TENSOR FIELDS AND CONNECTIONS IN CROSS-SECTIONS IN THE TANGENT BUNDLE OF ORDER 2

By Mariko Tani

The prolongations of tensor fields and connections given in a differentiable manifold M to its tangent bundle $T(M)$ have been studied in [1], [2], [5], [7]. If a vector field V is given in M, V determines a cross-section in $T(M)$ which is as an n-dimensional submanifold in $T(M)$. Yano [3] has recently studied the behavior of the prolongations of tensor fields and connections to $T(M)$ on the cross-sections determined by a vector field in M. On the other hand, the prolongations of tensor fields and connections in M to its tangent bundle $T_{2}(M)$ of order 2 are studied in [6]. If a vector field V is given in M, V determines a cross-section in $T_{2}(M)$. The main purpose of the present paper is to study the behavior of the prolongations of tensor fields and connections in M to $T_{2}(M)$ on the cross-section determined by a vector field in M.

In § 1 we first recall properties of the prolongations of tensor fields and connections in M to $T_{2}(M)$. In $\S 2$ we study the cross-sections determined in $T_{2}(M)$ by vector fields given in $M . \S 3$ will be devoted to the study of the prolongations of tensor fields given in M to $T_{2}(M)$ along the cross-sections and $\S 4$ will be devoted to the study of the prolongations of connections given in M to $T_{2}(M)$ along the cross-sections.

§ 1. Prolongations of tensor fields and linear connections to the tangent bundle of order 2.

We shall recall, for the later use, some properties of the tangent bundle $T_{2}(M)$ of order 2 over a differentiable manifold M of dimension n, and those of prolongations of tensor fields and linear connections in M to $T_{2}(M)$ (cf. [6]).

The tangent bundle $T_{2}(M)$ of order 2 is the space of equivalence classes of mappings from the real line R into M, the equivalence relation being defined as follows: we say that two mappings F and G are equivalent to each other if, in a coordinate neighborhood U, they satisfy the conditions

$$
F(0)=G(0)=p, \quad \frac{d F^{h}}{d t}(0)=\frac{d G^{h}}{d t}(0), \quad \frac{d^{2} F^{h}}{d t^{2}}(0)=\frac{d^{2} G^{h}}{d t^{2}}(0)
$$

where $F^{h}(t)$ and $G^{h}(t)$ are the coordinates of $F(t)$ and $G(t)$ in U respectively. This
Recerved January 23, 1969.
definition of the equivalence does not depend on the choice of the local coordinates. We call this equivalence class containing F a 2 -jet and denote it by $j_{p}{ }^{2}(F)$. Namely the tangent bundle of order 2 over M is the space of all 2 -jets of M and its bundle projection $\pi_{2}: T_{2}(M) \rightarrow M$ is defined by

$$
\pi_{2}\left(j_{p}^{2}(F)\right)=p
$$

Let (U, x^{h}) be a coordinate neighborhood with the local coordinate system (x^{h}). A system of local coordinates $\left(x^{h}, y^{h}, z^{h}\right)$ can be introduced in $\pi_{2}{ }^{-1}(U)$ in such a way that a 2 -jet $j_{p}{ }^{2}(F)(p \in U)$ has coordinates as

$$
x^{h}=F^{h}(0), \quad y^{h}=\frac{d F^{h}}{d t}(0), \quad z^{h}=\frac{d^{2} F^{h}}{d t^{2}}(0) .
$$

We call the local coordinate system $\left(x^{h}, y^{h}, z^{h}\right)$ thus introduced in $\pi_{2}{ }^{-1}(U)$ the induced coordinate system and sometimes denote them by $\left(\xi^{A}\right),^{1)}$ i.e.,

$$
\begin{equation*}
\xi^{2}=x^{2}, \quad \xi^{n+2}=y^{2}, \quad \xi^{2 n+2}=z^{2} . \tag{1.1}
\end{equation*}
$$

Let (U, x^{h}) and ($U^{\prime}, x^{h^{\prime}}$) be two coordinates neighborhoods of M related by coordinate transformation

$$
x^{h^{\prime}}=x^{h^{h^{\prime}}}\left(x^{h}\right)
$$

in $U \cap U^{\prime}$. If we denote by (x^{h}, y^{h}, z^{h}) and ($x^{h^{\prime}}, y^{h^{\prime}}, z^{h^{\prime}}$) the induced coordinates in $\pi_{2}{ }^{-1}(U)$ and $\pi_{2}{ }^{-1}\left(U^{\prime}\right)$ respectively, the coordinate transformation in $\pi_{2}{ }^{-1}(U) \cap \pi_{2}{ }^{-1}\left(U^{\prime}\right)$ is given by

$$
\begin{aligned}
& x^{h^{\prime}}=x^{h^{\prime}}\left(x^{h}\right), \quad y^{h^{\prime}}=\frac{\partial x^{h^{\prime}}}{\partial x^{h}} y^{h}, \\
& z^{h^{\prime}}=\frac{\partial x^{h^{\prime}}}{\partial x^{h}} z^{h}+\frac{\partial^{2} x^{h^{\prime}}}{\partial x^{j} \partial x^{2}} y^{\jmath} y^{2}
\end{aligned}
$$

and its Jacobian matrix by

$$
\left(\begin{array}{ccc}
\frac{\partial x^{h^{\prime}}}{\partial x^{h}}, & 0, & 0 \tag{1.2}\\
\frac{\partial^{2} x^{h^{\prime}}}{\partial x^{h} \partial x^{s}} y^{s}, & \frac{\partial x^{h^{\prime}}}{\partial x^{h}}, & 0 \\
\frac{\partial^{2} x^{h^{\prime}}}{\partial x^{h} \partial x^{s}} z^{s}+\frac{\partial^{3} x^{h^{\prime}}}{\partial x^{h} \partial x^{t} \partial x^{s}} y^{t} y^{s}, & 2 \frac{\partial^{2} x^{h^{\prime}}}{\partial x^{h} \partial x^{s}} y^{s}, & \frac{\partial x^{h^{\prime}}}{\partial x^{h}}
\end{array}\right) \text {. }
$$

[^0]We denote by $\mathscr{I}_{s}^{r}(M)$ the space of all tensor fields of type (r, s) in M. Especially, $\mathscr{I}_{0}^{0}(M), \mathscr{I}_{0}^{1}(M)$ and $\mathscr{I}_{1}^{0}(M)$ are respectively the spaces of all functions, of all vector fields and of all 1 -forms all defined in M. We denote also by $\mathscr{I}_{s}^{r}\left(T_{2}(M)\right)$ the space of all tensor fields of type (r, s) in $T_{2}(M)$.

Prolongations of tensor fields. For any element f of $\mathscr{T}_{0}^{0}(M)$, its prolongations f^{0}, f^{I} and f^{II} to $T_{2}(M)$ are elements of $\mathscr{I}_{0}^{0}\left(T_{2}(M)\right)$ and have respectively local expressions of the form

$$
\begin{equation*}
f^{0}: f\left(x^{h}\right), \quad f^{\mathrm{I}}: y^{i} \partial_{i} f\left(x^{h}\right), \quad f^{\mathrm{II}}: z^{i} \partial_{i} f\left(x^{h}\right)+y^{j} y^{i} \partial_{j} \partial_{i} f\left(x^{h}\right) \tag{1.3}
\end{equation*}
$$

in the induced coordinate system $\left(\xi^{A}\right), f\left(x^{h}\right)$ being the local expression of f in $\left(x^{h}\right)$, where $\partial_{i}=\partial / \partial x^{2}$.

