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INVARIANT SUBMANIFOLDS OF AN ALMOST
CONTACT MANIFOLD

BY KENTARO YANO AND SHIGERU ISHIHARA

§ 0. Introduction.

Let V be a differentiable manifold imbedded differentiablly as a submanifold
in a differentiable manifold M with an almost complex structure F and denote by
c. V-^M its imbedding. If the tangent space Tp(e( V)) of c( V) is invariant by the
linear mapping F at each point P of c( F), the t( V) is called an invariant submani-
fold of an almost complex manifold M, [5].υ

An invariant submanifold of an almost complex manifold is itself an almost
complex manifold and an invariant submanifold of a complex manifold is itself a
complex manifold.

It is also known that an invariant submanifold of a Kahlerian manifold is
itself a Kahlerian manifold and is a minimal submanifold, [5], [6].

The main purpose of the present paper is to define invariant submanifolds
of an almost contact manifold and to study properties of these invariant sub-
manifolds.

In §1, we fix our notations in the present paper and prove some formulas for
submanifolds imbedded in a Riemannian manifold, and in §2 we state some of
important results in the theory of almost contact manifolds.

In §3, we define invariant submanifolds of an almost contact manifold and
study their properties.

§4 is devoted to the study of invariant submanifolds of a normal almost con-
tact manifold.

In the last §5, we study properties of invariant submanifolds in connection
with the theory of fibred spaces developed by the present authors [7], [8].

The concept of invariant submanifolds in an almost contact manifold appears
also in a recent paper by Okumura [1].

§ 1. Formulas for submanifolds.

As we are going to study some special kinds of submanifolds, we would like
first of all tp reformulate formulas for general submanifolds in a Riemannian mani-
fold for the later use. Let V be an m-dimensional manifold imbedded differentiablly
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as a submanifold in an ^-dimensional Riemannian manifold M, where m<.n, and
denote by c: V-^M its imbedding2'. Denote by B: T(V)-+T(M) the differential
mapping of c, i.e., B=dε, T(V) and T(M) being respectively the tangent bundles
of V and of M On putting T(V,M)=BT(V), the set of all vectors tangent
to c(V), we see that B: T(V)—*T(V,M) is an isomorphism. The set of all vectors
normal to c( V) forms a vector bundle N( V, M) over e( F), which is called the normal
bundle of V. The vector bundle induced by c from N( F, M) is denoted by N( F),
which is called also the normal bundle of F. We denote by C: N( V)->N( F, M)
the natural isomorphism.

We introduce now the following notations: £Γί(F) is the space of all tensor
fields of type (r, s), i.e., of contravariant degree r and covariant degree s, as-
sociated with T(F). £Γ(F)=Σr,β£ΓΪ(F) is the space of all tensor fields associated
with Γ(F). 32rg(V) is the space of all tensor fields of type (r, 5) associated with
N(V). 3Ί(V)=Σr,s32r

s(V) is the space of all tensor fields associated with N(V).
Thus £ΓS(F)=^S(F) is the space of all differentiate functions defined on F. An
element of £Π(F) is a vector field in F. An element of ^Zi(F) is a vector field
normal to F.

Take a vector field X defined along c(V\ not necessarily tangent to e(V).
For any point P of c( F), there exists in M a neighborhood Ω containing P such
that there exists in Ω a vector field X which is an extension of X. Such a local
vector field X is called a local extension of X restricted to the connected com-
ponent of ΩΓ\c(V\ which contains the point P. Let X and F be two vector fields
defined along c(V) and tangent to c(V). Taking local extensions X of X and Ϋ
of F in a neighborhood Ω of M, we see that [X, Ϋ] is tangent to c( F) and its
restriction [X,Ϋ]V to c(V) is determined independently of the choice of these local
extensions X and F. Therefore we can define [X,Ϋ] by

(1.1) lX,Y] = lX,Ϋ]v.

