ON MEROMORPHIC FUNCTIONS OF ORDER ZERO

By Yoshihisa Kubota

1. In this paper we shall investigate a relation between the maximum modulus and the minimum modulus of a meromorphic function of order zero. Throughout the paper we assume familiarity with the standard notions of the Nevanlinna theory (see e.g. [4], [5]). We denote the Valiron deficiency of the value a for $f(z)$ by $\Delta(a, f)$. We define the maximum modulus $M(r, f)$ and the minimum modulus $\mu(r, f)$ of $f(z)$ by

$$
\begin{aligned}
M(r, f) & =\sup |f(z)| \\
\mu(r, f) & =\inf |f(z \mid=r)| \\
& (|z|=r)
\end{aligned}
$$

respectively. We shall assume that $f(z)$ is transcendental i.e. that

$$
\log r=o(T(r, f)) \quad(r \rightarrow \infty)
$$

If E is a measurable set on $(0, \infty)$ we define its density as

$$
\lim _{r \rightarrow \infty} \frac{m\{E \cap(0, r)\}}{r}
$$

if the limit exists, and its upper density by replacing lim by limsup, where $m\{E \cap(0, r)\}$ denotes the measure of $E \cap(0, r)$.

It is well known that if $f(z)$ is an entire function of order zero then

$$
\log \mu(r, f) \sim \log M(r, f) \sim T(r, f)
$$

in a set of r of upper density 1 [3]. We shall show an analogous result for meromorphic functions of order zero.

Theorem 1. Let $f(z)$ be a meromorphic function of order zero. If $\delta(\infty, f)>0$, then

$$
\log \mu(r, f) \sim \log M(r, f)
$$

and

$$
\delta(\infty, f) \leqq \liminf _{r \rightarrow \infty} \frac{\log \mu(r, f)}{T(r, f)} \leqq \limsup _{r \rightarrow \infty} \frac{\log M(r, f)}{T(r, f)} \leqq \Delta(\infty, f)
$$

in a set of r of upper density 1. Hence if $\delta(\infty, f)=\Delta(\infty, f)>0$, then
Received May 19, 1969.

$$
\log \mu(r, f) \sim \log M(r, f) \sim \delta(\infty, f) T(r, f)
$$

in a set of r of upper density 1.
Ostrovskii [6] showed that $\mu(r, f)$ is sometimes large if $f(z)$ is of lower order $\rho, 0 \leqq \rho<1 / 2$, namely,

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{+} \mu(r, f)}{T(r, f)} \geqq \frac{\pi \rho}{\sin \pi \rho}\{\cos \pi \rho-1+\delta(\infty, f)\} .
$$

In particular if $\rho=0$,

$$
\underset{r \rightarrow \infty}{\lim \sup } \frac{\log ^{+} \mu(r, f)}{T(r, f)} \geqq \delta(\infty, f) .
$$

Theorem 1 indicates that if $f(z)$ is of order zero and $\delta(\infty, f)>0$ then $\mu(r, f)$ is large for a considerable proportion of the values of r.

If the hypothesis $\delta(\infty, f)>0$ is omitted, the conclusion of Theorem 1 is no longer true. For instance, consider the function

$$
f_{0}(z)=\Pi\left(1+\frac{z}{e^{n}}\right) / \Pi\left(1-\frac{z}{e^{n}}\right) .
$$

Then $f_{0}(z)$ is of order zero and obviously $\log \mu\left(r, f_{0}\right)=-\log M\left(r, f_{0}\right)$.
Here we note that if there exists an unbounded sequence $\left\{r_{n}\right\}$ of positive numbers such that

$$
\Delta=\liminf _{n \rightarrow \infty} \frac{\log \mu\left(r_{n}, f\right)}{T\left(r_{n}, f\right)}>0
$$

then $\Delta(\infty, f) \geqq \Delta$. To prove this we assume that $f(z)$ satisfies $T(r, f) \sim N(r, 0)$ and $f(0)=1$; this restriction is not essential. By Jensen's formula we have

$$
\log \mu(r, f) \leqq N(r, 0)-N(r, \infty),
$$

whence we obtain

$$
\Delta(\infty, f)=1-\liminf _{r \rightarrow \infty} \frac{N(r, \infty)}{T(r, f)} \geqq \liminf _{n \rightarrow \infty} \frac{N\left(r_{n}, 0\right)-N\left(r_{n}, \infty\right)}{T\left(r_{n}, f\right)} \geqq \Delta .
$$