For any element X of $\mathscr{I}_{0}^{1}(M)$, its prolongations X^{0}, X^{1} and $X^{\text {II }}$ are elements of $\mathscr{I}_{0}^{1}\left(T_{2}(M)\right)$ and have the following properties:

1. 4)

(1. 4)

$$
\begin{array}{lll}
X^{0} f^{0}=0, & X^{0} f^{\mathrm{I}}=0, & X^{0} f^{\mathrm{II}}=(X f)^{0}, \\
X^{\mathrm{I}} f^{0}=0, & X^{\mathrm{I}} f^{\mathrm{I}}=\frac{1}{2}(X f)^{0}, & X^{\mathrm{I}} f^{\mathrm{II}}=(X f)^{\mathrm{I}}, \\
X^{\mathrm{II}} f^{0}=(X f)^{0}, & X^{\mathrm{II}} f^{\mathrm{I}}=(X f)^{\mathrm{I}}, & X^{\mathrm{II}} f^{\mathrm{II}}=(X f)^{\mathrm{II}},
\end{array}
$$

f being an arbitrary element of $\mathscr{I}_{0}^{0}(M)$.
For any element ω of $\mathscr{I}_{1}^{0}(M)$, its prolongations $\omega^{0}, \omega^{\mathrm{I}}$ and ω^{II} are elements of $\mathscr{T}_{1}^{0}\left(T_{2}(M)\right)$ and have the following properties:

$$
\begin{array}{lll}
\omega^{0}\left(X^{0}\right)=0, & \omega^{0}\left(X^{\mathrm{I}}\right)=0, & \omega^{0}\left(X^{\mathrm{II}}\right)=(\omega(X))^{0}, \\
\omega^{\mathrm{I}}\left(X^{0}\right)=0, & \omega^{\mathrm{I}}\left(X^{\mathrm{I}}\right)=\frac{1}{2}(\omega(X))^{0}, & \omega^{\mathrm{I}}\left(X^{\mathrm{II}}\right)=(\omega(X))^{\mathrm{I}}, \tag{1.5}\\
\omega^{\mathrm{II}}\left(X^{0}\right)=(\omega(X))^{0}, & \omega^{\mathrm{II}}\left(X^{\mathrm{I}}\right)=(\omega(X))^{\mathrm{I}}, & \omega^{\mathrm{II}}\left(X^{\mathrm{II}}\right)=(\omega(X))^{\mathrm{II}},
\end{array}
$$

X being an arbitrary element of $\mathscr{I}_{0}^{1}(M)$.
Taking arbitrarily two tensor fields P and Q in M, we have the following formulas:

$$
(P \otimes Q)^{0}=P^{0} \otimes Q^{0}
$$

$$
\begin{align*}
& (P \otimes Q)^{\mathrm{I}}=P^{\mathrm{I}} \otimes Q^{0}+P^{0} \otimes Q^{\mathrm{I}} \tag{1.6}\\
& (P \otimes Q)^{\mathrm{II}}=P^{\mathrm{II}} \otimes Q^{0}+2 P^{\mathrm{I}} \otimes Q^{\mathrm{I}}+P^{0} \otimes Q^{\mathrm{II}} .
\end{align*}
$$

The prolongations P^{0}, P^{I} and P^{II} are called respectively the $0-t h$, the $1-s t$ and the 2 -nd lifts of P, P being an arbitrary tensor field in M.

Remark. Let \tilde{X} and \tilde{Y} be two vector fields in $T_{2}(M)$. If we have $\tilde{X} f^{\text {II }}=\tilde{Y} f^{\text {II }}$ for any element f of $\mathscr{I}_{0}^{0}(M)$, then we have $\tilde{X}=\tilde{Y}$. Generally speaking, any tensor field in $T_{2}(M)$ is completely determined by giving its values for the 2-nd lifts of vector fields arbitrarily given in M.

Let F be an element of $\mathscr{I}_{1}^{1}(M)$ and $P(t)$ a polynomial of t. Then we have

$$
\begin{equation*}
(P(F))^{\mathrm{II}}=P\left(F^{\mathrm{II}}\right) . \tag{1.7}
\end{equation*}
$$

We now note that the 2 -nd lift of the identity tensor field I of type $(1,1)$ is also the identity tensor field in $T_{2}(M)$, which is also denoted by I in $T_{2}(M)$, that is to say, $I^{\mathrm{II}}=I$. For example, if $F^{2}+I=0$, we have $\left(F^{\mathrm{II}}\right)^{2}+I=0$. Thus, we obtain

Proposition. If F is an almost complex structure in M, so is $F^{\text {II }}$ in $T_{2}(M)$.
We denote by N_{F} the Nijenhuis tensor of an element F of $\mathscr{L}_{1}^{1}(M)$. We have then

$$
\begin{equation*}
\left(N_{F}\right)^{\mathrm{II}}=N_{F I \mathrm{II}} \tag{1.8}
\end{equation*}
$$

for $F \in \mathscr{I}_{1}^{1}(M)$.
Prolongations of linear connections. Let there be given a linear connection \bar{V} in M. Then there exists a unique linear connection V^{II} in $T_{2}(M)$ characterized by the equation

$$
\begin{equation*}
\nabla^{\mathrm{II}}{ }_{Y \mathrm{II}} X^{\mathrm{II}}=\left(\nabla_{Y} X\right)^{\mathrm{II}}, \tag{1.9}
\end{equation*}
$$

X and Y being arbitrary elements of $\mathscr{L}_{0}^{1}(M)$. The connection $V^{\text {II }}$ is called the lift of the given connection ∇. If we denote by T and R respectively the torsion and the curvature tensors of ∇, we have

$$
\begin{equation*}
\tilde{T}=T^{\mathrm{II}}, \quad \tilde{R}=R^{\mathrm{II}}, \tag{1.10}
\end{equation*}
$$

where \tilde{T} and \tilde{R} are the torsion and the curvature tensors of $V^{\text {II }}$ respectively.
We have the following formulas:

$$
\begin{equation*}
\nabla^{\mathrm{II}_{Y \mathrm{II}} X^{0}=\left(\nabla_{Y} X\right)^{0}, \quad \nabla^{\mathrm{II}}{ }_{Y \mathrm{II}} X^{\mathrm{I}}=\left(\nabla_{Y} X\right)^{\mathrm{I}}, 0} \tag{1.11}
\end{equation*}
$$

for $X, Y \in \mathscr{I}_{0}^{1}(M)$.
Let there be given a pseudo-Riemannian metric g in M. Then $g^{I I}$ is a pseudoRiemannian metric in $T_{2}(M)$. If we denote by ∇ the Riemannian connection
determined by g, then its lift $\nabla^{\text {II }}$ is the Riemannian connection determined by $g^{\text {II }}$ in $T_{2}(M)$.

§ 2. Cross-sections determined by vector fields.

Let there be given a vector field V in M. Denote by $\varphi_{P}: I \rightarrow M$ the orbit of V passing through a point P of M in such a way that $\varphi_{\mathrm{P}}(0)=\mathrm{P}$, where I is an interval $(-\varepsilon, \varepsilon), \varepsilon$ being a certain positive number. If we denote by $\gamma_{\nu}(\mathrm{P})$ the 2 -jet $j_{\mathrm{P}}^{2}\left(\varphi_{\mathrm{P}}\right)$, we set that the correspondence $\mathrm{P} \rightarrow \gamma_{V}(\mathrm{P})$ defines a mapping $\gamma_{V}: M \rightarrow T_{2}(M)$ such that $\pi_{2} \circ \gamma_{V}$ is the identity mapping, i.e., that $\gamma_{V}: M \rightarrow T_{2}(M)$ is a cross-section in $T_{2}(M)$. The submanifold $\gamma_{V}(M)$ imbedded in $T_{2}(M)$ is called the cross-section determined by the vector field V. If U is a coordinate neighborhood in M the cross-section $\gamma_{V}(M)$ is expressed locally in $\pi_{2}^{-1}(U)$ by equations

$$
\begin{equation*}
x^{h}=x^{h}, \quad y^{h}=V^{h}\left(x^{i}\right), \quad z^{h}=V^{k}\left(x^{i}\right) \partial_{k} V^{h}\left(x^{i}\right) \tag{2.1}
\end{equation*}
$$

with respect to the induced coordinate system $\left(\xi^{A}\right)$, where $V=V^{h}\left(x^{i}\right) \partial_{h}$ is the local expression of V in U. We denote the equations (2.1) by

$$
\begin{equation*}
\xi^{A}=\xi^{A}\left(x^{i}\right), \tag{2.2}
\end{equation*}
$$

i.e., $\xi^{h}=x^{h}, \xi^{n+h}=V^{h}, \xi^{2 n+h}=V^{h} \partial_{k} V^{h}$.

