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Dedicated to Professor Hiraku Toyama on his sixtieth birthday

The purpose of the present paper is to study the so-called pseudo-umbilical
submanifolds of codimension 2 in Euclidean and Riemannian manifolds. Our main
results appear in Propositions 2.3, 3.2, 3.3, 4.1, 4.2 and 4.3.

In §1, we reformulate formulas for submanifolds of a general Riemannian
manifold and, in §2, we specialize these formulas to those for submanifolds of
codimension 2 of a Euclidean or a Riemannian manifold.

We study, in §3, pseudo-umbilical submanifolds of codimension 2 in a space
of constant curvature and, in §4, those in a Euclidean space. In the last section
5, we prove, for the completeness, some of lemmas which are used in the paper.

§1. Formulas for submanifolds.

As we are going to study some special kinds of submanifolds, we would like
first of all to reformulate formulas for submanifolds of a Riemannian manifold for
the later use. Let M™ be an n-dimensional manifold® differentiablly immersed as
a submanifold of an m-dimensional Riemannian manifold M™, where n<m, and
denote by x: M™—M™ the immersion. Denote by B: T'(M™)—T(M™) the differen-
tial of the mapping =z, i.e.,, B=dx, where T(M™) and T(M™) are the tangent bundles
of M™and M™ respectively. On putting 7°(M"*, M™)=BT(M™), the set of all vectors
tangent to x(M™), we see by definition that B: T(M™)—T(M", M™) is an isomor-
phism, since z: M*—M™ is an immersion. The set of all vectors normal to x(M™)
forms a vector bundle N(M", M™) over x(M™), which is the normal bundle of
z(M™. The vector bundle over M?” which is induced by z from N(M?*, M™) is
denoted by N(M™ and called the normal bundle of M™ with respect to the im-
mersion x. We now denote by C: N(M™)—N(M", M™) the natural isomorphism.

We now introduce the following notations: g5(M™) is the space of all tensor
fields of type (r, s), i.e., of contravariant degree » and covariant degree s, associated
with T(M™. gM™=73,:T5M™) is the space of all tensor fields associated with
T(M™. F5M™ and JUM™=,,:J15(M"™) denote the respective spaces associated
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1) Manifolds, mappings, functions, tensor fields and any other geometric objects we
discuss are assumed to be differentiable and of class C®. We restrict ourselves only to
connected submanifolds of dimension #==2.
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with N(M™. giM"™ M™ and J05(M", M™) denote the corresponding spaces of
tensor fields associated with T°(M™, M™) and N(M™", M™) respectively. Thus F(M™)
=JIYM™) is the space of all functions defined in M™ and gYM", M™)=RNYM", M™)
is the space IYx(M™) of all functions defined on x(M"™). Any element f of
T x(M™) is identified with foax which is an element of IYM™). Denoting by
B(M™, M™) the restriction of TW(M™) to x(M™), we see that B(M™, M™) is the
Whitney sum T\(M", M™@®NM", M™). BHM", M™) denotes the space of all tensor
fields of type (r, s) associated with B(M™, M™).

The mapping B: T(M™)—T(M", M™) induces naturally an isomorphism of
gM™) onto g(M™, M™), which is denoted also by B, in such a way that
B(f P+ 9Q)=fBP+¢BQ, B(PQS)=(BP)®(BS) for f, geTy(M"), P, Q, SeT(M").
The mapping B thus introduced is called the tangential mapping of the immersion
z: M"—M™. The mapping C: N(M™")—N(M", M™) induces naturally an isomor-
phism of J1(M™ onto JN(M™ M™), which is denoted also by C, in such a way
that C(f P+9¢Q)=/CP+¢CQ, C(PRS)=(CP)R(CS) for f, ge TAM™), P, Q, Se (M™).
The mapping C thus introduced is called the normal mapping of the immersion
x: M"—M™

We take an element X of @YM™, M™). For any point p of x(M™), there exists
in M™ a neighborhood 2 containing p such that there exists in 2 a vector field
X which is an extension of X restricted to Q'=x(U)NR2 containing p, U being a
certain neighborhood of M". Such an X is called a local extension of X in 2.
Taking arbitrarily two elements X and ¥ of T¥M™, M™) and local extensions X
of )_( and YV of ¥ina neighborhood 2 of M™, we see that the restriction (X, ¥1un
of [X, Y] to x(M™) is tangent to x(M™) and determined independently of the choice
of the local extensions X and ¥. Thus [X, ¥]u» defines an element of iM™, M™).
If we put

a1 (X, 71=1X, Vlun
for X, VegyM", M™), we have
1.2) [BX, BY]=BI[X, Y]

for X, YegyM™).

_1f we denote by (, ) the inner product determined by the Riemannian metric
G of M™ and put

(1.3) (X1, X2)=(BX:, BX»), (N1, Np)*=(CNi, CN)

for Xi, X;€e T3(M™) and N;, Np€ J14(M™), then the inner product ¢ , ) determines in
M™ a Riemannian metric g, which is called induced metric of the submanifold M™,
and the inner product ¢ , »* determines in N(M™) an element g* of JIY(M™), which
is called the induced metric of N(M™). N

Let 7 be the Riemannian connection determined by G in the enveloping
manifold M™, ie., the torsionless affine connection satisfying PG=0. Taking an
element X of gYM" M™ and an element ¥ of @YM", M™) and arbitrary local
extensions X of X and ¥ of ¥ in a neighborhood 2 of M™, we can easily show
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that the restriction (¥ ,gf’i)m of 74V to z(M™ is independent of the choice of the
local extensions X and Y. Therefore we can define an element 7 ;¥ of @iM™", M™)
by the equation

1.4 V¥ =¥ )un

for NX €Ty M", M™) and Ye®y(M", M™. Thus, by virtue of (1.1) and 7z¥—FsX
=[X, Y], we obtain

1. 5) V¥ —PpX=[X, 7]

for X, YegyM®, M™).

