemannian manifold
of non-negative curvature. We shall prove the existence of a point and a unit
normal vector e at the point on a compact Riemannian manifold immersed in a
complete and non-compact Riemannian manifold of non-negative (positive) curvature
at which the eigenvalues of the second fundamental form with respect to e are all
non-negative (positive). Our main results obtained in the present paper will state
as follows.

THEOREM A. A compact Riemannian manifold N of dimension n cannot be
immersed minimally in an (n+V)-dimensional complete and non-compact Riemannian
manifold of positive Ricci curvature.

THEOREM B. A compact Riemannian manifold N of dimension n cannot be
immersed minimally in an (n-\-m)-dimensional complete and non-compact Riemannian
manifold of positive curvature.

Our essential tool for the proofs of the results is quite analogous as the local
concavity except the point of view. The compactness of an immersed Riemannian
manifold N in a complete and non-compact Riemannian manifold M ensures the
existence of a point on N which is the nearest to the point at infinity. If the

Received October 24, 1969.

77



78 KATSUHIRO SHIOHAMA

ambient manifold has non-negative curvature, the point of N nearest to the point
at infinity will have the semi-definite second fundamental form with respect to the
unit normal vector to N which is the starting direction to a ray from N to the
point at infinity.

In § 1, we state definitions and notations used in the present paper. In § 2, we
shall prove the basic lemma which plays an important role for the proofs of our
results. In § 3, we shall prove some consequences of the lemmas stated in § 2.
Theorems A and B will be proved in this section.

§ 1. Preliminaries.

Throughout this paper let Mbean (n+m) -dimensional complete connected and
non-compact Riemannian manifold of class C°° and TV be an ^-dimensional compact
Riemannian manifold of class C°° immersed isometrically in M For a point x€M,
we denote by Mx the tangent space of M at x, and for two tangent vectors
u,vGMx, we also denote by <^, v) the inner product of u and v with respect to the
Riemannian metric of M. Geodesies of Mare all parametrized by arc length. For
any two disjoint compact sets A and B in M, let G(A, B) be the set of all shortest
geodesies starting from a point xsA and ending at a point y€B such that d(x,y)
=d(A, B), where d(x, y) means the distance between x and y with respect to the
Riemannian metric of M. For a compact subset A in M, a geodesic L={γ(t)}
(0^ί<oo) is by definition a ray from A to the point at infinity oo if both γ(Q)ςA
and Γ|[0,ί]€G(Λr(0) hold for any t>0. We denote by G(A,oo) the set of all
rays from A to oo.

Now let c be an isometric immersion c: N-+M. £F(M) and £FC/V~) be the
orthonormal frame bundles of M and N respectively, and B the set of all frames
b=(p, ei, •••, en, — , en+m) such that (p, ely •••, Oe£F(ΛO and (t(p\ t*(eu, — , **(*„), en+ί,
— ,e«+m)€£F(M). Then the map Γ: B-*ζ?(M) is naturally defined by Γ(δ) =(*(/>),
<*0ι)> — , f*(*n), en+ι, •••, £Wm)€£F(M), where b=(p, elt • • - , en+m). The structure equa-
tions of £F(M) are given by

= - Σ

A,B,C,D=l, ~,n+m,

where ωA, ωAB and ΩAB are the basic forms, the connection forms and the curva-
ture forms respectively. Putting ωA=ΐ*ωA and ωAB=ΐ*Q)AB, we get

ωa=ΰ for a=n+l, tn+m.

Hence we obtain

o)i«= Σ AaijQ)], A^^Aaβj i,j—]., ,n.
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The mean curvature H of e(N) is denned by

11/2

Γ
ηι/2

Σ (trace (A*/))2J .

In the local argument, we identify the elements of N with those of c(N). N is by
definition a minimal submanifold if H=Q is satisfied at every point of it. Since
ΛalJ can be considered as a symmetric matrics, we can choose a frame at a point

such that

0

is satisfied with respect to a fixed unit normal vector en+ι at />, where λi is called
the eigenvalue of the second fundamental form with respect to en^\ at p.

§2. Basic lemma.

Let N be a compact Riemannian manifold of dimension n immersed isometrically
in a complete and non-compact Riemannian manifold M of dimension n+m. There
is a sequence of points {xk}y xkzM such that d(c(N),xk)>k by non-compactness of
M. Let Γfc = {7 fc(/)} (O^f^fffc) be a shortest geodesic such that ΓkeG(c(N),xk) and
put pk=γk(0)ζί(N). Then we can choose a sequence of the family of geodesies
{Γjc} in such a way that both {pk} and (?i(0)} converge to a point p€c(N) and a
unit tangent vector vzMp respectively. We see that the geodesic Γ defined by
γ(ί)=expptv is a ray from the compact subset e(N) to the point at infinity. Then
we shall prove the following

LEMMA 2. 1. Assume that the curvature of M is non-negative everywhere.
Then there exist a point p£c(N) and a unit normal vector en+ι where all of eigen-
values of the second fundamental from Σ An+nj(*>i(i>j with respect to en+ι do not
have different sign.