Taking account of (1.3) and (2.1), we have along $\gamma_{V}(M)$ the equations

$$
\begin{equation*}
f^{\mathrm{II}}=\left(\mathcal{L}^{2} f\right)^{0}, \quad f^{\mathrm{I}}=\left(\mathcal{L}_{V} f\right)^{0}, \quad f^{0}=f^{0} \tag{2.3}
\end{equation*}
$$

for $f \in \mathscr{I}_{0}^{0}(M)$, where \mathcal{L}_{V} denotes the Lie derivation with respect to V and $\mathcal{L}_{V}{ }^{2}=\mathcal{L}_{V} \mathcal{L}_{V}$.
If we put $B_{i}{ }^{4}=\partial_{i} \xi^{A}$, we get along $\gamma_{V}(M) n$ local vector fields B_{i} tangent to the cross-section which have the components of the form

$$
\left(B_{i}^{A}\right)=\left(\begin{array}{c}
\delta_{i}^{h} \tag{2.4}\\
\partial_{i} V^{h} \\
\left(\partial_{i} V^{k}\right)\left(\partial_{k} V^{h}\right)+V^{k} \partial_{i} \partial_{k} V^{h}
\end{array}\right)
$$

with respect to the induced coordinate system (ξ^{A}). For an element X of $\mathscr{I}_{0}^{1}(M)$ with local expression $X=X^{i} \partial / \partial x^{2}$, we denote by $B X$ the vector field with components $B_{i}{ }^{4} X^{i}$, which is defined globally along $\gamma_{V}(M)$ by virtue of (1.2). The mapping $B_{p}: T_{p}(M) \rightarrow T_{\sigma}\left(T_{2}(M)\right)\left(\sigma=\gamma_{V}(p)\right)$ defined by the correspondence $X_{p} \rightarrow(B X)_{\sigma}$, is the differential mapping $\gamma_{V}{ }^{\prime}$ of the cross-section mapping $\gamma_{v}: M \rightarrow T_{2}(M)$. Thus $B_{p}: T_{p}(M) \rightarrow T_{o}\left(T_{2}(M)\right)$ is an isomorphism and $B_{p}\left(T_{p}(M)\right)$ is the tangent space of the cross-section $\gamma_{V}(M)$ at the point $\sigma=\gamma_{v}(p)$.

We consider along the cross-section $\gamma_{v}(M) n$ local vector fields $C_{\bar{\imath}}$ and n local
vector fields D_{i} along $\gamma_{V}(M)$, which have respectively components of the form

$$
\left(C_{i}^{A}\right)=\left(\begin{array}{c}
0 \tag{2.5}\\
\frac{1}{2} \delta_{i}{ }^{h} \\
\partial_{i} V^{h}
\end{array}\right), \quad\left(D_{i}{ }^{A}\right)=\left(\begin{array}{c}
0 \\
0 \\
\delta_{i}{ }^{h}
\end{array}\right)
$$

in the induced coordinate system $\left(\xi^{A}\right)$. For an element X of $\mathscr{I}_{0}^{1}(M)$ with local experession $X=X^{i} \partial_{i}$, we denote by $C X$ and $D X$ the vector fields with components $C_{i}^{A} X^{i}$ and $D_{\hat{\imath}}^{A} X^{i}$ respectively. Then according to (1.2), $C X$ and $D X$ are defined along $\gamma_{v}(M)$. We now defined two mappings $C_{p}: T_{p}(M) \rightarrow T_{o}\left(T_{2}(M)\right)$ and $D_{p}: T_{p}(M)$ $\rightarrow T_{\sigma}\left(T_{2}(M)\right)\left(\sigma=\gamma_{v}(p)\right)$ respectively by

$$
\begin{equation*}
C_{p} X_{p}=(C X)_{o}, \quad D_{p} X_{p}=(D X)_{\sigma} \tag{2.6}
\end{equation*}
$$

X being an arbitrary element of $\mathscr{I}_{0}^{1}(M)$. It is easily verified by virtue of (2.5) that the two mappings C_{p} and D_{p} defined by (2.6) are isomorphisms of $T_{p}(M)$ into $T_{\sigma}\left(T_{2}(M)\right)\left(\sigma=\gamma_{v}(\mathrm{P})\right)$.

Putting

$$
N_{\sigma}{ }^{(1)}=C_{p} T_{p}(M), \quad N_{\sigma}{ }^{(2)}=D_{p} T_{p}(M) \quad\left(\sigma=\gamma_{V}(p)\right),
$$

we have the following direct sum representation of $T_{\sigma}\left(T_{2}(M)\right)$:

$$
T_{o}\left(T_{2}(M)\right)=T_{o}\left(\gamma_{\nu}(M)\right)+N_{\sigma}{ }^{(1)}+N_{\sigma}{ }^{(2)}
$$

The $3 n$ local vector fields B_{i}, C_{i} and D_{i} along $\gamma_{v}(M)$ are expressed respectively by

$$
\begin{equation*}
B_{i}=B \partial_{i}, \quad C_{i}=C \partial_{i}, \quad D_{i}=D \partial_{i} \tag{2.7}
\end{equation*}
$$

and form a local family of frames $\left\{B_{i}, C_{i}, D_{\vec{i}}\right\}$ along $\gamma_{V}(M)$, which are called the adapted frames of $\gamma_{V}(M)$. The n local vector fields B_{i} span $T_{\sigma}\left(\gamma_{V}(M)\right), C_{i}$ span $N_{\sigma}{ }^{(1)}$ and $D_{\bar{\imath}} \operatorname{span} N_{\sigma}{ }^{(2)}$, all at $\sigma \in \gamma_{V}(M)$.

Taking account of (2.4), (2.5) and (2.7), we have along $\gamma_{V}(M)$

$$
\begin{align*}
& X^{\mathrm{I}}=B X+2 C\left(\mathcal{L}_{V} X\right)+D\left(\mathcal{L}_{V}{ }^{2} X\right) \\
& X^{\mathrm{I}}= \tag{2.9}\\
& X^{0}= \\
& +D\left(\mathcal{L}_{V} X\right) \\
&
\end{align*}
$$

or equivalently

$$
\begin{array}{rlr}
X^{\mathrm{II}} & =\left(X^{i}\right)^{0} B_{i}+2\left(\mathcal{L}_{V} X^{i}\right)^{0} C_{i}+\left(\mathcal{L}^{2} X^{i}\right)^{0} D_{i}, \\
X^{\mathrm{I}} & \left(X^{i}\right)^{0} C_{i}+\left(\mathcal{L}_{V} X^{i}\right)^{0} D_{i}, \tag{2.10}\\
X^{0} & \left(X^{i}\right)^{0} D_{i}
\end{array}
$$

for any element X of $\mathscr{L}_{0}^{1}(M)$ with local expression $X=X^{i} \partial_{i}$.

§ 3. Prolongations of tensor fields in the cross-sections.

