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INTEGRAL FORMULAS FOR SUBMANIFOLDS OF
CODIMENSION 2 AND THEIR APPLICATIONS

BY KENTARO YANO AND MASAFUMI OKUMURA

§ 1. Introduction

Various integral formulas for hypersurfaces of a Riemannian manifold have
been found and applied to the study of closed hypersurfaces with constant mean
curvature.

Integral formulas for submanifolds of codimension greater than 1 was first
obtained by Okumura [6] for the case of submanifolds of codimension 2 of an odd
dimensional sphere. He made use of the natural contact structure of the odd
dimensional sphere. Integral formulas for general submanifolds of a Riemannian
manifold have been obtained by Katsurada [1], [2], [3], Kδjyδ [2], Nagai [3], [41,
and Yano [9].

In a recent paper [7], Okumura obtained integral formulas for a submanifold
of codimension 2, invariant under the curvature transformation, of a Riemannian
manifold admitting an infinitesimal conformal transformation and used them to
prove that, under certain conditions, the submanifold in question is totally um-
bilical.

In the present paper, we study a problem similar to that treated in [7]. In
[7], the ambient Riemannian manifold was supposed to admit an infinitesimal con-
formal transformation, but in this paper, we assume instead that there exists a
vector field along the submanifold whose covariant differential is proportional to
the displacement. We do not assume that the submanifold is invariant under the
curvature transformation but instead we put a condition on the integral of a
quantity depending on the curvature.

We moreover study the case in which the ambient Riemannian manifold
admits a scalar function v such that VjViV=f(v)Qji and prove that the submanifold
satisfying certain conditions is isometric to a sphere by a method used in [81.

§2. Submanifolds of codimension 2.

We consider an 0z-f2)-dimensional orientable Riemannian manifold Mn+2 of dif-
ferentiability class C°° covered by a system of coordinate neighborhoods {U; xh}, where
and in the sequel the indices h, i,j, ••• run over the range {1,2, •••, n, n+1, n+2}. We
denote by gju {/*}, F», and Kkji

h, the metric tensor, the Christoffel symbols formed
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with QJU the operator of covariant differentiation with respect to {/J, and the
curvature tensor of Mn+2 respectively.

We consider an ^-dimensional orientable submanifold Mn differentiably im-
bedded in Mn+2 and denote by

(2. 1) xh = x\ua)

its parametric representation, where and in the sequel the indices #, b, c, d> e run
over the range {1,2, ••-,«}. If we put

(2.2) Bb

h=dbx
h, (db=d/dub)

then Bb

h, for each fixed b, is a vector field tangent to Mn and Bb

h are linearly
independent. A Riemannian metric

(2.3) Oa=gjιBe'Bi?

is induced on Mn. We denote by {c

a

b}, Vc and KdCb
ay the Christoffel symbols formed

with gcb, the operator of covariant differentiation with respect to {c

a

b} and the
curvature tensor of Mn respectively.

Now, the so-called van der Waerden-Bortolotti covariant derivative of Bb

h is
given by

h 1 n , „ . n Λ a
(2.4) FeBb

h=deBb

h+\ I ΛBe'Bb*-Bah

λ , , .
[J ι\ \c b\

Since FcBb

h, as vectors of Mn+2, are normal to Mn, the vector field

(2.5) Hh=—gcΨcBb

h

n

is normal to the submanifold Mn and is called the mean curvature vector of Mn.
We assume throughout the paper that the mean curvature vector never vanishes

and take the first unit normal Ch to Mn in the direction of the mean curvature
vector. We take the second unit normal Dh in such a way that Bχh

y B2

h, •••, Bn

h, Ch

and Dh give the positive orientation of Mn+2.
Then the equations of Gauss and those of Weingarten are written as

(2.6) VcBb»>=hcbC
h+kcbD

h

and

(2.7)
{FcD

h=-kc

aBah-lcCh

respectively, where hcb and kcb are the second fundamental tensors with respect to
the normals Ch and Dh respectively and ίc the third fundamental tensor, hc

a and
kc

a being defined by
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hca=hcw
ba, kc

a=kcbg
ba.

The normals Ch and Dh being chosen intrinsically, the quantities h, k and /
are all intrinsic quantities of Mn.

