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ISOMETRIC IMMERSIONS OF SASAKIAN MANIFOLDS

IN SPHERES

BY SHUKICHI TANNO

Introduction. A Sasakian manifold Mm which is isometrically immersed in a
Riemannian manifold * M m + 1 of constant curvature C ^ l is of constant curvature
1, as was shown by Takahashi [7]. The case where the constant curvature of
*Mm+1 is 1 is in a very different situation. In this paper we study the case.
The rank of the second fundamental form is called the type number of the
immersion.

THEOREM. Let Mm be a Sasakian manifold which is isometrically immersed
in a Riemannian manifold *Λfm+1 of constant curvature 1. Then

(i) the type number k^2, and
(ii) Mm is of constant curvature 1 if and only if the scalar curvature S is

equal to m(m—l).

In an j?-Einstein space for any point p the Ricci curvature Ri(X, X) is constant
for any unit vector X at p such that η(X)=0. In [7] it was also proved that an
^-Einstein Sasakian manifold Mm (m^5) which is isometrically immersed in a
Riemannian manifold * M m + 1 of constant curvature 1 is of constant curvature 1.
We generalize this in the following form.

THEOREM. Let Mm (m^5) be a Sasakian manifold which is isometrically im-
mersed in a Riemannian manifold *Afm+1 of constant curvature 1. Assume that
at any point p of Mm we have a sub space Fv of the tangent space at p to Mm

such that
( i ) dim Fp=m—2,
(ii) η(X)=0 for any X£ Fp,
(iii) Ri(X, X) = constant for any unit X€FP.

Then Mm is of constant curvature 1.

In § 2 we study some properties of contact Riemannian manifolds which satisfy
some conditions on the Ricci tensor or the Riemannian curvature tensor, for ex-
ample, R(X9 Y)-R=0 or R(X9 Y)-R1=0.

In the last section, we consider invariant submanifolds of Sasakian manifolds.
We see that they are minimal. As a special case, we have invariant submanifolds
Mm of a unit sphere S2rΛ1 considered as a Sasakian manifold, which are shown
to be unit spheres if and only if S=m(m—l).
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§1. Structure tensors.

Let (φ, f, η, g) be structure tensors of a contact Riemannian manifold M of m-
dimension. They satisfy

(1.1) φξ=O, 9(0=1,

(1.2) φφX=-X+η(X)ξ,

(1. 3) g(X, Y)=g(φX, φY)+v(X)v(Y),

(1.4) 2g(X, φY)=dη(X, F), η(X)=g(ξ, X)

for any vector fields X and Y on M When ξ is a Killing vector field, M is said
to be a iΓ-contact Riemannian manifold, and we have

(1.5) Vzξ=-φX,

(1. 6) R1(Xt ξ)=(m-l)V(X)

(1. 7) </(*(*, 0F, ξ)=g(X, Y)-η(X)η{Y\

(1.7)'

where F is the Riemannian connection, Rx and i? are the Ricci curvature tensor
and the Riemannian curvature tensor, respectively (cf. [1], [8]). If we have

(1. 8) ψχφ)Y=g(X, Y)ξ-η(Y)X,

then M is called a Sasakian manifold or a normal contact Riemannian manifold,
and we have

(1. 9) R{X, ξ) Y=g(Xf Y)ξ-η(Y)X.

A Sasakian manifold is a iΓ-contact Riemannian manifold. The Ricci curvature

tensor 7?i on a Sasakian manifold satisfies

(1.10) Rrkφ
rj=-Rrjφl

where indices i,j, r, » €(1, •••, m) (cf. [5]). Operating φ\ to (1.10) and using (1. 6),
we have

(1.11) Ri(φX, φY)=R!(X, Y)-im-l)η{X)η{Y).

§2. Some conditions on the Ricci curvature tensor and the Riemannian
curvature tensor.

The curvature transformation R(X, Y) acts on the tensor algebra as a deriva-
tion, And the condition R{X} Y) R=0 was discussed by Nomizu [2] for hypersur-
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faces of Euclidean spaces. While the condition R(X, F) 2?i=0 was studied by
Tanno [10] for hypersurfaces of Euclidean spaces.

PROPOSITION 2. 1. Let M be a K-contact Riemannian manifold. Then the
following conditions are equivalent:

( i ) M is an Einstein space] Rλ=ag,
(ii) The Ricci curvature tensor is parallel; PRi=0,
(iii) R(X, Y)-R1=0 for any X and Y,

(iv) R(Xyξ)-R1=0 for any Y.

