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PSEUDO-UMBILICAL SUBMANIFOLDS OF CODIMENSION 2

BY KENTARO YANO AND SHIGERU ISHIHARA

Dedicated to Professor Hiraku Tόyama on his sixtieth birthday

The purpose of the present paper is to study the so-called pseudo-umbilical
submanifolds of codimension 2 in Euclidean and Riemannian manifolds. Our main
results appear in Propositions 2.3, 3.2, 3.3, 4.1, 4.2 and 4.3.

In §1, we reformulate formulas for submanifolds of a general Riemannian
manifold and, in §2, we specialize these formulas to those for submanifolds of
codimension 2 of a Euclidean or a Riemannian manifold.

We study, in §3, pseudo-umbilical submanifolds of codimension 2 in a space
of constant curvature and, in §4, those in a Euclidean space. In the last section
5, we prove, for the completeness, some of lemmas which are used in the paper.

§1. Formulas for submanifolds.

As we are going to study some special kinds of submanifolds, we would like
first of all to reformulate formulas for submanifolds of a Riemannian manifold for
the later use. Let Mn be an ^-dimensional manifold^ differentiablly immersed as
a submanifold of an w-dimensional Riemannian manifold Mm, where n<m, and
denote by x: Mn-»Mm the immersion. Denote by B: T(Mn)-*T(Mm) the differen-
tial of the mapping x, i.e., B=dx, where T(Mn) and T(Mm) are the tangent bundles
of Mn and Mm respectively. On putting T(Mn, Mm)=BT(Mn), the set of all vectors
tangent to x(Mn\ we see by definition that B: T(Mn}-^T(Mn

1 Mm) is an isomor-
phism, since x: Mn^Mm is an immersion. The set of all vectors normal to x(Mn)
forms a vector bundle N(Mn, Mm) over x(Mn), which is the normal bundle of
x(Mn\ The vector bundle over Mn, which is induced by x from N(Mn, Mm) is
denoted by N(Mn) and called the normal bundle of Mn with respect to the im-
mersion x. We now denote by C: N(Mn)-*N(Mn, Mm) the natural isomorphism.

We now introduce the following notations: £Π(MW) is the space of all tensor
fields of type (r, s), i.e., of contravariant degree r and covariant degree s, associated
with T(Mn). ζr(Mn)=Σr,sζrr

s(Mn) is the space of all tensor fields associated with
T(Mn\ mr

s(Mn) and 3l(Mn)=Σr,s3Ίr

s(Mn) denote the respective spaces associated

Received May 8, 1969.
1) Manifolds, mappings, functions, tensor fields and any other geometric objects we

discuss are assumed to be differentiable and of class C°°. We restrict ourselves only to
connected submanifolds of dimension wΞ>2.
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with N(Mn). <2r

s(Mn

ί Mm) and 32r

s(Mn, Mm) denote the corresponding spaces of
tensor fields associated with T(M"9 Mm) and N(Mn, Mm) respectively. Thus ζTQ

0(Mn)
= mi(Mn) is the space of all functions defined in Mn and 2*S(Mn, Mm) = 3Ί°Q(Mn, Mm)
is the space ζ£°Q(x(Mn)) of all functions defined on x(Mn). Any element / of
£Γo(tf(Mw)) is identified with f x which is an element of <3l(Mn\ Denoting by
B(Mn, Mm) the restriction of T(Mm) to x(Mn\ we see that B(Mn, Mm) is the
Whitney sum T(Mn, Mm)®N(Mn

1 Mm). $l(Mn, Mm) denotes the space of all tensor
fields of type (r, s) associated with B(Mn, Mm\

The mapping B: T(Mn)-*T(Mn, Mm) induces naturally an isomorphism of
£Γ(Mn) onto <3(Mn, Mm), which is denoted also by B, in such a way that
B(fP+gQ)=fBP+gBQ,B(P®S)=(BP)®(BS) for /, g^l(Mn\ P, Q, SeS(M»).
The mapping B thus introduced is called the tangential mapping of the immersion
x: Mn-+Mm. The mapping C: N(Mn)-^N(Mn, Mm) induces naturally an isomor-
phism of 32(Mn) onto 3l(Mn, Mm), which is denoted also by C, in such a way
that C(fP+gQ)=fCP+gCQ, C(P(x)S)=(CP)(x)(CS) for /, gt2l(Mn\ P, Q, Stm(Mn\
The mapping C thus introduced is called the normal mapping of the immersion
xi Mn-^Mm.

We take an element X of ^Bl(Mn, Mm). For any point p of x(Mn\ there exists
in Mm a neighborhood Ω containing p such that there exists in Ω a vector field
X which is an extension of X restricted to Ω'= χ(U)Γ\Ω containing p, U being a
certain neighborhood of Mn. Such an X is called a local extension of X in Ω.
Taking arbitrarily two elements X and Ϋ of £Γί(Mw, Mm) and local extensions X
of X and Ϋ of Ϋ in a neighborhood Ω of Mm, we see that the restriction [X, Ϋ]M

n

of [Λ^, Ϋ] to ^(Mw) is tangent^ to x(Mn) and determined independently of the choice
of the local extensions X and Ϋ. Thus [X, Ϋ]M

n defines an element of £Γi(Mw, Mm).
If we put

(1.1) [X,Ϋ\ = [X, Ϋ}Mn

for X, Ϋ €^J(Mπ, Mm), we have

(1.2) [5-X,5F]=5[,X, Y]

for

If we denote by ( , ) the inner product determined by the Riemannian metric
G of Mm and put

(1. 3) <*!, X2y=(BXlf BXύ, <M, Nd*=(CNl9 CN2)

for Xi, Z'aeS'KM71) and JVi, N^mi(Mn\ then the inner product < , > determines in
Mn a Riemannian metric g, which is called induced metric of the submanifold Mn,
and the inner product < , >* determines in N(Mn) an element g* of 3ll(Mn), which
is called the induced metric of N(Mn).