On the other hand, let $g(z)$ be an entire function of order zero with $\Delta(0, g)>0$; the existence of such a function was shown by Anderson-Clunie [1]. Then the function $f(z)=g(z)^{-1}$ is meromorphic, of order zero and satisfies $\Delta(\infty, f)>0$. However $\mu(r, f)$ is bounded since

$$
\log \mu(r, f)=-\log M(r, g) .
$$

Now it is natural to ask whether there is a meromorphic function of order zero such that $\delta(\infty, f)=0, \Delta(\infty, f)>0$ and

$$
\liminf _{r \rightarrow \infty} \frac{\log \mu(r, f)}{T(r, f)}>0
$$

in a set of r of upper density 1 . In $\S 4$ we shall show that there exists a meromorphic function of order zero having the following two properties: (1) $\delta(\infty, f)=0$, $\Delta(\infty, f)>0$ and (2)

$$
\log \mu(r, f) \sim \log M(r, f) \sim \Delta(\infty, f) T(r, f)
$$

in a set of r of upper density 1 .
Next we shall consider meromorphic functions of order zero satisfying

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{T(\sigma r, f)}{T(r, f)}=1 \tag{1.1}
\end{equation*}
$$

for a number $\sigma>1$. For such a function we shall prove the following
Theorem 2. Let $f(z)$ be a meromorphic function of order zero satisfying (1.1) for a number $\sigma>1$. If $\delta(\infty, f)>0$, then

$$
\log \mu(r, f) \sim \log M(r, f)
$$

and

$$
\delta(\infty, f) \leqq \liminf _{r \rightarrow \infty} \frac{\log \mu(r, f)}{T(r, f)} \leqq \limsup _{r \rightarrow \infty} \frac{\log M(r, f)}{T(r, f)} \leqq \Delta(\infty, f)
$$

in a set of r of density 1. Conversely, if

$$
\liminf _{r \rightarrow \infty} \frac{\log \mu(r, f)}{T(r, f)}>0
$$

in a set of r of density 1 , then $\delta(\infty, f)>0$.
Corollary 1. Let $f(z)$ be a meromorphic function of order zero satisfying (1.1) for a number $\sigma>1$. If $f(z)$ possesses a Nevanlinna deficient value, then it possesses no other Valiron deficient values.
2. In order to prove Theorem 1 we need the following two lemmas. They are essentially the same as lemmas in Boas [2] and Cartwright [3], whence we omit their proofs.

Lemma 1. If $f(z)$ is a meromorphic function of order less than one with $f(0)=1$, then for every $\eta(0<\eta<(8 / 3)$ e) we have

$$
|\log | f(z)|-\{N(2 R, 0)-N(2 R, \infty)\}|<\left(1+\log \frac{4 e}{\eta}\right)\{Q(2 R, 0)+(2 R, \infty)\},
$$

$|z|<R$, outside a set of circles the sum of whose radii is at most $2 \eta R$, where

$$
Q(r, a)=r \int_{r}^{\infty} \frac{n(t, a)}{t^{2}} d t
$$

Lemma 2. If $f(z)$ is of order zero, then

$$
\underset{r \rightarrow \infty}{\lim \inf } \frac{Q(r, 0)+Q(r, \infty)}{N(r)}=0,
$$

where $N(r)=N(r, 0)+N(r, \infty)$.
3. Proof of Theorem 1. First we assume that $f(z)$ satisfies

$$
\begin{equation*}
T(r, f) \sim N(r, 0), \quad f(0)=1 \tag{3.1}
\end{equation*}
$$

Suppose $\delta(\infty, f)>0$, so that for some positive $\rho, 0<\rho<\delta(\infty, f)$, and R_{0},

$$
N(2 R, 0)-N(2 R, \infty)>\frac{\rho}{2-\rho} N(2 R) \quad\left(R \geqq R_{0}\right) .
$$