Let there be given a vector field \tilde{X} along $\gamma_{v}(M)$. Putting

$$
\tilde{X}=\tilde{X}^{i} B_{i}+\tilde{X}^{i} C_{i}+\tilde{X}^{i} D_{\tilde{\imath}}
$$

we call $\left(\tilde{X}^{\alpha}\right)=\left(\tilde{X}^{i}, \tilde{X}^{i}, \tilde{X}^{i}\right)^{3)}$ the components of \tilde{X} in the adapted frame. Similarly, for any tensor field \tilde{T} of type (1.2) along $\gamma_{V}(M)$, we denote by

$$
\left(\widetilde{T}_{\beta r}{ }^{\alpha}\right)=\left(\widetilde{T}_{j i}{ }^{h}, \widetilde{T}_{j i}{ }^{\hbar}, \widetilde{T}_{j i}{ }^{\bar{h}}, \cdots, \widetilde{T}_{j i}{ }^{\overline{ }}\right)
$$

its components in the adapted frame. Thus by means of (2.10), the lifts $X^{0}, X^{\text {I }}$ and $X^{\text {II }}$ have along $\gamma_{V}(M)$ components of the form

$$
\left(X^{0 \alpha}\right)=\left(\begin{array}{c}
0 \tag{3.1}\\
0 \\
X^{h}
\end{array}\right), \quad\left(X^{\mathrm{I} \alpha}\right)=\left(\begin{array}{c}
0 \\
X^{h} \\
\mathcal{L}_{V} X^{h}
\end{array}\right), \quad\left(X^{\mathrm{I} \alpha}\right)=\left(\begin{array}{c}
X^{h} \\
2 \mathcal{L}_{V} X^{h} \\
\mathcal{L}^{2} X^{h}
\end{array}\right)
$$

in the adapted frame, where X is a vector field in M with local expression $X=X^{i} \partial_{i}$. In (3.1) we have identified the 0 -th lift $\left(X^{h}\right)^{0},\left(\mathcal{L}_{V} X^{h}\right)^{0}$ and $\left(\mathcal{L}_{V}{ }^{2} X^{h}\right)^{0}$ respectively with functions $X^{h}, \mathcal{L}_{V} X^{h}$ and $\mathcal{L}_{V}{ }^{2} X^{h}$. In the sequel we sometimes use such identification.

Let there be given an element ω of $\mathscr{I}_{1}^{0}(M)$ with local expressions $\omega=\omega_{i} d x^{2}$. Then its lifts $\omega^{0}, \omega^{\mathrm{I}}$ and ω^{II} have respectively components of the form

$$
\left(\omega_{\beta}^{0}\right)=\left(\omega_{i}, 0,0\right),
$$

$$
\begin{align*}
& \left(\omega_{\beta}^{\mathrm{I}}\right)=\left(\mathcal{L}_{V} \omega_{i}, \frac{1}{2} \omega_{i}, 0\right), \tag{3.2}\\
& \left(\omega^{\mathrm{II}}\right)=\left(\mathcal{L}_{V}{ }^{2} \omega_{i}, \mathcal{L}_{V} \omega_{i}, \omega_{i}\right)
\end{align*}
$$

in the adapted frame. In fact by virtue of (2.3), (3.1) and (1.5), we have along $\gamma_{v}(M)$, for example,
3) We use Greek indices α, β, \cdots to represent the components in the adapted frame.

$$
\begin{aligned}
& \omega^{\mathrm{II}}{ }_{i} X^{i}+2 \omega^{\mathrm{II}}\left(\mathcal{L}_{V} X^{i}\right)+\omega^{\mathrm{II}}\left(\mathcal{L}_{V}{ }^{2} X^{i}\right) \\
= & \mathcal{L}_{V}{ }^{2}\left(\omega_{i} X^{i}\right) \\
= & \left(\mathcal{L}_{V}{ }^{2} \omega_{i}\right) X^{i}+2\left(\mathcal{L}_{V} \omega_{i}\right)\left(\mathcal{L}_{V} X^{i}\right)+\omega_{i}\left(\mathcal{L}_{V}{ }^{2} X^{i}\right)
\end{aligned}
$$

for arbitrary element X of $\mathscr{I}_{0}^{1}(M)$ with local expression $X=X^{i} \partial_{i}$, and there exists an element X of $\mathscr{I}_{0}^{1}(M)$ such that at a given point, for any given values ($a^{\hbar}, b^{\hbar}, c^{\hbar}$),

$$
X^{h}=a^{h}, \quad \mathcal{L}_{V} X^{h}=b^{\hbar} \quad \text { and } \quad \mathcal{L}_{V}{ }^{2} X^{h}=c^{\hbar}
$$

hold. The other relations stated in (3.2) are obtained similarly.
Taking account of (1.6), (3.1) and (3.2) we find components of 0 -th, 1 -st and 2 -nd lifts of any tensor field in M with respect to the adapted frame. For example, for an element h of $\mathscr{I}_{2}^{0}(M)$ we have

$$
\left(h_{\beta \alpha}^{0}\right)=\left(\begin{array}{ccc}
h_{j i} & 0 & 0 \tag{3.3}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(h_{\beta \alpha}^{\mathrm{I}}\right)=\left(\begin{array}{ccc}
\mathcal{L}_{V} h_{j i} & \frac{1}{2} h_{j i} & 0 \\
\frac{1}{2} h_{j i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

$$
\left(h^{\mathrm{II}}{ }_{\beta \alpha}\right)=\left(\begin{array}{ccc}
\mathcal{L}_{V} h_{j i} & \mathcal{L}_{V} h_{j i} & h_{j i} \\
\mathcal{L}_{V} h_{j i} & \frac{1}{2} h_{j i} & 0 \\
h_{j i} & 0 & 0
\end{array}\right),
$$

$h_{j i}$ being the components of h. For an element F of $\mathscr{I}_{1}^{1}(M)$,

$$
\left(F_{\beta}^{0_{\beta}^{\alpha}}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
F_{i}{ }^{h} & 0 & 0
\end{array}\right), \quad\left(F_{\beta}^{\mathbf{I}_{\beta}^{\alpha}}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
F_{i}{ }^{h} & 0 & 0 \\
\mathcal{L}_{V} F_{i}{ }^{h} & \frac{1}{2} F_{i}{ }^{h} & 0
\end{array}\right),
$$

(3. 4)

$$
\left(F^{\mathrm{H}}{ }_{\beta}^{\alpha}\right)=\left(\begin{array}{ccc}
F_{i}^{h} & 0 & 0 \\
2 \mathcal{L}_{V} F_{i}^{h} & F_{i}{ }^{h} & 0 \\
\mathcal{L}_{V}{ }^{2} F_{i}^{h} & \mathcal{L}_{V} F_{i}^{h} & F_{i}^{h}
\end{array}\right),
$$

$F_{i}{ }^{h}$ being the components of F. For an element S of $\mathscr{I}_{2}^{1}(M)$,

$$
\begin{align*}
& S^{0}{ }_{j i}{ }^{h}=0, \quad S^{0}{ }_{j i}{ }^{\bar{h}}=0, \quad S^{0}{ }_{j i}{ }^{\bar{h}}=S_{j i}{ }^{h}, \\
& S^{\mathrm{I}}{ }_{j i}{ }^{h}=0, \quad S^{\mathrm{I}}{ }_{j i}{ }^{\boldsymbol{h}}=S_{j i}{ }^{h}, \quad S^{\mathrm{I}}{ }_{j i}{ }^{\boldsymbol{h}}=\mathcal{L}_{V} S_{j i}{ }^{h} \text {, } \tag{3.5}
\end{align*}
$$

$S_{j i}{ }^{h}$ being the components of S.
The linear isomorphism B defined in $\S 2$ is the differential mapping $\gamma_{v}{ }^{\prime}$ of the cross-section mapping $\gamma_{v}: M \rightarrow \gamma_{v}(M)$. Then we denote sometimes by $\gamma_{v}{ }^{\prime} X$ the vector field $B X, X$ being an arbitrary element of $\mathscr{I}_{0}^{1}(M)$. Given an element ω of $\mathscr{T}_{1}^{0}(M)$, we denote by $\gamma_{v}^{\prime} \omega$ the image of ω by the dual mapping of B^{-1} (=the restriction of π_{2} to $\gamma_{V}(M)$). The mapping $\gamma_{V}{ }^{\prime}$ is extended as a linear mapping $\gamma_{v}{ }^{\prime}: \mathscr{T}(M) \rightarrow \mathscr{I}\left(\gamma_{v}(M)\right)$ by

$$
\gamma_{v}^{\prime}(P \otimes Q)=\left(\gamma_{v}^{\prime} P\right) \otimes\left(\gamma_{v}^{\prime} Q\right),
$$

