# DEFICIENCIES OF AN ALGEBROID FUNCTION 

By Mitsuru Ozawa

1. Let $f(z)$ be an $n$-valued transcendental algebroid function in $|z|<\infty$ defined by an irreducible equation

$$
F(z, f) \equiv A_{n}(z) f^{n}+A_{n-1}(z) f^{n-1}+\cdots+A_{0}(z)=0
$$

where the coefficients $A_{0}, \cdots, A_{n}$ are entire functions without any common zeros.
It is well known that if a transcendental meromorphic function $f$ has two full deficient values $a_{1}, a_{2}$, that is, $\delta\left(a_{j}, f\right)=1, j=1,2$, then $f$ is either of positive integral order or of infinite order.

In this note we shall be concerned with an extension of the above fact to algebroid functions. The problem is the following: Does $\delta\left(a_{k}, f\right)=1$ for $k=1, \cdots, n+1$ imply the positive integrity of order of $f$ ? We could not answer to this question in any way.

In general, $n+1$, the number of full deficient values, cannot be improved. This is evident for the one-valued case. We now construct a two-valued transcendental algebroid function having a further property. Let $g$ be an entire function of finite order $\lambda$ satisfying $\Delta(0, g)=1$ with the Valiron deficiency $\Delta$. The existence of such functions for any given order $\lambda$ was shown in [3]. Let $f(z)$ be a twovalued entire algebroid function, which is defined by

$$
F(z, f) \equiv f^{2}+g f-1=0 .
$$

Evidently $\delta(0, f)=\delta(\infty, f)=1$. Further we have $F(z, 1)=g, F(z,-1)=-g$. Hence by Valiron's theorem, which is listed as Lemma 1 below,

$$
\lim _{r \rightarrow \infty} \frac{N(r ; \pm 1, f)}{T(r, f)}=\lim _{r \rightarrow \infty} \frac{N(r ; 0, g)}{m(r, g)}=1-\Delta(0, g)=0 .
$$

This shows that $\Delta( \pm 1, f)=1$. If $\lambda$ is finite but is not any positive integer, then $f$ does not have any full Nevanlinna deficient value, which is shown by Theorem 1 below.
2. Lemmas.

Lemma 1. Valiron [4]. Let $A(z)$ be $\max \left(\left|A_{0}\right|, \cdots,\left|A_{n}\right|\right)$. Let $\mu(r, A)$ be

$$
\frac{1}{2 n \pi} \int_{0}^{2 \pi} \log A\left(r e^{i \theta}\right) d \theta
$$

Then
Received November 18, 1968.

$$
|T(r, f)-\mu(r, A)|=O(1)
$$

Lemma 2. Selberg [2]. There are at most $2 n$ values $a_{k}$ for which

$$
\delta\left(a_{k}, f\right)=1
$$

Lemma 3. Suppose that

$$
B_{\nu}(z)=\sum_{j=0}^{n} a_{\nu}^{j} A_{j}(z), \quad \nu=1, \cdots, n+1,
$$

then

$$
\begin{gathered}
\mu(r, B)=\mu(r, A)+O(1), \\
B=\max \left(\left|B_{1}\right|, \cdots,\left|B_{n+1}\right|\right) .
\end{gathered}
$$

Proof. By the given equations

$$
\left|B_{\nu}\right| \leqq \sum_{j=0}^{n}\left|a_{\nu}\right|^{j}\left|A_{j}\right| \leqq c_{\nu} \max \left(\left|A_{j}\right|\right)=c_{\nu} A
$$

and hence

$$
B \leqq c A, \quad c=\max \left(c_{\nu}\right) .
$$

This implies that

$$
\mu(r, B) \leqq \mu(r, A)+O(1) .
$$

By solving the given equations we have

$$
A_{j}=\sum_{\nu=1}^{n+1} \alpha_{\nu \nu} B_{\nu}
$$

which implies similarly

$$
\mu(r, A) \leqq \mu(r, B)+O(1) .
$$

Lemma 4.

$$
\{1-\delta(0, F(z, a))\} \varliminf_{r \rightarrow \infty} \frac{m(r, F(z, a))}{n \mu(r, A)} \leqq 1-\delta(a, f) .
$$