Let P be the Riemannian connection determined by G in the enveloping
manifold Mm, i.e., the torsionless affine connection satisfying FG=0. Taking an
element X of £Π(Mn, Mw) and an element f of ^i(Mw, Mm) and arbitrary local
extensions X of X and 7 of F in a neighborhood /2 of Mm, we can easily show
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that the restriction (PχΫ)Mn of ΫgΫ to x(Mn) is independent of the choice of the
local extensions X and Ϋ. Therefore we can define an element PXΫ of tBl(Mn, Mm)
by the equation

(1. 4) V*7=tftΫ)**

for Xzβl(Mn, Mm) and Ϋ€&l(Mn, Mm). Thus, by virtue of (1. 1) and
= [X, Ϋ], we obtain

for X, F€3Ί(Mn, Mm).
Taking an arbitrary element X of <&\(Mn, Mm\ we denote by Xτ its tangential

component to x(Mn) and by X1- its normal component to x(Mn). Then we have
a_unique decomposition X=XT+X L for any element X of <Bl

0(Mn, Mm), where
Xτs<3l(Mn

y Mm) and Z *-emi(Mn, Mm).
In the remaining part of the paper, unless otherwise stated, X, Y and Z mean

arbitrary elements of &l(Mn) and N an arbitrary element of 57j(Mn). If we put

(1.6) B(VzY)=(VBzBYY,

we have a unique element P rχY of £Π(MW) and can easily verify that F 'fXY
=f?zY, Vχ(fYϊ=fVχY+(Xf)Y for /e£ΓJ(Mn). Thus the correspondence (X, F)—
F^F determines in Mn an aίϊine connection V which coincides, as is well known,
with the Riemannian connection determined by the induced metric g of Mn. That
is to say, V is torsionless and satisfies Vg—§. The affine connection 7 thus in-
troduced in Mn is called the induced connection of the submanifold Mn. If we put

(1.7) CH(X, Y}=(VBχBY}±-,

we have a unique element H(X, Y) of 32l(Mn). It is easily verified that H(fX, gY)
=fgH(X, Y) for /, ge£ΓS(Mw). Thus the correspondence (X, Y)-*H(X, Y) deter-
mines an element H of £Γ2(Λfw)(H)37j(MTO), which is called the Euler-Schouten tensor
or the second fundamental tensor of the submanifold Mn, or, that of the immersion
x\ Mn-^Mm. Combining (1. 6) and (1. 7), we obtain the following equation

(1. 8) 9BZBY=B(VzY)+Cmx, Γ),

which is Gauss1 equation of the submanifold Mn.
If we put

(1. 9) ap$N)=(9BzCN)±

for N^Jίl(Mn\ we have a unique element F$AT of ^ll(Mn) and can easily verify
that V*}χN=fV$N, F$(/A/")=/F$A^4-(^/)Arfor/e^S(Mw). Thus the correspondence
(X, N^P^N defines in N(Mn) a linear connection Γ*, which is called the induced
connection of N(Mn) and satisfies Γ*g*-0, g* being the induced metric of N(Mn\
If we put
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(1. 10) BK(X, N)=-(P

we have a unique element K(X, N) of £Π(MW). It is easily verified that K(fX, gN)
=fgK(X, N) for/, g€£ΓS(Mw). Thus the correspondence (X, N)— K(X, N) deter-
mines an element K of &l(Mn)® 3ll(Mn), which is called also the second funda-
mental tensor of the submanifold Mn (Cf. (1. 12)). Combining (1. 9) and (1. 10), we
obtain the following equation

(1. 11) ?BzCN=C(rϊN)-BK(X, N),

which is Weingarten's equation of the submanifold Mn.
Differentiating covariantly (BY, CN)=0 along the submanifold x(Mm) and

taking account of ?G=0, we find (PBχBY, CN)+(BY, PBzCN)=Q, from which

(1. 12) <H(X, F), N}*=(K(X, N\ F>

by means of (1. 3), (1. 8) and (1. 11). On the other hand, taking account of (1. 2)
and (1. 5), we have VBzBY—VBγBX=B[X9 Y]. Substituting (1. 8) in this equation,
we obtain

(1. 13) H(X, Y}=H(Y, X\

i.e., the second fundamental tensor H(X, Y) is symmetric with respect to X and Y.
We extend naturally the operations of the induced connections V of Mn and

P* of N(Mn) respectively to £Γ(MTO) and to 32 (Mn) as derivations and denote the
extended covariant differentiations also by the same symbols V and F* respectively.
We shall now define a derivation Vx (Xe £Π(MW)) in £Γ(Mw)(x)32(7kΠ as follows:
Γj-(Γ®C7)=(Γ2'Γ)(8)C7+T(8)(FίC7), Γ and U being arbitrary elements of Z(Mn)
and 32(Mn) respectively. The derivation Vx thus introduced in 2Wn)(x) 32(Mn) is
the so-called van der Waerden-Bortolotti covariant differentiation along the sub-
manifold Mn.

