INTEGRAL FORMULAS FOR SUBMANIFOLDS OF CODIMENSION 2 AND THEIR APPLICATIONS

By Kentaro Yano and Masafumi Okumura

§ 1. Introduction

Various integral formulas for hypersurfaces of a Riemannian manifold have been found and applied to the study of closed hypersurfaces with constant mean curvature.

Integral formulas for submanifolds of codimension greater than 1 was first obtained by Okumura [6] for the case of submanifolds of codimension 2 of an odd dimensional sphere. He made use of the natural contact structure of the odd dimensional sphere. Integral formulas for general submanifolds of a Riemannian manifold have been obtained by Katsurada [1], [2], [3], Kôjyô [2], Nagai [3], [4], and Yano [9].

In a recent paper [7], Okumura obtained integral formulas for a submanifold of codimension 2, invariant under the curvature transformation, of a Riemannian manifold admitting an infinitesimal conformal transformation and used them to prove that, under certain conditions, the submanifold in question is totally umbilical.

In the present paper, we study a problem similar to that treated in [7]. In [7], the ambient Riemannian manifold was supposed to admit an infinitesimal conformal transformation, but in this paper, we assume instead that there exists a vector field along the submanifold whose covariant differential is proportional to the displacement. We do not assume that the submanifold is invariant under the curvature transformation but instead we put a condition on the integral of a quantity depending on the curvature.

We moreover study the case in which the ambient Riemannian manifold admits a scalar function v such that $\nabla_j \nabla_i v = f(v)g_{ji}$ and prove that the submanifold satisfying certain conditions is isometric to a sphere by a method used in [8].

§ 2. Submanifolds of codimension 2.

We consider an (n+2)-dimensional orientable Riemannian manifold M^{n+2} of differentiability class C^{∞} covered by a system of coordinate neighborhoods $\{U; x^h\}$, where and in the sequel the indices h, i, j, \cdots run over the range $\{1, 2, \cdots, n, n+1, n+2\}$. We denote by g_{ji} , $\{j_i^h\}$, \mathcal{V}_i , and K_{kji}^h , the metric tensor, the Christoffel symbols formed

Received June 26, 1969.

with g_{ji} , the operator of covariant differentiation with respect to $\{j^h_i\}$, and the curvature tensor of M^{n+2} respectively.

We consider an *n*-dimensional orientable submanifold M^n differentiably imbedded in M^{n+2} and denote by

$$(2. 1) x^h = x^h(u^a)$$

its parametric representation, where and in the sequel the indices a, b, c, d, e run over the range $\{1, 2, \dots, n\}$. If we put

$$(2. 2) B_b{}^h = \partial_b x^h, (\partial_b = \partial/\partial u^b)$$

then $B_b{}^h$, for each fixed b, is a vector field tangent to M^n and $B_b{}^h$ are linearly independent. A Riemannian metric

$$(2.3) g_{cb} = g_{ji}B_c{}^jB_b{}^i$$

is induced on M^n . We denote by $\{{}_c{}^a{}_b\}$, V_c and $K_{dcb}{}^a$, the Christoffel symbols formed with g_{cb} , the operator of covariant differentiation with respect to $\{{}_c{}^a{}_b\}$ and the curvature tensor of M^n respectively.

Now, the so-called van der Waerden-Bortolotti covariant derivative of $B_b{}^h$ is given by

Since $V_c B_b{}^h$, as vectors of M^{n+2} , are normal to M^n , the vector field

$$(2.5) H^h = \frac{1}{n} g^{cb} \nabla_c B_b{}^h$$

is normal to the submanifold M^n and is called the mean curvature vector of M^n .

We assume throughout the paper that the mean curvature vector never vanishes and take the first unit normal C^h to M^n in the direction of the mean curvature vector. We take the second unit normal D^h in such a way that $B_1^h, B_2^h, \dots, B_n^h, C^h$ and D^h give the positive orientation of M^{n+2} .

