TENSOR FIELDS AND CONNECTIONS IN CROSS-SECTIONS IN THE TANGENT BUNDLE OF ORDER 2

By Mariko Tani

The prolongations of tensor fields and connections given in a differentiable manifold M to its tangent bundle T(M) have been studied in [1], [2], [5], [7]. If a vector field V is given in M, V determines a cross-section in T(M) which is as an n-dimensional submanifold in T(M). Yano [3] has recently studied the behavior of the prolongations of tensor fields and connections to T(M) on the cross-sections determined by a vector field in M. On the other hand, the prolongations of tensor fields and connections in M to its tangent bundle $T_2(M)$ of order 2 are studied in [6]. If a vector field V is given in M, V determines a cross-section in $T_2(M)$. The main purpose of the present paper is to study the behavior of the prolongations of tensor fields and connections in M to $T_2(M)$ on the cross-section determined by a vector field in M.

In § 1 we first recall properties of the prolongations of tensor fields and connections in M to $T_2(M)$. In § 2 we study the cross-sections determined in $T_2(M)$ by vector fields given in M. § 3 will be devoted to the study of the prolongations of tensor fields given in M to $T_2(M)$ along the cross-sections and § 4 will be devoted to the study of the prolongations of connections given in M to $T_2(M)$ along the cross-sections.

§1. Prolongations of tensor fields and linear connections to the tangent bundle of order 2.

We shall recall, for the later use, some properties of the tangent bundle $T_2(M)$ of order 2 over a differentiable manifold M of dimension n, and those of prolongations of tensor fields and linear connections in M to $T_2(M)$ (cf. [6]).

The tangent bundle $T_2(M)$ of order 2 is the space of equivalence classes of mappings from the real line R into M, the equivalence relation being defined as follows: we say that two mappings F and G are equivalent to each other if, in a coordinate neighborhood U, they satisfy the conditions

$$F(0)\!=\!G(0)\!=\!p, \qquad \frac{dF^h}{dt}(0)\!=\!\frac{dG^h}{dt}(0), \qquad \frac{d^2F^h}{dt^2}(0)\!=\!\frac{d^2G^h}{dt^2}(0),$$

where $F^h(t)$ and $G^h(t)$ are the coordinates of F(t) and G(t) in U respectively. This

Received January 23, 1969.

definition of the equivalence does not depend on the choice of the local coordinates. We call this equivalence class containing F a 2-jet and denote it by $j_p^2(F)$. Namely the tangent bundle of order 2 over M is the space of all 2-jets of M and its bundle projection π_2 : $T_2(M) \rightarrow M$ is defined by

$$\pi_2(j_p^2(F))=p$$
.

Let (U, x^h) be a coordinate neighborhood with the local coordinate system (x^h) . A system of local coordinates (x^h, y^h, z^h) can be introduced in $\pi_2^{-1}(U)$ in such a way that a 2-jet $j_p^2(F)$ $(p \in U)$ has coordinates as

$$x^h = F^h(0), \qquad y^h = \frac{dF^h}{dt}(0), \qquad z^h = \frac{d^2F^h}{dt^2}(0).$$

We call the local coordinate system (x^h, y^h, z^h) thus introduced in $\pi_2^{-1}(U)$ the induced coordinate system and sometimes denote them by $(\xi^A)^{1}$, i.e.,

(1. 1)
$$\xi^{i} = x^{i}, \quad \xi^{n+i} = y^{i}, \quad \xi^{2n+i} = z^{i}.$$

Let (U, x^h) and $(U', x^{h'})$ be two coordinates neighborhoods of M related by coordinate transformation

$$x^{h'} = x^{h'}(x^h)$$

in $U \cap U'$. If we denote by (x^h, y^h, z^h) and $(x^{h'}, y^{h'}, z^{h'})$ the induced coordinates in $\pi_2^{-1}(U)$ and $\pi_2^{-1}(U')$ respectively, the coordinate transformation in $\pi_2^{-1}(U) \cap \pi_2^{-1}(U')$ is given by

$$x^{h'} = x^{h'}(x^h), \qquad y^{h'} = \frac{\partial x^{h'}}{\partial x^h} y^h,$$
 $z^{h'} = \frac{\partial x^{h'}}{\partial x^h} z^h + \frac{\partial^2 x^{h'}}{\partial x^j \partial x^h} y^j y^i$

and its Jacobian matrix by

$$(1.2) \qquad \begin{pmatrix} \frac{\partial x^{h'}}{\partial x^h}, & 0, & 0\\ \frac{\partial^2 x^{h'}}{\partial x^h \partial x^s} y^s, & \frac{\partial x^{h'}}{\partial x^h}, & 0\\ \frac{\partial^2 x^{h'}}{\partial x^h \partial x^s} z^s + \frac{\partial^3 x^{h'}}{\partial x^h \partial x^s} y^t y^s, & 2\frac{\partial^2 x^{h'}}{\partial x^h \partial x^s} y^s, & \frac{\partial x^{h'}}{\partial x^h} \end{pmatrix}.$$

¹⁾ The indices A, B, C, D, \cdots and i, j, k, \cdots run over the ranges $1, \cdots, 3n$ and $1, \cdots, n$, respectively.

We denote by $\mathcal{T}_s^s(M)$ the space of all tensor fields of type (r, s) in M. Especially, $\mathcal{T}_s^s(M)$, $\mathcal{T}_s^s(M)$ and $\mathcal{T}_1^s(M)$ are respectively the spaces of all functions, of all vector fields and of all 1-forms all defined in M. We denote also by $\mathcal{T}_s^s(T_2(M))$ the space of all tensor fields of type (r, s) in $T_2(M)$.

Prolongations of tensor fields. For any element f of $\mathfrak{T}^0_0(M)$, its prolongations f^0 , f^1 and f^{11} to $T_2(M)$ are elements of $\mathfrak{T}^0_0(T_2(M))$ and have respectively local expressions of the form

(1.3)
$$f^0$$
: $f(x^h)$, f^1 : $y^i \partial_i f(x^h)$, f^{11} : $z^i \partial_i f(x^h) + y^j y^i \partial_j \partial_i f(x^h)$

in the induced coordinate system (ξ^A) , $f(x^h)$ being the local expression of f in (x^h) , where $\partial_i = \partial/\partial x^i$.