Since (l/n)gcbFcBb

h is in the direction of C\ we see from (2.6) that

(2.8) g<*kcl)=kc

c=0.

Now the equations of Gauss, those of Codazzi and those of Ricci are respec-
tively written as

(2. 9) KkjihBd

kBc

jBb

zBah=Kdcba - hdahcb+hcahdb - kdakcb+kcakdb,

(Kkjίh

(2. 10)
{K1emBd

kB^Bb

iDh=Fdkcb-Fckdb+ldhcb-lchdby

(2.11) KkmBd

kB^CWh=P'dlc-P\ldΛ-hdakc

a-hcakd

a.

§3. Vector fields along the submanifold of codimension 2.

Take a normal vector field

(3.1) Vh=λCh+μD\

Then, using equations of Weingarten, we have

FeV
h=(-λhc

a-μkc

a)Ba

h+(dcλ-lcμ)Ch+(dcμ+lcλ)D\

and consequently the connection induced in the normal bundle from the Riemannian
connection of Mn+2 is given by

(3. 2) Ve'λ=deλ-leμ, Fc'μ=dcμ+lcλ.

Thus in order that a normal vector field λCh+μDh be parallel with respect to
the connection induced in the normal bundle, it is necessary and sufficient that

(3.3) deλ-leμ=O,

These equations show that

^a+iM
2=constant,

that is, a normal vector field parallel with respect to the connection induced in the
normal bundle is of constant length.

If λCh(^0) is parallel with respect to the connection induced in the normal
bundle, then we have

^=const, and 4=0,
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and conversely. If μDh(^0) is parallel, we have

μ=const, and 4=0,

and conversely. Thus, in order that the mean curvature vector 0-lή)gebFcBb

h(^0)
be parallel with respect to the connection induced in the normal bundle, it is
necessary and sufficient that

haa=const. ^FO, 4=0.

Take next a vector field Xh defined along the submanifold Mn and assume
that the covariant differential of this vector field is always proportional to the dis-
placement along the manifold. For such a vector field we have

(3.4) FbX*=fBb\

f being a scalar function of Mn.
If we put

(3. 5) Xh=zaBa

h+aC h+βDh,

we have

FbX
h=(Fbz

a-ahb

a-βkb

a)Ba

h

+(dba-hβ+hbaz
a)Ch

Thus if we assume that the covariant differential of Xh is proportional to the
displacement along Mn, then we have

(3. 6) Fbz
a=fδϊ+ahb

a+βkb

a

or

(3. 7) FbZa=fQba + ahba + βkba

and

[dba-lbβ+hbaz
a=0,

(3. 8)
[dbβ+ha+kbaz

a=0.

% 4. Integral formulas for a closed submanifold of codimension 2.

We consider an (^+2)-dimensional Riemannian manifold Mn+2 and a closed
orientable submanifold Mn of codimension 2 imbedded in it. We assume that
there exists a vector field
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(4. 1) Xh=zaBa

h+aCh+βDh'

along Mn whose covariant differential along Mn is always proportional to the dis-
placement:

(4.2) FcX
h=fBc\

Then we have

( 4 . 3 ) ϊ7cZb=fgCb-i-(χhcb+βkcb,

from which

gcΨczb=nf+ahaa.

Thus, integrating over Mn, we find

(4. 4) [ (nf+aha

a)dV=0,

where dV denotes the volume element of Mn.
We now compute Fa(hbazb)\

But, from the first of equations (2. 10) of Codazzi, we have

KkJihBd

kB^Ch=Fdha

a- Fahd

a+lakd

a,

where

and consequently we have

Thus, integrating over Mn, we obtain

(4.5)

f
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§ 5. Closed submanif olds with mean curvature vector parallel with respect to
the connection induced in the normal bundle.

We consider a closed orientable submanifold Mn of codimension 2 of an (n+2)-
dimensional Riemannian manifold Mn+2 and assume that Mn admits a vector field
Xh whose covariant differential along Mn is always proportional to the displace-
ment:

(5. 1) VcX
h=fBc

h

and that the mean curvature vector (Xlή)gcbFcBt>h($p0) is parallel with respect to
the connection induced in the normal bundle:

(5.2) ha

a=const.*0, 4=0.