Taking an arbitrary element X of BM™", M™), we denote by X7 its tangential
component to z(M™ and by XL its normal component to z(M"). Then we have
a unique decomposition X=X7+XL for any element X of @YM", M™), where
XTeqy(M™, M™ and XLeqi(M™, M™).

In the remaining part of the paper, unless otherwise stated, X, Y and Z mean
arbitrary elements of g™ and N an arbitrary element of 725(M™). If we put

(1. 6) BV xY)=(VpxBY)",

we have a unique element FxY of g¥M"™) and can easily verify that V,xY
=fVxY,Vx(fY)=fVxY+(XS)Y for fegyM™. Thus the correspondence (X, Y)—
VxY determines in AM™ an affine connection F which coincides, as is well known,
with the Riemannian connection determined by the induced metric ¢ of M™. That
is to say, V' is torsionless and satisfies Fg=0. The affine connection F/ thus in-
troduced in M™ is called the induced comnection of the submanifold M™. If we put

17 CH(X, Y)=(V3xBY)+,

we have a unique element. (X, Y) of J14(M™). It is easily verified that H(f X, ¢Y)
=fgH(X, Y) for f, ge TXM™. Thus the correspondence (X, Y)—H(X, Y) deter-
mines an element H of JYM™® J1y(M™), which is called the Euler-Schouten tensor
or the second fundamental tensor of the submanifold M™", or, that of the immersion
z: M™—M™. Combining (1.6) and (1.7), we obtain the following equation

1. 8) VexBY=BFl xY)+CH(X, Y),
which is Gauss’ equation of the submanifold M™.

If we put
1.9 C(VEN)=(V 3xCN)+

for NeJl{M™), we have a unique element V(N of J14(M™ and can easily verify
that F¥xN=fF%N, V(f N)=fVEN+(Xf)N for feTyM™). Thus the correspondence
(X, N)—FV%N defines in N(M™) a linear connection F*, which is called the induced
connection of N(M™) and satisfies F*g*=0, g* being the induced metric of N(M™).
If we put
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(1.10) BK(X, N)=—(73xCN)T,

we have a unique element K(X, N) of gi(M™). It is easily verified that K(fX, gN)
=fgK(X, N) for f, ge T%(M™). Thus the correspondence (X, N)—K(X, N) deter-
mines an element K of T{M™Q J1(M™), which is called also the second funda-
mental tensor of the submanifold M™ (Cf. (1.12)). Combining (1.9) and (1. 10), we
obtain the following equation

(1. 11) VsxCN=C(F$N)—BK(X, N),

which is Weingarten's equation of the submanifold M™.
Differentiating cgvariantly (BY, CN)=0 along the submanifold x(M™) and
taking account of FG=0, we find (73xBY, CN)-+(BY, V' 3xCN)=0, from which

(1.12) CH(X, Y), N)*=<K(X, N), Y}

by means of (1.3), (1. 8) and (1.11). On the other hand, taking account of (1. 2)
and (1. 5), we have VpxBY—VsyBX=DB[X, Y]. Substituting (1. 8) in this equation,
we obtain

(1. 13) H(X, Y)=H(Y, X),

ie., the second fundamental tensor H(X, Y) is symmetric with respect to X and Y.

We extend naturally the operations of the induced connections V' of M™ and
P* of N(M™ respectively to (M™) and to JI(M™) as derivations and denote the
extended covariant differentiations also by the same symbols V and F/* respectively.
We shall now define a derivation Vy (Xe J{M™) in G(M™Q JU(M™) as follows:
Pe(TQU)=FxT)QU+TRW%U), T and U being arbitrary elements of g(M")
and J2(M™) respectively. The derivation Vx thus introduced in g(M™Q J1(M™) is
the so-called van der Waerden-Bortolotti covariant differentiation along the sub-
manifold M™.

We have by virtue of (1.8) and (1. 11) the following equations

VsxV 5y BZ=V 5x{BVyZ)+CH(Y, Z)}
=BV xVyZ—K(X, H(Y, Z)}+CVH(Y, Z)+H(X, V'vZ)}

(1. 14)

+CH(X, Py Z)+HF xY, Z)+H(Y, VxZ)+(V xHXY, Z)}.
and

Vivx,sr1BZ=V 5z, v1BZ=BF 1x,v1Z)+CH([X, Y1, Z)
(1. 15)

=B a1 Z)+CHT Y, Z)—HF v X, Z))

because of (1.2) and [X, Y]=FxY—FyX. Therefore, denoting by L and R res-
pectively the curvature tensors of the enveloping manifold /™ and the submanifold
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M™", we have, by definition,
L(BX, BY )BZ=V 5xV 5y BZ—V 5V 5xBZ—V 5x, 5v:BZ,
R(X, Y)Z=VxVyZ—V¥VxZ—V 5 v1Z,
which imply together with (1. 14) and (1. 15) the equation of Gauss-Codazzi
L(BX, BY)BZ=B{R(X, Y)Z—-K(X, HY, Z))+ K(Y, H(X, 2))}

(1. 16)
+CFxHXY, Z)—(VyH)X, Z)}

along the submanifold M™. Denoting by R* the curvature tensor of the induced
connection /* of N(M™), we have, by definition,

1.17) RXX, Y)N=VV¥N—VViN—VipN.