We have by virtue of (1. 8) and (1. 11) the following equations

, Z)}

-K(X, H(Y,
(1. 14)

+C{H(X, PYZ)+H(I7XY, Z)+H(Y, PXZ}+(FΣH)(Y, Z)}.

and

Ppz.BYiBZ^PBcf.YiBZ^Bφtf.YiZϊ+CffdX, Y], Z)
(1. 15)

, Z)-H(FYX, Z)}

because of (1.2) and [X, Y]=VXY-PYX. Therefore, denoting by L and R res-
pectively the curvature tensors of the enveloping manifold Mm and the submanifold
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Mn, we have, by definition,

L(BX, BY)BZ= ΫBXΫBγBZ- Ϋ BYΫ BXBZ- ΨlBX, BY2BZ,

R(X, Ύ}Z^VxVYZ-VγVxZ-VlX^Z,

which imply together with (1. 14) and (1. 15) the equation of Gauss-Codazzi

L(BX, BY)BZ=B{R(X, Y)Z-K(X, H(Y, Z))+K(Y, H(X, Z))}

(1. 16)

, Z)-(PYH)(X, Z)}

along the submanifold Mn. Denoting by R* the curvature tensor of the induced
connection F* of N(Mn\ we have, by definition,

(1. 17) R*(X, Y)N=P$P$N-PίPίN-P&.γιN

Taking account of this equation, we have by a similar device the equation of
Codazzi-Ricci

L(BX, BY)CN=C{R*(X, Y)N-H(X, K(Y, N))+H(Y, K(X, N))}

(1- 18)

, N)-(PYK)(X, N)}

along the submanifold Mn. The equations (1. 16) and (1. 18) are called the structure
equations of the submanifold Mn.

Let Xι, X2, •••, Xn be n mutually orthogonal local unit vector fields in Mn.
Then an element Tr H of 22J(MW), called the trace of H, is defined by the equation

On putting

(1.19) A= — ΎrH,

we call A the mean curvature vector of the submanifold Mn or that of the im-
mersion x\ Mn-+Mm. The length α=|^4| of A is called the mean curvature of the
submanifold Mn.

Umbilical submanifolds. When there exists an element P of 32J(MW) such that

>*=1 and

(1.20) H(X, Y)=a<

for any X and Y, a being a certain non-negative element of g:Q

0(Mn), the sub-
manifold Mn is said to be umbilical. In (1. 20), a is the mean curvature and the
mean curvature vector is A=aP.

Pseudo-umbilical submanifolds. We now assume that the mean curvature
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vector A vanishes nowhere in Mn. Then we have an element P=A/\A\ of 3l\(Mn)
such that |P| = 1. If, in such a case, we have

(1.21) <H(X, F), P>* = α< ,̂ F>,

or equivalently

(1. 21)' K(X, P)=aX,

a being an element of £ΓS(Mn) and positive everywhere in Mn, then the sub-
manifold Mn is said to be pseudo-umbilical. We now see, taking account of (1. 19)
and (1. 21), that the mean curvature vector is given by

A=aP,

where a is the mean curvature. We know from (1. 20) and (1. 21) that any umbilical
submanifold is pseudo-umbilical if its mean curvature a vanishes nowhere in Mn.

Submanifolds of a submanifold. Let Ms be a submanifold of dimension 5
immersed in an ^-dimensional Riemannian manifold Mn with immersion x : Ms-+Mn

(s<n). Moreover, we assume that Mn is a submanifold in a Riemannian manifold
Mm of dimension m with immersion x\ Mn-*Mm (n<m). Then Ms is a sub-
manifold in Mm and x=xx its immersion. We denote by B, B and B respectively
the tangential mappings of x, x and x. Then we have B=BB. The normal map-
pings of x, x and x are denoted respectively by C, C and C and the second
fundamental tensors of x, x and x respectively by H, H and H. Thus we now
have Gauss' equations for X, F€ ζTl(Ms)

, F),
(1.22)

, F)

along x(Ms) and x(Ms) respectively, where F is the Riemannian connection in the
enveloping manifold Mm and V and F denote the induced connections of Mn and
Ms respectively. On the other hand, taking account of B=BB, we have

(1. 23) Ptz&Y=B(VszBY)+CH(BX9 BY).

Combining (1. 22) and (1. 23), we find

(1. 24) Cfi(X, Y)=BCH(X, Y)+CH(BX, BY)

for X, F€ £Γ}(M,). Thus we have from (1. 24)

PROPOSITION 1. 1. Let Ms be a submanifold immersed in Mn (s<n) and Mn

an umbilical submanifold immersed in Mm (n<m). Then Ms is pseudo-umbilical
in Mn if and only if so is Ms also in Mm.

When the mean curvature vector A vanishes identically in a submanifold, the
submanifold is said to be minimal. We have from (1. 24)
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PROPOSITION 1. 2. Let Ms be a submanifold immersed in Mn (s<ri), which is
a submanifold immersed in Mm (n<m). Then Ms is minimal in Mn if and only
if the mean curvature vector of Ms with respect to Mm is orthogonal to Mn

everywhere along Ms.

§2. Submanifolds of codimension 2.