P and Q being arbitrary tensor fields in M.
Now we will define the operation \# in $\mathscr{I}\left(T_{2}(M)\right)$ as follows. For an element \tilde{X} of $\mathscr{I}_{0}^{1}\left(T_{2}(M)\right)$, we put

$$
\tilde{X}^{\ddagger}=\tilde{X}^{i} B_{i} .
$$

Let $\tilde{\omega}$ be a tensor field of type (0.1) defined along $\gamma_{v}(M)$. Then putting along $\gamma_{v}(M)$

$$
\tilde{\omega}^{\sharp}(B X)=\tilde{\omega}(B X)
$$

for $X \in \mathscr{I}_{0}^{1}(M)$, we can define an element $\tilde{\omega}^{z}$ of $\mathscr{I}_{1}^{0}\left(\gamma_{V}(M)\right)$ which is called the 1 -form induced in $\gamma_{v}(M)$ from $\tilde{\boldsymbol{\omega}}$. Let \tilde{h} be a tensor field of type $(0,2)$ defined along $\gamma_{v}(M)$. Then putting along $\gamma_{V}(M)$

$$
\tilde{h}^{\ddagger}(B X, B Y)=\tilde{h}(B X, B Y)
$$

for $X, Y \in \mathscr{I}_{0}^{1}(M)$, we can define an element \tilde{h}^{7} of $\mathscr{I}_{2}^{0}\left(\gamma_{V}(M)\right)$ which is called the tensor field induced in $\gamma_{V}(M)$ from \tilde{h}. Let \tilde{F} be a tensor field of type $(1,1)$ defined along $\gamma_{V}(M)$ such that, for any vector field \tilde{A} tangent to $\gamma_{V}(M), \tilde{F} \widetilde{A}$ is also tangent to $\gamma_{V}(M)$. Then putting

$$
\tilde{F}^{*}(B X)=\tilde{F}(B X)
$$

for $X \in \mathscr{I}_{0}^{1}(M)$, we can define an element \tilde{F}^{*} of $\mathscr{I}_{1}^{1}\left(\gamma_{V}(M)\right)$ which is called the tensor field induced in $\gamma_{V}(M)$ from \widetilde{F}. Let \widetilde{S} be a tensor field of type $(1,2)$ defined along $\gamma_{V}(M)$ such that for any vector field \tilde{A}, \tilde{B} tangent to $\gamma_{V}(M), \tilde{S}(\tilde{A}, B)$ is tangent to
$\gamma_{V}(M)$. Then putting

$$
\tilde{S}^{\sharp}(B X, B Y)=\widetilde{S}(B X, B Y)
$$

for $X, Y \in \mathscr{I}_{0}^{1}(M)$, we can define an element \widetilde{S}^{\ddagger} of $\mathscr{I}_{2}^{1}\left(\gamma_{V}(M)\right)$, which is called the tensor field induced in $\gamma_{V}(M)$ from \widetilde{S}.

We have from (3.1),
Proposition 3.1. Let X be an element of $\mathscr{I}_{0}^{1}(M)$. Then $X^{\text {II }}$ is tangent to $\gamma_{V}(M)$ if and only if $\mathcal{L}_{V} X=0$. In this case $X^{1 \mathrm{IF}}=\gamma_{V}{ }^{\prime} X$ holds. For any element X of $\mathscr{I}_{0}^{1}(M), X^{0 \sharp}=0$ and $X^{1 \ddagger}=0$ hold.

We have from (3. 2),
Proposition 3.2. For any element ω of $\mathscr{I}_{1}^{0}(M)$,

$$
\omega^{\mathrm{II} \ddagger}=\gamma_{V}{ }^{\prime}\left(\mathcal{L}_{V}{ }^{2} \omega\right), \quad \omega^{\mathrm{T} \ddagger}=\gamma_{V}{ }^{\prime}\left(\mathcal{L}_{V} \omega\right) \quad \text { and } \quad \omega^{0 \ddagger}=\gamma_{V}{ }^{\prime} \omega
$$

hold.
We have from (3.3)
Proposition 3. 3. For any element h of $\mathscr{L}_{2}^{0}(M)$,

$$
h^{\mathrm{II}:}=\gamma_{V}{ }^{\prime}\left(\mathcal{L}_{V}{ }^{2} h\right), \quad h^{1 *}=\gamma_{V}{ }^{\prime}\left(\mathcal{L}_{V} h\right) \quad \text { and } \quad h^{0 \sharp}=\gamma_{V}^{\prime} h
$$

hold, and hence $h^{\circ *}(B X, B Y)=h(X, Y)^{0}$.
Proposition 3.4. Let g be a Riemannian metric in M. Then $g^{0 *}$ is a Riemannian metric in $\gamma_{V}(M)$ and γ_{V} is isometry, i.e. $g^{0 \sharp}=\gamma_{V}{ }^{\prime} g$.

Suppose that the vector field V in M satisfies the condition $\mathcal{L}_{V} g=c g, g$ being a Riemannian metric in M and c a constant, that is, V is an infinitesimal homothetic transformation with respect to g. Then we have from Proposition 3.3 the relation $g^{1 i \#}=c g^{1 \#}=c^{2} g^{0 \%}$.

If for each point σ of $\gamma_{V}(M)$ the tangent space $T_{o}\left(\gamma_{V}(M)\right)$ is invariant by the action of a tensor field \tilde{F} defined along $\gamma_{V}(M)$, then the cross-section $\gamma_{V}(M)$ is said to be invariant by \widetilde{F}. For any $F \in \mathscr{I}_{1}^{1}(M)$, we have from (3.4)

$$
\begin{aligned}
& F^{0}(B X)=D F X, \quad F^{\mathrm{I}}(B X)=C(F X)+D\left(\left(\mathcal{L}_{V} F\right) X\right), \\
& F^{\mathrm{I}}(B X)=B(F X)+2 C\left(\left(\mathcal{L}_{V} F\right) X\right)+D\left(\left(\mathcal{L}_{V}{ }^{2} F\right) X\right)
\end{aligned}
$$

for $X \in \mathscr{I}_{0}^{1}(M)$. Thus we have

Proposition 3.5. Let F be an element of $\mathscr{T}_{1}^{1}(M)$. The cross-section $\gamma_{V}(M)$ is invariant by $F^{\text {II }}$ if and only if $\mathcal{L}_{V} F=0$. In this case, $F{ }^{11}=\gamma_{V}{ }^{\prime} F$ holds. The lifts F^{0} and F^{I} do not leave $\gamma_{V}(M)$ invariant, unless $F=0$.

Proposition 3.6. If F is an almost complex structure such that $\mathcal{L}_{V} F=0$, then F^{II} is an almost complex structure in $\gamma_{v}(M)$ and $F^{\mathrm{II} *}=\gamma_{v}^{\prime} F$ holds.

If a Riemannian metric g in M satisfies the condition

$$
g(F X, F Y)=g(X, Y) \quad \text { for any } \quad X, Y \in \mathscr{I}_{0}^{1}(M),
$$

then (g, F) is called an almost Hermitian structure in M. If $\mathcal{L}_{V} F=0$ holds, then we get along $\gamma_{V}(M)$

$$
\begin{aligned}
g^{0 \sharp}\left(F^{\mathrm{II}} B X, F^{\mathrm{II}} B Y\right) & =\left(\gamma_{v}^{\prime} g\right)\left(\left(\gamma_{v}^{\prime} F\right) X,\left(\gamma_{v}^{\prime} F\right) Y\right) \\
& =(g(F X, F Y))^{0}
\end{aligned}
$$

because of Proposition 3.3 and 3.5. Thus we have
Proposition 3.7. Suppose that there is given an almost Hermitian structure (g, F) in M. If $\mathcal{L}_{V} F=0$, then ($\left.g^{0 \%}, F^{1{ }^{1 *}}\right)$ is an almost Hermitian structure in $\gamma_{V}(M)$.