Applying Lemma 1 we have

$$
\left|\frac{\log |f(z)|}{N(2 R, 0)-N(2 R, \infty)}-1\right| \leqq\left(1+\log \frac{4 e}{\eta}\right) \frac{2-\rho}{\rho} \frac{Q(2 R, 0)+Q(2 R, \infty)}{N(2 R)},
$$

$|z|<R$, outside a set of circles the sum of whose radii is at most $2 \eta R$ provided $R \geqq R_{0}$ and $0<\eta<(8 / 3) e$. Let $\varepsilon(>0)$ be given. By Lemma 2 it is possible to choose an arbitrarily large positive number R_{ε} such that

$$
\frac{1-\varepsilon}{1+\varepsilon} \leqq \frac{\log \mu(r, f)}{\log M(r, f)} \leqq 1
$$

in a set $E(\eta, \varepsilon)$ of $r\left(<R_{\varepsilon}\right)$ of measure at least $(1-2 \eta) R_{\iota}$. Hence by the first fundamental theorem we have

$$
\frac{1-\varepsilon}{1+\varepsilon}\left(1-\frac{N(r, \infty)}{T(r, f)}\right) \leqq \frac{\log \mu(r, f)}{T(r, f)} \leqq \frac{\log M(r, f)}{T(r, f)} \leqq \frac{1+\varepsilon}{1-\varepsilon}\left(1-\frac{N(r, \infty)}{T(r, f)}\right)
$$

in $E(\eta, \varepsilon)$. Since η and ε are arbitrary we conclude that

$$
\log \mu(r, f) \sim \log M(r, f)
$$

and

$$
\delta(\infty, f) \leqq \liminf _{r \rightarrow \infty} \frac{\log \mu(r, f)}{T(r, f)} \leqq \limsup _{r \rightarrow \infty} \frac{\log M(r, f)}{T(r, f)} \leqq \Delta(\infty, f)
$$

in a set of r of upper density 1 .
If $f(z)$ does not satisfy the asymptotic relation of (3.1), we choose $\gamma(\neq 0)$ such that

$$
N\left(r, \frac{1}{f-\gamma}\right) \sim T(r, f) \quad \text { and } \quad f(0) \neq \gamma
$$

Put $F(z)=c\{f(z)-\gamma\}$, where $F(0)=1$. Then we have

$$
T(r, f) \sim T(r, F), \quad T(r, F) \sim N\left(r, \frac{1}{F}\right) \quad \text { and } \quad N(r, f)=N(r, F)
$$

Thus the hypotheses in the theorem and the additional property hold with $f(z)$ replaced by $F(z)$. Hence the conclusion of the theorem holds with $F(z)$. Since

$$
\log |F(z)| \rightarrow \infty \quad(|z| \rightarrow \infty)
$$

in the admitted set, this proves the general validity of the theorem.
4. Now we show that there exists a meromorphic function $f(z)$ of order zero having the following two properties: (1) $\delta(\infty, f)=0, \Delta(\infty, f)>0$ and (2)

$$
\log \mu(r, f) \sim \log M(r, f) \sim \Delta(\infty, f) T(r, f)
$$

in a set of r of upper density 1 .
First we prove the following
Lemma 3. Let $f(z)$ be a meromorphic function of order zero satisfying

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{Q(r, 0)+Q(r, \infty)}{T(r, f)}=0 \quad \text { and } \quad T(r, f) \sim N(r, 0) . \tag{4.1}
\end{equation*}
$$

If $\Delta(\infty, f)>0$, then

$$
\log \mu(r, f) \sim \log M(r, f) \sim \Delta(\infty, f) T(r, f)
$$

in a set of r of upper density 1.
Proof. We may assume that $f(z)$ satisfies $f(0)=1$. Suppose $\Delta(\infty, f)>0$. Let $\left\{R_{n}\right\}$ be an unbounded increasing sequence of positive numbers such that

$$
\lim _{n \rightarrow \infty} \frac{N\left(2 R_{n}, \infty\right)}{T\left(2 R_{n}, f\right)}=1-\Delta(\infty, f) .
$$