In this section we study more in dedail formulas stated in § 1 for submanif olds
of codimension 2. Let Mn be a submanifold of codimension 2 immersed in an
(;z-h2)-dimensional Riemannian manifold Mn^2 and let its immersion be denoted by
x\ Mn-*Mn+2. We assume that the normal bundle N(Mn) is orientable, i.e. that
there exist in 32l(Mn) two elements P and Q such that \P\ = \Q\ = l and <P, Q>*=0.
Then CP and CQ are two unit vector fields defined globally along x(Mn\ normal
to x(Mn) and mutually orthogonal. Thus the second fundamental tensor H of Mn

has the form

(2. 1) H(X, Y)=h(X, Y)P+h'(X, Y)Q,

h and h' being elements of £Π(MW). As direct consequences of (1. 13), two tensor
fields h and h' are symmetric. If we now define two elements k and kf of £Γί(Mn)
by the equations

(2. 2) k(X)=K(X, P\ k'(X)=K(X, Q),

then we have from (1. 12), (2. 1) and (2. 2)

(2. 3) h(X, Y) = <k(X), F>, h'(X, Y}=(k'(X\ y>.

There exists an element θ of %l(Mn) such that

(2. 4) r*P=θ(X)Q, F$Q- -Θ(X)P.

This θ is called the third fundamental tensor of the submanifold Mn. We have
directly from (1. 17) and (2. 4)

(2. 5) R*(X, Y)P=dθ(X, Y)Q, R*(X, Y}Q=-dθ(X, Y)P,

R* being the curvature tensor of the induced connection ί7* of N(Mn), where dθ
denote the exterior differential of the 1-form θ. Differentiating (2. 1) and (2. 2)
covariantly along Mn and taking account of (2. 5), we have respectively

(2. 6) PχH=(Pχh-θ(XW)P+(Vχh'+θ(X)h)Q

and

(2. 7) (

We now assume the submanifold Mn to be pseudo-umbilical. Then we can
choose P in such a way that P=A/\A\, A being the mean curvature vector of Mn.
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Thus, taking account of (1. 21), (1. 21)' and (2. 1), we find

(2.8) h(X, F) = tfOΓ, F>, k(X) = aX,

where α=|^|^=0. According to (1. 20), (2. 1) and (2. 8), we have

(2.9) — Ύrh=a, Tr A'=0,
n

where Tr h and Tr h' denote respectively the traces of h and h ', for example,
Tr h=Σnj=ιh(Xj, Xj) for an orthonormal local basis UG, J£>, •», -X*} of £Π(Mn).

For pseudo-umbilical submanifolds, we restrict ourselves only to such a P that
defined by P=A/\A\. Comparing (1. 20) and (2. 1) with P=A/\A\, we have

LEMMA 2. 1. A pseudo-umbilical submanifold Mn of codimension 2 is umbilical,
if and only if h'=Q holds identically in Mn. In such a case, we have h(X, Y)
= a(X, F>, a being the mean curvature.

Substituting (2. 5), (2. 6), (2. 7) and (2. 8) in (1. 16) and (1. 18), we have
rsepectively

L(BX, BY)BZ

= B{R(X, Y)Z+a*((X, Z>F-<F, ZyX) - (h'(X, Z}k'(Y)-h'(Y, Z)k'(XΊ)}
(2. 10)

)-<F, Z>d<x(X)+θ(XW(Y, Z)-θ(Y)h'(X, Z}}CP

, Z)-(!7Yh')(X, Z)-a

and

L(BX,BY}CP
(2. 11)

da being the exterior differential of the function a. These are the structure
equations of the pseudo-umbilical submanifold Mn of codimension 2.

In general, when there is given a submanifold Mn immersed in a Riemannian
manifold Mm with immersion x: Mn-*Mm (n<m), for any two vector fields X and
F tangent to x(Mn\ the tensor field L(X, F), L being the curvature tensor of the
ambient manifold Mm, defines a linear endomorphism of the tangent space of
x(Mm) at each point p of x(Mn\ This linear endomorphism L(X, F) is called the
curvature transformation of the submanifold Mn determined by X and F at p.

We here assume that, for our submanifold Mn of codimension 2, all curvature
transformations of Mn preserve the tangent space Tp(x(Mn)) at each point p of
x(Mn). Then we have from (2. 10) the following equations:

(2. 12) OΓ, ZXα(F)-<F, Z)da(X)+θ(XW(Y, Z)-θ(Y)h'(X, Z)=

(2. 13) (Fjr
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Suppose that 0^0 at p. If we suppose that da=Q at a point p of Mn, we have,
from (2.12), θ(X)h'(Y, Z)-θ(Y)hf(X, Z)=0, which implies h'(X, Y)=μθ(X)θ(Y) at
p, μ being a certain number. Thus, taking account of (2. 9), we have at p

(2. 14) A'=0.

Conversely, suppose that h'=Q holds at p. Substituting (2.14) in (2. 12), we have
{X, Z}da(Y)-(Y, Z)da(X)=Q, which implies that the equation

(2. 15) da=Q

holds at />. Thus we have

LEMMA 2.2. L0ί M71 £0 <2 pseudo-umbilical submanifold of codimension 2
immersed in a Riemannian manifold Mn+2. Assume that all curvature transforma-
tions of Mn preserve the tangent space Tq(x(Mn)) at each point q of x(Mn) and
Θ^Q at p. Then, da=Q at a point p of Mn if and only if h'=Q at p.

Let our submanifold Mn of codimension 2 satisfy the assumption stated in
Lemma 2. 2. We first assume that the mean curvature a is constant in Mn, i.e.,
that da=Q holds identically in Mn. Then by means of Lemma 2. 2 we have iden-
tically A7=0 or 0=0. Substituting A'=0 in (2. 13), we obtain {X, Z}Θ(Y)-(Y, Zyβ(X)
=0, from which Θ=Q. We next assume that Θ=Q and substitute this equation in
(2. 12). Then we obtain Jα=0. Summing up, we have, by means of Lemma 2. 1,

LEMMA 2. 3. Let Mn be a pseudo-umbilical submanifold of codimension 2 im-
mersed in a Riemannian manifold Mn+2. Assume that all curvature transformations
of Mn preserve the tangent space Tq(x(Mn)) of x(Mn) at each point q of x(Mn).
In this case, the following three conditions (a), (b) and (c) are equivalent to each
other.