Taking account of this equation, we have by a similar device the eguation of
Codazzi-Ricci

L(BX, BY \CN=C{R*(X, Y)N—H(X, K(Y, N))+H(Y, K(X, N))}
(1. 18)
—B{F KXY, N)—(FrK)X, N)}

along the submanifold M™. The equations (1. 16) and (1. 18) are called the structure
equations of the submanifold M™.

Let X3, Xs, -+, X» be » mutually orthogonal local unit vector fields in M™.
Then an element Tr H of J15(M™), called the trace of H, is defined by the equation

Tr H= 3 H(X,, X)),
1=1
On putting
(1. 19) A= —;— Tr I,

we call A the mean curvature vector of the submanifold M™ or that of the im-
mersion z: M"—M™. The length a=|A| of A is called the mean curvature of the
submanifold M™.

Umbilical submanifolds. When there exists an element P of J73(M™) such that

|P|=n/{P, Py*=1 and

(1. 20) H(X, Y)=alX, YOP,

for any X and Y, a being a certain non-negative element of T(M™), the sub-
manifold M™ is said to be wmbilical. In (1.20), a is the mean curvature and the

mean curvature vector is A=aP.
Pseudo-umbilical submanifolds. We now assume that the mean curvature
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vector A vanishes nowhere in M”. Then we have an element P=A/|A| of J1}(M™)
such that |P|=1. If, in such a case, we have

(1. 21) (H(X, Y), P)*=alX, V),
or equivalently
(1. 21y K(X, P)=aX,

a being an element of TYM™ and positive everywhere in M™", then the sub-
manifold M™ is said to be pseudo-umbilical. We now see, taking account of (1.19)
and (1. 21), that the mean curvature vector is given by

A=aP,

where « is the mean curvature. We know from (1. 20) and (1. 21) that any umbilical
submanifold is pseudo-umbilical if its mean curvature a vanishes nowhere in M™.

Submanifolds of a submanifold. Let M° be a submanifold of dimension s
immersed in an #-dimensional Riemannian manifold M™ with immersion &: M*—M"
(s<m). Moreover, we assume that M™ is a submanifold in a Riemannian manifold
M™ of dimension m with immersion z: M"—M™ (n<m). Then M°® is a sub-
manifold in M™ and £=x% its immersion. We denote by B, B and B respectively
the tangential mappings of z, # and &. Then we have B=BB. The normal map-
pings of x, & and & are denoted respectively by C,C and C and the second
fundamental tensors of x, # and & respectively by H, H and H. Thus we now
have Gauss’ equations for X, Ye TyM?®)

VsxBY=BWxY)+CH (X, Y),
(1. 22) L _
VEXB Y=BFx Y)+CFI(X, Y)

along £(M*) and &(M°®) respectively, where / is the Riemannian connection in the
enveloping manifold M™ and 7 and 7 denote the induced conr_1ections of M™ and
M? respectively. On the other hand, taking account of B=RBB, we have

(1. 23) V5sBY=BWF5:BY)+CH(BX, BY).
Combining (1. 22) and (1. 23), we find

(1. 24) CH(X, Y)=BCH (X, Y)+CH(BX, BY)
for X, Yeg¥M;). Thus we have from (1. 24)

ProprosiTiON 1. 1. Let M*® be a submanifold immersed in M" (s<n) and M"
an umbilical submanifold immersed in M™ (m<m). Then M*® is pseudo-umbilical
in M™ if and only if so is M*® also in M™.

When the mean curvature vector A vanishes identically in a submanifold, the
submanifold is said to be minimal. We have from (1. 24)
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ProposiTiON 1. 2. Let M® be a submanifold immersed in M"™ (s<n), which is
a submanifold immersed in M™ (n<lm). Then M*® is minimal in M" if and only
if the mean curvature vector of M° with respect to M™ is orthogonal to M"
everywhere along M°.

§2. Submanifolds of codimension 2.

In this section we study more in dedail formulas stated in §1 for submanifolds
of codimension 2. Let M"™ be a submanifold of codimension 2 immersed in an
(n+2)-dimensional Riemannian manifold M™+* and let its immersion be denoted by
x: M"—-M"*2,  We assume that the normal bundle N(M™) is orientable, i.e. that
there exist in J7%(M™) two elements P and @ such that |P|=|Q|=1 and <P, @>*=0.
Then CP and CQ are two unit vector fields defined globally along x(M™), normal
to x(M™) and mutually orthogonal. Thus the second fundamental tensor H of M"
has the form

@1 H(X, Y)=hX, Y)P+1' (X, Y)Q,

h and &’ being elements of TYM™). As direct consequences of (1. 13), two tensor
fields # and 4’ are symmetric. If we now define two elements £ and &’ of gi(M™)
by the equations

2.2) k(X)=K(X, P), kF(X)=K(X, Q),
then we have from (1.12), (2.1) and (2. 2)
2.3 X, Y)=<k(X), V), WX Y)=®& (X)), Y).

There exists an element 6 of gM™) such that
2.4 VEP=0(X)Q, V¥Q=—6(X)P.