By Lemma 1 and (4.1) we may assume that

$$
\begin{equation*}
\left|\frac{\log |f(z)|}{N\left(2 R_{n}, 0\right)-N\left(2 R_{n}, \infty\right)}-1\right| \leqq \frac{1}{n} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\log |f(z)| \geqq\left(1-\frac{1}{n}\right)\left\{\Delta(\infty, f)-\frac{1}{n}\right\} T\left(2 R_{n}, f\right) \tag{4.3}
\end{equation*}
$$

$|z|<R_{n}$, outside a set of circles the sum of whose radii is at most $(1 / n) R_{n}$. Hence we have using (4.2)

$$
\log \mu(r, f) \sim \log M(r, f)
$$

$$
\liminf _{r \rightarrow \infty} \frac{\log \mu(r, f)}{T(r, f)} \leqq \limsup _{r \rightarrow \infty} \frac{\log M(r, f)}{T(r, f)} \leqq \Delta(\infty, f)
$$

and using (4.3)

$$
\liminf _{r \rightarrow \infty} \frac{\log \mu(r, f)}{T(r, f)} \geqq \Delta(\infty, f)
$$

in a set of r of upper density 1 . Thus we proved the lemma.
Next we construct a meromorphic function of order zero satisfying $\delta(\infty, f)=0$, $\Delta(\infty, f)>0, T(r, f) \sim N(r, 0)$ and

$$
\lim _{r \rightarrow \infty} \frac{Q(r, 0)+Q(r, \infty)}{T(r, f)}=0 .
$$

Put $g_{1}(z)=\prod_{n=1}^{\infty}\left(1+z / e^{n / 2}\right)$. Then we have $N\left(r, 0 ; g_{1}\right) \sim T\left(r, g_{1}\right) \sim(\log r)^{2}$.
Let $\left\{r_{m}\right\}$ and $\left\{R_{m}\right\}$ be unbounded increasing sequences of positive numbers such that $r_{m}<R_{m}<r_{m+1}$, and let $g_{2}(z)$ be an entire function of order zero, whose zeros in $R_{m-1}<|z| \leqq r_{m}$ are $e^{\nu}\left(\nu=\left[\log R_{m-1}\right]+1, \cdots,\left[\log r_{m}\right]\right)$ and whose zeros in $r_{m}<|z| \leqq R_{m}$ are $e^{\mu / 3}\left(\mu=\left[3 \log r_{m}\right]+1, \cdots,\left[3 \log R_{m}\right]\right)$. Then we have

$$
\begin{aligned}
N\left(r_{m}, 0 ; g_{2}\right) \leqq & \int_{R_{m-1}}^{r_{m}} \frac{\log t+2 \log R_{m-1}+1}{t} d t+N\left(R_{m-1}, 0 ; g_{2}\right) \\
= & \frac{1}{2}\left(\log r_{m}\right)^{2}-\frac{1}{2}\left(\log R_{m-1}\right)^{2}+2 \log R_{m-1} \log r_{m}-2\left(\log R_{m-1}\right)^{2} \\
& +\log r_{m}-\log R_{m-1}+N\left(R_{m-1}, 0 ; g_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
N\left(R_{m}, 0 ; g_{2}\right) & \geqq \int_{r_{m}}^{R_{m}} \frac{3 \log t-3 \log r_{m}-1}{t} d t \\
& =\frac{3}{2}\left(\log R_{m}\right)^{2}-\frac{3}{2}\left(\log r_{m}\right)^{2}-3 \log r_{m} \log R_{m}+3\left(\log r_{m}\right)^{2}-\log R_{m}+\log r_{m}
\end{aligned}
$$

Hence we can define sequences $\left\{r_{m}\right\}$ and $\left\{R_{m}\right\}$ inductively such that

$$
\frac{N\left(r_{m}, 0 ; g_{2}\right)}{N\left(r_{m}, 0 ; g_{1}\right)} \leqq \frac{3}{4} \quad \text { and } \quad \frac{N\left(R_{m}, 0 ; g_{2}\right)}{N\left(R_{m}, 0 ; g_{1}\right)} \geqq \frac{5}{4} .
$$

