PSEUDO-UMBILICAL SUBMANIFOLDS OF CODIMENSION 2

By Kentaro Yano and Shigeru Ishihara

Dedicated to Professor Hiraku Tôyama on his sixtieth birthday

The purpose of the present paper is to study the so-called pseudo-umbilical submanifolds of codimension 2 in Euclidean and Riemannian manifolds. Our main results appear in Propositions 2.3, 3.2, 3.3, 4.1, 4.2 and 4.3.

In \$1, we reformulate formulas for submanifolds of a general Riemannian manifold and, in \$2, we specialize these formulas to those for submanifolds of codimension 2 of a Euclidean or a Riemannian manifold.

We study, in §3, pseudo-umbilical submanifolds of codimension 2 in a space of constant curvature and, in §4, those in a Euclidean space. In the last section 5, we prove, for the completeness, some of lemmas which are used in the paper.

§1. Formulas for submanifolds.

As we are going to study some special kinds of submanifolds, we would like first of all to reformulate formulas for submanifolds of a Riemannian manifold for the later use. Let M^n be an *n*-dimensional manifold¹⁾ differentiably immersed as a submanifold of an *m*-dimensional Riemannian manifold M^m , where n < m, and denote by $x: M^n \to M^m$ the immersion. Denote by $B: T(M^n) \to T(M^m)$ the differential of the mapping x, i.e., B = dx, where $T(M^n)$ and $T(M^m)$ are the tangent bundles of M^n and M^m respectively. On putting $T(M^n, M^m) = BT(M^n)$, the set of all vectors tangent to $x(M^n)$, we see by definition that $B: T(M^n) \to T(M^n, M^m)$ is an isomorphism, since $x: M^n \to M^m$ is an immersion. The set of all vectors normal to $x(M^n)$ forms a vector bundle $N(M^n, M^m)$ over $x(M^n)$, which is the normal bundle of $x(M^n)$. The vector bundle over M^n , which is induced by x from $N(M^n, M^m)$ is denoted by $N(M^n)$ and called the *normal bundle* of M^n with respect to the immersion x. We now denote by $C: N(M^n) \to N(M^n, M^m)$ the natural isomorphism.

We now introduce the following notations: $\mathcal{T}_{s}^{r}(M^{n})$ is the space of all tensor fields of type (r, s), i.e., of contravariant degree r and covariant degree s, associated with $T(M^{n})$. $\mathcal{T}(M^{n}) = \sum_{r,s} \mathcal{T}_{s}^{r}(M^{n})$ is the space of all tensor fields associated with $T(M^{n})$. $\mathcal{T}_{s}^{r}(M^{n})$ and $\mathcal{T}(M^{n}) = \sum_{r,s} \mathcal{T}_{s}^{r}(M^{n})$ denote the respective spaces associated

Received May 8, 1969.

¹⁾ Manifolds, mappings, functions, tensor fields and any other geometric objects we discuss are assumed to be differentiable and of class C^{∞} . We restrict ourselves only to connected submanifolds of dimension $n \ge 2$.

with $N(M^n)$. $\mathcal{T}_{s}^{*}(M^n, M^m)$ and $\mathcal{T}_{s}^{*}(M^n, M^m)$ denote the corresponding spaces of tensor fields associated with $T(M^n, M^m)$ and $N(M^n, M^m)$ respectively. Thus $\mathcal{T}_{s}^{*}(M^n) = \mathcal{T}_{s}^{*}(M^n, M^m) = \mathcal{T}_{s}^{*}(M^n, M^m) = \mathcal{T}_{s}^{*}(M^n, M^m)$ is the space of all functions defined in M^n and $\mathcal{T}_{s}^{*}(M^n, M^m) = \mathcal{T}_{s}^{*}(M^n, M^m)$ is identified with $f \circ x$ which is an element of $\mathcal{T}_{s}^{*}(M^n)$. Denoting by $B(M^n, M^m)$ the restriction of $T(M^m)$ to $x(M^n)$, we see that $B(M^n, M^m)$ is the Whitney sum $T(M^n, M^m) \oplus N(M^n, M^m)$. $\mathcal{D}_{s}^{*}(M^n, M^m)$ denotes the space of all tensor fields of type (r, s) associated with $B(M^n, M^m)$.

The mapping B: $T(M^n) \to T(M^n, M^m)$ induces naturally an isomorphism of $\mathcal{T}(M^n)$ onto $\mathcal{T}(M^n, M^m)$, which is denoted also by B, in such a way that $B(fP+gQ)=fBP+gBQ, B(P\otimes S)=(BP)\otimes (BS)$ for $f, g\in \mathcal{T}^0_0(M^n), P, Q, S\in \mathcal{T}(M^n)$. The mapping B thus introduced is called the *tangential mapping* of the immersion $x: M^n \to M^m$. The mapping C: $N(M^n) \to N(M^n, M^m)$ induces naturally an isomorphism of $\mathcal{T}(M^n)$ onto $\mathcal{T}(M^n, M^m)$, which is denoted also by C, in such a way that $C(fP+gQ)=fCP+gCQ, C(P\otimes S)=(CP)\otimes (CS)$ for $f, g\in \mathcal{T}^0_0(M^n), P, Q, S\in \mathcal{T}(M^n)$. The mapping C thus introduced is called the *normal mapping* of the immersion $x: M^n \to M^m$.

We take an element \overline{X} of $\mathcal{B}_{0}^{l}(M^{n}, M^{m})$. For any point p of $x(M^{n})$, there exists in M^{m} a neighborhood \mathcal{Q} containing p such that there exists in \mathcal{Q} a vector field \widetilde{X} which is an extension of \overline{X} restricted to $\mathcal{Q}' = x(U) \cap \mathcal{Q}$ containing p, U being a certain neighborhood of M^{n} . Such an \widetilde{X} is called a *local extension* of \overline{X} in \mathcal{Q} . Taking arbitrarily two elements \overline{X} and \overline{Y} of $\mathcal{T}_{0}^{l}(M^{n}, M^{m})$ and local extensions \widetilde{X} of \overline{X} and \widetilde{Y} of \overline{Y} in a neighborhood \mathcal{Q} of M^{m} , we see that the restriction $[\widetilde{X}, \widetilde{Y}]_{M^{n}}$ of $[\widetilde{X}, \widetilde{Y}]$ to $x(M^{n})$ is tangent to $x(M^{n})$ and determined independently of the choice of the local extensions \widetilde{X} and \widetilde{Y} . Thus $[\widetilde{X}, \widetilde{Y}]_{M^{n}}$ defines an element of $\mathcal{T}_{0}^{l}(M^{n}, M^{m})$. If we put

(1.1)
$$[\overline{X}, \, \overline{Y}] = [\widetilde{X}, \, \widetilde{Y}]_{M^n}$$

for $\overline{X}, \overline{Y} \in \mathcal{I}_0^1(M^n, M^m)$, we have

$$(1.2) \qquad [BX, BY] = B[X, Y]$$

for X, $Y \in \mathcal{I}^1_0(M^n)$.

If we denote by (,) the inner product determined by the Riemannian metric \widetilde{G} of M^m and put

(1.3)
$$\langle X_1, X_2 \rangle = (BX_1, BX_2), \quad \langle N_1, N_2 \rangle^* = (CN_1, CN_2)$$

for $X_1, X_2 \in \mathcal{T}_0^1(M^n)$ and $N_1, N_2 \in \mathcal{M}_0^1(M^n)$, then the inner product \langle , \rangle determines in M^n a Riemannian metric g, which is called *induced metric* of the submanifold M^n , and the inner product \langle , \rangle^* determines in $N(M^n)$ an element g^* of $\mathcal{M}_2^n(M^n)$, which is called the *induced metric* of $N(M^n)$.