Then the equations of Gauss and those of Weingarten are written as

$$(2. 6) V_c B_b{}^h = h_{cb} C^h + k_{cb} D^h$$

and

(2.7)
$$\begin{cases} V_c C^h = -h_c{}^a B_a{}^h + l_c D^h, \\ V_c D^h = -k_c{}^a B_a{}^h - l_c C^h \end{cases}$$

respectively, where h_{cb} and k_{cb} are the second fundamental tensors with respect to the normals C^h and D^h respectively and l_c the third fundamental tensor, h_c^a and k_c^a being defined by

$$h_c{}^a=h_{cb}g^{ba}, \qquad k_c{}^a=k_{cb}g^{ba}.$$

The normals C^h and D^h being chosen intrinsically, the quantities h, k and l are all intrinsic quantities of M^n .

Since $(1/n)g^{cb}\nabla_c B_b{}^h$ is in the direction of C^h , we see from (2.6) that

$$(2.8) g^{cb}k_{cb} = k_c{}^c = 0.$$

Now the equations of Gauss, those of Codazzi and those of Ricci are respectively written as

$$(2.9) K_{kjih}B_d{}^kB_c{}^jB_b{}^iB_a{}^h = K_{dcba} - h_{da}h_{cb} + h_{ca}h_{db} - k_{da}k_{cb} + k_{ca}k_{db},$$

(2. 10)
$$\begin{cases} K_{kjih} B_d{}^k B_c{}^j B_b{}^i C^h = \nabla_d h_{cb} - \nabla_c h_{db} - l_d k_{cb} + l_c k_{db}, \\ K_{kjih} B_d{}^k B_c{}^j B_b{}^i D^h = \nabla_d k_{cb} - \nabla_c k_{db} + l_d h_{cb} - l_c h_{db}, \end{cases}$$

$$(2. 11) K_{kjih}B_d{}^kB_c{}^jC^iD^h = \nabla_d l_c - \nabla_c l_d + h_{da}k_c{}^a - h_{ca}k_d{}^a.$$

§ 3. Vector fields along the submanifold of codimension 2.

Take a normal vector field

$$(3. 1) V^h = \lambda C^h + \mu D^h.$$

Then, using equations of Weingarten, we have

$$\nabla_c V^h = (-\lambda h_c^a - \mu k_c^a) B_a^h + (\partial_c \lambda - l_c \mu) C^h + (\partial_c \mu + l_c \lambda) D^h$$

and consequently the connection induced in the normal bundle from the Riemannian connection of M^{n+2} is given by

(3. 2)
$$\nabla_c' \lambda = \partial_c \lambda - l_c \mu, \quad \nabla_c' \mu = \partial_c \mu + l_c \lambda.$$

Thus in order that a normal vector field $\lambda C^h + \mu D^h$ be parallel with respect to the connection induced in the normal bundle, it is necessary and sufficient that

(3. 3)
$$\partial_c \lambda - l_c \mu = 0$$
, $\partial_c \mu + l_c \lambda = 0$.

These equations show that

$$\lambda^2 + \mu^2 = \text{constant},$$

that is, a normal vector field parallel with respect to the connection induced in the normal bundle is of constant length.

If $\lambda C^h(\neq 0)$ is parallel with respect to the connection induced in the normal bundle, then we have

$$\lambda = \text{const.}$$
 and $l_c = 0$,

and conversely. If $\mu D^h(\pm 0)$ is parallel, we have

$$\mu$$
=const. and l_c =0,

and conversely. Thus, in order that the mean curvature vector $(1/n)g^{cb}\nabla_c B_b{}^h(\pm 0)$ be parallel with respect to the connection induced in the normal bundle, it is necessary and sufficient that

$$h_a{}^a = \text{const.} \neq 0, \quad l_c = 0.$$

Take next a vector field X^h defined along the submanifold M^n and assume that the covariant differential of this vector field is always proportional to the displacement along the manifold. For such a vector field we have

$$(3.4) V_b X^h = f B_b{}^h,$$

f being a scalar function of M^n .