For any element X of $\mathcal{I}_0^1(M)$, its prolongations X^0 , X^1 and X^{11} are elements of $\mathcal{I}_0^1(T_2(M))$ and have the following properties:

$$X^{0}f^{0}=0, X^{0}f^{I}=0, X^{0}f^{II}=(Xf)^{0},$$

$$(1.4) X^{I}f^{0}=0, X^{I}f^{I}=\frac{1}{2}(Xf)^{0}, X^{I}f^{II}=(Xf)^{I},$$

$$X^{II}f^{0}=(Xf)^{0}, X^{II}f^{I}=(Xf)^{I}, X^{II}f^{II}=(Xf)^{II},$$

f being an arbitrary element of $\mathfrak{T}^{n}(M)$.

For any element ω of $\mathcal{I}_1^0(M)$, its prolongations ω^0 , ω^1 and ω^{11} are elements of $\mathcal{I}_1^0(T_2(M))$ and have the following properties:

$$\omega^{0}(X^{0})=0, \qquad \omega^{0}(X^{I})=0, \qquad \omega^{0}(X^{II})=(\omega(X))^{0},$$

$$(1. 5) \qquad \omega^{I}(X^{0})=0, \qquad \omega^{I}(X^{I})=\frac{1}{2}(\omega(X))^{0}, \qquad \omega^{I}(X^{II})=(\omega(X))^{I},$$

$$\omega^{II}(X^{0})=(\omega(X))^{0}, \qquad \omega^{II}(X^{I})=(\omega(X))^{I}, \qquad \omega^{II}(X^{II})=(\omega(X))^{II},$$

X being an arbitrary element of $\mathcal{I}_0^1(M)$.

Taking arbitrarily two tensor fields P and Q in M, we have the following formulas:

$$(P \otimes Q)^{0} = P^{0} \otimes Q^{0},$$

$$(P \otimes Q)^{I} = P^{I} \otimes Q^{0} + P^{0} \otimes Q^{I},$$

$$(P \otimes Q)^{II} = P^{II} \otimes Q^{0} + 2P^{I} \otimes Q^{I} + P^{0} \otimes Q^{II}.$$

The prolongations P^0 , P^I and P^{II} are called respectively the 0-th, the 1-st and the 2-nd lifts of P, P being an arbitrary tensor field in M.

REMARK. Let \widetilde{X} and \widetilde{Y} be two vector fields in $T_2(M)$. If we have $\widetilde{X}f^{11}=\widetilde{Y}f^{11}$ for any element f of $\mathcal{G}^0_0(M)$, then we have $\widetilde{X}=\widetilde{Y}$. Generally speaking, any tensor field in $T_2(M)$ is completely determined by giving its values for the 2-nd lifts of vector fields arbitrarily given in M.

Let F be an element of $\mathcal{I}_{1}^{1}(M)$ and P(t) a polynomial of t. Then we have

$$(1.7) (P(F))^{II} = P(F^{II}).$$

We now note that the 2-nd lift of the identity tensor field I of type (1,1) is also the identity tensor field in $T_2(M)$, which is also denoted by I in $T_2(M)$, that is to say, $I^{II}=I$. For example, if $F^2+I=0$, we have $(F^{II})^2+I=0$. Thus, we obtain

Proposition. If F is an almost complex structure in M, so is F^{II} in $T_2(M)$.

We denote by N_F the Nijenhuis tensor of an element F of $\mathfrak{T}^1_{\mathbf{i}}(M)$. We have then

$$(1.8) (N_F)^{II} = N_{F^{II}}$$

for $F \in \mathcal{I}_{\mathbf{i}}^{1}(M)$.

Prolongations of linear connections. Let there be given a linear connection Γ in M. Then there exists a unique linear connection Γ^{II} in $T_2(M)$ characterized by the equation

(1.9)
$$V^{II}_{Y^{II}}X^{II} = (V_Y X)^{II},$$

X and Y being arbitrary elements of $\mathcal{I}_0^l(M)$. The connection \mathcal{F}^{II} is called the *lift* of the given connection \mathcal{F} . If we denote by T and R respectively the torsion and the curvature tensors of \mathcal{F} , we have

$$(1. 10) \widetilde{T} = T^{II}, \widetilde{R} = R^{II},$$

where \tilde{T} and \tilde{R} are the torsion and the curvature tensors of V^{II} respectively. We have the following formulas:

(1. 11)
$$V^{II}_{Y^{II}}X^0 = (V_Y X)^0, \quad V^{II}_{Y^{II}}X^I = (V_Y X)^I$$

for X, $Y \in \mathcal{I}_0^1(M)$.

Let there be given a pseudo-Riemannian metric g in M. Then g^{II} is a pseudo-Riemannian metric in $T_2(M)$. If we denote by \overline{V} the Riemannian connection

determined by g, then its lift V^{II} is the Riemannian connection determined by g^{II} in $T_2(M)$.

§ 2. Cross-sections determined by vector fields.

Let there be given a vector field V in M. Denote by φ_P : $I \rightarrow M$ the orbit of V passing through a point P of M in such a way that $\varphi_P(0) = P$, where I is an interval $(-\varepsilon, \varepsilon)$, ε being a certain positive number. If we denote by $\gamma_V(P)$ the 2-jet $j_P^2(\varphi_P)$, we set that the correspondence $P \rightarrow \gamma_V(P)$ defines a mapping $\gamma_V \colon M \rightarrow T_2(M)$ such that $\pi_2 \circ \gamma_V$ is the identity mapping, i.e., that $\gamma_V \colon M \rightarrow T_2(M)$ is a cross-section in $T_2(M)$. The submanifold $\gamma_V(M)$ imbedded in $T_2(M)$ is called the *cross-section* determined by the vector field V. If U is a coordinate neighborhood in M the cross-section $\gamma_V(M)$ is expressed locally in $\pi_2^{-1}(U)$ by equations

(2. 1)
$$x^h = x^h, \quad y^h = V^h(x^i), \quad z^h = V^k(x^i)\partial_k V^h(x^i)$$

with respect to the induced coordinate system (ξ^A) , where $V = V^h(x^i)\partial_h$ is the local expression of V in U. We denote the equations (2.1) by

$$\xi^A = \xi^A(x^i),$$

i.e., $\xi^h = x^h$, $\xi^{n+h} = V^h$, $\xi^{2n+h} = V^h \partial_k V^h$.