Let $\tilde{\mathcal{V}}$ be the Riemannian connection determined by \tilde{G} in the enveloping manifold M^m , i.e., the torsionless affine connection satisfying $\tilde{\mathcal{V}}\tilde{G}=0$. Taking an element \bar{X} of $\mathcal{T}_0^1(M^n, M^m)$ and an element \bar{Y} of $\mathcal{B}_0^1(M^n, M^m)$ and arbitrary local extensions \tilde{X} of \bar{X} and \tilde{Y} of \bar{Y} in a neighborhood Ω of M^m , we can easily show

that the restriction $(\tilde{\mathcal{V}}_{\vec{x}}\tilde{Y})_{M^n}$ of $\tilde{\mathcal{V}}_{\vec{x}}\tilde{Y}$ to $x(M^n)$ is independent of the choice of the local extensions \tilde{X} and \tilde{Y} . Therefore we can define an element $\tilde{\mathcal{V}}_{\vec{x}}\bar{Y}$ of $\mathcal{B}^1_{\mathfrak{o}}(M^n, M^m)$ by the equation

(1.4)
$$\tilde{\mathcal{V}}_{\vec{X}} \bar{Y} = (\tilde{\mathcal{V}}_{\vec{X}} \tilde{Y})_{\mathcal{M}^{\mathcal{H}}}$$

for $\overline{X} \in \mathcal{I}_0^1(M^n, M^m)$ and $\overline{Y} \in \mathcal{B}_0^1(M^n, M^m)$. Thus, by virtue of (1.1) and $\tilde{\mathcal{V}}_{\tilde{X}} \widetilde{Y} - \tilde{\mathcal{V}}_{\tilde{Y}} \widetilde{X} = [\tilde{X}, \tilde{Y}]$, we obtain

(1.5)
$$\tilde{\mathcal{V}}_{\bar{X}}\bar{Y} - \tilde{\mathcal{V}}_{\bar{Y}}\bar{X} = [\bar{X}, \bar{Y}]$$

for \overline{X} , $\overline{Y} \in \mathcal{I}_0^1(M^n, M^m)$.

Taking an arbitrary element \overline{X} of $\mathcal{B}_0^1(M^n, M^m)$, we denote by \overline{X}^T its tangential component to $x(M^n)$ and by \overline{X}^{\perp} its normal component to $x(M^n)$. Then we have a unique decomposition $\overline{X} = \overline{X}^T + \overline{X}^{\perp}$ for any element \overline{X} of $\mathcal{B}_0^1(M^n, M^m)$, where $\overline{X}^T \in \mathcal{T}_0^1(M^n, M^m)$ and $\overline{X}^{\perp} \in \mathcal{T}_0^1(M^n, M^m)$.

In the remaining part of the paper, unless otherwise stated, X, Y and Z mean arbitrary elements of $\mathcal{I}_{0}^{1}(M^{n})$ and N an arbitrary element of $\mathcal{N}_{0}^{1}(M^{n})$. If we put

$$B(\vec{\nu}_X Y) = (\vec{\nu}_{BX} B Y)^T,$$

we have a unique element $\mathcal{V}_X Y$ of $\mathfrak{T}_0^1(M^n)$ and can easily verify that $\mathcal{V}_{JX} Y = f\mathcal{V}_X Y, \mathcal{V}_X(fY) = f\mathcal{V}_X Y + (Xf)Y$ for $f \in \mathfrak{T}_0^1(M^n)$. Thus the correspondence $(X, Y) \rightarrow \mathcal{V}_X Y$ determines in M^n an affine connection \mathcal{V} which coincides, as is well known, with the Riemannian connection determined by the induced metric g of M^n . That is to say, \mathcal{V} is torsionless and satisfies $\mathcal{V}g=0$. The affine connection \mathcal{V} thus introduced in M^n is called the *induced connection* of the submanifold M^n . If we put

(1.7)
$$CH(X, Y) = (\tilde{V}_{BX}BY)^{\perp},$$

we have a unique element H(X, Y) of $\mathcal{N}_0^1(M^n)$. It is easily verified that H(fX, gY) = fgH(X, Y) for $f, g \in \mathcal{I}_0^0(M^n)$. Thus the correspondence $(X, Y) \rightarrow H(X, Y)$ determines an element H of $\mathcal{I}_2^0(M^n) \otimes \mathcal{N}_0^1(M^n)$, which is called the *Euler-Schouten tensor* or the second fundamental tensor of the submanifold M^n , or, that of the immersion $x: M^n \rightarrow M^m$. Combining (1. 6) and (1. 7), we obtain the following equation

(1.8)
$$\tilde{\mathcal{V}}_{BX}BY = B(\mathcal{V}_{X}Y) + CH(X, Y),$$

which is *Gauss' equation* of the submanifold M^n .

If we put

(1.9)
$$C(\mathcal{V}_{X}^{*}N) = (\tilde{\mathcal{V}}_{BX}CN)^{\perp}$$

for $N \in \mathcal{N}_0^1(M^n)$, we have a unique element \mathcal{V}_X^*N of $\mathcal{N}_0^1(M^n)$ and can easily verify that $\mathcal{V}_{fX}^*N = f\mathcal{V}_X^*N, \mathcal{V}_X^*(fN) = f\mathcal{V}_X^*N + (Xf)N$ for $f \in \mathcal{T}_0^0(M^n)$. Thus the correspondence $(X, N) \rightarrow \mathcal{V}_X^*N$ defines in $N(M^n)$ a linear connection \mathcal{V}^* , which is called the *induced* connection of $N(M^n)$ and satisfies $\mathcal{V}^*g^*=0, g^*$ being the induced metric of $N(M^n)$. If we put

$$BK(X, N) = -(\tilde{\mathcal{V}}_{BX}CN)^T,$$

we have a unique element K(X, N) of $\mathcal{I}_0^1(M^n)$. It is easily verified that K(fX, gN)=fgK(X, N) for f, $g \in \mathcal{I}^{o}(M^{n})$. Thus the correspondence $(X, N) \rightarrow K(X, N)$ determines an element K of $\mathcal{T}_1^1(M^n) \otimes \mathcal{T}_0^1(M^n)$, which is called also the second fundamental tensor of the submanifold M^n (Cf. (1.12)). Combining (1.9) and (1.10), we obtain the following equation

(1. 11)
$$\tilde{\mathcal{V}}_{BX}CN = C(\mathcal{V}_X^*N) - BK(X, N),$$

which is Weingarten's equation of the submanifold M^n .

Differentiating covariantly (BY, CN)=0 along the submanifold $x(M^m)$ and taking account of $\tilde{V}\tilde{G}=0$, we find $(\tilde{V}_{BX}BY, CN)+(BY, \tilde{V}_{BX}CN)=0$, from which

(1. 12)
$$\langle H(X, Y), N \rangle^* = \langle K(X, N), Y \rangle$$

by means of (1, 3), (1, 8) and (1, 11). On the other hand, taking account of (1, 2)and (1.5), we have $\tilde{V}_{BX}BY - \tilde{V}_{BY}BX = B[X, Y]$. Substituting (1.8) in this equation, we obtain

(1. 13)
$$H(X, Y) = H(Y, X),$$

i.e., the second fundamental tensor H(X, Y) is symmetric with respect to X and Y.

We extend naturally the operations of the induced connections \mathcal{V} of M^n and V^* of $N(M^n)$ respectively to $\mathcal{T}(M^n)$ and to $\mathcal{T}(M^n)$ as derivations and denote the extended covariant differentiations also by the same symbols V and V^* respectively. We shall now define a derivation $\mathcal{V}_{\mathcal{X}}$ $(\mathcal{X} \in \mathcal{I}^{1}(M^{n}))$ in $\mathcal{I}(M^{n}) \otimes \mathcal{I}(M^{n})$ as follows: $V_X(T \otimes U) = (V_X T) \otimes U + T \otimes (V_X^* U), T \text{ and } U \text{ being arbitrary elements of } \mathcal{I}(M^n)$ and $\mathcal{M}(M^n)$ respectively. The derivation \mathcal{V}_X thus introduced in $\mathcal{I}(M^n) \otimes \mathcal{M}(M^n)$ is the so-called van der Waerden-Bortolotti covariant differentiation along the submanifold M^n .