If we put

$$(3.5) X^h = z^a B_a{}^h + \alpha C^h + \beta D^h,$$

we have

$$\begin{split} \boldsymbol{\mathcal{V}}_{b}\boldsymbol{X}^{h} \!=\! & (\boldsymbol{\mathcal{V}}_{b}\boldsymbol{z}^{a} \!-\! \alpha\boldsymbol{h}_{b}{}^{a} \!-\! \beta\boldsymbol{k}_{b}{}^{a})\boldsymbol{B}_{a}{}^{h} \\ & + (\partial_{b}\alpha \!-\! l_{b}\beta \!+\! h_{ba}\boldsymbol{z}^{a})\boldsymbol{C}^{h} \\ & + (\partial_{b}\beta \!+\! l_{b}\alpha \!+\! k_{ba}\boldsymbol{z}^{a})\boldsymbol{D}^{h}. \end{split}$$

Thus if we assume that the covariant differential of X^h is proportional to the displacement along M^n , then we have

$$(3. 6) V_b z^a = f \delta_b^a + \alpha h_b^a + \beta k_b^a$$

or

$$(3.7) V_b z_a = f g_{ba} + \alpha h_{ba} + \beta k_{ba}$$

and

(3. 8)
$$\begin{cases} \partial_b \alpha - l_b \beta + h_{ba} z^a = 0, \\ \partial_b \beta + l_b \alpha + k_{ba} z^a = 0. \end{cases}$$

§ 4. Integral formulas for a closed submanifold of codimension 2.

We consider an (n+2)-dimensional Riemannian manifold M^{n+2} and a closed orientable submanifold M^n of codimension 2 imbedded in it. We assume that there exists a vector field

$$(4. 1) X^h = z^a B_a{}^h + \alpha C^h + \beta D^h$$

along M^n whose covariant differential along M^n is always proportional to the displacement:

$$(4.2) V_c X^h = f B_c^h.$$

Then we have

$$(4.3) V_c z_b = f g_{cb} + \alpha h_{cb} + \beta k_{cb},$$

from which

$$g^{cb}\nabla_c z_b = nf + \alpha h_a^a$$
.

Thus, integrating over M^n , we find

(4.4)
$$\int_{M^n} (nf + \alpha h_a^a) dV = 0,$$

where dV denotes the volume element of M^n .

We now compute $\nabla_a(h_b{}^az^b)$:

$$\begin{split} \boldsymbol{\mathcal{V}}_{a}(\boldsymbol{h}_{b}{}^{a}\boldsymbol{z}^{b}) &= (\boldsymbol{\mathcal{V}}_{a}\boldsymbol{h}_{b}{}^{a})\boldsymbol{z}^{b} + \boldsymbol{h}^{ba}\boldsymbol{\mathcal{V}}_{b}\boldsymbol{z}_{a} \\ &= (\boldsymbol{\mathcal{V}}_{a}\boldsymbol{h}_{b}{}^{a})\boldsymbol{z}^{b} + \boldsymbol{h}^{ba}(\boldsymbol{f}\boldsymbol{g}_{ba} + \alpha\boldsymbol{h}_{ba} + \beta\boldsymbol{k}_{ba}) \\ &= (\boldsymbol{\mathcal{V}}_{a}\boldsymbol{h}_{b}{}^{a})\boldsymbol{z}^{b} + \boldsymbol{f}\boldsymbol{h}_{a}{}^{a} + \alpha\boldsymbol{h}^{ba}\boldsymbol{h}_{ba} + \beta\boldsymbol{h}^{ba}\boldsymbol{k}_{ba}. \end{split}$$

But, from the first of equations (2.10) of Codazzi, we have

$$K_{kiih}B_d{}^kB^{ji}C^h = \nabla_d h_a{}^a - \nabla_a h_d{}^a + l_a k_d{}^a$$

where

$$B^{ji}=g^{cb}B_c{}^jB_b{}^i$$
,

and consequently we have

$$egin{aligned} & m{\mathcal{V}}_a(h_b{}^az^b)\!=\!-K_{kjih}B_d{}^kz^dB^{ji}C^h\!+\!z^dm{\mathcal{V}}_d{h_a}^a\!+\!l_a{k_d}^az^d \ & +f{h_a}^a\!+\!\alpha h^{ba}h_{ba}\!+\!\beta h^{ba}k_{ba}. \end{aligned}$$

Thus, integrating over M^n , we obtain

$$\int_{\mathbf{M}^{n}} K_{kjih} B_{a}^{k} z^{d} B^{ji} C^{h} dV$$

$$= \int_{\mathbf{M}^{n}} (z^{d} \nabla_{a} h_{a}^{a} + l_{a} k_{a}^{a} z^{d} + f h_{a}^{a} + \alpha h^{ba} h_{ba} + \beta h^{ba} k_{ba}) dV.$$

§ 5. Closed submanifolds with mean curvature vector parallel with respect to the connection induced in the normal bundle.