(a) Mn is umbilical, i.e., h'=Q holds identically,
(b) the mean curvature a is constant, i.e., da=Q holds identically,
(c) ΫBxCP is tangent to x(Mn), P being defined by P=A/\A\, where A is the

mean curvature vector, i.e., #=0 holds identically.

For any submanifold Mn immersed in a space of constant curvature, all of its
curvature transformations preserve the tangent space of x(Mn) at each point of
x(Mn). Thus we have

PROPOSITION 2. 1. For any pseudo-umbilical submanifold of codimension 2 im-
mersed in a space of constant curvature, the three conditions (a), (b) and (c) stated
in Lemma 2. 3 are equivalent to each other.

As a consequence of Proposition 2.1 and Lemma 5. 2, which will be proved in
§5, we have

PROPOSITION 2. 2. Let Mn be a complete pseudo-umbilical submanifold of
codimension 2 immersed in an (n-\-2)-dimensional Euclidean space En+2. If Mn
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satisfies one of the three conditions (a), (b) and (c) stated in Lemma 2. 3, then Mn

is necessarily an n- -dimensional natural sphere Sn in En+2.

In Proposition 2. 2, we mean by an ^-dimensional natural sphere Sn in an m-
dimensional Euclidean space Em an ^-dimensional sphere Sn lying naturally on an
(n+1) -dimensional plane En+1 imbedded in Em (n<m).

By a similar device, we can prove the following proposition by means of
Lemma 5. 1, which will be proved in § 5.

PROPOSITION 2. 3. Let Mn be a complete pseudo-umbilical submanifold of codi-
mension 2 immersed in an (n+2)-dimensional sphere Sn+2 (c:En+*). If Mn satisfies
one of the three conditions (a), (b) and (c) stated in Lemma 2. 3, then Mn is the
intersection of Sn+2 and a plane En*1 of codimension 2, which does not pass the
origin of Sn^2.

§3. Pseudo-umbilical submanifolds of codimension 2 in a space of constant
curvature.

Let Mn be a pseudo-umbilical submanifold of codimension 2 immersed in an
(τz-|- 2) -dimensional space M n+2 of constant curvature c. The curvature tensor L of
Mn+2 has, by definition, the form

L(X, Ϋ)Z=c{(Ϋ, Z)X-(X, Z)Ϋ]

for X,Ϋ, Z€2*o(Mn+2), from which we ha^e

L(BX, BY)BZ=cB{(Y, Z}X-(X, Z} Y}, L(BX, BY)CP=0

for X, Y, Zc %l(Mn). Substituting these in (2. 10) and (2. 11), we have the equations
(2. 12), (2. 13) and

(3. 1) R(X,

(3. 2) dθ=Q.

Taking the trace in (2. 12) with respect to Y and Z, we have

(3. 3) (n-l)da(X)+h'(l, Jί)=0,

/ being an element of £ΓJ(MW) such that

(3.4) 0(X)=<l,X>.

Substituting Z=l in (2. 12) and using (3. 3), we have

(«-2) (θ(X)da(Y)-θ(Y)da(X))=0,

from which, if n^3,

(3. 5) 0(X)da(Y)-θ(Y)da(X)=0.

We now assume that da^Q holds everywhere in Mn and n^3. Then (3. 5)
implies
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(3.6) θ=γda,

γ being a certain function in Mn, where γ^Q holds everywhere in Mn because of
Lemma 2. 3. Thus we have equivalently

(3. 6)' da=βθ, β= — .

Substituting (3. 6)' in (2. 12), we obtain

from which h'(X, Z}—β(X, Z}=λθ(X)θ(Z\ λ being a certain function in Mn, because
of o=γda^Q. Therefore, taking account of Tr Λ'=0, we have λ=— nβ/\θ\2 and hence

(3. 7) h'(X, Z)=β{ζX, Zy-nφ(X)φ(Z)},

where φ=θ/\θ\ and \θ\ denotes the length of θ. Substituting (3. 7) in (3. 1), we
obtain

R(X,
(3.8)

-nβ>{(φ(Y)X-φ(X)Y)φ(Z)+(φ(XKY, Zy-

e being defined by e=l/\l\. We easily see from (3. 8) that the Ricci tensor S
and the curvature scalar r of Mn have respectively the following forms:

(3. 9) SCX, F)={(»-l)(α'+c)-j8'}CX, Yy-n(n-2)β*φ(X)φ(Y),

(3. 10) r=n(n-l)(cP+c-F).

Denoting by σp(ξ, ή) the sectional curvature of Mn corresponding to two vectors ξ
and η tangent to Mn at a point p of Mn, we have by means of (3. 8)

(3. 11) σjtf, l)=(«*+F+c)+rf*«e, £>'+<*, ?>2),

if \ξ\ = \η\ = ι and <f, η>=Q. Thus the formulas (3.8)^(3.11) hold, provided ^^3,
when da^Q holds everywhere in Mn.