Thus we can easily see that

(1.2) [BX,BY]=B[X,Y]

holds for
If we denote by G the Riemannian metric tensor of M and put

(1. 3) g(Xl9 Xύ=G(BXl9 BXZ\ g*(Nl9 N*)=G(CN,, CN2)

for Xl9X^Sl(V) and Nί9N^3ll(V)9 then g is a Riemannian metric tensor in F,
which is called the induced metric of F, and g* is a tensor field defining an inner
product in N(V). The g* is called the induced metric of Λ/"(F).

Let F be the Riemannian connection determined by G in M, i.e., the torsion-
less affine connection in M such that ί?G=Q. Suppose that a vector field X

2) Manifolds, mapping, tensor fields and any geometric objects we discuss are assumed
to be differentiable and of class C°°.
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tangent to e(V) and another vector field F, tangent to c(V) or not, are given
along c(V). We choose arbitrary local extensions X of X and F of F in a neigh-
borhood Ω of M. Then we can prove that the restriction (PgΫ)v of figΫ to c(V)
is independent of the choice of local extensions X and Ϋ. Therefore we can
define 9 XT by

(1. 4) ΓjfF

Thus, taking account of (1. 1) and (1. 4), we have the formula

(1.5) PXΫ-P?X=[X,Ϋ]

for any vector fields X and F defined along c(V) and tangent to ι(V\ because
*

For any vector field X along ί(F), we denote by Xτ its component tangent to
c(V) and by^JP" its component normal to c(V). Then we obtain a unique decom-
position of X: X=XT+XN. If we put

(1.6)

for X, Fe£Π(F), we have a unique element FXF of £Π(F) and can check easily

for /€£ΓS(F). Thus the correspondence (X, Y)-+PχY defines in V a covariant
differentiation with respect to an affine connection P, which, as is well known,
coincides with the Riemannian connection determined by the induced metric g.
The affine connection F thus introduced in V is called the induced connection of
F. If we put

(1.7) C(V χϋ)=(

for any Xe&KV) and t/€3?S(F), we have a unique element VXU of 22S(F) and
can check easily

(1. 8) Vfzϋ=fVΣυ, VxfU=fVxU+(Xf}U

for any /e£ΓS(F). Thus the correspondence (X, U)-^PχU defines in N(V) a
covariant differentiation with respect to a linear connection F in N(V), which
satisfies the condition F0*=0. The linear connection V thus introduced in N(V) is
called the induced connection of N(V).

If we put

(1. 9)

(i 10)

for any J£, F€£Γi(F) and t/€^J(F), then the correspondences Y-»(ΫZB)Y and
U-+(ΫχC)U define respectively linear mappings ΓX5: £Γ}( F) -* 57J( F) and
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(i. ii)

for any /€£ΓS(F), X, F€£Π(F) and Usm\(V\ We have from (1. 9) and (1. 10)

(1. 12) ΫBzBY=(yzB)Y+B(VzY\

(1. 13)

for any X, Fe£Π(F) and C/€32J(F) respectively.
We extend naturally the operations of the induced connections V of Γ(F)

and that of 7V(F) respectively to £Γ(F) and 32 (F) as derivations and denote the
extended covariant differentiation also by the same symbol V . We shall now define
a derivation P 'z, J£€£Γo(F), in £Γ(F)<8)32(F) as follows:

for Γ€£r(F) and Z7e3?(F). The derivation F^ thus defined in £Γ(F)<8)32(F) is
the so-called #ίm J0r Waerden-Bortolotti covariant differentiation along F.

Since the vector field (VZB)Y (X, Fe £rj( V)) appearing in (1.12) belongs to
Cm\(V)y we have a unique element H(X, F) of 32}(F) such that

(1.14) (FXB}Y=CH(X, F),

where H" is an element of 2'0

2(F)(8)3r2j(F) because of (1. 8) and (1. 11). Since the
vector field (FXC)N tXe£Π(F), NsmKVV appearing in (1. 13) belongs to 5£Π(F), we
have a unique element h(X,N) of £Π(F) such that