Taking account of (1.3) and (2.1), we have along $\gamma_{\nu}(M)$ the equations

(2.3)
$$f^{II} = (\mathcal{L}v^2f)^0, \quad f^I = (\mathcal{L}vf)^0, \quad f^0 = f^0$$

for $f \in \mathcal{I}_{N}^{s}(M)$, where \mathcal{L}_{V} denotes the Lie derivation with respect to V and $\mathcal{L}_{V}^{2} = \mathcal{L}_{V} \mathcal{L}_{V}$. If we put $B_{i}^{4} = \partial_{i} \xi^{4}$, we get along $\gamma_{V}(M)$ n local vector fields B_{i} tangent to the cross-section which have the components of the form

$$(2.4) (B_i^A) = \begin{pmatrix} \delta_i^h \\ \partial_i V^h \\ (\partial_i V^k)(\partial_k V^h) + V^k \partial_i \partial_k V^h \end{pmatrix}$$

with respect to the induced coordinate system (ξ^A) . For an element X of $\mathcal{T}_0^1(M)$ with local expression $X=X^i$ $\partial/\partial x^i$, we denote by BX the vector field with components $B_i{}^AX^i$, which is defined globally along $\gamma_V(M)$ by virtue of (1. 2). The mapping B_p : $T_p(M) \to T_\sigma$ $(T_2(M))$ $(\sigma = \gamma_V(p))$ defined by the correspondence $X_p \to (BX)_\sigma$, is the differential mapping γ_V of the cross-section mapping $\gamma_V : M \to T_2(M)$. Thus B_p : $T_p(M) \to T_\sigma(T_2(M))$ is an isomorphism and $B_p(T_p(M))$ is the tangent space of the cross-section $\gamma_V(M)$ at the point $\sigma = \gamma_V(p)$.

We consider along the cross-section $\gamma_{\nu}(M)$ n local vector fields C_i and n local

vector fields D_i along $\gamma_v(M)$, which have respectively components of the form

$$(C_{i}^{A}) = \begin{pmatrix} 0 \\ \frac{1}{2} \delta_{i}^{h} \\ \partial_{i} V^{h} \end{pmatrix}, \qquad (D_{i}^{A}) = \begin{pmatrix} 0 \\ 0 \\ \delta_{i}^{h} \end{pmatrix}$$

in the induced coordinate system (ξ^A) . For an element X of $\mathcal{T}_0^1(M)$ with local experession $X = X^i \partial_i$, we denote by CX and DX the vector fields with components $C_i^A X^i$ and $D_i^A X^i$ respectively. Then according to (1. 2), CX and DX are defined along $\gamma_V(M)$. We now defined two mappings C_p : $T_p(M) \to T_o(T_2(M))$ and D_p : $T_p(M) \to T_o(T_2(M))$ ($\sigma = \gamma_V(p)$) respectively by

$$(2. 6) C_p X_p = (CX)_q, D_p X_p = (DX)_q$$

X being an arbitrary element of $\mathcal{I}_0^1(M)$. It is easily verified by virtue of (2.5) that the two mappings C_p and D_p defined by (2.6) are isomorphisms of $T_p(M)$ into $T_o(T_2(M))$ ($\sigma = \gamma_p(P)$).

Putting

$$N_{\sigma}^{(1)} = C_p T_p(M), \qquad N_{\sigma}^{(2)} = D_p T_p(M) \qquad (\sigma = \gamma_V(p)),$$

we have the following direct sum representation of $T_{\sigma}(T_2(M))$:

$$T_{\sigma}(T_2(M)) = T_{\sigma}(\gamma_V(M)) + N_{\sigma}^{(1)} + N_{\sigma}^{(2)}$$
.

The 3n local vector fields B_i , C_i and D_i along $\gamma_r(M)$ are expressed respectively by

$$(2.7) B_i = B\partial_i, C_i = C\partial_i, D_i = D\partial_i$$

and form a local family of frames $\{B_i, C_i, D_i\}$ along $\gamma_{\nu}(M)$, which are called the adapted frames of $\gamma_{\nu}(M)$. The n local vector fields B_i span $T_{\sigma}(\gamma_{\nu}(M))$, C_i span $N_{\sigma}^{(1)}$ and D_i span $N_{\sigma}^{(2)}$, all at $\sigma \in \gamma_{\nu}(M)$.

Taking account of (2.4), (2.5) and (2.7), we have along $\gamma_{\nu}(M)$

(2. 9)
$$X^{II} = BX + 2C(\mathcal{L}_{V}X) + D(\mathcal{L}_{V}^{2}X),$$
$$X^{I} = CX + D(\mathcal{L}_{V}X),$$
$$X^{0} = DX,$$

or equivalently

(2. 10)
$$X^{II} = (X^{i})^{0}B_{i} + 2(\mathcal{L}_{V}X^{i})^{0}C_{i} + (\mathcal{L}_{V}^{2}X^{i})^{0}D_{i},$$
$$X^{I} = (X^{i})^{0}C_{i} + (\mathcal{L}_{V}X^{i})^{0}D_{i},$$
$$X^{0} = (X^{i})^{0}D_{i}$$

for any element X of $\mathcal{I}_0^1(M)$ with local expression $X=X^i\partial_i$.

§ 3. Prolongations of tensor fields in the cross-sections.

Let there be given a vector field \widetilde{X} along $\gamma_{\nu}(M)$. Putting

$$\tilde{X} = \tilde{X}^i B_i + \tilde{X}^i C_i + \tilde{X}^i D_i$$

we call $(\widetilde{X}^a) = (\widetilde{X}^i, \widetilde{X}^i, \widetilde{X}^i)^{3}$ the components of \widetilde{X} in the adapted frame. Similarly, for any tensor field \widetilde{T} of type (1, 2) along $T_V(M)$, we denote by

$$(\widetilde{T}_{\beta 7}{}^{a}) = (\widetilde{T}_{ji}{}^{h}, \widetilde{T}_{ji}{}^{\bar{h}}, \widetilde{T}_{ji}{}^{\bar{h}}, \cdots, \widetilde{T}_{j\bar{i}}{}^{\bar{h}})$$

its components in the adapted frame. Thus by means of (2.10), the lifts X^0 , X^1 and X^{11} have along $\gamma_{\mathbb{F}}(M)$ components of the form

$$(3. 1) (X^{0\alpha}) = \begin{pmatrix} 0 \\ 0 \\ X^h \end{pmatrix}, (X^{1\alpha}) = \begin{pmatrix} 0 \\ X^h \\ \mathcal{L}_{\nu} X^h \end{pmatrix}, (X^{11\alpha}) = \begin{pmatrix} X^h \\ 2\mathcal{L}_{\nu} X^h \\ \mathcal{L}_{\nu}^2 X^h \end{pmatrix}$$

in the adapted frame, where X is a vector field in M with local expression $X=X^i\partial_i$. In (3.1) we have identified the 0-th lift $(X^h)^0$, $(\mathcal{L}_VX^h)^0$ and $(\mathcal{L}_V^2X^h)^0$ respectively with functions X^h , \mathcal{L}_VX^h and $\mathcal{L}_V^2X^h$. In the sequel we sometimes use such identification.