This 0 is called the third fundamental tensor of the submanifold M" We have
directly from (1.17) and (2. 4)

@.5) R¥X, Y)P=di(X, Y)&, R¥X, Y)Q=—d0(X, Y)P,

R* being the curvature tensor of the induced connection F* of N(M™), where df
denote the exterior differential of the 1-form #. Differentiating (2.1) and (2. 2)
covariantly along M™ and taking account of (2.5), we have respectively

2. 6) VxH=W xh—0( X)W )P+V xh' +60(X)h)Q
and

2.7  (xKXY, P)=Fxk)Y—0(XOk'(Y), (TxK)XY,Q)=Fxk")Y+0(X)k(Y).

We now assume the submanifold M™ to be pseudo-umbilical. Then we can
choose P in such a way that P=A/|A|, A being the mean curvature vector of M".
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Thus, taking account of (1.21), (1. 21) and (2. 1), we find

2.8 X, YV)=a(X, Y, k(X)=aX,
where a=|A|x0. According to (1.20), (2. 1) and (2. 8), we have

2.9 —%—Tr h=q, Tr #’=0,

where Tr 2 and Tr %4’ denote respectively the #races of % and A/, for example,
Tr h=27.4(X,, X;) for an orthonormal local basis {X;, Xz, -+, Xz} of T¥M™).

For pseudo-umbilical submanifolds, we restrict ourselves only to such a P that
defined by P=A/|A|. Comparing (1. 20) and (2. 1) with P=A/|A|, we have

LemmMma 2. 1. A pseudo-umbilical submanifold M™ of codimension 2 is umbilical,
if and only if W=0 holds identically in M". In such a case, we have WX, Y)
=alX, YD, a being the mean curvature.

Substituting (2. 5), (2. 6), (2. 7) and (2. 8) in (1. 16) and (1.18), we have
rsepectively

L(BX, BY)BZ
.10 =B(R(X, Y)Z+a*(X, ZYY LY, Z>X) — (W(X, 2)k'(Y)—k'(Y, Z)k' (X))}
. +{(X, Z3da(Y)—<Y, Z)da(X)+0( X)W (Y, Z)—0(Y)W' (X, Z)}CP
HFxW'NY, 2)—~Frh' )X, Z)—a((X, Z>0(Y)—<Y, ZX0(X))CQ
and
L(BX, BY)CP
2.11)

=—B{da(X) Y —da(Y)X+0(X)E'(Y)—0(Y)k'(Y)}+{db6(X, Y)}CQ,

da being the exterior differential of the function «. These are the structure
equations of the pseudo-umbilical submanifold M™ of codimension 2.

In general, when there is given a submanifold /™ immersed in a Riemannian
manifold M™ with immersion z: M"—M™ (n<m), for any two vector fields X and
Y tangent to x(M™), the tensor field L(X, Y), L being the curvature tensor of the
ambient manifold M™, defines a linear endomorphism of the tangent space of
z(M™) at each point p of x(M™). This linear endomorphism L(X,Y) is called the
curvature transformation of the submanifold M™ determined by X and ¥ at p.

We here assume that, for our submanifold M™ of codimension 2, all curvature
transformations of M™ preserve the tangent space Ty(x(M™)) at each point p of
z(M™. Then we have from (2. 10) the following equations:

2.12) (X, ZYda(Y)—LY, Z)da(X)+-0(XDW' (Y, 2)—0( Y)W (X, Z)=0,
2.13) Vxh' XY, Z)—Wrh' )X, Z)—alKX, Z0(Y)—<Y, Z)6(X)}=0.
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Suppose that 00 at p. If we suppose that da=0 at a point p of M™, we have,
from (2.12), 0(X)W'(Y, Z)—0(Y)h'(X, Z)=0, which implies #/(X, Y)=pd(X)0(Y) at
p, p being a certain number. Thus, taking account of (2.9), we have at p

(2. 14) A =0.

Conversely, suppose that #’=0 holds at p. Substituting (2. 14) in (2. 12), we have
X, Zda(Y)—<Y, Z>da(X)=0, which implies that the equation

(2. 15) da=0
holds at p. Thus we have

LemMMA 2.2. Let M™ be a pseudo-umbilical submanifold of codimension 2
immersed in a Riemannian manifold M™2.  Assume that all curvature transforma-
tions of M"™ preserve the tangent space Ty x(M™) at each point q of 2(M™ and
0x0 at p. Then, da=0 at a point p of M™ if and only if W'=0 at p.

Let our submanifold M™ of codimension 2 satisfy the assumption stated in
Lemma 2. 2. We first assume that the mean curvature « is constant in M", ie.,
that da=0 holds identically in M". Then by means of Lemma 2. 2 we have iden-
tically #’=0or 6=0. Substituting #’=0in (2. 13), we obtain (X, Z>0(Y)—<Y, Z>0(X)
=0, from which #=0. We next assume that #=0 and substitute this equation in
(2.12). Then we obtain dae=0. Summing up, we have, by means of Lemma 2. 1,

LeMMA 2.3. Let M™ be a pseudo-umbilical submanifold of codimension 2 im-
mersed in a Riemannian manifold M"+2. Assume that all curvature transformations
of M™ preserve the tangent space T (x(M™) of x(M™) at each point q of x(M™).
In this case, the following three conditions (a), (b) and (c) are equivalent to each
other.

@) M™ is umbilical, i.e., B’ =0 holds identically,

(b) the mean curvature a is constant, i.e., da=0 holds identically,

(c) PpxCP is tangent to x(M™), P being defined by P=A[|A|, where A is the

mean curvature vector, i.e., 0=0 holds identically.