Proof.

$$
\begin{aligned}
& \varlimsup_{r \rightarrow \infty} \frac{N(r ; 0, F(z, a))}{m(r, F(z, a))} \lim _{r \rightarrow \infty} \frac{m(r, F(z, a))}{n \mu(r, A)} \\
\leqq & \varlimsup_{r \rightarrow \infty} \frac{N(r ; 0, F(z, a))}{n \mu(r, A)}=\varlimsup_{r \rightarrow \infty} \frac{N(r ; a, f)}{\mu(r, A)} .
\end{aligned}
$$

This implies the desired result.
Lemma 5. Suppose that there is at least one index $j$ satisfying

$$
m\left(r, \frac{1}{A_{j}}\right) \leqq c m(r, A), \quad c<1
$$

then

$$
(1-c) m(r, A) \leqq n \mu(r, A) \leqq m(r, A)
$$

Proof. Evidently we have $m(r, A)-m(r, 1 / A)=n \mu(r, A)$. Let $E$ be the set on $|z|=r$ in which $A<1$. Then

$$
\begin{aligned}
m\left(r, \frac{1}{A}\right) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} \frac{1}{A} d \theta=\frac{1}{2 \pi} \int_{E} \log \frac{1}{A} d \theta \\
& \leqq \frac{1}{2 \pi} \int_{E} \log \frac{1}{\left|A_{\mu}\right|} d \theta \leqq m\left(r, \frac{1}{A_{\mu}}\right)
\end{aligned}
$$

for every $\mu$. Hence we have

$$
m\left(r, \frac{1}{A}\right) \leqq \min _{0 \leqq \mu \leqq n} m\left(r, \frac{1}{A_{\mu}}\right) \leqq m\left(r, \frac{1}{A_{0}}\right) \leqq c m(r, A),
$$

which implies

$$
(1-c) m(r, A) \leqq n \mu(r, A) .
$$

The second half is evident.
3. In connection with Lemma 5 there happens another problem. Are there any algebroid functions satisfying

$$
\lim _{r \rightarrow \infty} \frac{n \mu(r, A)}{m(r, A)}=0 ?
$$

Now we construct a two-valued algebroid function satisfying

$$
\varliminf_{r \rightarrow \infty} \frac{2 \mu(r, A)}{m(r, A)}<\varepsilon
$$

for a given positive number $\varepsilon$.
Let $a_{j k}$ be

$$
2^{10^{j / \rho}}+\frac{k}{2^{10 j}}, \quad \begin{aligned}
& j=0,1, \cdots, \\
& k=0,1, \cdots, 2^{10^{j}}-1,
\end{aligned}
$$

with a fixed $\rho$ satisfying $0<\rho<9 / 10$. Let $g(z)$ be

$$
\prod_{j=0}^{\infty} \prod_{k=0}^{2^{10 J}-1}\left(1+\frac{z}{a_{j k}}\right) \equiv \prod_{j=0}^{\infty} h_{j}(z)
$$

Let $n(r)$ be the number of zeros of $g(z)$ in $|z| \leqq r$. Then

$$
n(r)=\left\{\begin{array}{l}
0, \quad \text { if } 0 \leqq r<2^{1 / \rho}, \\
2+2^{10}+\cdots+2^{10^{j}}, \quad \text { if } \quad 2^{10^{j / \rho}}+1-\frac{1}{2^{10^{j}}} \leqq r<2^{10^{j+1 / \rho}}, \\
2+2^{10}+\cdots+2^{10^{j}}+k+1, \quad \text { if } \quad 2^{10^{j+1 / \rho}}+\frac{k}{2^{10 j+1}} \leqq r<2^{100^{j+1 / \rho}}+\frac{k+1}{2^{10^{j+1}}} .
\end{array}\right.
$$

$n(r)$ satisfies the following inequalities

$$
2^{10^{j-1}}<n(r)<2^{10^{j}+1}
$$

for $r_{j}<r \leqq r_{j+1}, r_{j}=2^{10^{j / \rho}}$. Hence

$$
\varlimsup_{r \rightarrow \infty} \frac{\log n(r)}{\log r} \leqq \varlimsup_{j \rightarrow \infty} \frac{\log 2^{10^{j}}+\log 2}{\log 2^{1^{j 0^{j / \rho}}}}=\varlimsup_{j \rightarrow \infty} \frac{10^{j}+1}{10^{j} / \rho}=\rho .
$$