We have by virtue of (1.8) and (1.11) the following equations

$$\begin{split} \vec{V}_{BX}\vec{V}_{BY}BZ = \vec{V}_{BX}\{B(\vec{V}_{Y}Z) + CH(Y, Z)\} \\ &= B\{\vec{V}_{X}\vec{V}_{Y}Z - K(X, H(Y, Z))\} + C\{\vec{V}_{X}^{*}(H(Y, Z)) + H(X, \vec{V}_{Y}Z)\} \\ (1. 14) \\ &= B\{\vec{V}_{X}\vec{V}_{Y}Z - K(X, H(Y, Z))\} \\ &+ C\{H(X, \vec{V}_{Y}Z) + H(\vec{V}_{X}Y, Z) + H(Y, \vec{V}_{X}Z) + (\vec{V}_{X}H)(Y, Z)\}. \\ \text{and} \end{split}$$

а

(1. 15)
$$V_{[BX,BY]}BZ = V_{B[X,Y]}BZ = B(V_{[X,Y]}Z) + CH([X, Y], Z)$$
$$= B(V_{[X,Y]}Z) + C\{H(V_XY, Z) - H(V_YX, Z)\}$$

because of (1, 2) and $[X, Y] = \nabla_X Y - \nabla_Y X$. Therefore, denoting by L and R respectively the curvature tensors of the enveloping manifold M^m and the submanifold

 M^n , we have, by definition,

$$L(BX, BY)BZ = \tilde{\mathcal{V}}_{BX}\tilde{\mathcal{V}}_{BY}BZ - \tilde{\mathcal{V}}_{BY}\tilde{\mathcal{V}}_{BX}BZ - \tilde{\mathcal{V}}_{[BX,BY]}BZ,$$
$$R(X, Y)Z = \mathcal{V}_{X}\mathcal{V}_{Y}Z - \mathcal{V}_{Y}\mathcal{V}_{X}Z - \mathcal{V}_{[X,Y]}Z,$$

which imply together with (1.14) and (1.15) the equation of Gauss-Codazzi

$$L(BX, BY)BZ = B\{R(X, Y)Z - K(X, H(Y, Z)) + K(Y, H(X, Z))\}$$

(1.16)

$$+C\{(\nabla_X H)(Y, Z)-(\nabla_Y H)(X, Z)\}$$

along the submanifold M^n . Denoting by R^* the curvature tensor of the induced connection \mathcal{V}^* of $N(M^n)$, we have, by definition,

(1. 17)
$$R^*(X, Y)N = \mathcal{V}_X^* \mathcal{V}_Y^* N - \mathcal{V}_Y^* \mathcal{V}_X^* N - \mathcal{V}_{[X,Y]}^* N.$$

Taking account of this equation, we have by a similar device the equation of Codazzi-Ricci

(1. 18)
$$L(BX, BY)CN = C\{R^*(X, Y)N - H(X, K(Y, N)) + H(Y, K(X, N))\}$$
$$-B\{(\mathcal{V}_X K)(Y, N) - (\mathcal{V}_Y K)(X, N)\}$$

along the submanifold M^n . The equations (1.16) and (1.18) are called the *structure* equations of the submanifold M^n .

Let X_1, X_2, \dots, X_n be *n* mutually orthogonal local unit vector fields in M^n . Then an element Tr H of $\mathcal{D}_0^1(M^n)$, called the *trace* of H, is defined by the equation

$$Tr H = \sum_{j=1}^{n} H(X_j, X_j).$$

On putting

$$(1.19) A = \frac{1}{n} \operatorname{Tr} H,$$

we call A the mean curvature vector of the submanifold M^n or that of the immersion $x: M^n \to M^m$. The length $\alpha = |A|$ of A is called the mean curvature of the submanifold M^n .

Umbilical submanifolds. When there exists an element P of $\mathcal{N}_0^!(M^n)$ such that $|P| = \sqrt{\langle P, P \rangle^*} = 1$ and

(1. 20)
$$H(X, Y) = \alpha \langle X, Y \rangle P,$$

for any X and Y, α being a certain non-negative element of $\mathcal{T}^{\circ}_{0}(M^{n})$, the submanifold M^{n} is said to be *umbilical*. In (1.20), α is the mean curvature and the mean curvature vector is $A = \alpha P$.

Pseudo-umbilical submanifolds. We now assume that the mean curvature

vector A vanishes nowhere in M^n . Then we have an element P=A/|A| of $\mathcal{H}_0^1(M^n)$ such that |P|=1. If, in such a case, we have

(1. 21)
$$\langle H(X, Y), P \rangle^* = \alpha \langle X, Y \rangle$$

or equivalently

$$(1. 21)' K(X, P) = \alpha X$$

 α being an element of $\mathfrak{T}^{\circ}_{0}(M^{n})$ and positive everywhere in M^{n} , then the submanifold M^{n} is said to be *pseudo-umbilical*. We now see, taking account of (1.19) and (1.21), that the mean curvature vector is given by

$$A = \alpha P$$
,

where α is the mean curvature. We know from (1. 20) and (1. 21) that any umbilical submanifold is pseudo-umbilical if its mean curvature α vanishes nowhere in M^n .

Submanifolds of a submanifold. Let M^s be a submanifold of dimension s immersed in an *n*-dimensional Riemannian manifold M^n with immersion $\bar{x}: M^s \to M^n$ (s < n). Moreover, we assume that M^n is a submanifold in a Riemannian manifold M^m of dimension m with immersion $x: M^n \to M^m$ (n < m). Then M^s is a submanifold in M^m and $\hat{x} = x\bar{x}$ its immersion. We denote by B, \bar{B} and \hat{B} respectively the tangential mappings of x, \bar{x} and \hat{x} . Then we have $\hat{B} = B\bar{B}$. The normal mappings of x, \bar{x} and \hat{x} respectively by C, \bar{C} and \hat{C} and the second fundamental tensors of x, \bar{x} and \hat{x} respectively by H, \bar{H} and \hat{H} . Thus we now have Gauss' equations for $X, Y \in \mathcal{I}^+_0(M^s)$

(1. 22)
$$\tilde{\mathcal{V}}_{\bar{B}\mathcal{X}} \hat{B} Y = \hat{B}(\mathcal{V}_{\mathcal{X}} Y) + \hat{C} \hat{H}(X, Y),$$
$$\tilde{\mathcal{V}}_{\bar{B}\mathcal{X}} \bar{B} Y = \bar{B}(\mathcal{V}_{\mathcal{X}} Y) + \bar{C} \bar{H}(X, Y)$$

along $\hat{x}(M^s)$ and $\bar{x}(M^s)$ respectively, where \tilde{V} is the Riemannian connection in the enveloping manifold M^m and \bar{V} and V denote the induced connections of M^n and M^s respectively. On the other hand, taking account of $\hat{B}=B\bar{B}$, we have

(1. 23)
$$\tilde{\mathcal{V}}_{\hat{B}x}\hat{B}Y = B(\bar{\mathcal{V}}_{\bar{B}x}\bar{B}Y) + CH(\bar{B}X,\bar{B}Y).$$

Combining (1.22) and (1.23), we find

(1. 24)
$$\hat{C}\hat{H}(X, Y) = B\bar{C}\bar{H}(X, Y) + CH(\bar{B}X, \bar{B}Y)$$

for X, $Y \in \mathcal{I}_0^1(M_s)$. Thus we have from (1.24)

PROPOSITION 1. 1. Let M^s be a submanifold immersed in M^n (s<n) and M^n an umbilical submanifold immersed in M^m (n<m). Then M^s is pseudo-umbilical in M^n if and only if so is M^s also in M^m .