Proof, (i)—>(ii)—•(iii)—•(iv) is clear. Assume condition (iv), which is equivalent to

(2.1) Ri(R(X, ξ)U, V)+R1(U) R(X, f)F)=0

for any vectors U and V. Put V=ξ. Then, using (1. 6), (1. 7) and (1. 7)' we have

(2. 2) (m-l)g(X, U)-R1(Xf U)=0.

Therefore M is an Einstein space. Q.E.D.
If the Ricci curvature tensor Rx is of the form

(2.3) Ri=ag+bη®η,

where a and b are functions on M, then M is called an 57-Einstein space. If m>3,
a and b are constant on a iΓ-contact Riemannian manifold. A Sasakian manifold
M is an ^-Einstein space if and only if

(2. 4) (R(X9 Y)'R!)(U9 V)=b[v(U)g(V, X)+7j(V)g(U,

-b[η{U)g(Vy Y)+v(V)g(U, Y)]η(X)

holds good for some function b on M. The necessity is an immediate consequence
of (1. 9) and (2. 3). While the sufficiency will be verified in proposition 2. 2. By
putting Y-=^ζ in (2. 4), we have

(2. 5) (R(X, ξ)'R1)(U9 V)=b[v(U)g(V, X)+V(V)g(U, X)-2v(U)y(V)V(X)].

PROPOSITION 2. 2. A K-contact Riemannian manifold is an η-Einstein space
if and only if (2. 5) holds for some function b on M.

Proof Assume that (2. 3) holds. Then by (1. 7) we have (2. 5). Conversely
assume that (2. 5) holds. Then as in the proof of Proposition 2.1, we have

, U)~R1(Xy U)=b[g(U, X)-η(U)η{X)}.

Therefore we have

(2. 6) RX{X, U)=(tn-l-b)g(X, U)+bv(X)η(U),

which shows that M is an ^-Einstein space.



ISOMETRIC IMMERSIONS OF SASAKIAN MANIFOLDS IN SPHERES 451

THEOREM 2. 3. Let M be a K-contact Riemannian manifold. Then the fol-
lowing conditions are equivalent

( i ) M is of constant curvature 1,
(ii) M is locally symmetric, FR=0,
(iii) R(X, Y) R=0 for any X and Y,
(iv) R(X, ξ) R=0 for any X.

Proof, (i)—>(ii)—<iii)—>(iv) is clear. Assume condition (iv), which is equivalent to

(2. 7) R(X, ξ)(R(U, V)W)-R(R(X, ξ)U, V)W

-R(U, R(X, ξ)V)W-R(U, V)(R(X, ξ)W)=0

for any U, V and W. If we put U= W=ς in (2. 7), using (1. 7), we have

(2. 8) R(X, V)ξ+R(ξ, V)X+η(V)X-2η(X)V+g{X, V)ξ=o.

Consider the inner product of Y and both sides of (2. 8). Then we have

(2.9) g(R(X, F)ί, Y)+o(R(ξ, V)X, Y)+^V)g(X9 Y)-2η{X)g{V1 Y)+V(Y)g(X, V)=0.

Interchanging X and Y in (2. 9) and subtracting the result from (2. 9), we get

(2. 10) g{R{ζ, V)X, Y)=y(X)g(V, Y)-v(Y)g(X, V),

where we have used the Bianchi's identity. (2.10) is written as

(2.11) R{ξ, V)X=η{X)V-g{X, V)ξ.

If we put U=ξ in (2. 7), using (2.11) we have

R(X9 V)W=g(X, W)V-g(W, V)X,

which shows that M is of constant curvature 1.

REMARK. Proposition 2.1 for a Sasakian manifold was given by Takahashi
[7]. (i)^(ϋ) in Theorem 2. 3 was given by Tanno [9], generalizing a result by
Okumura [3] for a Sasakian manifold. For (iii) on a Sasakian manifold, see
Takahashi [6].

§3. Sasakian manifolds which are hypersurfaces of a Riemannian manifold
of constant curvature 1.