Then we have first of all

(5. 3) ( (nf+aha

a)dV=0.
v Mn

We next have from (4. 5)

(5.4)

= [ (fhaa+ahiahba+βhbakba)dV.

Now, forming (5.4)-(5.3)x(l/»)Aa

a, we find

)Mn k J l h

= [ [a(hbahba-^hb

bhaa) +βhbakba]dV,

or

(5. 5)

=S \a\(hia-\
We denote by X'h and X"h the tangential part and normal part of Xh

respectively.
Suppose that
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a>0,

hbakbaβ~-kbakbaa^Oy

that is, the vector

Yh=hbakbaC
h+kbakbaD

h

vanishes or this vector and

have positive orientation in the normal bundle, or

JMn

a<0,

hbakbaβ-kbakbaa^0,

that is, the vector Yh vanishes or Yh and Xπh have negative orientation in the
normal bundle, then we have

hcb hd

dgcb=0, kcb=0,

that is, the submanifold under consideration is totally umbilical. Thus we have

THEOREM 5.1. Let Mn be a closed orient able submanifold of codimension 2
of an (n-\-2)-dimensional Riemannian manifold Mn+2 and assume that Mn admits
a vector field Xh whose covariant differential along Mn is always proportional to
the displacement. If

( i ) the mean curvature vector field (3pO) is parallel with respect to the con-
nection induced in the normal bundle,

(ii) ( KkjihX
/kB^ChdV^0 (^0),

J Mn

(iii) α>0 (<0),
(iv) F Λ = 0 or Yh and X"h have positive (negative) orientation in the normal

bundle,
then the submanifold is totally umbilical.

If the submanifold is invariant under the curvature transformation, then we
have

and consequently the second condition of Theorem 5.1 is automatically satisfied.
If the ambient Riemannian manifold Mn+2 admits a scalar function v such that

(5.6) P/if
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then we have

(5.7) Fcv
h=f(v)Bc

h

along any submanifold, where we have put

Vh = ViQih, Vi = ViV.

This equation shows that the vector field vh defined along Mn has covariant
differential always proportional to the displacement along Mn.

Thus, under 4 conditions of Theorem 5.1, we have

(5.8) hCb=λgct), kCb=O, 4 = 0 ,

λ being a constant different from zero, and consequently, (3.7) and (3.8),

(5. 9) Pbza=(f+a2)gba

and

(5. 10) dba+λzb=0.

But

Zb=Bbίvi=dbv

and consequently, we have from (3.7) and (5.10),

a+λv=c (constant).

Thus, from (5. 9),

(5. 100 FbPaV=(f+cλ-λ2υ)gba.

We examine two cases,
(I) f=kv, k=const.^F0, V^const, along Mn.

In this case, we have

(5.11) PbPaV=[-(λ2-k)v+λc]gba.

Here, λ2—k^0f because if λ2—k=0, then we have VbVav=λcgba, from which
ghaVbVav=nλc, which, the submanifold being closed, is impossible unless v—constant
on Mn.

Thus, λ2—k being different from zero, we have from (5.11)

(5. 12)

from which
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which shows that λ2—k>0. Thus, by a famous theorem of Obata [5], the sub-
manifold is isometric to a sphere.
(II) f=k, &=constant, theorist, along Mn.

In this case, we have

(5. 13) PbFav=(-λ2v+k-{-cλ)gba.

Here Λ^O, because if λ=0, then we have v=const, along Mn. Thus we have

/c ivi\ n Γ7 ί k-\-cλ\ ../ k+cλ \
(5. 14) VbVa[v — j = -λ2\v — )gba,

from which we conclude that the submanifold is isometric to a sphere. Thus we

have

THEOREM 5. 2. Let Mn be a closed orientable submanifold of codimension 2

of an (n-\-2)-dimensional orientable Riemannian manifold Mn+2 which admits a

scalar function v such that PjPiV=f(v)gji, where f(v)=kv, or k, k being a constant,

and v^ const, along Mn. Then under 4 conditions of Theorem 5.1 where Xth

=(PiV)gί}ι, the submanifold is totally umbilical and is isometric to a sphere.
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