When the mean curvature vector A vanishes identically in a submanifold, the submanifold is said to be *minimal*. We have from (1.24)

PROPOSITION 1.2. Let M^s be a submanifold immersed in M^n (s<n), which is a submanifold immersed in M^m (n<m). Then M^s is minimal in M^n if and only if the mean curvature vector of M^s with respect to M^m is orthogonal to M^n everywhere along M^s .

§2. Submanifolds of codimension 2.

In this section we study more in dedail formulas stated in §1 for submanifolds of codimension 2. Let M^n be a submanifold of codimension 2 immersed in an (n+2)-dimensional Riemannian manifold M^{n+2} and let its immersion be denoted by $x: M^n \to M^{n+2}$. We assume that the normal bundle $N(M^n)$ is orientable, i.e. that there exist in $\mathcal{H}^1_0(M^n)$ two elements P and Q such that |P| = |Q| = 1 and $\langle P, Q \rangle^* = 0$. Then CP and CQ are two unit vector fields defined globally along $x(M^n)$, normal to $x(M^n)$ and mutually orthogonal. Thus the second fundamental tensor H of M^n has the form

(2.1)
$$H(X, Y) = h(X, Y)P + h'(X, Y)Q,$$

h and *h'* being elements of $\mathcal{T}_{2}^{\prime}(M^{n})$. As direct consequences of (1.13), two tensor fields *h* and *h'* are symmetric. If we now define two elements *k* and *k'* of $\mathcal{T}_{1}^{\prime}(M^{n})$ by the equations

(2.2)
$$k(X) = K(X, P), \qquad k'(X) = K(X, Q),$$

then we have from (1. 12), (2. 1) and (2. 2)

(2.3)
$$h(X, Y) = \langle k(X), Y \rangle, \quad h'(X, Y) = \langle k'(X), Y \rangle.$$

There exists an element θ of $\mathcal{T}_{i}^{0}(M^{n})$ such that

(2.4)
$$\nabla_{\mathcal{X}}^* P = \theta(X)Q, \qquad \nabla_{\mathcal{X}}^* Q = -\theta(X)P.$$

This θ is called the *third fundamental tensor* of the submanifold M^n . We have directly from (1. 17) and (2. 4)

$$(2.5) R^*(X, Y)P = d\theta(X, Y)Q, R^*(X, Y)Q = -d\theta(X, Y)P,$$

 R^* being the curvature tensor of the induced connection V^* of $N(M^n)$, where $d\theta$ denote the exterior differential of the 1-form θ . Differentiating (2.1) and (2.2) covariantly along M^n and taking account of (2.5), we have respectively

(2.6)
$$\nabla_{\mathcal{X}} H = (\nabla_{\mathcal{X}} h - \theta(X)h')P + (\nabla_{\mathcal{X}} h' + \theta(X)h)Q$$

and

$$(2.7) \quad (\nabla_X K)(Y, P) = (\nabla_X k)Y - \theta(X)k'(Y), \quad (\nabla_X K)(Y, Q) = (\nabla_X k')Y + \theta(X)k(Y).$$

We now assume the submanifold M^n to be pseudo-umbilical. Then we can choose P in such a way that P=A/|A|, A being the mean curvature vector of M^n .

Thus, taking account of (1. 21), (1. 21)' and (2. 1), we find

(2.8)
$$h(X, Y) = \alpha \langle X, Y \rangle, \qquad k(X) = \alpha X,$$

where $\alpha = |A| \neq 0$. According to (1. 20), (2. 1) and (2. 8), we have

(2.9)
$$\frac{1}{n} \operatorname{Tr} h = \alpha, \qquad \operatorname{Tr} h' = 0,$$

where Tr h and Tr h' denote respectively the *traces* of h and h', for example, Tr $h = \sum_{j=1}^{n} h(X_j, X_j)$ for an orthonormal local basis $\{X_1, X_2, \dots, X_k\}$ of $\mathcal{T}_0^1(M^n)$.

For pseudo-umbilical submanifolds, we restrict ourselves only to such a P that defined by P=A/|A|. Comparing (1. 20) and (2. 1) with P=A/|A|, we have

LEMMA 2.1. A pseudo-umbilical submanifold M^n of codimension 2 is umbilical, if and only if h'=0 holds identically in M^n . In such a case, we have $h(X, Y) = \alpha \langle X, Y \rangle$, α being the mean curvature.

Substituting (2. 5), (2. 6), (2. 7) and (2. 8) in (1. 16) and (1. 18), we have respectively

L(BX, BY)BZ

$$=B\{R(X, Y)Z + \alpha^{2}(\langle X, Z \rangle Y - \langle Y, Z \rangle X) - (h'(X, Z)k'(Y) - h'(Y, Z)k'(X))\} + \{\langle X, Z \rangle d\alpha(Y) - \langle Y, Z \rangle d\alpha(X) + \theta(X)h'(Y, Z) - \theta(Y)h'(X, Z)\}CP + \{(\Gamma_{X}h')(Y, Z) - (\Gamma_{Y}h')(X, Z) - \alpha(\langle X, Z \rangle \theta(Y) - \langle Y, Z \rangle \theta(X))\}CQ$$

and

(2. 11)
$$L(BX, BY)CP$$
$$= -B\{d\alpha(X)Y - d\alpha(Y)X + \theta(X)k'(Y) - \theta(Y)k'(Y)\} + \{d\theta(X, Y)\}CQ,$$

 $d\alpha$ being the exterior differential of the function α . These are the *structure* equations of the pseudo-umbilical submanifold M^n of codimension 2.

In general, when there is given a submanifold M^n immersed in a Riemannian manifold M^m with immersion $x: M^n \to M^m$ (n < m), for any two vector fields \overline{X} and \overline{Y} tangent to $x(M^n)$, the tensor field $L(\overline{X}, \overline{Y})$, L being the curvature tensor of the ambient manifold M^m , defines a linear endomorphism of the tangent space of $x(M^m)$ at each point p of $x(M^n)$. This linear endomorphism $L(\overline{X}, \overline{Y})$ is called the *curvature transformation* of the submanifold M^n determined by \overline{X} and \overline{Y} at p.

We here assume that, for our submanifold M^n of codimension 2, all curvature transformations of M^n preserve the tangent space $T_p(x(M^n))$ at each point p of $x(M^n)$. Then we have from (2.10) the following equations:

(2. 12)
$$\langle X, Z \rangle d\alpha(Y) - \langle Y, Z \rangle d\alpha(X) + \theta(X)h'(Y, Z) - \theta(Y)h'(X, Z) = 0,$$

$$(2.13) \qquad (\nabla_X h')(Y,Z) - (\nabla_Y h')(X,Z) - \alpha \{\langle X,Z \rangle \theta(Y) - \langle Y,Z \rangle \theta(X)\} = 0.$$

Suppose that $\theta \neq 0$ at p. If we suppose that $d\alpha = 0$ at a point p of M^n , we have, from (2.12), $\theta(X)h'(Y, Z) - \theta(Y)h'(X, Z) = 0$, which implies $h'(X, Y) = \mu\theta(X)\theta(Y)$ at p, μ being a certain number. Thus, taking account of (2.9), we have at p

(2. 14)
$$h'=0.$$

Conversely, suppose that h'=0 holds at p. Substituting (2.14) in (2.12), we have $\langle X, Z \rangle d\alpha(Y) - \langle Y, Z \rangle d\alpha(X) = 0$, which implies that the equation

$$(2.15) d\alpha = 0$$

holds at *p*. Thus we have

LEMMA 2.2. Let M^n be a pseudo-umbilical submanifold of codimension 2 immersed in a Riemannian manifold M^{n+2} . Assume that all curvature transformations of M^n preserve the tangent space $T_q(x(M^n))$ at each point q of $x(M^n)$ and $\theta \neq 0$ at p. Then, $d\alpha = 0$ at a point p of M^n if and only if h'=0 at p.