Let Mm be a Sasakian manifold of m-dimension which is isometrically im-
mersed in a Riemannian manifold * M m f l of constant curvature 1. Then we have
the Gauss and Codazzi equations:

(3.1) -R(X, Y)=XΛY+AXΛAY, or

(3.1)' -R(X, Y)Z=g(Y, Z)X-g{X, Z)Y+g(AY, Z)AX-g(AX, Z)AYf
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(3.2) (FXA)Y=(ΓYA)X,

where A is a (local) (1, l)-tensor associated with the second fundamental form B
by B(X, Y)=g(X, AY)ζ corresponding to a (local) field of unit normal vectors ζ to
M. A is symmetric with respect to g. By (3.1)', putting Y=ξ, we have

(3. 3) -R(X, ξ)Z=η{Z)X-g{X1 Z)ξ+η{AZ)AX-g(AX, Z)Aξ.

By (1. 9) and (3. 3) we have

(3. 4) η(AY)AX=g(AX, Y)Aξ.

When the trace of A vanishes, M or the immersion is called minimal. The rank
of A is called the type number of the immersion.

LEMMA 3.1. Denoting by θ the trace of A we have

(3.5) ΘA-AA+θφAφ-φAAφ=O.

Proof. Since the Ricci curvature tensor i?i is given by

R1(Xf F)=trace [U-+R(X, 17)F],

by (3.1)' we have

(3. 6) R^X, Y)=(nt-l)g(X, Y)+(trace A)g(AX, Y)-g(AAX, Y).

Replacing X and Y by φX and φ Y in (3. 6), we have

(3. 7) R^φX, φY)=(m-l)g(φX) φY)+θg(AφX, φY)-g(AAφX, φY).

By (1. 4) φ is skew symmetric, and we have

g(AφX,φY)=-g(φAφX, F),

g(AAφXyφY)=-g(φAAφXt Y).

By (1. 3) and (1. 11), (3. 7) is written as

(3. 8) R1(X, Y)=(m-l)g(Xf Y)-g((θφAφ-φAAφ)X, Y).

Then (3. 6) and (3. 8) imply

(3. 9) g((θA-AA+OφAφ-φAAφ)X, F)=0.

That is, we have (3. 5). Q.E.D.

By (3. 6) the scalar curvature S=trace Rλ is given by

(3. 10) S=m(m-l)-{-θ2-tmce AA.

LEMMA 3. 2. In a Sasakian manifold we have
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(3. 11) φR(X9 Y)φ=-R(X, Y)-XΛY+φXΛφY.

Proof. Assume that X, Y and Z are (local) vector fields such that (FX)P

=(FY)P=(FZ)P=O for a fixed point p of M. By the Ricci identity for φ:

, Y) φ)Z=(FxFγφ)Z-(FYFxφ)Z,

we have at the point p

-R(X, Y)(φZ)+φ(R(X, Y)Z)=Fx{(Fγφ)Z)-Fγ({Fxφ)Z)

=Fx(g(Y, Z)ξ-V(Z)Y)-Fγ(g(X, Z)ξ-η(Z)X)

= g(Y, Z)Fxξ-(Fxη){Z)Y-g{X, Z)Fγξ+(FγV)(Z)X

= -g(Y, Z)φX+g(φX, Z)Y+g{X, Z)φY-g(φY, Z)X.

Therefore operating φ we have

-φR(X, YXφZ)-R(X, Y)Z+ύR(X, Y)Z)ξ

= g(Y, Z)(X-V(X)ξ)+g(φX, Z)φY

-g{X, Z)(Y-η(Y)ξ)-g(φY, Z)φX.

Since from (1. 9) we have

V(R(X, Y)Z) = g(X,Z)V(Y)-g(Y,Z)η(X),

we have

(3.12) -φR(X, Y)φZ-R(X, Y)Z=(XΛY)Z-(φXΛφY)Z.

LEMMA 3. 3. The {local) tensor A satisfies

(3.13) φAX/\φAY=AX/\AY,

(3.14) φAφA+ΘA=AA.

Proof. By (3.1) we have

-φR(X, Y)φZ=φ(XΛY+AXΛAY)φZ

=φ[g(Y, φZ)X-g(X, φZ)Y+g{AY, φZ)AX-g(AX, φZ)AY]
(3. 15)

= -g(φY, Z)φX+g(φX, Z)φY-g(φAY, Z)φAX+g(φAX, Z)φAY

- - (φXΛ φ Y)Z~ (φAXΛ φA Y)Z.

