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INTEGRAL FORMULAS FOR SUBMANIFOLDS OF
CODIMENSION 2 AND THEIR APPLICATIONS

By KENTARO YANO AND Masaruml OKUMURA

§1. Introduction

Various integral formulas for hypersurfaces of a Riemannian manifold have
been found and applied to the study of closed hypersurfaces with constant mean
curvature.

Integral formulas for submanifolds of codimension greater than 1 was first
obtained by Okumura [6] for the case of submanifolds of codimension 2 of an odd
dimensional sphere. He made use of the natural contact structure of the odd
dimensional sphere. Integral formulas for general submanifolds of a Riemannian
manifold have been obtained by Katsurada [1], [2], [3], K&jyo [2], Nagai [3], [4],
and Yano [9].

In a recent paper [7], Okumura obtained integral formulas for a submanifold
of codimension 2, invariant under the curvature transformation, of a Riemannian
manifold admitting an infinitesimal conformal transformation and used them to
prove that, under certain conditions, the submanifold in question is totally um-
bilical.

In the present paper, we study a problem similar to that treated in [7]. In
[7], the ambient Riemannian manifold was supposed to admit an infinitesimal con-
formal transformation, but in this paper, we assume instead that there exists a
vector field along the submanifold whose covariant differential is proportional to
the displacement. We do not assume that the submanifold is invariant under the
curvature transformation but instead we put a condition on the integral of a
quantity depending on the curvature.

We moreover study the case in which the ambient Riemannian manifold
admits a scalar function » such that VZ,0=f(v)g; and prove that the submanifold
satisfying certain conditions is isometric to a sphere by a method used in [8].

§ 2. Submanifolds of codimension 2.

We consider an (z+2)-dimensional orientable Riemannian manifold M»*? of dif-
ferentiability class C= covered by a system of coordinate neighborhoods {U; z"}, where
and in the sequel the indices 4,1, 7, --- run over the range {1, 2, ---,n, n+1, n+2}. We
denote by gi, {,4}, V., and K", the metric tensor, the Christoffel symbols formed
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with ¢;;, the operator of covariant differentiation with respect to {,%}, and the
curvature tensor of M™*? respectively.

We consider an #n-dimensional orientable submanifold M* differentiably im-
bedded in M™*? and denote by

2.1) 2t =x"(u")

its parametric representation, where and in the sequel the indices @, b, ¢, d, e run
over the range {1,2,-.-,n}. If we put

2.2 Byt =0y2", (0y=0/0u®)

then By, for each fixed b, is a vector field tangent to M™ and By* are linearly
independent. A Riemannian metric

2. 3) 9o =03:8e' By*

is induced on M™. We denote by {.%,}, V. and K%, the Christoffel symbols formed
with ¢., the operator of covariant differentiation with respect to {.%,} and the
curvature tensor of M™ respectively.

Now, the so-called van der Waerden-Bortolotti covariant derivative of B,* is
given by

@ 4) VCBD"=00B1,”+{ .h.}Bchbt—Bah{ @ }
ji cb
Since V.By*, as vectors of M"*% are normal to M™ the vector field

@5 e %gcchBbh

is normal to the submanifold M™ and is called the mean curvature vector of M=,
We assume throughout the paper that the mean curvature vector never vanishes
and take the first unit normal C* to M™ in the direction of the mean curvature
vector. We take the second unit normal D" in such a way that By, Bs", ---, B,*, C"
and D" give the positive orientation of Mn"+2,
Then the equations of Gauss and those of Weingarten are written as

(2 6) VcBbh:hcbch+kcth
and
V.Ch=—h"B"+1.D",
2.7
VeD*=—k*By*—1,C"

respectively, where /. and k. are the second fundamental tensors with respect to
the normals C* and D* respectively and /, the third fundamental tensor, 4.* and
k.* being defined by
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he*=hpg®, ke =k

The normals C* and D" being chosen intrinsically, the quantities %, £ and !/
are all intrinsic quantities of M™.
Since (1/n)g®F.By* is in the direction of C*, we see from (2.6) that

(2 8) gc”kcb=kcc=0-

Now the equations of Gauss, those of Codazzi and those of Ricci are respec-
tively written as

2.9) K jinBa* Bei By Ba* = Kaapa— haaher-+ heahas— Eaakes+Eeakias,
@.10) {KkdechijlC PV ghes— shay—lakeos+ Loeas,

Ky Ba* B/ By' DM =T aker—F char+-laher—Lchar,
2.11) K jin BB CiD" =T gly—T g+ haake® — heaka®

§3. Vector fields along the submanifold of codimension 2.
Take a normal vector field
3.1 Vr=2C"+pDm,
Then, using equations of Weingarten, we have
Ve Vit=(—2h"— pke®) Ba"+(0:Ad— lop) C*+ (0 pp+-1.2) D?,

and consequently the connection induced in the normal bundle from the Riemannian
connection of Mn™+? is given by

3.2) Via=od—lep, Vo p=0eptIeA.