Let our submanifold M^n of codimension 2 satisfy the assumption stated in Lemma 2. 2. We first assume that the mean curvature α is constant in M^n , i.e., that $d\alpha=0$ holds identically in M^n . Then by means of Lemma 2. 2 we have identically h'=0 or $\theta=0$. Substituting h'=0 in (2. 13), we obtain $\langle X, Z \rangle \theta(Y) - \langle Y, Z \rangle \theta(X)$ =0, from which $\theta=0$. We next assume that $\theta=0$ and substitute this equation in (2. 12). Then we obtain $d\alpha=0$. Summing up, we have, by means of Lemma 2. 1,

LEMMA 2.3. Let M^n be a pseudo-umbilical submanifold of codimension 2 immersed in a Riemannian manifold M^{n+2} . Assume that all curvature transformations of M^n preserve the tangent space $T_q(x(M^n))$ of $x(M^n)$ at each point q of $x(M^n)$. In this case, the following three conditions (a), (b) and (c) are equivalent to each other:

- (a) M^n is umbilical, i.e., h'=0 holds identically,
- (b) the mean curvature α is constant, i.e., $d\alpha = 0$ holds identically,
- (c) $\tilde{V}_{BX}CP$ is tangent to $x(M^n)$, P being defined by P=A/|A|, where A is the mean curvature vector, i.e., $\theta=0$ holds identically.

For any submanifold M^n immersed in a space of constant curvature, all of its curvature transformations preserve the tangent space of $x(M^n)$ at each point of $x(M^n)$. Thus we have

PROPOSITION 2.1. For any pseudo-umbilical submanifold of codimension 2 immersed in a space of constant curvature, the three conditions (a), (b) and (c) stated in Lemma 2.3 are equivalent to each other.

As a consequence of Proposition 2.1 and Lemma 5.2, which will be proved in §5, we have

PROPOSITION 2. 2. Let M^n be a complete pseudo-umbilical submanifold of codimension 2 immersed in an (n+2)-dimensional Euclidean space E^{n+2} . If M^n

satisfies one of the three conditions (a), (b) and (c) stated in Lemma 2.3, then M^n is necessarily an n-dimensional natural sphere S^n in E^{n+2} .

In Proposition 2.2, we mean by an *n*-dimensional *natural sphere* S^n in an *m*-dimensional Euclidean space E^m an *n*-dimensional sphere S^n lying naturally on an (n+1)-dimensional plane E^{n+1} imbedded in E^m (n < m).

By a similar device, we can prove the following proposition by means of Lemma 5.1, which will be proved in §5.

PROPOSITION 2.3. Let M^n be a complete pseudo-umbilical submanifold of codimension 2 immersed in an (n+2)-dimensional sphere S^{n+2} ($\subset E^{n+3}$). If M^n satisfies one of the three conditions (a), (b) and (c) stated in Lemma 2.3, then M^n is the intersection of S^{n+2} and a plane E^{n+1} of codimension 2, which does not pass the origin of S^{n+2} .

§3. Pseudo-umbilical submanifolds of codimension 2 in a space of constant curvature.

Let M^n be a pseudo-umbilical submanifold of codimension 2 immersed in an (n+2)-dimensional space M^{n+2} of constant curvature c. The curvature tensor L of M^{n+2} has, by definition, the form

$$L(\widetilde{X}, \widetilde{Y})\widetilde{Z} = c\{(\widetilde{Y}, \widetilde{Z})\widetilde{X} - (\widetilde{X}, \widetilde{Z})\widetilde{Y}\}$$

for $\widetilde{X}, \widetilde{Y}, \widetilde{Z} \in \mathcal{J}_0^1(M^{n+2})$, from which we have

 $L(BX, BY)BZ = cB\{\langle Y, Z \rangle X - \langle X, Z \rangle Y\}, \quad L(BX, BY)CP = 0$

for X, Y, $Z \in \mathcal{I}_0^1(M^n)$. Substituting these in (2. 10) and (2. 11), we have the equations (2. 12), (2. 13) and

$$(3.1) \quad R(X, Y)Z = (\alpha^2 + c)\{\langle Y, Z \rangle X - \langle X, Z \rangle Y\} + \{h'(Y, Z)k'(X) - h'(X, Z)k'(Y)\},$$

$$(3.2) d\theta = 0.$$

Taking the trace in (2.12) with respect to Y and Z, we have

(3.3)
$$(n-1)d\alpha(X) + h'(l, X) = 0,$$

l being an element of $\mathcal{T}^{1}_{0}(M^{n})$ such that

(3. 4) $\theta(X) = \langle l, X \rangle.$

Substituting Z=l in (2.12) and using (3.3), we have

$$(n-2)(\theta(X)d\alpha(Y)-\theta(Y)d\alpha(X))=0,$$

from which, if $n \ge 3$,

(3. 5)
$$\theta(X)d\alpha(Y) - \theta(Y)d\alpha(X) = 0.$$

We now assume that $d\alpha \neq 0$ holds everywhere in M^n and $n \geq 3$. Then (3.5) implies

$$(3.6) \qquad \qquad \theta = \gamma d\alpha,$$

 γ being a certain function in M^n , where $\gamma \neq 0$ holds everywhere in M^n because of Lemma 2.3. Thus we have equivalently

$$(3. 6)' d\alpha = \beta \theta, \beta = \frac{1}{r}.$$

Substituting (3. 6)' in (2. 12), we obtain

$$\theta(Y)\{\beta\langle X, Z\rangle - h'(X, Z)\} - \theta(X)\{\beta\langle Y, Z\rangle - h'(Y, Z)\} = 0,$$

from which $h'(X, Z) - \beta \langle X, Z \rangle = \lambda \theta(X) \theta(Z)$, λ being a certain function in M^n , because of $\theta = \gamma d\alpha \neq 0$. Therefore, taking account of Tr h'=0, we have $\lambda = -n\beta/|\theta|^2$ and hence

(3.7)
$$h'(X, Z) = \beta \{ \langle X, Z \rangle - n\varphi(X)\varphi(Z) \},$$

where $\varphi = \theta/|\theta|$ and $|\theta|$ denotes the length of θ . Substituting (3.7) in (3.1), we obtain

(3.8)

$$R(X, Y)Z = (\alpha^{2} + \beta^{2} + c)\{\langle Y, Z \rangle X - \langle X, Z \rangle Y\} - n\beta^{2}\{(\varphi(Y)X - \varphi(X)Y)\varphi(Z) + (\varphi(X)\langle Y, Z \rangle - \varphi(Y)\langle X, Z \rangle)e\},$$

e being defined by e=l/|l|. We easily see from (3.8) that the Ricci tensor S and the curvature scalar r of M^n have respectively the following forms:

(3.9)
$$S(X, Y) = \{(n-1)(\alpha^2 + c) - \beta^2\} \langle X, Y \rangle - n(n-2)\beta^2 \varphi(X)\varphi(Y),$$

(3.10)
$$r=n(n-1)(\alpha^2+c-\beta^2).$$

Denoting by $\sigma_p(\xi, \eta)$ the sectional curvature of M^n corresponding to two vectors ξ and η tangent to M^n at a point p of M^n , we have by means of (3.8)

(3. 11)
$$\sigma_p(\xi, \eta) = (\alpha^2 + \beta^2 + c) + n\beta^2(\langle e, \xi \rangle^2 + \langle e, \eta \rangle^2),$$

if $|\xi| = |\eta| = 1$ and $\langle \xi, \eta \rangle = 0$. Thus the formulas (3.8)~(3.11) hold, provided $n \ge 3$, when $d\alpha \ne 0$ holds everywhere in M^n .

On the other hand, if we assume that $d\alpha=0$ at a point q, we have h'=0 at q because of Lemma 2.2. Thus, substituting h'=0 in (3.1), we have $R(X, Y)Z = \alpha^2 \{\langle Y, Z \rangle X - \langle X, Z \rangle Y\}$, from which

$$(3. 11)' \qquad \qquad \sigma_q(\xi, \eta) = \alpha^2 + c$$

if $d\alpha = 0$ at q. Therefore, taking account of (3.11) and (3.11)', we have

PROPOSITION 3.1. Let M^n be a complete pseudo-umbilical submanifold of codimension 2 immersed in a space M^{n+2} of constant curvature c and denote by α the mean curvature. If there exists a positive constant δ such that $\alpha^2+c>\delta^2>0$, and, if $n\geq 3$, then M^n is necessarily compact.