We consider the function $F(z)=g_{1}(z) / g_{2}(z)$. Then $F(z)$ is meromorphic, of order zero and satisfies $\Delta(\infty, F) \geqq 1 / 4, \Delta(0, F) \geqq 1 / 5$. Further we can varify easily that $T(r, F)=O\left((\log r)^{2}\right)$. Valiron [7] proved that if $T(r, F)=O\left((\log r)^{2}\right)$ then for any two complex numbers a, b,

$$
\max \{N(r, a), N(r, b)\} \sim T(r, F) .
$$

By this result we conclude that $F(z)$ satisfies $\delta(\infty, F)=0$. Let γ be a complex number such that $N(r, 1 /(F-\gamma)) \sim T(r, F)$, and put $f(z)=F(z)-\gamma$. Then $f(z)$ satisfies
$\delta(\infty, f)=0, \Delta(\infty, f)>0$ and $N(r, 0) \sim T(r, f)$. Moreover

$$
\lim _{r \rightarrow \infty} \frac{Q(r, 0)+Q(r, \infty)}{T(r, f)}=0
$$

since $n(r, 0) \log r \leqq N\left(r^{2}, 0\right) \leqq T\left(r^{2}, 0\right)+O(\log r)=O\left((\log r)^{2}\right)$.
Thus, combining these results, we established that $f(z)$ has the desired properties.
5. The proof of Theorem 2 depends on the following lemma. First we note that if the condition (1.1) holds with $f(z)$ for a number $\sigma>1$ then it holds for arbitrary $\tau>1$. In fact, $\sigma^{n}>\tau$ for an integer n, so that

$$
1 \leqq \frac{T(\tau r, f)}{T(r, f)} \leqq \frac{T\left(\sigma^{n} r, f\right)}{T(r, f)}=\frac{T(\sigma r, f)}{T(r, f)} \cdot \frac{T\left(\sigma^{2} r, f\right)}{T(\sigma r, f)} \cdots \cdots \cdot \frac{T\left(\sigma^{n} r, f\right)}{T\left(\sigma^{n-1} r, f\right)} \rightarrow 1 \quad(r \rightarrow \infty) .
$$

Lemma 4. If $f(z)$ is a meromorphic function of order zero satisfying (1.1) for a number $\sigma>1$ and $N(r, 0) \sim T(r, f), f(0)=1$, then

$$
\lim _{r \rightarrow \infty} \frac{Q(r, 0)+Q(r, \infty)}{T(r, f)}=0 .
$$

Proof. For arbitrary $\tau>1$ we have

$$
\begin{equation*}
n(r, 0) \log \tau \leqq N(\tau r, 0) \leqq 2 N(r, 0) \tag{5.1}
\end{equation*}
$$

and

$$
n(r, \infty) \log \tau \leqq N(\tau r, \infty) \leqq \frac{3}{2} T(\tau r, f) \leqq 2 N(r, 0)
$$

provided $r>r_{r}$. Hence we have

$$
Q(r, 0)+Q(r, \infty)=r \int_{r}^{\infty} \frac{n(t, 0)+n(t, \infty)}{t^{2}} d t \leqq \frac{4}{\log \tau} r \int_{r}^{\infty} \frac{N(t, 0)}{t^{2}} d t \quad\left(r>r_{\tau}\right) .
$$

Using (5.1) we obtain

$$
\lim _{r \rightarrow \infty} \frac{n(r, 0)}{N(r, 0)}=0,
$$

whence it follows that $r^{-1 / 2} N(r, 0)$ is decreasing for $r>r_{r}^{\prime}$. Therefore we have

$$
Q(r, 0)+Q(r, \infty) \leqq \frac{8}{\log \tau} N(r, 0) \leqq \frac{8}{\log \tau} T(r, f) \quad\left(r>r_{\tau}, r_{t}^{\prime}\right) .
$$