(1.15) (VxC)U=-Bh(X,U\

where A is an element of £Π(F)(x) ̂ J(F) because of (1. 8) and (1. 11). These two
tensor fields H and h are the so-called second fundamental tensors of the submani-
fold F. We can thus write down (1. 12) and (1. 13) respectively as follows:

(1. 16) 9*zBY=BφzY)+CH(X, Y\

(1. 17) FBχCU=C(VxU}-Bh(X, U)

for any X, F€^ί(F) and
We have G(BY,CU)=Q for any ye£ΓS(F), ί/€325(F), because ^F and Cί7 are

perpendicular to each other. Thus, taking account of FG=0, we obtain

which implies together with (1. 14) and (1. 15)

(1. 18) Q*(H(X, F), U)=g(h(X, U\ F)

for any X, F€£Π(F) and UsJlKV). On the other hand, taking account of (1. 2)
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and (1. 5), we have

ΫBxB Y- FBYBX= [BX, B Y]

=B[X, Y]

for any X, Γ€£Π(F). Substituting (1. 16) in the equation above, we find

(1.19) H(X,Y)=H(Y,X)

for X, Γe£Π(F).
Let Xι,X2, ,Xm be m local unit vector fields in V, which are perpendicular

to each other, where m=άim V. Then an element A of 32l(V) is defined by

m

(1.20) mA=ΣH(X*,Xλ
J = l

which is called the mean curvature vector of the submanifold F. When the mean
curvature vector A vanishes identically in F, F is called a minimal submanifold
in M

Taking three elements X, Y and Z of £Γί( F), we have

9 Z)}

-h(X, H(Y, Z»}+C{H(X, VγZ)+VzH(Y, Z)}

by virtue of (1. 16) and (1. 17). Therefore, denoting by K and K respectively the
curvature tensors of M and F, we have, by definition,

K(BX, BY)BZ= VBXVBYBZ- PBYVBXBZ- V,BXιBY,BZ,

K(X, Y}Z=VXFYZ-FYVXZ-VLX,Y,Z

and hence

K(BX, BY}BZ^BK(X, Y)Z-B{h(X, H(Y, Z))-h(Y, H(X,
(1. 21)

, Z)}

for any X, F,Ze£Γί(F) by virtue of the identity

, Z)+H(Y, V XZ\

Denoting by K* the curvature tensor of the induced connection of N( F), we have
by a similar device

K(BX, BY}CU=CK*(X, Y}U-C{H(X,h(Y, U))-H(Y,h(X, U))}
(1. 22)

-B{(rzK)(Y, C7)-(

for any X, F€^(F) and any UeJlKV). The equations (1. 21) and (1. 22) are the
so-called structure equations of the submanifold F.
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§2. Almost contact structures.

We shall now recall definitions and some properties of almost contact structures
for the later use. We consider in an odd-dimensional differentiable manifold M an
almost contact structure, that is, a structure (F, ζ, ή), F, ξ and η being a tensor
field of type (1, 1), a vector field and a 1-form respectively, such that

(2.1)

for any Xz £ΓJ(M), where / denotes the identity tensor of type (1, 1). The Nijenhuis
tensor N of F is, by definition, a tensor field of type (1, 2) given by

(2. 2) N(X, Y)=[FX, FY]-F[FX, Y]-F[X9 FY]+F*[X, Y]

for any X, Y€ £ΓJ(M). The almost contact structure is said to be normal when it
satisfies the condition

(2. 3) S=0,

S being a tensor field of type (1, 1) defined by

(2.4) S=N+dη®ξ.

The condition (2. 3) implies

(2. 5) XF-0,

(2. 6) X5?=0, or, equivalently dy(ξ, X)=Q

for any J£€£Γo(M), where X denotes the Lie derivation with respect to ζ (Cf. [2],
[3], 141).

Suppose that a Riemannian metric G is given in M and satisfies the condition

(2. 7) G(X, Y)=G(FX,

(2.8)

for any JΓ, F€ £Γ}(M). Then the structure (F, G, ζ, ή) is called an almost contact
metric structure. A tensor field Φ of type (0, 2) defined by

(2. 9) ΦCX; F)-G(F^Γ, F)

for any X, Fe£Γi(M) is skewsymmetric, i.e.,

Φ(X, Y)+Φ(Y, X)=0.