Then (3.13) follows from (3. 1), (3.11) and (3. 15). Put

E(X, Y} Z)=g(φAY, Z)φAX-g(φAX, Z)φAY-g{AY, Z)AX+g(AX, Z)AY.
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Then by (3.13) we have E(X, F, Z)=0. Taking the trace [X^E(X, Y, Z)], we have

-giφAφAY, Z)-θg(AY, Z)+g(AAY, Z)=0,

since trace φA=0. Consequently we have (3.14).

If the rank of A^l everywhere on M, then M is of constant curvature 1 by
(3.1). Assume that the rank of A^2 at some point and hence on some open set.
Then we have two orthonormal vector fields X and Y (locally) such that AX=λX
and AY=μY for non-zero λ and μ on the open set. By (3.4), then, we have
λμη{Y)X=λg{X, Y)Aξ=>0. That is, we have ?(F)=0. Next, we put X = F i n (3. 4),
to get λAξ=0. Consequently, Aξ=0 on the open set. From now on in this section
we assume that ξ is an eigenvector of A corresponding to eigenvalue 0. Let

λ, μ, - , v, 0 (λ^μ^-^v)

be eigenvalues of A. They are continuous. Let p be an arbitrary point of M
We define subspaces Dλ(λ, μ, •••) of the tangent space TPM by

Dx = {Xe TPM; AX= λX).

LEMMA 3. 4. If λ^0y then we have

φDλ=Dβ-λ.

Proof. Let XsDλ. By (3. 14) we have

λφAφX+θλX=λ*X.

Since λ\Q, we have φAφX=(λ—Θ)X. Operating φ we have φφAφX=(λ—θ)φX.
Since η(AφX)=g(AφX, ξ)=g(φX, Aξ)=0, we have φφAφX=-AφX. Namely, AφX
=(β-λ)φX. Q.E.D.

By Lemma 3. 4, A has the following components with respect to a suitable
basis;

/ λEr

(3.16)

(θ-λ)Er
o \

μEs

(0-μ)Es

vEt

\ 0
(θ-v)Et

OEV I

including the cases (μ=θ,2v=θ, etc.), where Er is the rXr identity matrix, etc.
Trace of A is then

θ=rθ+sθ+» +tθ,
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which can be true only when (i) 0 = 0 , or (ii) r = l , 5=0, •••, t=0, and Θ^O.

LEMMA 3. 5. The rank of A ̂ 2. If the rank of A=2 at a point p, then non-
zero eigenvalues are λ and —λ> or λ and θ—λ at p.

Proof. Assume that the rank of A ^ 3 at some point p. This is the case (i),
since the rank of A = 2 m the case (ii). Therefore we have 0=0. Suppose that
Dλ^0 and Dμ^0 for non-zero λ, μ such that λ^μ and λ^—μ. Then we have non-
zero vectors X$Dλ and YGDμ, and (3.13) implies

(3. 19) λμφXΛ φ Y= λμX/\ y,

where φXeD-λ and φY£D-μ. Operating (3. 19) to Y we have g(Y, Y)X=0, con-
tradicting X^O and F^FO. Therefore non-zero eigenvalues are λ and —λ. Since
the rank of A = 3 by assumption, we have dim £ ^ = 2 . Suppose that X and Y are
orthonormal vectors in Dλ. Then (3.13) also implies φXΛφY=XΛY. Similarly
we have g(Y, Y)X=0, which is a contradiction. Thus the rank of A=2.

THEOREM 3. 6. Let Mm be a Sasakian manifold which is isometrically im-
mersed in a Riemannian manifold * M m + 1 of constant curvature 1. If the scalar
curvature S of Mm is equal to m(m—ϊ), then Mm is of constant curvature 1.

Proof. By (3.10) we have Θ2=trace A A. Assume that the rank of .A=2
somewhere. Then by Lemma 3. 5 trace AA=λ2-\-(θ—λ)2 (including the case 0=0).
And hence we get λ(β—λ)=0, which is a contradiction.

THEOREM 3. 7. Let Mm (m^5) be a Sasakian manifold which is isometrically
immersed in a Riemannian manifold * M m f l of constant curvature 1. Assume that
for any point p of Mm we have a subspace Fp of the tangent space at p to Mm

such that
( i ) dim Fp=m—2,
(ii) Fp is orthogonal to ξ,
(iii) Ri(Xf X) is constant for any unit vector XGFP.