Let there be given an element ω of $\mathfrak{T}_{1}^{0}(M)$ with local expressions $\omega = \omega_{i} dx^{i}$. Then its lifts ω^{0} , ω^{I} and ω^{II} have respectively components of the form

$$(\omega^{0}_{\beta}) = (\omega_{i}, 0, 0),$$

$$(\omega^{I}_{\beta}) = \left(\mathcal{L}_{V}\omega_{i}, \frac{1}{2}\omega_{i}, 0\right),$$

$$(\omega^{II}_{\beta}) = (\mathcal{L}_{V}^{2}\omega_{i}, \mathcal{L}_{V}\omega_{i}, \omega_{i})$$

in the adapted frame. In fact by virtue of (2.3), (3.1) and (1.5), we have along $\gamma_{r}(M)$, for example,

³⁾ We use Greek indices α , β , \cdots to represent the components in the adapted frame.

$$\omega^{\text{II}}{}_{i}X^{i} + 2\omega^{\text{II}}{}_{i}(\mathcal{L}_{V}X^{i}) + \omega^{\text{II}}{}_{i}(\mathcal{L}_{V}^{2}X^{i})$$

$$= \mathcal{L}_{V}^{2}(\omega_{i}X^{i})$$

$$= (\mathcal{L}_{V}^{2}\omega_{i})X^{i} + 2(\mathcal{L}_{V}\omega_{i})(\mathcal{L}_{V}X^{i}) + \omega_{i}(\mathcal{L}_{V}^{2}X^{i})$$

for arbitrary element X of $\mathcal{I}_0^1(M)$ with local expression $X=X^i\partial_i$, and there exists an element X of $\mathcal{I}_0^1(M)$ such that at a given point, for any given values $(a^h, b^{\bar{h}}, c^{\bar{h}})$,

$$X^h = a^h$$
, $\mathcal{L}_V X^h = b^h$ and $\mathcal{L}_V^2 X^h = c^h$

hold. The other relations stated in (3.2) are obtained similarly.

Taking account of (1.6), (3.1) and (3.2) we find components of 0-th, 1-st and 2-nd lifts of any tensor field in M with respect to the adapted frame. For example, for an element h of $\mathcal{T}_2^0(M)$ we have

$$(h^0{}_{\beta\alpha}) = \begin{pmatrix} h_{ji} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad (h^{\mathrm{I}}{}_{\beta\alpha}) = \begin{pmatrix} \mathcal{L}v \, h_{ji} & \frac{1}{2} \, h_{ji} & 0 \\ \frac{1}{2} \, h_{ji} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

(3.3)

$$(h^{ ext{II}}_{eta a}) = egin{pmatrix} \mathcal{L} v^2 h_{ji} & \mathcal{L} v h_{ji} & h_{ji} \ \mathcal{L} v h_{ji} & rac{1}{2} h_{ji} & 0 \ h_{ji} & 0 & 0 \end{pmatrix},$$

 h_{ji} being the components of h. For an element F of $\mathfrak{I}_{i}^{1}(M)$,

$$(F_{\beta}^{0}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ F_{i}^{h} & 0 & 0 \end{pmatrix}, \qquad (F_{\beta}^{0}) = \begin{pmatrix} 0 & 0 & 0 \\ F_{i}^{h} & 0 & 0 \\ \mathcal{L}vF_{i}^{h} & \frac{1}{2}F_{i}^{h} & 0 \end{pmatrix},$$

$$(3.4)$$

$$(F^{\mathrm{II}_{\boldsymbol{\beta}}{}^{\boldsymbol{\alpha}}}) = \begin{pmatrix} F_i{}^h & 0 & 0 \\ 2 \mathcal{L}_V F_i{}^h & F_i{}^h & 0 \\ \mathcal{L}_V{}^2 F_i{}^h & \mathcal{L}_V F_i{}^h & F_i{}^h \end{pmatrix},$$

318 mariko tani

 F_{i}^{h} being the components of F. For an element S of $\mathcal{I}_{2}^{1}(M)$,

$$S^{0}{}_{ji}{}^{\hbar}=0, \qquad S^{0}{}_{ji}{}^{\bar{\hbar}}=S_{ji}{}^{h},$$

$$S^{I}{}_{ji}{}^{\hbar}=0, \qquad S^{I}{}_{ji}{}^{\bar{\hbar}}=S_{ji}{}^{h}, \qquad S^{I}{}_{ji}{}^{\bar{\hbar}}=\mathcal{L}_{V}S_{ji}{}^{h},$$

$$S^{II}{}_{ji}{}^{\hbar}=S_{ji}{}^{h}, \qquad S^{II}{}_{ji}{}^{\bar{\hbar}}=2\mathcal{L}_{V}S_{ji}{}^{h}, \qquad S^{II}{}_{ji}{}^{\bar{\hbar}}=\mathcal{L}_{V}{}^{2}S_{ji}{}^{h},$$

 S_{ji}^h being the components of S.

The linear isomorphism B defined in § 2 is the differential mapping $\gamma_{V'}$ of the cross-section mapping γ_{V} : $M \rightarrow \gamma_{V}(M)$. Then we denote sometimes by $\gamma_{V'}X$ the vector field BX, X being an arbitrary element of $\mathcal{I}_{0}^{1}(M)$. Given an element ω of $\mathcal{I}_{1}^{0}(M)$, we denote by $\gamma_{V'}\omega$ the image of ω by the dual mapping of B^{-1} (=the restriction of π_{2} to $\gamma_{V}(M)$). The mapping $\gamma_{V'}$ is extended as a linear mapping $\gamma_{V'}$: $\mathcal{I}(M) \rightarrow \mathcal{I}(\gamma_{V}(M))$ by

$$\gamma_{\nu}'(P \otimes Q) = (\gamma_{\nu}'P) \otimes (\gamma_{\nu}'Q),$$

P and Q being arbitrary tensor fields in M.

Now we will define the operation \sharp in $\mathcal{I}(T_2(M))$ as follows. For an element \widetilde{X} of $\mathcal{I}_0^1(T_2(M))$, we put

$$\tilde{X}^{\sharp} = \tilde{X}^{i}B_{i}$$
.