For any submanifold M™ immersed in a space of constant curvature, all of its
curvature transformations preserve the tangent space of x(M™) at each point of
x(M™. Thus we have

PRrROPOSITION 2. 1. For any pseudo-umbilical submanifold of codimension 2 im-
mersed in a space of comstant curvature, the three conditions (a), (b) and (c) stated
in Lemma 2.3 are equivalent to each other.

As a consequence of Proposition 2.1 and Lemma 5. 2, which will be proved in
§5, we have

PROPOSITION 2. 2. Let M"™ be a complete pseudo-umbilical submanifold of
codimension 2 immersed in an (n+2)-dimensional Euclidean space E™*2. If M™
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satisfies one of the three conditions (a), (b) and (¢) stated in Lemma 2.3, then M"
is necessarily an n-dimensional natural spheve S™ in Em™+2,

In Proposition 2.2, we mean by an #-dimensional natural sphere S™ in an m-
dimensional Euclidean space E™ an #n-dimensional sphere S™ lying naturally on an
{(n+1)-dimensional plane E™*! imbedded in E™ (12<m).

By a similar device, we can prove the following proposition by means of
Lemma 5. 1, which will be proved in §5.

ProprosiTION 2.3. Let M™ be a complete pseudo-umbilical submanifold of codi-
mension 2 immersed in an (n+2)-dimensional sphere S™+2 (CE™3). If M" satisfies
one of the three conditions (a), (b) and (c) stated in Lemma 2.3, then M" is the
intersection of S™?* and a plane E™ of codimension 2, which does not pass the
ovigin of S™2,

§3. Pseudo-umbilical submanifolds of codimension 2 in a space of constant
curvature.

Let M™ be a pseudo-umbilical submanifold of codimension 2 immersed in an
(n+2)-dimensional space M™*? of constant curvature ¢. The curvature tensor L of
Mn+2 has, by definition, the form

LX, V) Z=c(¥, 2H)X—(X, Z)¥}
for X,V, Zegy M), from which we have
L(BX, BY)BZ=cB{(Y, Z)X—<X, Z)Y}, L(BX, BY)CP=0

for X, Y, Ze gy M™). Substituting these in (2. 10) and (2. 11), we have the equations
(2.12), (2.13) and

B. 1 R&X, YV)Z=(@*+o)(Y, Z22X—<X, ZyY}+ (Y, 2k (X)—H (X, Z)k' (Y)},

@38.2) dg=0.
Taking the trace in (2. 12) with respect to Y and Z, we have
3.3) (n—Dda(X)+1'(, X)=0,
[ being an element of JyM™) such that
3.4) 0 X)=<, X>.

Substituting Z=/ in (2. 12) and using (3. 3), we have
(n—2) (0(X)da(Y)—0(Y)da(X))=0,

from which, if =3,

3. 5) N X)de(Y)—0(Y )da(X)=0.

We now assume that da>0 holds everywhere in M"™ and #=3. Then (3.5)
implies
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3.6) 0=rda,
7 being a certain function in M", where 70 holds everywhere in M" because of
Lemma 2.3. Thus we have equivalently

3. 6) da=p0, B= —;—

Substituting (3. 6)’ in (2. 12), we obtain
OYNKX, Z>—W (X, 2N —0(XNKY, Z>—h' (Y, Z)}=0,

from which #/(X, Z)—p{X, Z>=20(X)6(Z), 2 being a certain function in M", because
of 0=yda=0. Therefore, taking account of Tr 4’=0, we have 2= —np/|0|?> and hence

@7 (X, Z2)=p(X, Z>—np(X)p(Z)},

where ¢=0/|f| and |0| denotes the length of 6. Substituting (3.7) in (3. 1), we
obtain

R(X, Y)Z=(a*+p+o)KY, Z)X—(X, Z)Y}
(V) X—o(X)Y)p(Z2)+(p( XY, Z)— (Y XX, Z))e},

e being defined by e=//|/|. We easily see from (3.8) that the Ricci tensor S
and the curvature scalar » of M™ have respectively the following forms:

3.9 S(X, Y)={(n—1)a*+c)— KX, Y)—n(n—2)p(X)e(Y),
(3.10) r=n(n—1)(a?*+c—p?).

3.8

Denoting by a,(§, 5) the sectional curvature of M™ corresponding to two vectors &
and 7 tangent to M™ at a point p of M", we have by means of (3. 8)

@11 ap(§, M=(a’+p*+0)+np (e, £°+<e, 1?),

if |&|=|y|=1 and <§, »»=0. Thus the formulas (3. 8)~(3. 11) hold, provided =3,
when da0 holds everywhere in M™.

On the other hand, if we assume that da=0 at a point ¢, we have A’=0 at ¢
because of Lemma 2.2. Thus, substituting #’=0 in (3.1), we have R(X, Y)Z
=a?KY, Z>X—<X, Z)Y}, from which

3. 11y oo, P=a’+c
if da=0 at ¢q. Therefore, taking account of (3. 11) and (3. 11), we have

ProrosiTiON 3. 1. Let M™ be a complete pseudo-umbilical submanifold of codi-
mension 2 immersed in a space M™* of constant curvature ¢ and denote by « the
mean curvature. If there exists a positive constant & such that o*+c>062>0, and,
if n=3, then M™ is necessarily compact.