We consider a closed orientable submanifold M^n of codimension 2 of an (n+2)-dimensional Riemannian manifold M^{n+2} and assume that M^n admits a vector field X^n whose covariant differential along M^n is always proportional to the displacement:

$$(5. 1) V_c X^h = f B_c^h$$

and that the mean curvature vector $(1/n)g^{cb}\nabla_c B_b{}^h(\pm 0)$ is parallel with respect to the connection induced in the normal bundle:

$$h_a{}^a = \text{const.} \neq 0, \qquad l_c = 0.$$

Then we have first of all

$$(5.3) \qquad \int_{\mathcal{M}} (nf + \alpha h_a^a) dV = 0.$$

We next have from (4.5)

(5. 4)
$$\int_{M^n} K_{kjih} B_a{}^k z^d B^{ji} C^h dV$$
$$= \int_{M^n} (f h_a{}^a + \alpha h^{ba} h_{ba} + \beta h^{ba} k_{ba}) dV.$$

Now, forming $(5.4)-(5.3)\times(1/n)h_a^a$, we find

$$\int_{M^n} K_{kjih} B_d{}^k z^d B^{ji} C^h dV$$

$$= \int_{M^n} \left[\alpha \left(h^{ba} h_{ba} - \frac{1}{n} h_b{}^b h_a{}^a \right) + \beta h^{ba} k_{ba} \right] dV,$$

or

(5. 5)
$$= \int_{M^n} K_{kjih} B_d{}^k z^d B^{ji} C^h dV$$

$$= \int_{M^n} \left[\alpha \left[\left(h^{ba} - \frac{1}{n} h_e{}^e g^{ba} \right) \left(h_{ba} - \frac{1}{n} h_d{}^d g_{ba} \right) + k^{ba} k_{ba} \right] + (h^{ba} k_{ba} \beta - k^{ba} k_{ba} \alpha) \right] dV.$$

We denote by X'^h and X''^h the tangential part and normal part of X^h respectively.

Suppose that

$$\int_{M^n} K_{kjih} X'^k B^{ji} C^h dV \leq 0,$$
 $lpha > 0,$ $h^{ba} k_{ba} eta - k^{ba} k_{ba} lpha \geq 0,$

that is, the vector

$$Y^h = h^{ba}k_{ba}C^h + k^{ba}k_{ba}D^h$$

vanishes or this vector and

$$X^{\prime\prime h} = \alpha C^h + \beta D^h$$

have positive orientation in the normal bundle, or

$$\int_{M^n} K_{kjih} X'^k B^{ji} C^h dV \ge 0,$$
 $lpha < 0,$ $h^{ba} k_{ba} eta - k^{ba} k_{ba} lpha \le 0,$

that is, the vector Y^h vanishes or Y^h and X''^h have negative orientation in the normal bundle, then we have

$$h_{cb} - \frac{1}{n} h_d^d g_{cb} = 0, \qquad k_{cb} = 0,$$

that is, the submanifold under consideration is totally umbilical. Thus we have

Theorem 5.1. Let M^n be a closed orientable submanifold of codimension 2 of an (n+2)-dimensional Riemannian manifold M^{n+2} and assume that M^n admits a vector field X^h whose covariant differential along M^n is always proportional to the displacement. If

(i) the mean curvature vector field $(\neq 0)$ is parallel with respect to the connection induced in the normal bundle,

(ii)
$$\int_{\mathbf{M}^n} K_{kjih} X'^k B^{ji} C^h dV \leq 0 \qquad (\geq 0),$$
 (iii)
$$\alpha > 0 \qquad (< 0),$$

- (iv) $Y^h=0$ or Y^h and X''^h have positive (negative) orientation in the normal bundle,

then the submanifold is totally umbilical.

If the submanifold is invariant under the curvature transformation, then we have

$$K_{kjih}X^{\prime k}B^{ji}C^{h}=0$$

and consequently the second condition of Theorem 5.1 is automatically satisfied.

If the ambient Riemannian manifold M^{n+2} admits a scalar function v such that

$$(5. 6) V_j \nabla_i v = f(v) g_{ji},$$

then we have

$$(5.7) V_c v^h = f(v) B_c^h$$

along any submanifold, where we have put

$$v^h = v_i g^{ih}, \qquad v_i = \overline{V}_i v.$$

This equation shows that the vector field v^h defined along M^n has covariant differential always proportional to the displacement along M^n .