On the other hand, if we assume that da=0 at a point q, we have hf=ΰ at q
because of Lemma 2. 2. Thus, substituting h'=Q in (3. 1), we have R(X, Y)Z
=α2{<F, ZyX-(X, ZyY}, from which

(3. liy σq(ξ, η) = a*+c

if da=Q at q. Therefore, taking account of (3. 11) and (3. 11)', we have

PROPOSITION 3. 1. Let Mn be a complete pseudo-umbilical submanifold of codi-
mension 2 immersed in a space Mn+2 of constant curvature c and denote by a the
mean curvature. If there exists a positive constant δ such that α2+£><52>0, and,
if n^3, then Mn is necessarily compact.

As a corollary to Proposition 3. 1, we have

PROPOSITION 3. 2. Any complete pseudo-umbilical submanifold Mn of codimen-
sion 2 immersed in a space Mn+2 of positive constant curvature is necessarily
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compact, if ni^3.

We are now going to obtain the conformal curvature tensor & of a pseudo-
umbilical submanifold of codimension 2 immersed in a space of constant curvature
c. We first assume that da^O and n^3. Defining an element © of ζ£l(Mn) by
the equation

^X' Y^~~hS(X' F)+ 2(.-l)(.-2) <* F>

and substituting (3. 9) and (3. 10) in this, we obtain

(3. 12) BOY, F) = - -y (a*+β*+cKX, F>+^V(Z)^(F).

The conformal curvature tensor of Mn is, by definition, an element K of 2Ί(Mn)
given by

(3. 13) &(X, F)Z=Λ(X, F)Z+3)(F, Z)X-Φ(X, Z)F+(£(X)<F, Z>-@(F)<X, Z>,

® being an element of ζT\(Mn) defined by </£(X), F>=®CX; F). If we substitute
(3. 8) and (3. 12) in (3. 13), we have

i.e., (£=0. That is to say, Mn is conformally flat, provided ^^4, if da^Q. However,
as was mentioned above, the formulas (3. 8) and (3. 12) with /3=0 hold at any
point q where da=Q. Thus we have S=0 at such a point q, if ^^4. Therefore
we have

PROPOSITION 3. 3. Any n- dimensional pseudo-umbilical submanifold Mn of
codimension 2 immersed in a space Mn+2 of constant curvature is conformally flat,
if n^k.

We shall now study more in detail properties of pseudo- umbilical submanifold
Mn of codimension 2 in a space of constant curvature. We assume that the mean
curvature α satisfies the condition da^Q everywhere in Mn. Substituting (3. 6)
in (3. 2), we have dγ/\da=Q, which means that β (or equivalently γ) is a function
β(a) depending only on α. If we substitute (3. 7) in (2. 13) and take account of
(3. 6)', we obtain

(3. 14) -/3/3'

where β'=dβ/da. Putting Z=e in (3. 14) and taking account of φ(X) = (X, e) and
φ=θl\θ\, we have

(3.15) (F*0(r)-(Fr0CSO=0

because of φ(e)=l and (Pγφ)(e)=Q which is a direct consequence of φ(e)=l and
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φ(X)=(X, e). Therefore, if we put Y=e in (3. 15), we obtain

(3. 16) Fe^=0, or equivalently, Fe0=0,

which shows that the unit vector field e generates geodesies. Next, substituting
X=e in (3. 14) and taking account of (3. 6), we have

(3.17) Pγe=-μ{Y-φ(Y)e},

' ~ nβ ' ~da

That is to say, the unit vector field e is torse-forming. Summing up, we have

LEMMA 3. 1. Let Mn be a pseudo-umbilical submanifold of codimension 2 in
a space of constant curvature. If da^O holds everywhere in Mn, a being the mean
curvature, then the unit vector field e, which is proportional to the gradient vector
of a, generates geodesies and is torse- forming.

§4. Pseudo-umbilical submanifolds of codimension 2 of a Euclidean space.

We are going to study in detail properties of pseudo-umbilical submanifolds of
codimension 2 immersed in a Euclidean space. We first have the following Pro-
position 4. 1, as a corollary to Proposition 3. 1.

PROPOSITION 4. 1. Let Mn be a complete pseudo-umbilical submanifold of codi-
mension 2 immersed in a Euclidean space En+2. If there exists a positive number
δ such that α><5>0, α being the mean curvature, then Mn is necessarily compact.

Let Mn be a pseudo- umbilical submanifold of codimension 2 immersed in a
Euclidean space En+2 and assume that Jα^O holds everywhere in Mn, a being the
mean curvature. For a certain constant c, a connected component of a submanifold
defined in Mn by the equation a=c is denoted by M?""1, which is (^—1)- dimensional
because of da^ΰ. Denoting by x: Ml~l-*Mn the immersion of Me'1 into Mn and
by x: Ml~l-*En+z the immersion of M?"1 into En+2> we have x=xx where x: Mn

-*En+2 is the immersion of Mn into En+2. We denote the tangential mappings of
the immersions x, x and x by B, B and $ respectively, where we have B=BB.
The normal mappings of x, x and x are respectively denoted by C, C and C. The
second fundamental tensors of the immersions x, x and x are respectively denoted
by H, H and H. We denote by {( , }} and {( , }}* respectively the inner products
induced in T(Mn

c~
l) and in N(Mn

c~
l\ N(MΓ1) being the normal bundle over MΓ1

with respect to the immersion x: M^-^Mn. Taking account of (2. 8) and (3. 7),
we have, by means of φ(BU)=φ(BW)=Q,

h(BU, BW)=a<(BU, BWy=:a((U, W)),

h'(BU, BW}=β(BU, BWy=β((U, W))
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for U, TFesrSCΛίΓ1), which imply together with (2. 1)