Thus in order that a normal vector field AC*+ puD* be parallel with respect to
the connection induced in the normal bundle, it is necessary and sufficient that

3.3 0 2—lp=0,  dept-1.2=0.
These equations show that
22+ pP=constant,

that is, a normal vector field parallel with respect to the connection induced in the
normal bundle is of constant length.

If AC"(x0) is parallel with respect to the connection induced in the normal
bundle, then we have

A=const. and /=0,
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and conversely. If pD*(=0) is parallel, we have
p=const. and /=0,

and conversely. Thus, in order that the mean curvature vector (1/%)g®V .Bs"(30)
be parallel with respect to the connection induced in the normal bundle, it is
necessary and sufficient that

> =const. =0, 1,=0.

Take next a vector field X" defined along the submanifold A/ and assume
that the covariant differential of this vector field is always proportional to the dis-
placement along the manifold. For such a vector field we have

B9 VoX"=fBy",
f being a scalar function of M™.
If we put
(3.5 X"=z"B*+aC?+pD",
we have

Vth =(l7bz“——akb“—‘8kb°)Ba"
+(@sar—lpB+-Ppaz®)C®
+©@of+la+koaz") D"

Thus if we assume that the covariant differential of X* is proportional to the
displacement along M7, then we have

(3. 6) Vy2® =103 +ahy*+ Bky®
or

3.7 V320=1qba-tahva+Pkoa
and

s — I+ Npa2® =0,
3.8)

abﬁ+lba+kbaz“=0.

§4. Integral formulas for a closed submanifold of codimension 2.

We consider an (%#--2)-dimensional Riemannian manifold M"*? and a closed
orientable submanifold M" of codimension 2 imbedded in it, We assume that
there exists a vector field
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“4.1) X"=z"B,"4aC"+pD"

along M™ whose covariant differential along M™ is always proportional to the dis-
placement:

“.2) Ve X*=fB:"

Then we have
4.3) V ezo=fgco+aheo+ Bkes,
from which

9 czo=nf+aha”.

Thus, integrating over M", we find
@ 4) Sm(nf+aha“>d V=0,
where dV denotes the volume element of M™.

We now compute Vq(4,%2%):

V o(lp*2%) =(V oh1s™) 22+ 1PV y2,
=V ohs")2"+ 1 (fgvatahsa+ Bksa)
=V ah1s)22+ fha® + al®®Roa~- B Roa.
But, from the first of equations (2. 10) of Codazzi, we have
K jinBa*BICh =V 3ho*—V oha®+-laka",
where
Bit=¢®*BJBy,
and consequently we have
V o(lp®2%) = — Ky jin Ba*2¢ BIC? 429V 3ho* -1k 2%
+fha®+ ah*hyo+ A Esa.
Thus, integrating over M", we obtain
S Keyn B2t BACrdV
un

(4. 5)
=S (297 sl laea® 284 Fha® - i hog -+ SR hera)d V.
Mn
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§5. Closed submanifolds with mean curvature vector parallel with respect to
the connection induced in the normal bundle.

We consider a closed orientable submanifold M™ of codimension 2 of an (%4 2)-
dimensional Riemannian manifold M™*? and assume that M™ admits a vector field
X™ whose covariant differential along A" is always proportional to the displace-
ment:

6. 1) VeX"=fBm"

and that the mean curvature vector (1/m)g®F.By"*(=0) is parallel with respect to
the connection induced in the normal bundle:

(5. 2) ho*=const.x0, 1,=0.