Since τ is arbitrary, we have the desired result.
6. Proof of Theorem 2. We may assume that $f(z)$ satisfies $N(r, 0) \sim T(r, f)$ and $f(0)=1$. If $\delta(\infty, f)>0$, applying Lemma 1 and Lemma 4 we obtain the desired result. Suppose that

$$
\liminf _{r \rightarrow \infty} \frac{\log \mu(r, f)}{T(r, f)}=d>0
$$

in a set E of r of density 1 . Let $\left\{\rho_{n}\right\}$ be an unbounded increasing sequence of positive numbers such that

$$
\lim _{n \rightarrow \infty} \frac{N\left(\rho_{n}, \infty\right)}{T\left(\rho_{n}, f\right)}=\lim _{r \rightarrow \infty} \sup \frac{N(r, \infty)}{T(r, f)}
$$

Put $R_{n}=\sigma \rho_{n}$. We may assume that $m\left\{E \cap\left(0, R_{n}\right)\right\}>(1 / \sigma) R_{n}=\rho_{n}$. There exists a sequence $\left\{r_{n}\right\}$ of positive numbers satisfying $\rho_{n}<r_{n}<R_{n}$ and $r_{n} \in E$. By Jensen's formula we have

$$
d \leqq \liminf _{n \rightarrow \infty} \frac{\log \mu\left(r_{n}, f\right)}{T\left(r_{n}, f\right)} \leqq \liminf _{n \rightarrow \infty} \frac{N\left(r_{n}, 0\right)-N\left(r_{n}, \infty\right)}{T\left(r_{n}, f\right)}=1-\limsup _{n \rightarrow \infty} \frac{N\left(r_{n}, \infty\right)}{T\left(r_{n}, f\right)} .
$$

On the other hand, using (1.1) we have

$$
\frac{N\left(\rho_{n}, \infty\right)}{T\left(\rho_{n}, f\right)} \leqq\left(1+\frac{d}{2}\right) \frac{N\left(\rho_{n}, \infty\right)}{T\left(R_{n}, f\right)} \leqq\left(1+\frac{d}{2}\right) \frac{N\left(r_{n}, \infty\right)}{T\left(r_{n}, f\right)} \quad\left(n \geqq n_{0}\right) .
$$

Hence we obtain

$$
\delta(\infty, f)=1-\lim _{n \rightarrow \infty} \frac{N\left(\rho_{n}, \infty\right)}{T\left(\rho_{n}, f\right)} \geqq 1-\left(1+\frac{d}{2}\right) \lim _{n \rightarrow \infty} \sup \frac{N\left(r_{n}, \infty\right)}{T\left(r_{n}, f\right)} \geqq \frac{d}{2}+\frac{d^{2}}{2}>0 .
$$

7. Proof of Corollary 1. Assume that $\delta(a, f)>0$ and $\Delta(b, f)>0(a \neq b)$. Using Theorem 2 we conclude that there exists a set E_{a} of r of density 1 such that $\lim _{E_{a} \ni r \rightarrow \infty} f\left(r e^{i \theta}\right)=a$ uniformly in θ. On the other hand, using Lemma 3 and Lemma 4 we conclude that there exists a set E_{b} of r of upper density 1 such that $\lim _{E_{b} \ni r \rightarrow \infty} f\left(r e^{i \theta}\right)=b$ uniformly in θ. This is a contradiction.

References

[1] Anderson, J. M., and J. Clunie, Slowly growing meromorphic functions. Comment. Math. Helv. 40 (1966), 267-280.
[2] Boas, R. P., Entire functions. New York (1954).
[3] Cartwright, M. L., Integral functions. Cambridge University Press (1956).
[4] Hayman, W. K., Meromorphic functions. Oxford (1964).
[5] Nevanlinna, R., Eindeutige analytische Funktionen. Berlin (1936).
[6] OstrovskiI, I. V., On defects of meromorphic functions with lower order less than one. Soviet Math. Dokl. 4 (1963), 587-591.
[7] Valiron, G., Sur les valeurs déficientes des fonctions algébroides méromorphes d'ordre nul. J. d'Analyse Math. 1 (1951), 28-42.

Tokyo Gakugei University.