When the condition
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(2. 10) Φ = dη

is satisfied, (F, G, f , 57) is called a contact metric structure. When the tensor field S
defined by (2. 3) vanishes identically, the contact metric structure is said to be
normal. If the contact metric structure (F, G, ξ, ή) is normal, we have

(2. 11) £G=0,

(2. 12)

or, equivalently

(2. 13)

for any X, Y, Zζ £ΓS(M), where ί7 denotes the Riemannian connection determined
be G and J? the Lie derivation with respect to ξ, [2], [3], [4],

§ 3. Invariant submanif old in an almost contact manifold.

Let V be an m-dimensional differentiable manifold imbedded as a submanifold
in a (2^+l)-dimensional differentiable manifold M with an almost contact structure
(F, I, ή) and denote by c. F-̂ M its imbedding. We assume that the tangent space
T?(c( F)) or the submanifold c( F) is invariant by the linear mapping F at each point
P of c( F) and call F an invariant submanifold M. We note here that the formula
(1. 2) holds in the present case. Since F is invariant, following the notations
introduced in § 1, we have

(3. 1) FBX=BFX

for any X€£ΓJ(F), where F is an element of £Γ}(F). Denoting by TV and N
respectively the Nijenhuis tensors of F and F, we have

(3. 2) N(BX, BY)= BN(X, Y)

for X, F€ £Γ J( F). In fact, we have from the definition (2. 2) of the Nijenhuis
tensor

N(BX, BY)=[FBX, FBY]-F[FBX, BY]-F[BX, FBY]+F2[BX, BY}

= [BFX, BFY] -F[BFX, BY]-F[BX, BFY] +F2[BX, BY]

=B{[FX,FY]-F[FX, Y]-F[XtFY[+F2[Xf Y]}

=BN(X, Y)

by virtue of (1. 2) and (3. 1), which proves the formula (3. 2).
We see easily that there occur only following two cases, i.e., Case I and Case

II for any invariant submanifold F in an almost contact manifold M:
Case I: The vector field ζ is never tangent to c(V), where F is necessarily
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even-dimensional.
Case II: The vector field ξ is always tangent to c(V\ where V is necessarily

odd-dimensional.
We first consider the Case I.
Case L The vector field ξ is never tangent to the invariant submanifold c( V),

that is, I is independent of any vector field of the form BX, XsΉKV). Applying
F to (3. 1), we have by virtue of (2. 1)

BF2=F2BX

(3.3) = (

for any XeζΓKV), which implies

(3.4) F2--/, η(BX) = 0

for any Xe £Γί( V). The first equation of (3. 4) shows that the tensor field F
appearing in (3. 1) is an almost complex structure, which is called the induced
almost complex structure of the invariant submanifold V. Taking account of the
second equation of (3. 4), we have by virtue of (1. 2)

(3. 5) dή(BX, BY)=(BX)1j(BY)-(BY)?j(BX)-η(B[X, Y])

for any X, F€£ΓJ(F), which implies

(3.6) dή(BX,BY)=0

for any Jξ F€ £ΓJ( V). Thus, denoting by S the tensor field defined by (2. 4) in
terms of (F, ξ, ή), we find

S(BX)BY)=N(BXίBY)

and hence by virtue of (3. 2)

(3. 7) $(BX, BY)= BN(X, Y)

for any X, F€£Π(F). Thus we have

PROPOSITION 3. 1. An invariant submanifold V imbedded in an almost contact
manifold M in such a way that the vector field ζ is never tangent to c( V) is an
almost complex manifold with the induced almost complex structure F. If the almost
contact structure of M is normal, the invariant submanifold V is a complex
manifold.