Then we have first of all

5.9 ( or+anmav—o.

v yn

We next have from (4.5)

S KkﬁthkdejiChd V
Mn
5.4
= S (fha"+ah®®hoe+ Bh%koa)d V.
Mn

Now, forming (5. 4)—(5. 3) X (1/n)h.*, we find

J KijinBd2'BiCdV
un

= S [a (/lba’/lba - ‘1‘ hbbhaa> +ﬁhbakba]d V:
un n
or

S KkijdedBﬁ’cth
M

_ S [a{ <hb“— %m%“) (hba - —}Zhddgba) + kbakba} +(hbakbaﬁ—kbakma)]du
Mun

We denote by X’* and X’'* the tangential part and normal part of X?*
respectively.
Suppose that



INTEGRAL FORMULAS FOR SUBMANIFOLDS 469

S Ky jinX'®*BHCrd V =0,
mn

a>0,
7*kyo f— k" kpaa =0,
that is, the vector
Y r=h% Ct 4k kye D"
vanishes or this vector and
X' =aCr+-pD"

have positive orientation in the normal bundle, or
S Kisin X *BACHd V=0,
Mn

a<0,
hbakbaﬁ_ kbakbaa é 0’

that is, the vector Y* vanishes or Y* and X’’* have negative orientation in the
normal bundle, then we have

hev— 'l*hddgcb:-(), k=0,
n

that is, the submanifold under consideration is totally umbilical. Thus we have

THEOREM 5.1. Let M"™ be a closed orientable submanifold of codimension 2
of an (n+2)-dimensional Riemannian manifold M™* and assume that M" admits
a vector field X" whose covariant differential along M" is always proportional to
the displacement. If

(i) the mean curvature wvector field (x0) is parallel with respect to the con-
nection induced in the normal bundle,

(i) S Ko X*BACV=0  (=0),
un

(iii) a>0 (<0),

(iv) Y*=0 or Y* and X''* have positive (negative) orientation in the normal
bundle,
then the submanifold is totally umbilical.

If the submanifold is invariant under the curvature transformation, then we
have

KkjihX”‘BjiCh =0

and consequently the second condition of Theorem 5.1 is automatically satisfied.
If the ambient Riemannian manifold M™*? admits a scalar function » such that

(5. 6) ViV w=f)g,
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then we have
6.7 Vo =f(v)B:"
along any submanifold, where we have put
Vr=0v,g*", vi=rw.

This equation shows that the vector field »* defined along M™ has covariant
differential always proportional to the displacement along M™.
Thus, under 4 conditions of Theorem 5.1, we have

(5. 8) hcb=xg0b) kcb=0; lc=0,

A being a constant different from zero, and consequently, (3.7) and (3. 8),

5.9 Vyze=(f+al)gsa

and

(5. 10) Opa+2A2,=0.
But

2p=By";=0pv
and consequently, we have from (3.7) and (5. 10),
a-+Av=c (constant).
Thus, from (5.9),
(5. 10" Vol qo=(f~+ca—2v)gsa.

We examine two cases,
(I) f=ko, k=const.x0, vxconst. along M".
In this case, we have

(5.11) VoV so=[—(2*—k)v4-2clgsa.

Here, 22—k=x0, because if 1*—k=0, then we have VV,0=2cgs, from which
g**V sV sv=mnlc, which, the submanifold being closed, is impossible unless v=constant
on M".

Thus, 12—£% being different from zero, we have from (5.11)

Ac Ac
(5.12) VbVa,<v~' ﬂ) =—(—Fk) (1’— m)gbay

from which

. Ac Ac
gb VbVa,(l)— 7:—_]8_): —n(lz—k)<v— ﬂ)
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which shows that 22—%>0. Thus, by a famous theorem of Obata [5], the sub-
manifold is isometric to a sphere.
(II) f=k, k=constant, v=const. along M™.

In this case, we have

(5.13) VoV av=(—220+k-+cA)gsa.

Here A0, because if 2=0, then we have v=const. along M". Thus we have

k+c2 k+c2
(5. 14) VbVa(z)_ ";C )=-—]2<v_ ";c )gba»

from which we conclude that the submanifold is isometric to a sphere. Thus we
have

THEOREM 5.2. Let M™ be a closed orientable submanifold of codimension 2
of an (n+2)-dimensional orientable Riemannian manifold M™* which admits a
scalar function v such that V;Vw=f ()9, where f(v)=Fkv, or k, k being a constant,
and vxconst. along M". Then wunder 4 conditions of Theorem 5.1 where X"
= w)g**, the submanifold is totally umbilical and is isometric to a sphere.
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