(4. 1) H(B U, BW)=a((U, W))P+β({U, W))Q

for U, Ws%l(Mn

c-
l\ Substituting Y=BU in (3. 17), we obtain

(4.2) rSϋe=

because of φ(BU)=Q. Denoting by N the element of SZJCMIΓ1, x), which is the
normal bundle of the immersion x: M?"1— >MΛ, such that CN=e along M?"1, we
have from (4. 2)

(4.3)

for U,
If we substitute (4. 1) and (4. 3) in (1. 24), we obtain

(4. 4) Cfi(U, W)=a((U, W}}CP+β((U, W)}CQ+μ((Uy W}}BCN

for U, We 3l(Me'l)9 which shows that the immersion x: M"-l->En+z is umbilical.
Taking account of (1. 11), (2. 4) and Θ(BU)=Q, we have

= - BK(B U,P)=- aBB U= - a& U, i.e.,

(4.5) ^BuC

for ί/e ̂ KM^-1). Similarly we have

(4.6)

for Z/€ SΓoίM?"1)- Putting Y=BU and e=CN in (3. 17) and taking account of φ(BU)
-0, we obtain ί7^uCN=-μBU for Z/eSΠCMΓ1), which implies together with (1. 8)

PtoBCN=-μβU+CH(BU, Off).

However, since we have H(BU, CN)=0 because of (2. 8) and (3. 7), we have

(4.7) V&ϋBCN=-μbU

for UG SKMc"1). We now have the following identity

- VBUVBWBCN- PLBw,BmBCN= 0

for U, Wzζ[l(M™~1'), because the enveloping manifold is Euclidean. Substituting
(4. 7) in the identity above and taking account of [BW, &U]=&[W, U], we obtain
dμ(W)U—dμ(U)W=Q, from which dμ=Q, because U and W are arbitrary. On the
other hand, a is constant along M?"1 and hence so are β, β'. Therefore, taking
account of (3. 6)x and (3. Γ7/, we see that the length \da\ of da is constant along
MΓ1.

According to (4.4), the mean curvature vector A of the immersion x: Mc~l

-+En+2 has the form
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(4. 8) CA = aCP+βCQ+μBCN.

a, β and μ being constant along Mn

c~\ we have, from (4. 5), (4. 6), (4. 7) and (4. 8),

(4.9) V&vCP=

for £/€ ΞΓJCΛί?-1), where we have put

Thus, taking account of (4. 9) and Lemma 5. 1 which will be proved in § 5, we
have

LEMMA 4. 1. Let Mn be a pseudo-umbilical submanifold of codimension 2 im-
mersed in En+2. Assume that da^Q holds everywhere in Mn, a being the mean
curvature. If a connected component Me"1 of a submanifold defined by a=c, c being
a certain constant, is complete, and, if nl^3, then M"~l is an (n—V)- dimensional
natural sphere Sn~l with radius 1/v in En"2 (see (4. 10)). The length \da\ of da
(or equivalently \θ\) is constant along each M"~l.

Let g be the family of orthogonal trajectories of M?~1Js. Then, by virtue of
Lemma 3. 1, each element of g is a geodesic. On the other hand, according to
Lemma 4. 1, \da\ is constant along each ΛfJ"1. Thus, taking certain consecutive
numbers c and cr, we see that M"'1 and MJr1 cut off a geodesic-arc of the same
length from each of geodesies belonging to g. Therefore, combining Lemmas 3. 1
and 4. 1, we have

PROPOSITION 4. 2. Let Mn be a pseudo-umbilical submanifold of codimension 2
immersed in an Euclidean space En+2. Assume that da^O holds everywhere in Mn,
a being the mean curvature. If each of connected components M"~l of submanifold
defined by a=c, c being constant, is complete, and, if ^^3, then M?"1 is an (n—1)-
dimensional natural sphere S?"1 in En+2, Mn is generated by a family $ of such
spheres S?"1 (=M?-1) and the orthogonal trajectories of ft are geodesies, whose unit
tangent vectors e form a torse- forming vector field. Any two consecutive SJ"1 and
ScΓ1 cut off a geodesic-arc of the same length from each of orthogonal trajectories

of 9.

Let Mn be a pseudo-umbilical submanifold of codimension 2 in En+2. We
assume that da^O holds in a coordinate neighborhood U of Mn, a being the mean
curvature. Then we can choose in U a system of local coordinates (x1, x2, •••, xn)
in such a way that the equation x1= const, represents in U an (n— l)-dimensional
submanifold M?"1 defined by a=c, the variable x1 indicates the arc length along
any geodesic, which is an orthogonal trajectory of the family § of the submanifolds
M?"1^ and the equations #α=const. (a=2, ~,ri) respresent in U an orthogonal
trajectory of the family Q of M?"1. If we now follow classical notations, we see,
from the proof of Lemma 4. 1, that the line element ds2 of the submanifold Mn
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has in U the following form:

(4. 11) ds2=(dx1)2+p(x1)2dσ2 (io(^1)>0)

with respect to such local coordinates O1, x2, •••, xn),

dσ2=Σa,t>=2rt>a (x\ •••, xn)dxbdxa

denoting the line element of an (n— l)-dimensional space of constant curvature 1.
Moreover, the mean curvature a is in U a function depending only on the variable
xl (Cf. Lemma 4. 1).

According to (4. 11), U is conformal to the Pythagrean product Rx F71"1, where
R and Vn~l denote respectively a line segment and an (n— l)-dimensional Rieman-
nian space of constant curvature 1. Consequently, U is conformally flat. Thus
we have

LEMMA 4. 2. Let Mn be α pseudo-umbilical submanifold of codimension 2 im-
mersed in En+2. Assume that da^Q holds everywhere in Mn. Then, if n~^Ά, Mn

is conformally flat.