As a corollary to Proposition 3.1, we have

PROPOSITION 3.2. Any complete pseudo-umbilical submanifold M^n of codimension 2 immersed in a space M^{n+2} of positive constant curvature is necessarily compact, if $n \ge 3$.

We are now going to obtain the conformal curvature tensor \mathfrak{C} of a pseudoumbilical submanifold of codimension 2 immersed in a space of constant curvature c. We first assume that $d\alpha \neq 0$ and $n \geq 3$. Defining an element \mathfrak{D} of $\mathcal{T}^{\mathfrak{o}}_{\mathfrak{c}}(M^n)$ by the equation

$$\mathfrak{D}(X, Y) = -\frac{1}{n-2} S(X, Y) + \frac{r}{2(n-1)(n-2)} \langle X, Y \rangle$$

and substituting (3.9) and (3.10) in this, we obtain

(3. 12)
$$\mathfrak{D}(X, Y) = -\frac{1}{2} (\alpha^2 + \beta^2 + c) \langle X, Y \rangle + n\beta^2 \varphi(X) \varphi(Y).$$

The conformal curvature tensor of M^n is, by definition, an element \mathfrak{C} of $\mathcal{I}_{\mathfrak{z}}^1(M^n)$ given by

 $(3. 13) \quad \mathfrak{C}(X, Y)Z = R(X, Y)Z + \mathfrak{D}(Y, Z)X - \mathfrak{D}(X, Z)Y + \mathfrak{E}(X)\langle Y, Z \rangle - \mathfrak{E}(Y)\langle X, Z \rangle,$

E being an element of $\mathcal{T}_1^1(M^n)$ defined by $\langle \mathfrak{E}(X), Y \rangle = \mathfrak{D}(X, Y)$. If we substitute (3.8) and (3.12) in (3.13), we have

 $\mathfrak{C}(X, Y)Z=0,$

i.e., $\mathfrak{C}=0$. That is to say, M^n is conformally flat, provided $n \ge 4$, if $d\alpha \ne 0$. However, as was mentioned above, the formulas (3.8) and (3.12) with $\beta=0$ hold at any point q where $d\alpha=0$. Thus we have $\mathfrak{C}=0$ at such a point q, if $n\ge 4$. Therefore we have

PROPOSITION 3.3. Any n-dimensional pseudo-umbilical submanifold M^n of codimension 2 immersed in a space M^{n+2} of constant curvature is conformally flat, if $n \ge 4$.

We shall now study more in detail properties of pseudo-umbilical submanifold M^n of codimension 2 in a space of constant curvature. We assume that the mean curvature α satisfies the condition $d\alpha \neq 0$ everywhere in M^n . Substituting (3.6) in (3.2), we have $d\gamma \wedge d\alpha = 0$, which means that β (or equivalently γ) is a function $\beta(\alpha)$ depending only on α . If we substitute (3.7) in (2.13) and take account of (3.6)', we obtain

$$\begin{split} & \beta\beta'\theta(X)\{\langle Y,Z\rangle - n\varphi(Y)\varphi(Z)\} - n\beta\{(\mathcal{V}_{X}\varphi)(Y)\varphi(Z) + (\mathcal{V}_{X}\varphi)(Z)\varphi(Y)\} \\ & (3.14) \quad -\beta\beta'\theta(Y)\{\langle X,Z\rangle - n\varphi(X)\varphi(Z)\} + n\beta\{(\mathcal{V}_{Y}\varphi)(X)\varphi(Z) + (\mathcal{V}_{Y}\varphi)(Z)\varphi(X)\} \\ & \quad -\alpha\{\langle X,Z\rangle\theta(Y) - \langle Y,Z\rangle\theta(X)\} = 0, \end{split}$$

where $\beta' = d\beta/d\alpha$. Putting Z = e in (3.14) and taking account of $\varphi(X) = \langle X, e \rangle$ and $\varphi = \theta/|\theta|$, we have

$$(\mathbf{3.15}) \qquad (\nabla_{\mathbf{X}}\varphi)(\mathbf{Y}) - (\nabla_{\mathbf{Y}}\varphi)(\mathbf{X}) = 0$$

because of $\varphi(e)=1$ and $(\nabla_{r}\varphi)(e)=0$ which is a direct consequence of $\varphi(e)=1$ and

 $\varphi(X) = \langle X, e \rangle$. Therefore, if we put Y = e in (3.15), we obtain

(3. 16)
$$\nabla_e \varphi = 0$$
, or equivalently, $\nabla_e e = 0$,

which shows that the unit vector field e generates geodesics. Next, substituting X=e in (3. 14) and taking account of (3. 6), we have

$$(3. 17) \qquad \qquad \nabla_Y e = -\mu \{Y - \varphi(Y)e\},$$

(3.17)'
$$\mu = \frac{(\beta \beta' + \alpha)|\theta|}{n\beta}, \qquad \beta' = \frac{d\beta}{d\alpha}.$$

That is to say, the unit vector field e is torse-forming. Summing up, we have

LEMMA 3.1. Let M^n be a pseudo-umbilical submanifold of codimension 2 in a space of constant curvature. If $d\alpha \neq 0$ holds everywhere in M^n , α being the mean curvature, then the unit vector field e, which is proportional to the gradient vector of α , generates geodesics and is torse-forming.

§4. Pseudo-umbilical submanifolds of codimension 2 of a Euclidean space.

We are going to study in detail properties of pseudo-umbilical submanifolds of codimension 2 immersed in a Euclidean space. We first have the following Proposition 4. 1, as a corollary to Proposition 3. 1.

PROPOSITION 4.1. Let M^n be a complete pseudo-umbilical submanifold of codimension 2 immersed in a Euclidean space E^{n+2} . If there exists a positive number δ such that $\alpha > \delta > 0$, α being the mean curvature, then M^n is necessarily compact.

Let M^n be a pseudo-umbilical submanifold of codimension 2 immersed in a Euclidean space E^{n+2} and assume that $d\alpha \neq 0$ holds everywhere in M^n , α being the mean curvature. For a certain constant c, a connected component of a submanifold defined in M^n by the equation $\alpha = c$ is denoted by M_c^{n-1} , which is (n-1)-dimensional because of $d\alpha \neq 0$. Denoting by $\bar{x}: M_c^{n-1} \to M^n$ the immersion of M_c^{n-1} into M^n and by $\hat{x}: M_c^{n-1} \to E^{n+2}$ the immersion of M_c^{n-1} into E^{n+2} , we have $\hat{x} = x\bar{x}$ where $x: M^n \to E^{n+2}$ is the immersion of M^n into E^{n+2} . We denote the tangential mappings of the immersions x, \bar{x} and \hat{x} by B, \bar{B} and \hat{B} respectively, where we have $\hat{B} = B\bar{B}$. The normal mappings of x, \bar{x} and \hat{x} are respectively denoted by C, \bar{C} and \hat{C} . The second fundamental tensors of the immersions x, \bar{x} and \hat{x} are respectively denoted by H, \bar{H} and \hat{H} . We denote by \langle , \rangle and \langle , \rangle^* respectively the inner products induced in $T(M_c^{n-1})$ and in $N(M_c^{n-1}), N(M_c^{n-1})$ being the normal bundle over M_c^{n-1} with respect to the immersion $\bar{x}: M_c^{n-1} \to M^n$. Taking account of (2. 8) and (3. 7), we have, by means of $\varphi(\bar{B}U) = \varphi(\bar{B}W) = 0$,

$$h(\bar{B}U, \bar{B}W) = \alpha \langle \bar{B}U, \bar{B}W \rangle = \alpha \langle \langle U, W \rangle,$$
$$h'(\bar{B}U, \bar{B}W) = \beta \langle \bar{B}U, \bar{B}W \rangle = \beta \langle \langle U, W \rangle$$

for $U, W \in \mathcal{I}_{0}^{1}(M_{c}^{n-1})$, which imply together with (2.1)