As a corollary to Proposition 3.1, we have

ProrosITION 3. 2. Amny complete pseudo-umbilical submanifold M™ of codimen-
sion 2 immersed in a space M™* of positive constant curvature is mecessarily
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compact, if n=3.

We are now going to obtain the conformal curvature tensor € of a pseudo-
umbilical submanifold of codimension 2 immersed in a space of constant curvature
c. We first assume that da=0 and #=3. Defining an element ® of TYM™) by
the equation

1 r
DX, Y)=—m S(X, Y)+ —Dn—2) X, Y>)
and substituting (3. 9) and (3. 10) in this, we obtain
1
(3.12) DX, V)=— 45 (@*+f+XX, Y)+n8e(X)p(Y).

The conformal curvature tensor of M™" is, by definition, an element € of TYM™)
given by

3B.13) X, Y)Z=R(X, Y)Z4+DNY, 2)X—2(X, Z)Y+E(X XY, Z)—C(Y XX, Z),
€ being an element of JYM™) defined by <E(X), Y>=D(X, Y). If we substitute
3. 8) and (3.12) in (3. 13), we have

S(X, Y)Z=0,
ie.,, €=0. That is to say, M" is conformally flat, provided #»=4, if da=0. However,
as was mentioned above, the formulas (3.8) and (3.12) with B=0 hold at any

point ¢ where da=0. Thus we have §=0 at such a point ¢, if »=4. Therefore
we have

ProrosiTiON 3. 3. Any n-dimensional pseudo-umbilical submanifold M" of
codimension 2 immersed in a space M™% of constant curvature is conformally flat,
if n=4.

We shall now study more in detail properties of pseudo-umbilical submanifold
M™ of codimension 2 in a space of constant curvature. We assume that the mean
curvature « satisfies the condition dax0 everywhere in M™. Substituting (3. 6)
in (3. 2), we have dyAda=0, which means that 8 (or equivalently y) is a function
Bla) depending only on «. If we substitute (3.7) in (2. 13) and take account of
(3. 6)’, we obtain

BEOXOKY, Z>—np(Y )2} —n{V o)X Y )p(Z)+F xp)(Z)p(Y)}
B.14) =YX, 25 —nep(X)p(ZN+np{(V ) X)p(Z)+ Ty Z)p(X)}
—alKX, Z)0(Y)—<Y, Z)6(X)}=0,

where f'=dp/da. Putting Z=e in (3. 14) and taking account of ¢(X)=<(X, ¢) and
¢=40/16|, we have

3. 15) Txp)(¥Y)—Fre)(X)=0

because of ¢(e)=1 and (Fre)(e)=0 which is a direct consequence of ¢(e)=1 and
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o(X)=<(X, e). Therefore, if we put Y=e in (3. 15), we obtain
(3.16) Vep=0, or equivalently, V.e=0,

which shows that the unit vector field e generates geodesics. Next, substituting
X=ce in (3.14) and taking account of (3. 6), we have

3.17) Vye=—p{Y—o(Y)e},

(3.17y p= @_:ﬁa_)l_ﬂl_ p-2.

That is to say, the unit vector field e is torse-forming. Summing up, we have

LeMMA 3.1. Let M™ be a pseudo-umbilical submanifold of codimension 2 in
a space of constant curvature. If da>0 holds everywhere in M", a being the mean
curvature, then the unit vector field e, which is proportional to the gradient vector
of a, generates geodesics and is torse-forming.

§4. Pseudo-umbilical submanifolds of codimension 2 of a Euclidean space.

We are going to study in detail properties of pseudo-umbilical submanifolds of
codimension 2 immersed in a Euclidean space. We first have the following Pro-
position 4. 1, as a corollary to Proposition 3. 1.

ProrosiTiON 4. 1. Let M™ be a complete pseudo-umbilical submanifold of codi-
mension 2 immersed in a Fuclidean space E™*2. If there exists a positive number
0 such that a>6>0, a being the mean curvature, then M™ is necessarily compact.

Let M™ be a pseudo-umbilical submanifold of codimension 2 immersed in a
Euclidean space E™*% and assume that da=0 holds everywhere in M", a being the
mean curvature. For a certain constant ¢, a connected component of a submanifold
defined in M™ by the equation a=c is denoted by M?™, which is (z—1)-dimensional
because of da=0. Denoting by Z: M2 '—M" the immersion of M?™* into M™ and
by &: M2 '—E"™"? the immersion of M?™* into £**%, we have £=2x% where z: M"
—FE™*% js the immersion of M™ into £7*2. We denote the tangential mappings of
the immersions z, # and & by B, B and B respectively, where we have B=BB.
The normal mappings of z, & and & are respectively denoted by C, C and C. The
second fundamental tensors of the immersions z,  and & are respectively denoted
by H,H and H. We denote by {, ) and { , )* respectively the inner products
induced in T(M%™) and in N(M?%™), N(M?™*) being the normal bundle over M7
with respect to the immersion &: M7?'—M". Taking account of (2.8) and (3.7),
we have, by means of ¢(BU)=g(BW)=0,

WBU, BW)=a{BU, BWY=a(U, W),
W(BU, BW)=p{BU, BWy=p(U, W)



378 KENTARO YANO AND SHIGERU ISHIHARA
for U, We g{(M?2™), which imply together with (2. 1)

@1 H(BU, BW)=a(U, W)P+5(U, W)Q

for U, We Jy(M?™). Substituting Y=BU in (3. 17), we obtain
4. 2) Vgye=—pBU

because of (BU)=0. Denoting by N the element of XM ¢, &), which is the
normal bundle of the immersion #: M?'—M", such that CN=e along M7, we
have from (4. 2)