For any $S \in \mathscr{I}_{2}^{1}(M)$, we have from (3.5)

$$
S^{0}(B X, B Y)=D(S(X, Y))
$$

$$
\begin{align*}
& S^{\mathrm{I}}(B X, B Y)=C(S(X, Y))+D\left(\left(\mathcal{L}_{V} S\right)(X, Y)\right) \tag{3.7}\\
& S^{\mathrm{II}}(B X, B Y)=B(S(X, Y))+2 C\left(\left(\mathcal{L}_{V} S\right)(X, Y)\right)+D\left(\left(\mathcal{L}_{V}{ }^{2} S\right)(X, Y)\right)
\end{align*}
$$

for any $X, Y \in \mathscr{I}_{0}^{1}(M)$. Thus we get
Proposition 3. 8. Let S be an element of $\mathscr{I}_{2}^{1}(M)$. The vector fields $S^{11}(B X, B Y)$ is tangent to $\gamma_{v}(M)$ for arbitrary elements X, Y of $\mathscr{I}_{0}^{1}(M)$, if and only if $\mathcal{L}_{V} S=0$, and in this case $S^{\mathrm{IIf}}=\gamma_{V}{ }^{\prime} S$ holds. The vector fields $S^{0}(B X, B Y)$ and $S^{\mathrm{I}}(B X, B Y)$ are not tangent to $\gamma_{v}(M)$, unless $S=0$.

If an element F of $\mathscr{I}_{1}^{1}(M)$ satisfies $\mathcal{L}_{V} F=0$, then its Nijenhuis tensor satisfies $\mathcal{L}_{V} N_{F}=0$. By virtue of (1.8), Proposition 3.5 and 3.8 , we have

$$
N_{F \mathrm{II}^{\sharp}}=N_{\bar{I}^{\mathrm{II}}}=\gamma_{V}^{\prime} N_{F}
$$

in the case that $\mathcal{L}_{V} F=0$. Thus we have
Proposition 3.9. Let F be an element of $\mathscr{L}_{1}^{1}(M)$ such that $\mathcal{L}_{V} F=0$. Then the vector field $N_{F} \mathrm{I}(B X, B Y)$ is tangent to $\gamma_{V}(M)$ for arbitrary elements X, Y of $\mathcal{T}_{0}^{1}(M)$, and $N_{F \mathrm{II}^{*}}=N_{F^{\mathrm{II}}}=\gamma_{V}^{\prime} N_{F}$ hold. Especially $N_{F^{\mathrm{II}}}$ vanishes identically in $\gamma_{V}(M)$ if and only if $N_{F}=0$.

Consequently taking account of Proposition in $\S 1$ and Proposition 3.5, we get

Proposition 3.10. If a complex structure F satisfies the condition $\mathcal{L}_{V} F=0$, then $F^{\text {II }}$ is a complex structure in $\gamma_{v}(M)$.

§ 4. Prolongations of affine connections in cross-sections.

First of all, we recall some formulas on Lie derivations (cf. [4]). Let there be given an affine connection V with coefficients $\Gamma_{j i}^{h}$. For vector fields X with local expression $X=X^{i} \partial_{i}$ and V, we have formulas as

$$
\begin{equation*}
\mathcal{L}_{V}\left(\nabla_{\jmath} X^{h}\right)-\nabla_{j}\left(\mathcal{L}_{V} X^{h}\right)=\left(\mathcal{L}_{V} \Gamma_{j i}^{h}\right) X^{i}, \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{k}\left(\mathcal{L}_{V} \Gamma_{j i}^{h}\right)-\nabla_{j}\left(\mathcal{L}_{V} \Gamma_{k \imath}^{h}\right)=\mathcal{L}_{V} R_{k j i^{n}}{ }^{h}, \tag{4.2}
\end{equation*}
$$

where $R_{k j i^{h}}{ }^{h}$ denotes the components of the curvature tensor R of ∇. Hence we have
(4. 3)

$$
\mathcal{L}^{2}\left(\nabla_{j} X^{h}\right)-\nabla_{j}\left(\mathcal{L}_{V}{ }^{2} X^{h}\right)=\left(\mathcal{L}_{V}{ }^{2} \Gamma_{j i}^{h}\right) X^{i}+2\left(\mathcal{L}_{V} \Gamma_{j i}^{h}\right)\left(\mathcal{L}_{V} X^{i}\right),
$$

$$
\begin{equation*}
\nabla_{k}\left(\mathcal{L}_{V}^{2} \Gamma_{j i}^{h}\right)-\nabla_{j}\left(\mathcal{L}_{V}{ }^{2} \Gamma_{k v}^{h}\right)+2\left(\mathcal{L}_{V} \Gamma_{k t}^{k}\right)\left(\mathcal{L}_{V} \Gamma_{j i}^{t}\right)-2\left(\mathcal{L}_{V} \Gamma_{j t}^{h}\right)\left(\mathcal{L}_{V} \Gamma_{k i}^{t}\right)=\mathcal{L}_{V}{ }^{2} R_{k j i}{ }^{h} . \tag{4.4}
\end{equation*}
$$

Taking account of (1.9) and (2.9), we have along $\gamma_{v}(M)$

$$
\begin{align*}
\nabla^{\mathrm{II}}{ }_{Y \mathrm{II}} X^{\mathrm{II}} & =B\left(\nabla_{Y} X\right)+2 C\left(\mathcal{L}_{V}\left(\nabla_{Y} X\right)\right)+D\left(\mathcal{L}^{2}\left(\nabla_{Y} X\right)\right) \\
& =\left(\nabla_{Y} X^{h}\right)^{0} B_{h}+2\left(\mathcal{L}_{V} \nabla_{Y} X^{h}\right)^{\circ} C_{\bar{\hbar}}+\left(\mathcal{L}_{V}{ }^{2} \nabla_{Y} X^{h}\right)^{0} D_{\bar{h}} \tag{4.5}
\end{align*}
$$

for $X, Y \in \mathscr{I}_{0}^{1}(M)$, where $X=X^{i} \partial_{i}$ is the local expression of X. On the other hand, taking account of (1.4) and (2.10), we have along $\gamma_{V}(M)$
i.e.

$$
\begin{aligned}
\nabla^{\mathrm{II}}{ }_{Y}{ }^{\mathrm{II}} X^{\mathrm{II}}= & \left(X^{h}\right)^{0} V^{\mathrm{II}}{ }_{Y}{ }^{\mathrm{II}} B_{h}+2\left(\mathcal{L}_{V} X^{h}\right)^{0} V^{\mathrm{II}}{ }_{Y}{ }^{\mathrm{II}} C_{\hbar}+\left(\mathcal{L}_{V}{ }^{2} X^{h}\right)^{0} V^{\mathrm{II}}{ }_{Y}{ }^{\mathrm{II}} D_{\bar{h}} \\
& +\left(Y^{i} \partial_{i} X^{h}\right)^{0} B_{h}+2\left(Y^{i} \partial_{i}\left(\mathcal{L}_{V} X^{h}\right)\right)^{0} C_{\bar{\hbar}}+\left(Y^{i} \partial_{i}\left(\mathcal{L}_{V}{ }^{2} X^{h}\right)\right)^{0} D_{\bar{h}},
\end{aligned}
$$

where $Y=Y^{i} \partial_{i}$ is the local representation of Y. For an arbitrary point σ of $\gamma_{V}(M)$, there exists a vector field Y in M with initial conditions $Y=\partial_{\mu}, \mathcal{L}_{V} Y=0, \mathcal{L}_{V}{ }^{2} Y=0$ at $p=\pi_{2}(\sigma)$. Then at $\sigma, \quad Y^{\mathrm{II}}=B Y=B \partial_{j}=B_{\jmath}$, and the value of $\nabla^{\mathrm{II}}{ }_{V^{\mathrm{II}}} X^{\mathrm{II}}$ at σ is $\nabla^{\mathrm{II}}{ }_{B_{j}} X^{\mathrm{II}}$. Comparing the two equations (4.5) and (4.6), we have at $\sigma \in \gamma_{V}(M)$,