Case II. The vector field ζ is always tangent to the invariant submanifold
c(V\ that is, ξ is expressible as

(3. 8) ξ=Bξ,
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where £ is a unique element of £ΓJ(F). If we put

(3. 9) η(X)=η(BX)

for any _Xe£Π(F), then η is a 1-form in F. Thus by virtue of (3. 1), (3. 8) and
(3. 9) we have, from (2. 1),

(3.10) F*=-I+η®ξ

and, from the conditions Fξ=Q, ή(F(BX))=0 and ή(ξ)=l, respectively

(3. 11) Ff=0,

for any Xc £ΓJ( F). Therefore (F, ζ, ή) forms an almost contact structure in F,
which is called the induced almost contact structure of F. Taking account of (3. 5)
and (3. 9), we obtain along F

(3. 12) dη(BX, BY)=dy(X, F)

for X, Ye&KV). If we denote by S and S the tensor fields defined by (2. 3) in
terms of (F, f , η) and (F, ξ, ή) respectively, then we have by virtue of (3. 2), (3. 8)
and (3. 12)

(3. 13) S(BX, BY)=BS (X, F)

for X, F€£Π(F). Thus we have

PROPOSITION 3. 2. An invariant submanifold V imbedded in an almost contact
manifold M in such a way that the vector field ξ is always tangent to c(V} is an
almost contact manifold with the induced almost contact structure (F, ξ, ή). If the
almost contact structure of M is normal, the induced almost contact structure of V
is so also.

§ 4. Invariant submanif olds in a normal contact metric manifold.

Let F be an invariant submanifold of a normal contact metric manifold M
and denote by (F, G, I, ή) the normal contact metric structure of M. We denote
by βf the induced metric of F in the sense of § 1.

Case I. We assume that the vector field ξ is never tangent to the invariant
submanifold c( F). Following the notations introduced in § 1 and § 2, we have by
virtue of (1. 3), (2. 7), (3. 1) and (3. 4)

(4.1) g(X, Y) = g(FX,FY)

for any X, F<Ξ 2*J( F). Thus, taking account of (3. 4) and (4. 1), we see that the
induced structure (F, g) of F is almost Hermitian. Denoting by V the Riemannian
connection determined by G, we have by virtue of (1. 16)
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, FY)

, FY)

for X, F€£Γo(PO, which implies together with (2. 12), (3. 1) and (3. 4)

B{(PxF)Y+FPχY}+CH(X, FY)

, F)}

, Y)-G(BX,BY)ξ

for any X, Fe £ΓJ( F). Since the last two terms in the last expression are normal to
t(V), we have

(4. 2) FχF=b

and

(4. 3) CH(X, FY)=PCH(X, Y)-g(X, F)|

for any X, Fe£Π(F). We have from (4. 3)

(4. 4) ' H(X, FY) = H( Y, FX)

because of the fact that the right hand side of (4. 3) is symmetric with respect to
X and Y. The equation (4. 2) shows that F is a Kάhlerian manifold with the
induced structure (F,g). We take m local unit vector fields Xι,X2, ,Xm in F,
which are mutually orthognal and satisfy the conditions

(4.5)

where m=2r. Then the mean curvature vector A defined by (1. 20) is given by

m r r

j)= Σ H(Xk, Xk)+

= - Σ H(Xk, FXk+r)+
k=l k=l

because of (4. 4) and (4. 5). That is to say, F is a minimal submanifold in M.
Summing up, we have

PROPOSITION 4. 1. An invariant submanifold V imbedded in a normal contact
metric manifold M in such a way that the vector field j is never tangent to c(V)
is a Kάhlerian manifold with the induced structure (F, g) and is a minimal sub-
manifold in M.
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Case II. We assume that the vector field | is always tangent to the invariant
submanifold ι(V\ Following the notations used in the above, we have by virtue
of (1. 3), (2. 7), (3. 8) and (3. 9)

g(X, Y)=
(4.6)

for X, F€£Π(F). If we put

φ(X, Y)=g(FX, Y)=G(FBX,BY)

for any X, F€£ΓJ(F), then we have

φ(X, Y)=dή(BX,BY)=dη(X, Y)

by virtue of (2. 8), (2. 9), (3. 9) and (3. 12). That is to say, we have

(4. 7) φ=dη.