Further

$$
\varlimsup_{r \rightarrow \infty} \frac{\log n(r)}{\log r} \geqq \varlimsup_{m \rightarrow \infty} \frac{\log n\left(r_{m}+1\right)}{\log \left(r_{m}+1\right)} \geqq \varlimsup_{m \rightarrow \infty} \frac{10^{m} \log 2}{(1 / \rho) 10^{m} \log 2}=\rho .
$$

Therefore the order of $n(r)$ is equal to $\rho$.
Next we prove

$$
\lim _{r \rightarrow \infty} \frac{n(r) \log r}{n(2 r)}=0
$$

Take the sequence $\left\{r_{m}\right\}$. Then

$$
\frac{n\left(r_{m}\right) \log r_{m}}{n\left(2 r_{m}\right)} \leqq \frac{2^{10^{m-1}+1} 10^{m}(1 / \rho) \log 2}{2^{10^{m}}} \rightarrow 0
$$

as $m \rightarrow \infty$. This implies the desired fact.
This condition implies the following fact by Shea's reasoning [3].

$$
\Delta(0, g)=\varlimsup_{r \rightarrow \infty} \frac{m(r, 1 / g)}{m(r, g)}=\varlimsup_{m \rightarrow \infty} \frac{m\left(r_{m}, 1 / g\right)}{\left(r_{m}, g\right)}=1 .
$$

Still we need further properties of $g(z)$. Let $g_{\nu}(z)$ be $g(z) / h_{\nu}(z)$. Then

$$
\min _{|z|=r_{\nu}}\left|g_{v}(z)\right| \geqq c>0
$$

with an absolute constant $c$. In order to prove this we should firstly remark that the minimum of $\left|g_{\nu}(z)\right|$ on $|z|=r_{\nu}$ is attained at $z=-r_{\nu}$. Evidently on $|z|=r_{\nu}$

$$
\prod_{l=0}^{\nu-1}\left|h_{l}(z)\right| \geqq \prod_{l=0}^{\nu-1}\left|h_{l}\left(-r_{\nu}\right)\right|>1 .
$$

Now we shall consider

$$
X=\prod_{l=\nu+1}^{\infty}\left|h_{l}\left(-r_{\nu}\right)\right| .
$$

Taking its logarithm we have

$$
\log X=\sum_{l=\nu+1}^{\infty} \log \left|h_{l}\left(-r_{\nu}\right)\right| .
$$

On the other hand

$$
\left|h_{l}\left(-r_{\nu}\right)\right|=\prod_{k=0}^{2^{10 l}-1}\left|1-\frac{r_{\nu}}{r_{l}+k / 2^{10^{l}}}\right| \geqq\left|1-\frac{r_{\nu}}{r_{l}}\right|^{210 l}
$$

for $l \geqq \nu+1$. Further for $l \geqq \nu+1$

$$
\frac{r_{\nu}}{r_{l}} \leqq \frac{r_{\nu}}{r_{\nu+1}}<\frac{1}{2} .
$$

Hence, by $\log (1-x) \geqq-2 x$ for $0<x<1 / 2$,

$$
\begin{aligned}
\log X & \geqq \sum_{l=\nu+1}^{\infty} 2^{10 l} \log \left(1-\frac{r_{\nu}}{r_{l}}\right) \\
& \geqq-2 \sum_{l=\nu+1}^{\infty} 2^{100} \frac{r_{\nu}}{r_{l}} \equiv-2 U, \\
U & \leqq \sum_{l=\nu+1}^{\infty} \frac{1}{2^{((1 / \rho)(9 / 10)-1) 10 l}} \leqq \sum_{l=\nu+1}^{\infty} \frac{1}{((1 / \rho)(9 / 10)-1) 10^{l}} \\
& \leqq \frac{100 \rho}{(9-10 \rho) 9} .
\end{aligned}
$$