Let $\tilde{\omega}$ be a tensor field of type (0.1) defined along $\gamma_{r}(M)$. Then putting along $\gamma_{r}(M)$

$$\tilde{\omega}^{\sharp}(BX) = \tilde{\omega}(BX)$$

for $X \in \mathcal{I}_0^1(M)$, we can define an element $\tilde{\omega}^*$ of $\mathcal{I}_1^0(\gamma_r(M))$ which is called the 1-form induced in $\gamma_r(M)$ from $\tilde{\omega}$. Let \tilde{h} be a tensor field of type (0,2) defined along $\gamma_r(M)$. Then putting along $\gamma_r(M)$

$$\tilde{h}^*(BX, BY) = \tilde{h}(BX, BY)$$

for $X, Y \in \mathcal{I}^1_0(M)$, we can define an element \tilde{h}^{\sharp} of $\mathcal{I}^0_2(\gamma_{\mathcal{V}}(M))$ which is called the tensor field induced in $\gamma_{\mathcal{V}}(M)$ from \tilde{h} . Let \tilde{F} be a tensor field of type (1,1) defined along $\gamma_{\mathcal{V}}(M)$ such that, for any vector field \tilde{A} tangent to $\gamma_{\mathcal{V}}(M)$, $\tilde{F}\tilde{A}$ is also tangent to $\gamma_{\mathcal{V}}(M)$. Then putting

$$\widetilde{F}^{\sharp}(BX) = \widetilde{F}(BX)$$

for $X \in \mathcal{I}_0^1(M)$, we can define an element \widetilde{F}^{\bullet} of $\mathcal{I}_1^1(\gamma_{\nu}(M))$ which is called the tensor field induced in $\gamma_{\nu}(M)$ from \widetilde{F} . Let \widetilde{S} be a tensor field of type (1,2) defined along $\gamma_{\nu}(M)$ such that for any vector field \widetilde{A} , \widetilde{B} tangent to $\gamma_{\nu}(M)$, $\widetilde{S}(\widetilde{A},B)$ is tangent to

 $\gamma_{\nu}(M)$. Then putting

$$\widetilde{S}^*(BX, BY) = \widetilde{S}(BX, BY)$$

for X, $Y \in \mathcal{I}_{0}^{1}(M)$, we can define an element \tilde{S}^{\sharp} of $\mathcal{I}_{2}^{1}(\gamma_{v}(M))$, which is called the tensor field induced in $\gamma_{v}(M)$ from \tilde{S} .

We have from (3.1),

PROPOSITION 3.1. Let X be an element of $\mathcal{I}_0^1(M)$. Then X^{II} is tangent to $\gamma_v(M)$ if and only if $\mathcal{L}_vX=0$. In this case $X^{\text{II}*}=\gamma_v'X$ holds. For any element X of $\mathcal{I}_0^1(M)$, $X^{0*}=0$ and $X^{\text{I}*}=0$ hold.

We have from (3.2),

Proposition 3.2. For any element ω of $\mathcal{I}_{1}^{0}(M)$,

$$\omega^{II\sharp} = \gamma_V'(\mathcal{L}_V^2\omega), \qquad \omega^{I\sharp} = \gamma_V'(\mathcal{L}_V\omega) \qquad and \qquad \omega^{0\sharp} = \gamma_V'\omega$$

hold.

We have from (3.3)

Proposition 3. 3. For any element h of $\mathfrak{I}_{\mathfrak{A}}^{\mathfrak{A}}(M)$,

$$h^{\text{II}\sharp} = \gamma_{V}'(\mathcal{L}_{V}^{2}h), \quad h^{\text{I}\sharp} = \gamma_{V}'(\mathcal{L}_{V}h) \quad and \quad h^{\text{O}\sharp} = \gamma_{V}'h$$

hold, and hence $h^{0\sharp}(BX, BY) = h(X, Y)^{0}$.

PROPOSITION 3.4. Let g be a Riemannian metric in M. Then $g^{0\ddagger}$ is a Riemannian metric in $\gamma_V(M)$ and γ_V is isometry, i.e. $g^{0\ddagger}=\gamma_V'g$.

Suppose that the vector field V in M satisfies the condition $\mathcal{L}_V g = cg$, g being a Riemannian metric in M and c a constant, that is, V is an infinitesimal homothetic transformation with respect to g. Then we have from Proposition 3. 3 the relation $g^{II} = cg^{I} = c^2 g^{0}$.

If for each point σ of $\gamma_{\nu}(M)$ the tangent space $T_{\sigma}(\gamma_{\nu}(M))$ is invariant by the action of a tensor field \widetilde{F} defined along $\gamma_{\nu}(M)$, then the cross-section $\gamma_{\nu}(M)$ is said to be invariant by \widetilde{F} . For any $F \in \mathcal{I}_1^1(M)$, we have from (3.4)

$$F^{\scriptscriptstyle 0}(BX) {=} DFX, \qquad F^{\scriptscriptstyle \text{I}}(BX) {=} C(FX) {+} D((\mathcal{L}_{V}F)X),$$

$$F^{\text{II}}(BX) = B(FX) + 2C((\mathcal{L}_{V}F)X) + D((\mathcal{L}_{V}^{2}F)X)$$

for $X \in \mathcal{I}_0^1(M)$. Thus we have

320

PROPOSITION 3.5. Let F be an element of $\mathcal{I}_i^1(M)$. The cross-section $\gamma_v(M)$ is invariant by F^{II} if and only if $\mathcal{L}_v F = 0$. In this case, $F^{II} = \gamma_v' F$ holds. The lifts F^0 and F^I do not leave $\gamma_v(M)$ invariant, unless F = 0.

PROPOSITION 3. 6. If F is an almost complex structure such that $\mathcal{L}_{v}F=0$, then F^{II*} is an almost complex structure in $\gamma_{v}(M)$ and $F^{II*}=\gamma_{v}'F$ holds.

If a Riemannian metric g in M satisfies the condition

$$g(FX, FY) = g(X, Y)$$
 for any $X, Y \in \mathcal{I}_0^1(M)$,

then (g, F) is called an almost Hermitian structure in M. If $\mathcal{L}_r F = 0$ holds, then we get along $\gamma_r(M)$

$$g^{0}(F^{II}BX, F^{II}BY) = (\gamma_{V}'g)((\gamma_{V}'F)X, (\gamma_{V}'F)Y)$$

= $(g(FX, FY))^{0}$

because of Proposition 3.3 and 3.5. Thus we have

PROPOSITION 3.7. Suppose that there is given an almost Hermitian structure (g, F) in M. If $\mathcal{L}_{v}F=0$, then (g^{ot}, F^{IIt}) is an almost Hermitian structure in $\gamma_{v}(M)$.