Thus, taking account of Proposition 3. 2, (4. 6) and (4. 7), we see that the induced
structure (F, g, ζ, ή) of V is a normal contact metric structure. Taking account of
(1. 16), we have

VBzBFY=B{(VzF)Y+FVzY}+CH(X, FY)

for any X, FeS'J(F), which implies together with (2. 12), (3. 1), (3. 8) and (3. 9)

, Y)ξ}+BFϊ7χY+FCH(X, F)

for X, F€£Π(F). Therefore we have

(4. 8) CH(X, FY) = FCH(X, F))

for X, Fe £Γ}( V\ which implies

(4. 9) H(X, FY) = H( F, FX)

for X, Fe£ΓJ(F). Substituting Y=ξ in (4. 8), we obtain for

(4.10) H(X,ξ)=0

because of Fξ=0. If we take account of (4. 9) and (4. 10) and use a similar device
as used in Case I, we see that the mean curvature vector A vanishes identically,
i.e., that F is a minimal submanifold in M. Summing up, we have

PROPOSITION 4. 2. An invariant submanifold V imbedded in a normal contact
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metric manifold M in such a way that the vector field ξ is always tangent to c( V)
is a normal contact metric manifold with the induced structure (F, g, ξ, ή) and is a
minimal submanifold in M.

From Propositions 4. 1 and 4. 2, we have

PROPOSITION 4. 3. Any invariant submanifold imbedded in a normal contact
metric manifold is a minimal submanifold.

§ 5. Invariant submanifolds in a normal, regular almost contact manifold.

Let M be an ^-dimensional almost contact manifold with structure (F, f, ??),
which is normal, and assume that any orbit of the vector field ζ is a closed set in

Λ/ /V ^

M. In such a case, M is said to be regular. Then the set of all orbits of ξ forms
a differentiable manifold M of dimension n—\ if it is naturally topologized, and
the natural projection π: M^M is differentiate and of the maximum rank every-
where. Denoting by dπ the differential mapping of πy we have

(5. 1) dπξ=Q.

Since the contact metric structure (F, |, ή) is normal, we have

(5.2) J:F=O, j:η=o
by virtue of (2. 5) and (2. 6), where X denotes the Lie derivation with respect to
ξ. Thus, by virtue of the second equation of (5. 2), the set (M, M, π; j, η} forms a
fibred space in the sense of [7] and [8], where M and Mare called respectively the
total space and the base space.

In the fibred space (M, M, π; |, ή), a vector field X given in M is said to be
horizontal if rj(X)=0. An element f of £Γί(M) is said to be invariant if _£^=0,
X denoting the Lie derivation with respect to f. For an invariant function / in
M, its projection f=pf is a function in M such that f=f°π. For an invariant
vector field X in M, its projection X is a vector field in M such that X—dπX.
For a vector field X in M, a horizontal vector field X in M is called the /*/"/ of X
and denoted by XL if X=pXL, where Z^ is horizontal and invariant in M. For an
invariant 1-form ώ, its projection ώ=pώ is a 1-form in M" such that ώ(X)=pω(&L)
for Z€^ί(M). For an invariant tensor field P of type (1,1) in M, its projection
P=pP is a tensor field of the same type in Λf such that PX=p(P%L) for^Xe3l(M).
For an invariant tensor field Q of type (0,2) in M, its projection Q=pQ is a
tensor field of the same type such that Q(X,Ϋ)=pQ(£L,ΫL) for Z,?€£Π(M).
For an invariant tensor field R of type (1,2) in M, its projection R=pR is a
tensor field of the same type such that &(X,Ϋ)=pβ(XL,ΫL) for Z,
(Cf. [7], [8]). We have now

(5.3) ^=0, £9=0

directly from the definitions (Cf. (5.1) and (5. 2)).
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Denoting by P the projection pF of the invariant tensor field F (Cf. (5. 2)),
we have

(5.4)

for Z€£ΓJ(M). If we take the projection of the identity F2=— /+τ?®f, we find

because of (5. 3). Thus the base space M is an almost complex manifold with
structure P.