Then Mm is of constant curvature 1.

Proof Assume that the rank of A=2 on some open set U containing a point
p. For a unit vector XeDλ we have φXeDθ-x (including the case 0=0). Since
η(X)=0 and dim Fp==m—2 we have some real numbers c and d such that c2+d2

= 1 and

cX+dφXeFp.

Then by (3. 6) we have

R1(cX+dφXfcX+dφX)=(m-l)+θ(c2λ+d2(θ~λ))-(c2λ2+d\θ-λ)2)

=(m-l)+θλ-λ2.
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On the other hand, since m^5, we have ZGDQ such that η(Z)=0 and
Similarly there are some real numbers *c and *J such that V + * d 2 = l and

*cZ+*dφZeFp.

In this case we have

Ri(*cZ+*dφZ, *cZ+*dφZ)=m-l.

Now by condition (iii) we have λθ—λ2=0, which is a contradiction.

Takahashi [7] proved that: A Sasakian manifold Mm (with pseudo-Riemannian
metric) which is (properly and) isometrically immersed in a (pseudo-) Riemannian
manifold * M m + 1 of constant curvature C^FI is of constant curvature 1.

Therefore we have

THEOREM 3. 8. A Sasakian manifold Mm with scalar curvature m(m—l) which
is isometrically immersed in a Riemannian manifold * M m + 1 of constant curvature
C is of constant curvature 1.

REMARK. One may apply the same arguments to get Lemmas and Theorems
above for properly and isometrically immersed Sasakian manifolds Mm with in-
definite metrics in a pseudo-Riemannian manifold * M m + 1 of constant curvature 1.

REMARK. If Mm is an ^-Einstein space, then there exists a field of subspaces
Fp,p€M, satisfying the conditions (i), (ii) and (iii) of Theorem 3.7. Therefore it
is a generalization of Takahashi's result [7] on an ^-Einstein Sasakian manifold.

§4. Invariant submanifolds of Sasakian manifolds.

A submanifold M=M2n+1 of a Sasakian manifold *M2r+1 with structure tensors
(*φ, *ξ, *η, *g) is called invariant if

(i) *ξ is tangent to M everywhere on M,
(ii) *φX is tangent to M for any tangent vector X to M

An invariant submanifold M has the induced structure tensors (φ, ξ, η, g) the restric-
tions of *φ, *ξ, *9, *g to M For the Riemannian connection *F for *g, the Rieman-
nian connection V for g is given by

(4.1) FχΓ=(*F*χ*F) τ ,

where *X and * F are any local extensions of vector fields X and F o n i k f t o those
on *M, and ZΎ means the tangent part of Z to M. Similarly Z N means the normal
part of Z in * M We show that M is a Sasakian manifold: Let X and Y be vector
fields on M. Then

(Pxφ)Y=Fx(φY)-φ(FxY)
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= (*g(*X, * Y)*ξ-*K* Y)*X)Ύ (by (1. 8))

= g(X, Y)ζ-η{Y)X.

This shows that the structure is Sasakian. Next we show

PROPOSITION 4. 1. An invariant submanifold of a Sasakian manifold is minimal.

Proof. We adopt the Simons' method [4]. Let (el7 •••, en, φel9 •••, φen, ζ) be a
^-basis. Then for X=ea, we have

=*φB(*φ*X, *X)=*φB(*X, *φX)

On the other hand, we have

Therefore the mean curvature K:

K=Σ[B(eaf ea)+B(φea, φea)]+B(ξ, ξ)

vanishes. Q.E.D.

A Euclidean sphere S2r+1 has the standard Sasakian structure of constant
curvature 1, and we denote this space by S2r+1[l].

THEOREM 4. 2. A compact and invariant submanifold Mm with scalar cur-
vature S:

S>m(m-l)-(2r+l-m)m/(4r-2m+l)

of a Sasakian manifold S2r+1[l] is an m-dimensional unit sphere.
In particular if S=m{m—Y), then Mm is a unit sphere.
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Proof, This follows easily from Simons' result [4] that: Let Mm be a compact

minimal variety immersed in a unit sphere S71. If

S/m(m~l)>l-(n-m)/(2n-2m-l)(m-l)f

then Mm is a unit sphere (Corollary 5. 3. 3, in [4]).
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