For any $S \in \mathcal{I}_2^1(M)$, we have from (3.5)

$$S^0(BX, BY) = D(S(X, Y)),$$

(3. 7)
$$S^{I}(BX, BY) = C(S(X, Y)) + D((\mathcal{L}_{V}S)(X, Y)),$$
$$S^{II}(BX, BY) = B(S(X, Y)) + 2C((\mathcal{L}_{V}S)(X, Y)) + D((\mathcal{L}_{V}^{2}S)(X, Y))$$

for any $X, Y \in \mathcal{I}_0^1(M)$. Thus we get

PROPOSITION 3.8. Let S be an element of $\mathfrak{I}_{\circ}^{1}(M)$. The vector fields $S^{II}(BX,BY)$ is tangent to $\gamma_{V}(M)$ for arbitrary elements X, Y of $\mathfrak{I}_{\circ}^{1}(M)$, if and only if $\mathfrak{L}_{V}S=0$, and in this case $S^{II}=\gamma_{V}'S$ holds. The vector fields $S^{0}(BX,BY)$ and $S^{I}(BX,BY)$ are not tangent to $\gamma_{V}(M)$, unless S=0.

If an element F of $\mathcal{I}_1^1(M)$ satisfies $\mathcal{L}_V F = 0$, then its Nijenhuis tensor satisfies $\mathcal{L}_V N_F = 0$. By virtue of (1.8), Proposition 3.5 and 3.8, we have

$$N_{FII}^{\sharp} = N_{F}^{II\sharp} = \gamma_{V}' N_{F}$$

in the case that $\mathcal{L}_V F = 0$. Thus we have

PROPOSITION 3. 9. Let F be an element of $\mathcal{I}_1^1(M)$ such that $\mathcal{L}_V F = 0$. Then the vector field $N_{F^{11}}(BX, BY)$ is tangent to $\gamma_V(M)$ for arbitrary elements X, Y of $\mathcal{I}_0^1(M)$, and $N_{F^{11}} = N_{F^{11}} = \gamma_V' N_F$ hold. Especially $N_{F^{11}}$ vanishes identically in $\gamma_V(M)$ if and only if $N_F = 0$.

Consequently taking account of Proposition in §1 and Proposition 3.5, we get

PROPOSITION 3.10. If a complex structure F satisfies the condition $\mathcal{L}_v F = 0$, then F^{III} is a complex structure in $\gamma_v(M)$.

§ 4. Prolongations of affine connections in cross-sections.

First of all, we recall some formulas on Lie derivations (cf. [4]). Let there be given an affine connection V with coefficients Γ_{ji}^h . For vector fields X with local expression $X=X^i\partial_i$ and V, we have formulas as

$$\mathcal{L}_{V}(\nabla_{J}X^{h}) - \nabla_{J}(\mathcal{L}_{V}X^{h}) = (\mathcal{L}_{V}\Gamma_{I}^{h})X^{i},$$

$$(4.2) V_k(\mathcal{L}_V \Gamma_{ii}^h) - V_i(\mathcal{L}_V \Gamma_{ki}^h) = \mathcal{L}_V R_{kii}^h,$$

where R_{kji}^{h} denotes the components of the curvature tensor R of Γ . Hence we have

$$(4.3) \qquad \mathcal{L}_{V}^{2}(\nabla_{i}X^{h}) - \nabla_{i}(\mathcal{L}_{V}^{2}X^{h}) = (\mathcal{L}_{V}^{2}\Gamma_{ii}^{h})X^{i} + 2(\mathcal{L}_{V}\Gamma_{ii}^{h})(\mathcal{L}_{V}X^{i}),$$

$$(4.4) \qquad \nabla_k (\mathcal{L}_V^2 \Gamma_{ji}^h) - \nabla_j (\mathcal{L}_V^2 \Gamma_{ki}^h) + 2(\mathcal{L}_V \Gamma_{ki}^h) (\mathcal{L}_V \Gamma_{ji}^t) - 2(\mathcal{L}_V \Gamma_{ji}^h) (\mathcal{L}_V \Gamma_{ki}^t) = \mathcal{L}_V^2 R_{kji}^h.$$

Taking account of (1.9) and (2.9), we have along $\gamma_{\nu}(M)$

for $X, Y \in \mathcal{I}_0^1(M)$, where $X = X^i \partial_i$ is the local expression of X. On the other hand, taking account of (1, 4) and (2, 10), we have along $\gamma_v(M)$

$$\nabla^{\text{II}}_{Y^{\text{II}}}X^{\text{II}} = \nabla^{\text{II}}_{Y^{\text{II}}}((X^h)^0B_h + 2(\mathcal{L}_VX^h)^0C_{\bar{b}} + (\mathcal{L}_V^2X^h)^0D_{\bar{b}})$$

i.e.

$$\begin{split} \nabla^{\text{II}}{}_{Y^{\text{II}}}X^{\text{II}} = & (X^h)^0 \nabla^{\text{II}}{}_{Y^{\text{II}}}B_h + 2(\mathcal{L}_V X^h)^0 \nabla^{\text{II}}{}_{Y^{\text{II}}}C_{\bar{h}} + (\mathcal{L}_V^2 X^h)^0 \nabla^{\text{II}}{}_{Y^{\text{II}}}D_{\bar{h}} \\ & + (Y^i \partial_i X^h)^0 B_h + 2(Y^i \partial_i (\mathcal{L}_V X^h))^0 C_{\bar{h}} + (Y^i \partial_i (\mathcal{L}_V^2 X^h))^0 D_{\bar{h}}, \end{split}$$

where $Y=Y^i\partial_i$ is the local representation of Y. For an arbitrary point σ of $\gamma_r(M)$, there exists a vector field Y in M with initial conditions $Y=\partial_{\jmath}$, $\mathcal{L}_{r}Y=0$, $\mathcal{L}_{r}^{2}Y=0$ at $p=\pi_2(\sigma)$. Then at σ , $Y^{II}=BY=B\partial_{\jmath}=B_{\jmath}$, and the value of $\mathcal{F}^{II}_{Y^{II}}X^{II}$ at σ is $\mathcal{F}^{II}_{B_{\jmath}}X^{II}$. Comparing the two equations (4. 5) and (4. 6), we have at $\sigma \in \gamma_r(M)$,