Thus, under 4 conditions of Theorem 5.1, we have

(5.8)
$$h_{cb} = \lambda g_{cb}, \quad k_{cb} = 0, \quad l_c = 0,$$

λ being a constant different from zero, and consequently, (3.7) and (3.8),

$$(5.9) V_b z_a = (f + \alpha \lambda) g_{ba}$$

and

But

$$z_b = B_b^i v_i = \partial_b v$$

and consequently, we have from (3.7) and (5.10),

$$\alpha + \lambda v = c$$
 (constant).

Thus, from (5.9),

$$(5. 10') \qquad V_b V_a v = (f + c\lambda - \lambda^2 v) g_{ba}.$$

We examine two cases,

(I) f=kv, $k=\text{const.} \neq 0$, $v\neq \text{const.}$ along M^n . In this case, we have

$$(5. 11) V_b V_a v = [-(\lambda^2 - k)v + \lambda c]g_{ba}.$$

Here, $\lambda^2 - k \neq 0$, because if $\lambda^2 - k = 0$, then we have $\nabla_b \nabla_a v = \lambda c g_{ba}$, from which $g^{ba} \nabla_b \nabla_a v = n \lambda c$, which, the submanifold being closed, is impossible unless v = constant on M^n .

Thus, $\lambda^2 - k$ being different from zero, we have from (5.11)

from which

$$g^{ba} \mathcal{V}_b \mathcal{V}_a \left(v - \frac{\lambda c}{\lambda^2 - k} \right) = - n(\lambda^2 - k) \left(v - \frac{\lambda c}{\lambda^2 - k} \right)$$

which shows that $\lambda^2 - k > 0$. Thus, by a famous theorem of Obata [5], the submanifold is isometric to a sphere.

(II) f=k, k=constant, $v \neq$ const. along M^n .

In this case, we have

Here $\lambda \neq 0$, because if $\lambda = 0$, then we have v = const. along M^n . Thus we have

from which we conclude that the submanifold is isometric to a sphere. Thus we have

THEOREM 5. 2. Let M^n be a closed orientable submanifold of codimension 2 of an (n+2)-dimensional orientable Riemannian manifold M^{n+2} which admits a scalar function v such that $\nabla_j \nabla_i v = f(v)g_{ji}$, where f(v)=kv, or k, k being a constant, and $v \neq const.$ along M^n . Then under 4 conditions of Theorem 5.1 where $X^h = (\nabla_i v)g^{ih}$, the submanifold is totally umbilical and is isometric to a sphere.

BIBLIOGRAPHY

- [1] Katsurada, Y., Closed submanifolds with constant ν-th mean curvature related with a vector field in a Riemannian manifold. J. of Fac. Sci., Hokkaido University, Ser. I, 21 (1969), 171-181.
- [2] KATSURADA, Y., AND H. KÔJYÔ, Some integral formulas for closed submanifolds in a Riemann space. J. of Fac. Sci., Hokkaido University, Ser. I, 20 (1968), 90-100.
- [3] KATSURADA, Y., AND T. NAGAI, On some properties of a submanifold with constant mean curvature in a Riemann space. J. of Fac. Sci., Hokkaido University, Ser. I, 20 (1968), 79–89.
- [4] NAGAI, T., On certain conditions for a submanifold in a Riemannian space to be isometric to a sphere. J. of Fac. Sci., Hokkaido University, Ser. I, 21 (1969), 135-159.
- [5] OBATA, M., Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14 (1962), 333-340.
- [6] OKUMURA, M., Compact orientable submanifold of codimension 2 in an odd dimensional sphere. Tôhoku Math. J. 20 (1968), 8-20.
- [7] Okumura, M., Submanifolds of codimension 2 with certain properties. To appear.
- [8] YANO, K., Notes on hypersurfaces in a Riemannian manifold. Canadian J. of Math. 19 (1967), 439-446.
- [9] Yano, K., Integral formulas for submanifolds and their applications. To appear in Canadian J. of Math.

TOKYO INSTITUTE OF TECHNOLOGY, AND SAITAMA UNIVERSITY.