$$
\begin{gathered}
\quad\left(X^{h}\right)^{0} V^{\mathrm{II}}{ }_{B_{j}} B_{h}+2\left(\mathcal{L}_{V} X^{h}\right)^{0} V^{\mathrm{II}}{ }_{B_{j}} C_{\bar{h}}+\left(\mathcal{L}_{V}{ }^{2} X^{h}\right)^{0} V^{\mathrm{II}}{ }_{B_{j}} D_{\bar{h}} \\
=\left(\nabla_{J} X^{h}-\partial_{j} X^{h}\right)^{0} B_{h}+2\left\{\mathcal{L}_{V}\left(\nabla_{J} X^{h}\right)-\nabla_{j}\left(\mathcal{L}_{V} X^{h}\right)\right\}^{0} C_{\bar{\hbar}} \\
=\left(\Gamma_{j i}^{h} X^{i}\right)^{0} B_{h}+2\left\{\mathcal{L}_{V}{ }^{2}\left(\nabla_{J} X^{h}\right)-\nabla_{j} X^{h}\left(\mathcal{L}_{V}{ }^{2} X^{h}\right)\right\}^{0} D_{\bar{h}} \\
\left.\quad+\left\{\mathcal{V}_{j}\left(\mathcal{L}_{V} X^{h}\left(\nabla_{J} X^{h}\right)-\Gamma_{j i}^{h} \mathcal{L}_{V}\left(\mathcal{L}_{V} X^{i}\right\}^{h}\right\}_{\bar{h}}\right)+\Gamma_{j i}^{h} \mathcal{L}^{2} X^{i}\right\}^{0} D_{\bar{h}}
\end{gathered}
$$

which implies by virtue of (4.1) and (4.3),

$$
\left(X^{h}\right)^{0} V^{\mathrm{II}}{ }_{B_{j}} B_{h}+2\left(\mathcal{L}_{V} X^{h}\right)^{0} V^{\mathrm{II}_{B_{j}}} C_{\bar{h}}+\left(\mathcal{L}_{V}{ }^{2} X^{h}\right)^{0} V^{\mathrm{II}}{ }_{B_{j}} D_{\bar{h}}
$$

$$
\begin{align*}
= & \left(\Gamma_{j i}^{h} X^{i}\right)^{0} B_{h}+2\left\{\left(\mathcal{L}_{V} \Gamma_{j i}^{h}\right) X^{i}+\Gamma_{j i}^{h}\left(\mathcal{L}_{V} X^{i}\right)\right\}^{0} C_{\bar{h}} \tag{4.6}\\
& +\left\{\left(\mathcal{L}_{V}{ }^{2} \Gamma_{j i}^{h}\right) X^{i}+2\left(\mathcal{L}_{V} \Gamma_{j i}^{h}\right)\left(\mathcal{L}_{V} X^{i}\right)+\Gamma_{j i}^{h}\left(\mathcal{L}_{V}{ }^{2} X^{i}\right)\right\}^{0} D_{\bar{h}}
\end{align*}
$$

Let $a^{h}, b^{\bar{n}}$ and $c^{\bar{n}}$ be arbitrary real numbers. For any point σ of $\gamma_{v}(M)$, there exists a vector field X in M with local expression $X=X^{i} \partial_{i}$ such that it satisfies $X^{h}=a^{h}, \mathcal{L}_{V} X^{h}=b^{\hbar}, \mathcal{L}_{V}{ }^{2} X^{h}=c^{\hbar}$ at $p=\pi_{2}(\sigma)$. Thus (4.6) gives

$$
\nabla^{\mathrm{II}}{ }_{B_{j}} B_{i}=\left(\Gamma_{j i}^{h}\right)^{0} B_{h}+2\left(\mathcal{L}_{V} \Gamma_{j i}^{h}\right)^{0} C_{\bar{h}}+\left(\mathcal{L}_{V}{ }^{2} \Gamma_{j i}^{h}\right)^{0} D_{\bar{h}}
$$

$$
\begin{array}{rlrl}
\nabla^{\mathrm{II}}{ }_{B j} C_{i} & = & \left(\Gamma_{j i}^{h}\right)^{0} C_{\bar{h}} & +\left(\mathcal{L}_{V} \Gamma_{j i}^{h}\right)^{0} D_{\bar{h}} \tag{4.7}\\
\nabla^{\mathrm{II}}{ }_{B j} D_{\bar{i}} & = & \left(\Gamma_{j i}^{h}\right)^{0} D_{\bar{h}}
\end{array}
$$

Putting

$$
\begin{align*}
& { }^{\prime} \nabla^{\mathrm{II}}{ }_{j} B_{i}=\nabla^{\mathrm{II}}{ }_{B_{j}} B_{i}-\left(\Gamma_{j i}^{h}\right)^{0} B_{h}, \\
& { }^{\prime} \nabla^{\mathrm{II}}{ }_{j} C_{i}=\nabla^{\mathrm{II}}{ }_{B_{j}} C_{\bar{i}}-\left(\Gamma_{j i}^{h}\right)^{0} C_{\bar{h}}, \tag{4.8}\\
& { }^{\prime}{ }^{\mathrm{II}}{ }_{j} D_{\bar{i}}=\nabla^{\mathrm{II}}{ }_{B_{j}} D_{\bar{i}}-\left(\Gamma_{j i}^{h}\right)^{0} D_{\bar{h}},
\end{align*}
$$

we have

$$
\begin{equation*}
\prime V^{{ }^{H}{ }_{j} B_{\imath}=2\left(\mathcal{L}_{V} \Gamma_{j_{i}}^{h}\right)^{0} C_{\bar{h}}+\left(\mathcal{L}_{V}{ }^{2} \Gamma_{j i}^{h}\right)^{0} D_{\bar{h}}, ~} \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
V^{11}{ }_{j} C_{i}= \tag{4.10}
\end{equation*}
$$

$$
\left(\mathcal{L}_{V} \Gamma_{j i}^{h}\right)^{0} D_{\bar{n}}
$$

(4. 11)

$$
V^{{ }^{1{ }_{j}}{ }_{j} D_{i}=0 .}
$$

These are nothing but the structure equations for the cross-section $\gamma_{v}(M)$, which imply

Proposition 4.1. The cross-section $\gamma_{V}(M)$ is totally geodesic in $T_{2}(M)$ with respect to the connection ∇^{II}, if and only if the vector field V is infinitesimal affine transformation in M with respect to V (i.e. $\mathcal{L}_{V} \Gamma_{j i}^{h}=0$).

Taking account of (4.8) we have

$$
\begin{equation*}
\nabla^{\mathrm{II}}{ }_{B_{j}} B X=\left(\nabla_{j} X^{h}\right)^{0} B_{h}+\left(X^{h}\right)^{0} V_{j}{ }^{\mathrm{II}} B_{i} \tag{4.12}
\end{equation*}
$$

for $X \in \mathscr{I}_{0}^{1}(M)$. For $Y=Y^{i} \partial_{i}$, putting $\nabla_{B Y^{I I}} B_{h}=Y^{\jmath}{ }^{\prime} \nabla_{j}{ }^{\text {II }} B_{h}$, we have

$$
\nabla^{1 \mathrm{I}}{ }_{B Y} B X=B\left(\nabla_{Y} X\right)+\left(X^{h}\right)^{0} \nabla_{B Y}{ }^{\mathrm{II}} B_{h} .
$$