. 3) H(U, W)=p(U, WHN

for U, We Jy(Mz).
If we substitute (4. 1) and (4. 3) in (1. 24), we obtain

4.4 CH(U, W)=a(U, WYCP+p(U, W)CQ+p{U, WHBCN

for U, WegYM?*), which shows that the immersion £: M?'—E"**? is umbilical.
Taking account of (1.11), (2. 4) and #(BU)=0, we have

V5uCP=V y5yCP=—BK(BU, P)=—aBBU=—aBU, ie.,
4.5) V5uCP=—aBU
for Uegi(M?™). Similarly we have
(4. 6) V5,CQ=—BBU

for Uegy(Mz™). Putting Y=BU and e=CN in (3. 17) and taking account of ¢(BU)
=0, we obtain V3,CN=—pBU for Ue g} M="), which implies together with (1. 8)

V52BCN=—pBU+CH(BU, CN).
However, since we have H(BU, CN)=0 because of (2. 8) and (3.7), we have
4.7 ¥V 5uBCN=—puBU
for Uegy(M?'). We now have the following identity
V swV 5uBC N—V 5u¥ 55w BCN—V 5y, 55:BCN=0

for U, We T¥M?), because the enveloping manifold is Euclidean. Substituting
(4.7) in the identity above and taking account of [BW, BU]1=B[W, U], we obtain
Ap(W)U—dp(U)W=0, from which dpy=0, because U and W are arbitrary. On the
other hand, « is constant along A% and hence so are B, f’. Therefore, taking
account of (3.6) and (3.17), we see that the length |da| of da is constant along
Mz,

According to (4.4), the mean curvature vector A of the immersion %: M2~
—E™*2 has the form



PSEUDO-UMBILICAL SUBMANIFOLDS 379
4.8) CA=aCP+pCQ+1BCN.
a, B and p being constant along M?%!, we have, from (4. 5), (4. 6), (4. 7) and (4. 8),
4. 9) V5,CP=—yBU

for Ue Ty M=), where we have put

A a?+
.1 == =—F——>0.
(4 0) P |A| ) v N/a2+,82+/12 >0
Thus, taking account of (4.9) and Lemma 5.1 which will be proved in §5, we
have

LemMA 4.1. Let M™ be a pseudo-umbilical submanifold of codimension 2 im-
mersed in E"*2  Assume that dax0 holds everywhere in M", « being the mean
curvature. If a connected component M2 of a submanifold defined by a=c, ¢ being
a certain constant, is complete, and, if n=3, then M is an (n—1)-dimensional
natural sphere S™* with radius 1)y in E™? (see (4.10)). The length |da| of da
(or equivalently |0|) is constant along each M3™.

Let g be the family of orthogonal trajectories of MZ™Vs. Then, by virtue of
Lemma 3.1, each element of g is a geodesic. On the other hand, according to
Lemma 4.1, |dea| is constant along each M?%™*. Thus, taking certain consecutive
numbers ¢ and ¢/, we see that M7~ and M%™ cut off a geodesic-arc of the same
length from each of geodesics belonging to g. Therefore, combining Lemmas 3. 1
and 4.1, we have

PRrROPOSITION 4. 2. Let M™ be a pseudo-umbilical submanifold of codimension 2
immersed in an Euclidean space E™% Assume that da=0 holds everywhere in M",
a being the mean curvature. If each of connected components Me= of submanifold
defined by a=c, c being constant, is complete, and, if n=3, then M7 is an (n—1)-
dimensional natural sphere St in E™*2, M™ is gemerated by a family & of such
spheres ST (=M?Y) and the orthogonal trajectories of §F are geodesics, whose unit
tangent vectors e form a torse-forming vector field. Amny two comsecutive ST and

2 cut off a geodesic-arc of the same length from each of orthogonal trajectories

of §.

Let M™ be a pseudo-umbilical submanifold of codimension 2 in E™*% We
assume that da=0 holds in a coordinate neighborhood U of M™", a being the mean
curvature. Then we can choose in U a system of local coordinates (z', 22, -, ™)
in such a way that the equation x'=const. represents in U an (z—1)-dimensional
submanifold M?-! defined by a=c, the variable z' indicates the arc length along
any geodesic, which is an orthogonal trajectory of the family & of the submanifolds
M?Vs and the equations z%=const. (¢=2, ---, #) respresent in U an orthogonal
trajectory of the family & of M?~'. If we now follow classical notations, we see,
from the proof of Lemma 4.1, that the line element ds* of the submanifold M™
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has in U the following form:

(4. 11) ds*=(dz")’+p(x)’de®*  (p(z")>0)

with respect to such local coordinates (z?, 2 -+, 2"),
do?= 2% smstva (22, -+, T")dx d2"®

denoting the line element of an (»—1)-dimensional space of constant curvature 1.
Moreover, the mean curvature « is in U a function depending only on the variable
z' (Cf. Lemma 4. 1).

According to (4.11), U is conformal to the Pythagrean product Rx V*-!, where
R and V™! denote respectively a line segment and an (z—1)-dimensional Rieman-
nian space of constant curvature 1. Consequently, U is conformally flat. Thus
we have

LEMMA 4.2. Let M™ be a pseudo-umbilical submanifold of codimension 2 im-
mersed in E™2.  Assume that da>0 holds everywhere in M". Then, if n=3, M"
is conformally flat.