(4.1)
$$H(\bar{B}U, \bar{B}W) = \alpha \langle \langle U, W \rangle P + \beta \langle \langle U, W \rangle Q$$

for $U, W \in \mathcal{I}_{0}^{1}(M_{c}^{n-1})$. Substituting $Y = \overline{B}U$ in (3.17), we obtain

because of $\varphi(\bar{B}U)=0$. Denoting by \bar{N} the element of $\mathcal{H}_{0}^{1}(M_{c}^{n-1}, \bar{x})$, which is the normal bundle of the immersion $\bar{x}: M_{c}^{n-1} \to M^{n}$, such that $\bar{C}\bar{N}=e$ along M_{c}^{n-1} , we have from (4.2)

(4.3)
$$\overline{H}(U, W) = \mu \langle\!\langle U, W \rangle\!\rangle \overline{N}$$

for $U, W \in \mathcal{T}_0^1(M_c^{n-1})$.

(4.5)

If we substitute (4.1) and (4.3) in (1.24), we obtain

(4.4)
$$\widehat{C}\widehat{H}(U, W) = \alpha \langle \langle U, W \rangle CP + \beta \langle \langle U, W \rangle CQ + \mu \langle \langle U, W \rangle B\widehat{C}N$$

for $U, W \in \mathcal{I}_{0}^{1}(M_{c}^{n-1})$, which shows that the immersion $\hat{x}: M_{c}^{n-1} \rightarrow E^{n+2}$ is umbilical. Taking account of (1.11), (2.4) and $\theta(\bar{B}U)=0$, we have

$$\tilde{V}_{\hat{B}U}CP = \tilde{V}_{B\overline{B}U}CP = -BK(BU, P) = -\alpha BBU = -\alpha BU$$
, i.e.,
 $\tilde{V}_{\hat{B}U}CP = -\alpha BU$

for $U \in \mathcal{I}_0^1(M_c^{n-1})$. Similarly we have

$$(4.6) \qquad \qquad \tilde{V}_{\hat{B}U}CQ = -\beta \hat{B}U$$

for $U \in \mathcal{I}_0^1(M_c^{n-1})$. Putting $Y = \overline{B}U$ and $e = \overline{C}\overline{N}$ in (3. 17) and taking account of $\varphi(\overline{B}U) = 0$, we obtain $\nabla_{\overline{B}U}\overline{C}\overline{N} = -\mu\overline{B}U$ for $U \in \mathcal{I}_0^1(M_c^{n-1})$, which implies together with (1. 8)

$$\widetilde{\mathcal{V}}_{\hat{B}U}B\overline{C}N = -\mu \hat{B}U + CH(\overline{B}U, \overline{C}\overline{N}).$$

However, since we have $H(\overline{B}U, \overline{C}\overline{N})=0$ because of (2.8) and (3.7), we have

$$(4.7) \qquad \qquad \tilde{V}_{\hat{B}U}B\bar{C}\bar{N} = -\mu\hat{B}U$$

for $U \in \mathcal{I}_{0}^{1}(M_{c}^{n-1})$. We now have the following identity

$$\tilde{\mathcal{V}}_{\hat{B}W}\tilde{\mathcal{V}}_{\hat{B}U}B\overline{C}N - \tilde{\mathcal{V}}_{\hat{B}U}\tilde{\mathcal{V}}_{\hat{B}W}B\overline{C}N - \tilde{\mathcal{V}}_{[\hat{B}W,\hat{B}U]}B\overline{C}N = 0$$

for $U, W \in \mathcal{I}_0^1(M_c^{n-1})$, because the enveloping manifold is Euclidean. Substituting (4.7) in the identity above and taking account of $[\hat{B}W, \hat{B}U] = \hat{B}[W, U]$, we obtain $d\mu(W)U - d\mu(U)W = 0$, from which $d\mu = 0$, because U and W are arbitrary. On the other hand, α is constant along M_c^{n-1} and hence so are β, β' . Therefore, taking account of (3.6)' and (3.17)', we see that the length $|d\alpha|$ of $d\alpha$ is constant along M_c^{n-1} .

According to (4.4), the mean curvature vector \hat{A} of the immersion $\hat{x}: M_c^{n-1} \rightarrow E^{n+2}$ has the form

PSEUDO-UMBILICAL SUBMANIFOLDS

(4.8)
$$\hat{C}\hat{A} = \alpha CP + \beta CQ + \mu B\bar{C}\bar{N}$$

 α , β and μ being constant along M_e^{n-1} , we have, from (4.5), (4.6), (4.7) and (4.8),

(4.9)
$$\tilde{V}_{\hat{B}U}\hat{C}\hat{P} = -\nu\hat{B}U$$

for $U \in \mathcal{I}_0^1(M_c^{n-1})$, where we have put

(4.10)
$$\hat{P} = \frac{\hat{A}}{|\hat{A}|}, \quad \nu = \frac{\alpha^2 + \beta^2}{\sqrt{\alpha^2 + \beta^2 + \mu^2}} > 0.$$

Thus, taking account of (4.9) and Lemma 5.1 which will be proved in §5, we have

LEMMA 4.1. Let M^n be a pseudo-umbilical submanifold of codimension 2 immersed in E^{n+2} . Assume that $d\alpha \neq 0$ holds everywhere in M^n , α being the mean curvature. If a connected component M_c^{n-1} of a submanifold defined by $\alpha = c$, c being a certain constant, is complete, and, if $n \geq 3$, then M_c^{n-1} is an (n-1)-dimensional natural sphere S^{n-1} with radius $1/\nu$ in E^{n+2} (see (4.10)). The length $|d\alpha|$ of $d\alpha$ (or equivalently $|\theta|$) is constant along each M_c^{n-1} .

Let g be the family of orthogonal trajectories of M_c^{n-1} 's. Then, by virtue of Lemma 3.1, each element of g is a geodesic. On the other hand, according to Lemma 4.1, $|d\alpha|$ is constant along each M_c^{n-1} . Thus, taking certain consecutive numbers c and c', we see that M_c^{n-1} and $M_{c'}^{n-1}$ cut off a geodesic-arc of the same length from each of geodesics belonging to g. Therefore, combining Lemmas 3.1 and 4.1, we have

PROPOSITION 4.2. Let M^n be a pseudo-umbilical submanifold of codimension 2 immersed in an Euclidean space E^{n+2} . Assume that $d\alpha \neq 0$ holds everywhere in M^n , α being the mean curvature. If each of connected components M_c^{n-1} of submanifold defined by $\alpha = c$, c being constant, is complete, and, if $n \geq 3$, then M_c^{n-1} is an (n-1)dimensional natural sphere S_c^{n-1} in E^{n+2} , M^n is generated by a family \mathfrak{F} of such spheres $S_c^{n-1} (=M_c^{n-1})$ and the orthogonal trajectories of \mathfrak{F} are geodesics, whose unit tangent vectors e form a torse-forming vector field. Any two consecutive S_c^{n-1} and S_c^{n-1} cut off a geodesic-arc of the same length from each of orthogonal trajectories of \mathfrak{F} .