We can now defined an affine connection V^{*} in $\gamma_{V}(M)$ by the equation
(4.13)

$$
\nabla^{*}{ }_{B Y} B X=B\left(\nabla_{Y} X\right)
$$

for $X, Y \in \mathscr{I}_{0}^{1}(M)$ and call Γ^{*} the affine connection induced in $\gamma_{V}(M)$ from ∇, or the induced affine connection of $\gamma_{v}(M)$. Now (4.12) is written as

$$
\begin{equation*}
\nabla^{\mathrm{II}_{B Y}} B X=\nabla^{*}{ }_{B Y} B X+\left(X^{h}\right)^{0} \nabla_{B Y}{ }^{\mathrm{II}} B_{h} \tag{4.14}
\end{equation*}
$$

for $X=X^{i} \partial_{i}, \quad Y \in \mathscr{T}_{0}^{1}(M)$.
Let there be given an element h of $\mathscr{I}_{2}^{0}(M)$. By virtue of Proposition 3.3, we have

$$
B Z\left(h^{0 *}(B X, B Y)\right)=\left(\nabla^{*}{ }_{B Z} h^{0 *}\right)(B X, B Y)+h^{0 *}\left(\nabla^{*}{ }_{B Z} B X, B Y\right)+h^{0 *}\left(B X, \nabla^{*}{ }_{B Z} B Y\right)
$$

for $X, Y, Z \in \mathscr{I}_{0}^{1}(M)$. On the other hand, taking account of (2.11), we have

$$
\begin{aligned}
(B Z)\left(h^{0 *}(B X, B Y)\right) & =(B Z)(h(X, Y))^{0}=(Z(h(X, Y)))^{0} \\
& =\left(\left(\nabla_{Z} h\right)(X, Y)\right)^{0}+\left(h\left(\nabla_{Z} X, Y\right)\right)^{0}+\left(h\left(X, \nabla_{Z} Y\right)\right)^{0} \\
& =\left(\nabla_{Z} h\right)^{0 *}(B X, B Y)+h^{0 *}\left(B\left(\nabla_{Z} X\right), B Y\right)+h^{0 *}\left(B X, B\left(\nabla_{Z} Y\right)\right)
\end{aligned}
$$

for $X, Y, Z \in \mathscr{I}_{0}^{1}(M)$. If we compare the two equations obtained above, taking account of (4.13), we have

$$
\begin{equation*}
\nabla_{B Z}^{*} h^{0 *}=\left(\nabla_{Z} h\right)^{0 *} \tag{4.15}
\end{equation*}
$$

for $Z \in \mathscr{I}_{0}^{1}(M)$.
When an affine connection ∇ in M is torsionfree, $V^{\text {II }}$ is torsionfree in $T_{2}(M)$ too (cf. (1.10)). Hence the induced connection ∇^{*} of $\gamma_{v}(M)$ is also torsionfree. Thus we obtain from (4.15)

Proposition 4. 2. Let g be a Riemannian metric in M and ∇ the Riemannian connection determined by g in M. Then the connection ∇^{*} induced in $\gamma_{v}(M)$ from ∇ is the Riemannian connection determined by the induced metric $g^{\text {os }}$ of $\gamma_{v}(M)$.

Let there be given an element F of $\mathscr{I}_{1}^{1}(M)$ satisfying the condition $\mathcal{L}_{V} F=0$, then by virtue of (4.13) and Proposition 3.5, we have

$$
\begin{equation*}
\nabla_{B Z^{*}} F^{\mathrm{II}}=\left(\nabla_{Z} F\right)^{\mathrm{II}} \tag{4.16}
\end{equation*}
$$

for $Z \in \mathscr{I}_{0}^{1}(M)$. Thus we have
Proposition 4.3. Let F be an element of $\mathscr{T}_{1}^{1}(M)$ satisfying the condition $\mathcal{L}_{V} F=0$. If $\nabla F=0$ in M, then $\nabla^{*} F^{1{ }^{1}}=0$ in $\gamma_{v}(M)$.

An almost Hermitian structure (g, F) in M is called Kählerian if $\nabla F=0, \nabla$ being the Riemannian connection determined by g.

Proposition 4.4. If (g, F) is a Kählerian structure satisfying the condition $\mathcal{L}_{V} F=0$, so is ($g^{0 *}, F^{\mathrm{II} *)}$ in $\gamma_{V}(M)$.

Operating $V^{\mathrm{II}}{ }_{B_{k}}$ to the first equation (4.7) and taking the skew symmetric part of the equation obtained with respect to the indices j and k, by virtue of (2.11) and (4.7) we have

$$
\begin{aligned}
& \nabla^{\mathrm{I}{ }_{B_{k}}} \nabla^{\mathrm{II}}{ }_{B_{j}} B_{i}-V^{\mathrm{II}}{ }_{B_{j}} \nabla^{\mathrm{II}}{ }_{B_{k}} B_{\imath} \\
& =\left(R_{k j i}{ }^{h}\right)^{0} B_{h}+2\left\{V_{k}\left(\mathcal{L}_{V} \Gamma_{j i}^{h}\right)-\nabla_{j}\left(\mathcal{L}_{V} \Gamma_{k i}^{h}\right)\right\}^{0} C_{\hbar} \\
& +\left\{\left(\nabla_{k} \mathcal{L}_{V}{ }^{2} \Gamma_{j i}^{h}-\nabla_{j} \mathcal{L}_{V}{ }^{2} \Gamma_{k i}^{h}\right)+2\left(\mathcal{L}_{V} \Gamma_{k t}^{h}\right)\left(\mathcal{L}_{V} \Gamma_{j i}^{t}\right)-2\left(\mathcal{L}_{V} \Gamma_{j t}^{h}\right)\left(\mathcal{L}_{V} \Gamma_{k i}^{t}\right)\right\}^{0} D_{\vec{h}}
\end{aligned}
$$

which reduces to

$$
\begin{equation*}
R^{\mathrm{I}}\left(B_{k}, B_{j}\right) B_{i}=\left(R_{k j i^{h}}\right)^{0} B_{h}+2\left(\mathcal{L}_{V} R_{k j i^{h}}\right)^{\circ} C_{\bar{h}}+\left(\mathcal{L}_{V^{2}} R_{k j i^{h}}\right)^{0} D_{\bar{h}} \tag{4.17}
\end{equation*}
$$

because of (1.10), (4.2) and (4.4), where $R_{k j i}^{h}$ denote the components of the curvature tensor R of the given affine condection V and $R^{\text {II }}$ the 2 -nd lift of R to $T_{2}(M)$. As a direct consequence of (4.17), we have

Proposition 4.5. Let R and $R^{\text {II }}$ be the curvature tensors of affine connections ∇ given in M and ∇^{II}, respectively. Then the curvature transformation $R^{\mathrm{II}}(B X, B Y)$ X and Y being arbitrary elements of $\mathscr{I}_{0}^{1}(M)$, leaves invariant the tangent space of the cross-section $\gamma_{V}(M)$ at each point of $\gamma_{V}(M)$, if and only if $\mathcal{L}_{V} R=0$. In this case $R^{\mathrm{IF} *}=\gamma_{V}{ }^{\prime} R$ holds, where R^{IF} denotes the tensor field induced in $\gamma_{v}(M)$ from R.

Bibliography

[1] Dombrowski, P., On the geometry of the tangent bundle. J. reine u. angew. Math. 210 (1962), 73-88.
[2] Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J. 10 (1958), 338-354.
[3] Yano, K., Tensor fields and connections on cross-sections in the tangent bundle of a differentiable manifold. Proc. Royal Soc. of Edinburgh 67 (1967), 277-288.
[4] Yano, K., The theory of Lie derivatives and its applications. North-Holland Publ. Co., Amsterdam (1957).
[5] Yano, K., and S. Ishihara, Horizontal lifts of tensor fields and connections to tangent bundles. J. Math. and Mech. 16 (1967), 1015-1030.
[6] Yano, K., and S. Ishihara, Differential geometry of tangent bundles of order 2. Kōdai Math. Sem. Rep. 20 (1968), 318-354.
[7] Yano, K., and S. Kobayashi, Prolongations of tensor fields and connections to tangent bundles I. J. Math. Soc. Japan 18 (1966), 194-210.

Department of Mathematics, Tokyo Institute of Technology.

[^0]: 1) The indices A, B, C, D, \cdots and i, j, k, \cdots run over the ranges $1, \cdots, 3 n$ and $1, \cdots, n$, respectıvely.