$$\begin{split} (X^h)^0 \overline{V}^{\text{II}}{}_{Bj} B_h + 2 (\mathcal{L}_V X^h)^0 \overline{V}^{\text{II}}{}_{Bj} C_{\bar{h}} + (\mathcal{L}_V^2 X^h)^0 \overline{V}^{\text{II}}{}_{Bj} D_{\bar{h}} \\ = & (\overline{V}_J X^h - \partial_J X^h)^0 B_h + 2 \{\mathcal{L}_V (\overline{V}_J X^h) - \overline{V}_j (\mathcal{L}_V X^h)\}^0 C_{\bar{h}} \\ & + \{\mathcal{L}_V^2 (\overline{V}_J X^h) - \overline{V}_j (\mathcal{L}_V^2 X^h)\}^0 D_{\bar{h}} \\ = & (\Gamma_{fi}^h X^i)^0 B_h + 2 \{\mathcal{L}_V (\overline{V}_J X^h) - \overline{V}_j (\mathcal{L}_V X^h) + \Gamma_{fi}^h \mathcal{L}_V X^i\}^0 C_{\bar{h}} \\ & + \{\mathcal{L}_V^2 (\overline{V}_J X^h) - \overline{V}_j (\mathcal{L}_V^2 X^h) + \Gamma_{fi}^h \mathcal{L}_V^2 X^i\}^0 D_{\bar{h}} \end{split}$$

which implies by virtue of (4.1) and (4.3),

$$(X^{h})^{0} \overline{V}^{II}{}_{Bj} B_{h} + 2(\mathcal{L}_{V} X^{h})^{0} \overline{V}^{II}{}_{Bj} C_{\bar{h}} + (\mathcal{L}_{V}^{2} X^{h})^{0} \overline{V}^{II}{}_{Bj} D_{\bar{h}}$$

$$= (\Gamma_{ji}^{h} X^{i})^{0} B_{h} + 2\{(\mathcal{L}_{V} \Gamma_{ji}^{h}) X^{i} + \Gamma_{ji}^{h} (\mathcal{L}_{V} X^{i})\}^{0} C_{\bar{h}}$$

$$+ \{(\mathcal{L}_{V}^{2} \Gamma_{ii}^{h}) X^{i} + 2(\mathcal{L}_{V} \Gamma_{ii}^{h}) (\mathcal{L}_{V} X^{i}) + \Gamma_{ji}^{h} (\mathcal{L}_{V}^{2} X^{i})\}^{0} D_{\bar{h}}.$$

Let a^h , $b^{\bar{h}}$ and $c^{\bar{h}}$ be arbitrary real numbers. For any point σ of $\gamma_V(M)$, there exists a vector field X in M with local expression $X=X^i\partial_i$ such that it satisfies $X^h=a^h$, $\mathcal{L}_VX^h=b^{\bar{h}}$, $\mathcal{L}_V^2X^h=c^{\bar{h}}$ at $p=\pi_2(\sigma)$. Thus (4.6) gives

$$\nabla^{\mathrm{II}}{}_{B_{j}}B_{i} = (\Gamma_{ji}^{h})^{0}B_{h} + 2(\mathcal{L}_{V}\Gamma_{ji}^{h})^{0}C_{\bar{h}} + (\mathcal{L}_{V}^{2}\Gamma_{ji}^{h})^{0}D_{\bar{h}},$$

$$\nabla^{\mathrm{II}}{}_{B_{j}}C_{i} = (\Gamma_{ji}^{h})^{0}C_{\bar{h}} + (\mathcal{L}_{V}\Gamma_{ji}^{h})^{0}D_{\bar{h}},$$

$$\nabla^{\mathrm{II}}{}_{B_{j}}D_{\bar{i}} = (\Gamma_{ji}^{h})^{0}D_{\bar{h}}.$$

$$\nabla^{\mathrm{II}}{}_{B_{j}}D_{\bar{i}} = (\Gamma_{ji}^{h})^{0}D_{\bar{h}}.$$

Putting

(4. 8)
$$' \nabla^{\text{II}}{}_{j} B_{i} = \nabla^{\text{II}}{}_{B_{j}} B_{i} - (\Gamma_{ji}^{h}){}^{0} B_{h}, \\
' \nabla^{\text{II}}{}_{j} C_{i} = \nabla^{\text{II}}{}_{B_{j}} C_{i} - (\Gamma_{ji}^{h}){}^{0} C_{\bar{h}}, \\
' \nabla^{\text{II}}{}_{i} D_{\bar{i}} = \nabla^{\text{II}}{}_{B_{j}} D_{\bar{i}} - (\Gamma_{ji}^{h}){}^{0} D_{\bar{h}}, \\$$

we have

$$(4. 9) 'V^{II}_{j}B_{i} = 2(\mathcal{L}_{V}\Gamma_{ji}^{h})^{0}C_{\bar{h}} + (\mathcal{L}_{V}^{2}\Gamma_{ji}^{h})^{0}D_{\bar{h}},$$

$$(4. 10) 'V^{II}{}_{j}C_{i} = (\mathcal{L}_{V}\Gamma_{ii}^{h}){}^{0}D_{\bar{h}},$$

(4. 11)
$${}^{\prime}V^{II}{}_{j}D_{\bar{i}}=0.$$

These are nothing but the structure equations for the cross-section $\gamma_{\nu}(M)$, which imply

Proposition 4.1. The cross-section $\gamma_V(M)$ is totally geodesic in $T_2(M)$ with respect to the connection V^{II} , if and only if the vector field V is infinitesimal affine transformation in M with respect to V (i.e. $\mathcal{L}_V \Gamma_{ti}^h = 0$).

Taking account of (4.8) we have

(4. 12)
$$\nabla^{\text{II}}_{B_i}BX = (\nabla_j X^h)^0 B_h + (X^h)^0 \nabla_j^{\text{II}} B_i$$

for $X \in \mathcal{I}_0^1(M)$. For $Y = Y^i \partial_i$, putting $\nabla_{BY}^{II} B_h = Y^j \nabla_j^{II} B_h$, we have

$$\nabla^{\text{II}}_{BY}BX = B(\nabla_Y X) + (X^h)^0 ' \nabla_{BY}^{\text{II}} B_h.$$

We can now defined an affine connection Γ^* in $\gamma_{\nu}(M)$ by the equation

for $X, Y \in \mathcal{I}_0^1(M)$ and call V^* the affine connection induced in $\gamma_V(M)$ from V, or the induced affine connection of $\gamma_V(M)$. Now (4.12) is written as

$$(4. 14) V^{II}_{BY}BX = V^*_{BY}BX + (X^h)^0 'V_{BY}^{II}B_h$$

for $X=X^i\partial_i$, $Y\in \mathcal{I}_0^1(M)$.