We consider a 3-dimensional pseudo-umbilical submanifold Ms of codimension
2 in Eδ. Denoting by 'M3 the set of all points at which Jα^O, where a is the mean
curvature, and taking account of Lemma 4. 2, we see that 'M3 is conformally flat.
Thus the element % of 21(M3) defined by

'<εtx, r, z)= -J—{(/
n Δ

(4. 12)

S and r being respectively the Ricci tensor and the curvature scalar of M3, vanishes
identically in 'M8. Putting "M8=Λf8— 'Λf8, we see by means of Proposition 2. 2
that each connected component of the open kernel of "M3 is a piece of a 3-dimen-
sional natural sphere S3 in E5, and hence, as is well known, that the tensor '(£
defined by (4. 12) vanishes in the open kernel of "M3. Therefore, taking account
of the continuity of '®, we see that '(£ vanishes identically in M3. That is to say,
M3 should be conformally flat. Thus, taking account of Proposition 3. 3, we have

PROPOSITION 4. 3. Any n-dimensional pseudo-umbilical submanifold of codimen-
sion 2 immersed in a Euclidean space En+2 is conformally flat if n^3.

We can prove Proposition 4. 3 only by using Lemma 4. 2. By a similar device
as that used in the proof of Proposition 4. 3, we can prove

PROPOSITION 4. 4. Any n-dimensional pseudo-umbilical submanifold of codi-
mension 2 immersed in an (n+'Σ)- dimensional spere Sn+2> is conformally flat, if
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§5. Umbilical submanifolds immersed in a Euclidean space.

For the completeness, we shall prove the following

LEMMA 5. 1. Let Mn be an n- dimensional, complete, umbilical submanifold with
non-zero mean curvature a, immersed in an m-dimensional Euclidean space Em (n<,m).
If the unit vector field P in N(Mn), such that A=aP is the mean curvature vector,
is parallel in N(Mn), i.e., if F$P=0 for XsSKM*), and, if n^2, then the mean
curvature a is necessarily constant and Mn is an n- dimensional natural sphere Sn

in Em.

In Lemma 5. 1, we mean by an ^-dimensional natural sphere Sn in Em a sphere
lying naturally in an (#-}-l)-dimensional plane En+l of Em.

Proof. Putting L=0 in (1. 16), we have

(5. i) (Pzffxr, z)-(rτHχx, z)=o.

Since Mn is umbilical, we have

(5.2) H(X, Y}=a(X, Y>P.

Substituting (5. 2) in (5. 1) and taking account of F$P=0, we have Fxa=ΰ, from
which we see that a is constant.

Denoting by x\ Mn—*Em the immersion of Mn, we can express the position
vector indicating the point x(p),p$Mn, also by x(p) and the correspondence p-+x(p)
can be regarded as a differentiate function denoted by x, which takes vectors in
Em as its values.

Taking account of (5. 2) and P$P=0, we have from (1. 11)

(5.3) VBzNι=

for X£^\(Mn\ Ni being denned by Nι=CP, because we have BX=ΫBχx for any
n). This reduces to

because a is a non-zero constant. Thus the point pQ=x-\-(Ί./ά)Nι is fixed. There-
fore x(Mn) lies on a hypersphere S™"1 with center pϋ and with radius I/ ex.

Taking an element Q of 3Ίl(Mn) such that <Q, P>*=0, we have K(X, Q)=0
because of (5. 2). Thus we have from (1. 11)

for X€ζTl(Mn\ N2 being defined by N2=CQ. Differentiating (M, N2)=0 along x(M)
and taking account of (5. 3), we find



382 KENTARO YANO AND SHIGERU ISHIHARA

Therefore, denoting by Dx the set of all vectors N at a point x of x(Mn) such
that N is normal to x(Mn) and orthogonal to M, we see that {Dx\x€x(Mn)} forms a
1-dimensional distribution D which is parallel in Em. Thus there exists a unique
(^+l)-dimensional plane En+1, which is orthogonal to all of Dx and passing through
the point ~ p0=xJr(lla)Nι. SmceNι=axpo is orthogonal to Dx at each point x of
x(Mn), each point x should belongto En+1. Consequently, x(Mn) lies on En+1.

Summing up, x(Mn) is contained in the natural sphere Sn=Sm~1 (Ί En+1.
Therefore x(Mn) coincides with Sn, because χ(Mn) is complete. The radius of Sn

is obviously equal to 1/α. Hence we have proved Lemma 5.1.

Combining Lemmas 2.1, 2. 3 and 5.1, we have

LEMMA 5. 2. Let Mn be a complete umbilical submanifold of codimension 2,
with non-zero mean curvature a, immersed in an (n+2)-dimensional Euclidean space
En+2. Then the mean curvature a is necessarily constant and Mn is an n-dimen-
sional natural sphere Sn in En+2.

When Mn is a hypersurface in En+1, its normal bundle N(Mn) is a 1-dimen-
sional vector bundle. Then any unit vector field P in N(Mn) satisfies the condition
P*P=Q for X€gl(Mn). Thus, taking account of Lemma 5. 1, we have the following
well known

LEMMA 5. 3. Let Mn be a complete umbilical submanifold of codimension 1,
with non-zero mean curvature a, immersed in an (n+V)-dimensional Euclidean space
En+1. Then the mean curvature a is necessarily constant and Mn is an n-dimen-
sional natural sphere Sn in En+1.
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