We have obtained in [7] the formula

(5.5) p[fr,Ϋ* ] = [X,Ϋ]

for X, Ϋ£%l(M). Denoting by N and N respectively the Nijenhuis tensors of F
and P, we have

(5. 6) pN=N.

In fact, taking account of F|=0, we have by virtue of (2. 2), (5. 4) and (5. 5)

=[PX, PΫ]-P[PX, Ϋ]-P[X, PΫ]+P2[X, Ϋ]

for 1, Ϋ €£Γί(M), which implies (5. 6).
Denoting by S the tensor field defined by (2. 3) in terms of (F, f , η\ we find

by virtue of (5. 3) and (5. 6)

(5. 7) pS=pN=N.

Summing up, we have

PROPOSITION 5. 1. Let M be a normal almost contact manifold with structure
(F, ξ, 77), which is regular. Then the base space M is a complex manifold ivith
structure P=ρjp.

Let V be an ra-dimensional invariant submanifold imbedded in M and denote
its imbedding by c. V-+M. In Case I, the vector field f is never tangent to c(V)
and hence the tangent space TP(c(V)) of c(Ϋ), at each point P of c(V\ is contained
in the horizontal plane, i.e., in the set of all horizontal vectors at P. In Case II,
the vector field f is always tangent to c(V) and hence the tangent space Tp(c(Ϋ))
of c(V\ at each point P of c(V), is a direct sum of a certain subspace of the
horizontal plane and a 1-dimensional subspace spanned by f. Therefore we see
that dim(ΓpWt?))=ra (or respectively m— 1) in Case I (or respectively in Case II)
for any point P of c$). Thus, in each case, the projection π restricted to c(V) is
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differentiable and of constant rank. Consequently the image V=π(e(Ϋ)) is a sub-
manifold immersed differentiablly in the base space M

Take a vector v tangent to V=π(c(Φ)) at a point Q of V. Then there exists a
unique horizontal vector ϋ tangent to ι(V) at each point P belonging to π'XQ) Π e(V)
such that dπv=v. Thus, we have by virtue of (5. 4)

(5. 8) dπ(Fϋ)=Pv,

where P=pF is the complex structure of the base space M. The submanifold
c(Φ) being invariant in the total space M, Fϋ is tangent to c(V). Therefore we
see from (5. 8) that Pv is tangent to V, i.e., that the submanifold V is invariant
in the complex space M Thus, taking account of Proposition 5. 1, we have

PROPOSITION 5. 2. Let V be an invariant submanifold imbedd in a normal
almost contact manifold M with structure (F9 1, rj), which is regular. Then the
image V of the Φ by the projection π\ M-+M is, in the base space M, a complex,
submanifold with respect to the complex, structure P=pfi of M.

We assume now that M is a normal contact metric manifold with structure
(F, G, I, jj), which is regular. Following the notations used in the above and
putting

we find by virtue of (2. 7) and (5. 4)

(5.9) g(X,Ϋ)=g(PX,PΫ)

for X, ΫeζΓKM). Denoting by 9 the Riemannian connection determined by G, we
proved in [8] the fact that the Riemannian connection determined by 0 satisfies the
condition

(5. 10) p(V$LYL)=fiY

for 1, fe£Π(M). Thus we have by virtue of (2. 12), (5. 4) and (5. 10)

=p(η(XL)ΫL-G(ΫL, XL)ξ)=Q

for 1, f €£Γi(M), because of η(XL)=Q and pξ=Q. Therefore we obtain

which implies together with (5. 9) that the base space M is a Kάhlerian manifold
with structure (P, g). Consequently, taking account of Proposition 5. 2 and [5], we
have
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PROPOSITION 5. 3. Let V be an invariant ̂ submanifold imbedded in a normal
contact metric manifold M with structure (F, G, f, η), which is regular. The image
V of V by the projection π: M-+M is, in the base space M, a Kάhlerian submanifold
with respect to the Kάhlerian structure (F,g)=(pF,pG) of M and is a minimal
submanifold in M
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