Let there be given an element h of $\mathcal{I}_2^o(M)$. By virtue of Proposition 3.3, we have

$$BZ(h^{0\sharp}(BX,BY)) = (F^{\sharp}_{BZ}h^{0\sharp})(BX,BY) + h^{0\sharp}(F^{\sharp}_{BZ}BX,BY) + h^{0\sharp}(BX,F^{\sharp}_{BZ}BY)$$

for $X, Y, Z \in \mathcal{I}_0^1(M)$. On the other hand, taking account of (2.11), we have

$$\begin{split} (BZ)(h^{0\sharp}(BX,BY)) &= (BZ)(h(X,Y))^0 = (Z(h(X,Y)))^0 \\ &= ((\overline{V}_Z h)(X,Y))^0 + (h(\overline{V}_Z X,Y))^0 + (h(X,\overline{V}_Z Y))^0 \\ &= (\overline{V}_Z h)^{0\sharp}(BX,BY) + h^{0\sharp}(B(\overline{V}_Z X),BY) + h^{0\sharp}(BX,B(\overline{V}_Z Y)) \end{split}$$

for X, Y, $Z \in \mathcal{I}_0^1(M)$. If we compare the two equations obtained above, taking account of (4.13), we have

for $Z \in \mathcal{I}_0^1(M)$.

When an affine connection V in M is torsionfree, V^{II} is torsionfree in $T_2(M)$ too (cf. (1.10)). Hence the induced connection V^* of $\gamma_v(M)$ is also torsionfree. Thus we obtain from (4.15)

PROPOSITION 4.2. Let g be a Riemannian metric in M and V the Riemannian connection determined by g in M. Then the connection V^* induced in $\gamma_v(M)$ from V is the Riemannian connection determined by the induced metric g^{o*} of $\gamma_v(M)$.

Let there be given an element F of $\mathcal{I}_1^1(M)$ satisfying the condition $\mathcal{L}_{\nu}F=0$, then by virtue of (4.13) and Proposition 3.5, we have

$$(4. 16) V_{BZ}^{\sharp} F^{II\sharp} = (V_Z F)^{II}$$

for $Z \in \mathcal{I}_0^1(M)$. Thus we have

PROPOSITION 4.3. Let F be an element of $\mathcal{I}_{i}(M)$ satisfying the condition $\mathcal{L}_{v}F=0$. If VF=0 in M, then $V^{*}F^{II*}=0$ in $\gamma_{v}(M)$.

An almost Hermitian structure (g, F) in M is called Kählerian if $\nabla F = 0$, ∇ being the Riemannian connection determined by g.

PROPOSITION 4.4. If (g, F) is a Kählerian structure satisfying the condition $\mathcal{L}_V F = 0$, so is $(g^{0\sharp}, F^{II\sharp})$ in $\gamma_V(M)$.

Operating $V^{II}_{B_k}$ to the first equation (4.7) and taking the skew symmetric part of the equation obtained with respect to the indices j and k, by virtue of (2.11) and (4.7) we have

$$\begin{split} & \mathcal{V}^{11}{}_{B_k} \mathcal{V}^{11}{}_{B_j} B_i - \mathcal{V}^{11}{}_{B_j} \mathcal{V}^{11}{}_{B_k} B_i \\ = & (R_{kjl^h})^0 B_h + 2 \{ \mathcal{V}_k (\mathcal{L}_V \Gamma_{ji}^h) - \mathcal{V}_j (\mathcal{L}_V \Gamma_{ki}^h) \}^0 C_{\bar{h}} \\ & + \{ (\mathcal{V}_k \mathcal{L}_V^2 \Gamma_{ji}^h - \mathcal{V}_j \mathcal{L}_V^2 \Gamma_{ki}^h) + 2 (\mathcal{L}_V \Gamma_{ki}^h) (\mathcal{L}_V \Gamma_{ji}^t) - 2 (\mathcal{L}_V \Gamma_{ji}^h) (\mathcal{L}_V \Gamma_{ki}^t) \}^0 D_{\bar{h}} \end{split}$$

which reduces to

$$(4. 17) R^{II}(B_k, B_j)B_i = (R_{kji}{}^h)^0 B_h + 2(\mathcal{L}_V R_{kji}{}^h)^0 C_{\bar{h}} + (\mathcal{L}_V{}^2 R_{kji}{}^h)^0 D_{\bar{h}}$$

because of (1.10), (4.2) and (4.4), where $R_{kjl}{}^h$ denote the components of the curvature tensor R of the given affine condection V and R^{II} the 2-nd lift of R to $T_2(M)$. As a direct consequence of (4.17), we have

PROPOSITION 4.5. Let R and R^{II} be the curvature tensors of affine connections V given in M and V^{II} , respectively. Then the curvature transformation $R^{\text{II}}(BX, BY)$ X and Y being arbitrary elements of $\mathcal{I}_0^1(M)$, leaves invariant the tangent space of the cross-section $\gamma_V(M)$ at each point of $\gamma_V(M)$, if and only if $\mathcal{L}_V R = 0$. In this case $R^{\text{II}*} = \gamma_V R$ holds, where $R^{\text{II}*}$ denotes the tensor field induced in $\gamma_V(M)$ from R.

BIBLIOGRAPHY

- [1] Dombrowski, P., On the geometry of the tangent bundle. J. reine u. angew. Math. 210 (1962), 73-88.
- [2] Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J. 10 (1958), 338-354.
- [3] YANO, K., Tensor fields and connections on cross-sections in the tangent bundle of a differentiable manifold. Proc. Royal Soc. of Edinburgh 67 (1967), 277-288.
- [4] YANO, K., The theory of Lie derivatives and its applications. North-Holland Publ. Co., Amsterdam (1957).
- [5] Yano, K., and S. Ishihara, Horizontal lifts of tensor fields and connections to tangent bundles. J. Math. and Mech. 16 (1967), 1015–1030.
- [6] YANO, K., AND S. ISHIHARA, Differential geometry of tangent bundles of order 2. Kōdai Math. Sem. Rep. 20 (1968), 318-354.
- [7] YANO, K., AND S. KOBAYASHI, Prolongations of tensor fields and connections to tangent bundles I. J. Math. Soc. Japan 18 (1966), 194-210.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.