Proof. Let Γ be a ray from e(N) to oo whose starting point is γ(Q)=pec(N).
We shall prove that the second fundamental form with respect to the tangent
vector to Γ at p has non-negative eigenvalues. We note that for arbitrary 1-
parameter variation a: [0, /] x(— e, ε)-+M along any subarc Γ | [0, /] such that α(0, s)eN,
a(t,0)=7(f) and a(l,s)=γ(ΐ) for all se(-ε,ε) and all ί€[0,/], we obtain £"(0)^0.
Let (x, 0ι, •••, en+m) be a frame field defined locally in a neighborhood of p such
that en+ι(p)=γ'(Q). Then for any unit tangent vector v€Np, we denote by An+ιV
the vector Σ An+l%jVie3 where v=Σ Viβiίp). It suffices to show that

holds for any unit tangent vector veNp. Let v be a fixed unit tangent vector and
X the unit parallel vector field along Γ defined by ^(0)— v,
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Suppose that the function t-+K(X(t\γ'(f)) is identically zero for all f^O. Then
we see that X is a Jacobi field along Γ and the vector field Y defined by Y(f)
=((l-f)lΐ)X(f) is also a Jacobi field along it such that Y(ΰ)=X(0), Γ(/)=0 for any
fixed />0. Therefore we obtain a 1-parameter variation a\ [0,/]X(—ε,ε)-^M along
Γ|[0,/] such that α(0,s)€#, α(f,0)=r(f) and a(l,s)=γ(l) for all s€(-e,e) and te[0,/]
whose variation vector field is the Jacobi field Y defined above. Then we get

o

where the inequality follows from Γ\[0,l\eG(c(N),r(l)). Hence we have

for all />0. Therefore we obtain (An+\v, #>i^0.
Next, suppose that there is a point γ(t0) at which K(X(t0), r'OW)>0. As is

stated in Lemma 1 in [1], the differential equation given by

with the initial condition φ(t0)=l, φ'(t0)=Q has a zero point y>(ί0+rι) for some rι>0.
It follows from the definition of ψ that

S
to+τι

i*

Let Y be the vector field along Γ|[0,ί0+τι] defined by

[X(f)
Y(t)=\

(φX(t)

We can construct a 1-parameter variation a: [0, ίo+τjx(— s, ε)— »M associated with
F such that α(0,5)€JV, α(ί,0)=τ (ί), α(ίo+τι,s)=τ (ίo+rι). Then we have

Sίo+*ι
«F', Y>y-K(Y,r'KY,

0

', Y'y-K(Y,γ'χγ,

Then the proof is completed.

LEMMA 2. 2. L0ί N be a compact Riemannian manifold immersed minimally
in an (n+l)-dimensional complete and non-compact Riemannian manifold of non-
negative curvature. Let Γ be a ray from N to oo. Then we have K(X,γ'(t))=Q
for any tangent vector XeMrw and any
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Proof. Putting γ(0)=p and en+ι(p)=f(V), we have fa^Q for i=l, •••, n by
Lemma 2. 1, where λi is the eigen-value of the second fundamental form at p.
Since N is minimal, we have Σ >k=0, from which Λ$=0 holds for i=\y ,n.
Suppose that there is a point γ(tQ) at which K(X<>, r/(^o))>0 holds for some X0€Mr(ίo).
We can construct a vector field Y along Γ|[0, ίo+rj and the 1-parameter variation
a as is stated in the proof of Lemma 2. 1. Then we have L"(0)<(An+ίX(Q),
=0, which is a contradiction.

§3. Some consequences.

Making use of Lemma 2.1 we obtain the following

PROPOSITION 3. 1. Every compact Riemannian manifold immersed isometrically
in a complete and non-compact Riemanuian manifold of positive cutvature has at
least one point and a unit noumal vector e at the point where the second funda-
mental form with respect to e is positive definit. Especially the index of relative
nullity is zero at the point.

Now Lemma 2. 2 shows the existence of a point on a compact Riemannian
manifold N minimally immersed in a complete and non-compact (n+~L)-dimensional
Riemannian manifold of non-negative curvature at which all the eigenvalues of the
second fundamental form are zero, i.e., geodesic at the point. Then we obtain

PROPOSITION 3. 2. Let N be an n-dimensional compact Riemannian manifold
minimally immersed in an (n+I) dimensional complete and non-compact Riemannian
manifold M of non-negative curvature. Suppose that the square of the norm of
the second fundamental form is constant everywhere. Then N is totally geodesic.

As a straightforward consequences of Lemmas 2.1 and 2. 2 we have Theorems
A and B. Theorem A implies that if a complete Riemannian manifold M of
positive Ricci curvature admits a compact minimal hypersurface, then M is
neccessarily compact.
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