Let M^n be a pseudo-umbilical submanifold of codimension 2 in E^{n+2} . We assume that $d\alpha \neq 0$ holds in a coordinate neighborhood U of M^n , α being the mean curvature. Then we can choose in U a system of local coordinates (x^1, x^2, \dots, x^n) in such a way that the equation x^1 =const. represents in U an (n-1)-dimensional submanifold M_c^{n-1} defined by $\alpha = c$, the variable x^1 indicates the arc length along any geodesic, which is an orthogonal trajectory of the family \mathfrak{F} of the submanifolds M_c^{n-1} 's and the equations x^a =const. $(a=2, \dots, n)$ respresent in U an orthogonal trajectory of the family \mathfrak{F} of M_c^{n-1} . If we now follow classical notations, we see, from the proof of Lemma 4.1, that the line element ds^2 of the submanifold M^n

has in U the following form:

(4. 11)
$$ds^{2} = (dx^{1})^{2} + \rho(x^{1})^{2} d\sigma^{2} \qquad (\rho(x^{1}) > 0)$$

with respect to such local coordinates (x^1, x^2, \dots, x^n) ,

$$d\sigma^2 = \sum_{a,b=2}^n \gamma_{ba} (x^2, \cdots, x^n) dx^b dx^a$$

denoting the line element of an (n-1)-dimensional space of constant curvature 1. Moreover, the mean curvature α is in U a function depending only on the variable x^1 (Cf. Lemma 4.1).

According to (4.11), U is conformal to the Pythagrean product $R \times V^{n-1}$, where R and V^{n-1} denote respectively a line segment and an (n-1)-dimensional Riemannian space of constant curvature 1. Consequently, U is conformally flat. Thus we have

LEMMA 4.2. Let M^n be a pseudo-umbilical submanifold of codimension 2 immersed in E^{n+2} . Assume that $d\alpha \neq 0$ holds everywhere in M^n . Then, if $n \geq 3$, M^n is conformally flat.

We consider a 3-dimensional pseudo-umbilical submanifold M^3 of codimension 2 in E^5 . Denoting by ' M^3 the set of all points at which $d\alpha \neq 0$, where α is the mean curvature, and taking account of Lemma 4.2, we see that ' M^3 is conformally flat. Thus the element ' \mathfrak{C} of $\mathfrak{T}^3_{\mathfrak{s}}(M^3)$ defined by

(4.12)

S and r being respectively the Ricci tensor and the curvature scalar of M^3 , vanishes identically in ' M^3 . Putting " $M^3 = M^3 - M^3$, we see by means of Proposition 2.2 that each connected component of the open kernel of " M^3 is a piece of a 3-dimensional natural sphere S^3 in E^5 , and hence, as is well known, that the tensor ' \mathfrak{C} defined by (4.12) vanishes in the open kernel of " M^3 . Therefore, taking account of the continuity of ' \mathfrak{C} , we see that ' \mathfrak{C} vanishes identically in M^3 . That is to say, M^3 should be conformally flat. Thus, taking account of Proposition 3.3, we have

PROPOSITION 4.3. Any n-dimensional pseudo-umbilical submanifold of codimension 2 immersed in a Euclidean space E^{n+2} is conformally flat if $n \ge 3$.

We can prove Proposition 4.3 only by using Lemma 4.2. By a similar device as that used in the proof of Proposition 4.3, we can prove

PROPOSITION 4.4. Any n-dimensional pseudo-umbilical submanifold of codimension 2 immersed in an (n+2)-dimensional spere S^{n+2} is conformally flat, if $n \ge 3$.

§5. Umbilical submanifolds immersed in a Euclidean space.

For the completeness, we shall prove the following

LEMMA 5.1. Let M^n be an n-dimensional, complete, umbilical submanifold with non-zero mean curvature α , immersed in an m-dimensional Euclidean space E^m (n < m). If the unit vector field P in $N(M^n)$, such that $A = \alpha P$ is the mean curvature vector, is parallel in $N(M^n)$, i.e., if $F_X^*P = 0$ for $X \in \mathfrak{T}_0^1(M^n)$, and, if $n \ge 2$, then the mean curvature α is necessarily constant and M^n is an n-dimensional natural sphere S^n in E^m .

In Lemma 5.1, we mean by an *n*-dimensional *natural sphere* S^n in E^m a sphere lying naturally in an (n+1)-dimensional plane E^{n+1} of E^m .

Proof. Putting L=0 in (1.16), we have

(5.1)
$$(\nabla_X H)(Y,Z) - (\nabla_Y H)(X,Z) = 0.$$

Since M^n is umbilical, we have

(5.2)
$$H(X, Y) = \alpha \langle X, Y \rangle P.$$

Substituting (5.2) in (5.1) and taking account of $V_x^*P=0$, we have $V_x\alpha=0$, from which we see that α is constant.

Denoting by $x: M^n \to E^m$ the immersion of M^n , we can express the position vector indicating the point $x(p), p \in M^n$, also by x(p) and the correspondence $p \to x(p)$ can be regarded as a differentiable function denoted by x, which takes vectors in E^m as its values.

Taking account of (5.2) and $V_{\mathbf{x}}^*P=0$, we have from (1.11)

$$(5.3) \qquad \qquad \tilde{\mathcal{V}}_{BX} N_1 = -\alpha \tilde{\mathcal{V}}_{BX} x$$

for $X \in \mathcal{I}_{0}^{*}(M^{n})$, N_{1} being defined by $N_{1} = CP$, because we have $BX = \tilde{V}_{BX}x$ for any $X \in \mathcal{I}_{0}^{*}(M^{n})$. This reduces to

$$\tilde{\mathcal{V}}_{BX}\left(x+\frac{1}{\alpha}N_{1}\right)=0,$$

because α is a non-zero constant. Thus the point $p_0 = x + (1/\alpha)N_1$ is fixed. Therefore $x(M^n)$ lies on a hypersphere S^{m-1} with center p_0 and with radius $1/\alpha$.

Taking an element Q of $\mathcal{D}_0^1(M^n)$ such that $\langle Q, P \rangle^* = 0$, we have K(X, Q) = 0 because of (5.2). Thus we have from (1.11)

$$\vec{V}_{BX}N_2 = C(\vec{V}_XQ)$$

for $X \in \mathcal{I}_0^1(M^n)$, N_2 being defined by $N_2 = CQ$. Differentiating $(N_1, N_2) = 0$ along x(M) and taking account of (5.3), we find

$$(\vec{V}_{BX}N_2, N_1) = 0.$$

KENTARO YANO AND SHIGERU ISHIHARA

Therefore, denoting by D_x the set of all vectors N at a point x of $x(M^n)$ such that N is normal to $x(M^n)$ and orthogonal to N_1 , we see that $\{D_x | x \in x(M^n)\}$ forms a 1-dimensional distribution D which is parallel in E^m . Thus there exists a unique (n+1)-dimensional plane E^{n+1} , which is orthogonal to all of D_x and passing through the point $p_0 = x + (1/\alpha)N_1$. Since $N_1 = \alpha x p_0$ is orthogonal to D_x at each point x of $x(M^n)$, each point x should belong to E^{n+1} . Consequently, $x(M^n)$ lies on E^{n+1} .

Summing up, $x(M^n)$ is contained in the natural sphere $S^n = S^{m-1} \cap E^{n+1}$. Therefore $x(M^n)$ coincides with S^n , because $x(M^n)$ is complete. The radius of S^n is obviously equal to $1/\alpha$. Hence we have proved Lemma 5.1.

Combining Lemmas 2.1, 2.3 and 5.1, we have

LEMMA 5.2. Let M^n be a complete umbilical submanifold of codimension 2, with non-zero mean curvature α , immersed in an (n+2)-dimensional Euclidean space E^{n+2} . Then the mean curvature α is necessarily constant and M^n is an n-dimensional natural sphere S^n in E^{n+2} .

When M^n is a hypersurface in E^{n+1} , its normal bundle $N(M^n)$ is a 1-dimensional vector bundle. Then any unit vector field P in $N(M^n)$ satisfies the condition $V_X^*P=0$ for $X \in \mathcal{T}_0^1(M^n)$. Thus, taking account of Lemma 5. 1, we have the following well known

LEMMA 5.3. Let M^n be a complete umbilical submanifold of codimension 1, with non-zero mean curvature α , immersed in an (n+1)-dimensional Euclidean space E^{n+1} . Then the mean curvature α is necessarily constant and M^n is an n-dimensional natural sphere S^n in E^{n+1} .

> DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.