We consider a 3-dimensional pseudo-umbilical submanifold M?® of codimension
2 in E®. Denoting by 'M?* the set of all points at which da =0, where a is the mean
curvature, and taking account of Lemma 4. 2, we see that 'M?* is conformally flat.
Thus the element ‘G of TYM?) defined by

1

'6X, Y, 2)= m{(VxS)(Y, Zy—WySKX, 23}

4. 12)
1
- m{(Y, ZHWxr—<X, Z)Vyr},

S and # being respectively the Ricci tensor and the curvature scalar of M?, vanishes
identically in ‘M3, Putting “M?3*=M?*—'M?3, we see by means of Proposition 2.2
that each connected component of the open kernel of “M?* is a piece of a 3-dimen-
sional natural sphere S® in £° and hence, as is well known, that the tensor ‘G
defined by (4. 12) vanishes in the open kernel of “M3. Therefore, taking account
of the continuity of '€, we see that '€ vanishes identically in M?3. That is to say,
M? should be conformally flat. Thus, taking account of Proposition 3.3, we have

ProrosiTION 4. 3. Any n-dimensional pseudo-umbilical submanifold of codimen-
sion 2 immersed in a Euclidean space E™* is conformally flat if n=3.

We can prove Proposition 4. 3 only by using Lemma 4. 2. By a similar device
as that used in the proof of Proposition 4.3, we can prove

ProposiTioN 4.4. Any n-dimensional pseudo-umbilical submanifold of codi-
mension 2 immersed in an (n+2)-dimensional spere S™* is conformally flat, if
n=3.
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§5. Umbilical submanifolds immersed in a Euclidean space.
For the completeness, we shall prove the following

LemMA 5.1. Let M™ be an n-dimensional, complete, umbilical submanifold with
non-zero mean curvature a, immersed in an m-dimensional Euclidean space E™ (n<m).
If the unmit vector field P in N(M™), such that A=aP is the mean curvature vector,
is parallel in N(M™), i.e., if VEP=0 for XeT¥M™), and, if n=2, then the mean
curvature a is necessarily constant and M™ is an n-dimensional natural sphere S™
in E™

In Lemma 5.1, we mean by an n-dimensional natural sphere S™ in E™ a sphere
lying naturally in an (#-+1)-dimensional plane E»** of E™
Proof. Putting L=0 in (1. 16), we have
(6.1 PxH)Y, Z)-FrH)X, Z)=0.
Since M™ is umbilical, we have
(5. 2) H(X, YV)=alX, Y)P.

Substituting (5. 2) in (5. 1) and taking account of F¥P=0, we have FVxa=0, from
which we see that a is constant.

Denoting by z: M™—E™ the immersion of M", we can express the position
vector indicating the point x(p), pe M™, also by x(p) and the correspondence p—x(p)
can be regarded as a differentiable function denoted by x, which takes vectors in
E™ as its values.

Taking account of (5.2) and F¥P=0, we have from (1. 11)

(5 3) 7BxN1=—a73xx
for Xe Y M™), N; being defined by N:=CP, because we have BX=Fgyx for any
XegyM™). This reduces to
1
VBx(x-l- —N1>=0,
(44

because « is a non-zero constant. Thus the point py=x+(1/a)N: is fixed. There-
fore x(M™) lies on a hypersphere S™-! with center p, and with radius 1/a.

Taking an element @ of 7M™ such that {Q, P>*=0, we have K(X, @)=0
because of (5.2). Thus we have from (1. 11)

V5xNp=C(V xQ)

for XeJ¥M™), N, being defined by N,=CQ. Differentiating (N, N»)=0 along z(M)
and taking account of (5. 3), we find

(VBxNz, N1)=0.
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Therefore, denoting by D, the set of all vectors N at a point z of z(M™) such
that N is normal to x(M™) and orthogonal to Ni, we see that {D;|zcx(M™)} forms a
1-dimensional distribution D which is parallel in £™. Thus there exists a unique
(n+1)-dimensional plane E»*!, which is orthogonal to all of D, and passing through
the point” po=2-+(1/a)N:. Sincelea—;po is orthogonal to D, at each point x of
z(M™), each point x should belongto E»*!. Consequently, z(M™) lies on E"*,

Summing up, x(M™) is contained in the natural sphere S*=S™-!n E™*.
Therefore xz(M™) coincides with S™, because xz(M™) is complete. The radius of S™
is obviously equal to 1/a. Hence we have proved Lemma 5. 1.

Combining Lemmas 2.1, 2.3 and 5.1, we have

LEMMA 5.2. Let M™ be a complete umbilical submanifold of codimension 2,
with non-zero mean curvature o, immersed in an (n+2)-dimensional Euclidean space
E™*2. Then the mean curvature a is necessarily constant and M™ is an n-dimen-
sional natural sphere S™ in E™*2,

When M™ is a hypersurface in E™*!, its normal bundle N(M™") is a 1-dimen-
sional vector bundle. Then any unit vector field P in N(M™) satisfies the condition
V(P=0 for XegyM™). Thus, taking account of Lemma 5. 1, we have the following
well known

LEmMA 5.3. Let M"™ be a complete umbilical submanifold of codimension 1,
with non-zero mean curvature a, immersed in an (n+1)-dimensional Euclidean space
E™. Then the mean curvature « is necessarily constant and M™ is an n-dimen-
sional natural sphere S™ in E™,
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