Therefore

$$
\begin{gathered}
\log X \geqq-2 \frac{100 \rho}{(9-10 \rho) 9}, \\
X \geqq \exp \left(-2 \frac{100 \rho}{(9-10 \rho) 9}\right) \equiv c>0 .
\end{gathered}
$$

This shows that

$$
\min _{|z|=r_{\nu}}\left|g_{v}(z)\right| \geqq c>0 .
$$

Now we prove

$$
\frac{2}{\pi} \int_{\pi-\delta / 2}^{\pi} \log ^{+} \frac{1}{\left|h_{\nu}\left(r_{\nu} e^{i \theta}\right)\right|} d \theta \leqq D(\delta) m\left(r_{\nu}, g\right)
$$

where $D(\delta)$ is a constant being independent of $\nu$ and satisfies $D(\delta) \rightarrow 0$ when $\delta \rightarrow 0$. In order to prove this inequality we need

$$
\begin{aligned}
& -\int_{0}^{\delta / 2} \log \left|1-e^{-i \theta}+\tilde{A}_{k} e^{-i \theta}\right| \dot{d \theta} \\
\leqq & -\frac{\delta}{4} \log \left(2-2 \tilde{A}_{k}\right)+\frac{1}{2} \int_{0}^{\delta / 2} \log \frac{1}{1-\cos \theta} d \theta, \quad \tilde{A}_{k}=\frac{k}{r_{\dot{\theta}}^{\rho+1}+k}
\end{aligned}
$$

This is not so difficult to prove. Indeed

$$
\begin{aligned}
& -\int_{0}^{\delta / 2} \log \left|1-e^{-i \theta}+\tilde{A}_{k} e^{-i \theta}\right| d \theta \\
= & -\frac{1}{2} \int_{0}^{\delta / 2} \log \left\{\left(2-2 \tilde{A}_{k}\right)(1-\cos \theta)+\tilde{A}_{k}^{2}\right\} d \theta \\
= & -\frac{\delta}{4} \log \left(2-2 \tilde{A}_{k}\right)-\frac{1}{2} \int_{0}^{\delta / 2} \log \left(1-\cos \theta+\frac{\tilde{A}_{k}^{2}}{2-2 \tilde{A}_{k}}\right) d \theta \\
\leqq & -\frac{\delta}{4} \log \left(2-2 \tilde{A}_{k}\right)+\frac{1}{2} \int_{0}^{\delta / 2} \log \frac{1}{1-\cos \theta} d \theta .
\end{aligned}
$$

Further we need

$$
\int_{0}^{\delta / 2} \log \frac{1}{1-\cos \theta} d \theta \leqq-\frac{\delta}{2} \log 2+\delta \log \pi+\delta-\delta \log \frac{\delta}{2}
$$

This inequality is easily obtained by $1-\cos \theta=2 \sin ^{2}(\theta / 2)$ and by $\sin (\theta / 2) \geqq \theta / \pi$.
Under these preparations we proceed to the original inequality.

$$
\begin{aligned}
& \frac{2}{\pi} \int_{\pi-\delta / 2}^{\pi} \log ^{+} \frac{1}{\left|h_{\nu}\left(r_{\nu} e^{i \theta}\right)\right|} d \theta=\sum_{k=0}^{20^{10^{\nu}-1}} \frac{2}{\pi} \int_{\pi-\delta / 2}^{\pi} \log ^{+} \frac{1}{\left|1-r_{\nu} e^{i \theta} /\left(r_{\nu}+k\right)\right|} d \theta \\
= & -\sum_{k=0}^{210^{\nu}-1} \frac{2}{\pi} \int_{0}^{\delta / 2} \log \left|1-e^{-i \theta}+\tilde{A}_{k} e^{-i \theta}\right| d \theta \\
\leqq & -\frac{\delta}{\pi} \sum_{k=0}^{210^{\nu}-1} \log \left(2-2 \tilde{A}_{k}\right)+\frac{2^{10^{\nu}}}{\pi} \int_{0}^{\delta / 2} \log \frac{1}{1-\cos \theta} d \theta \\
\leqq & -\frac{\delta}{\pi} 2^{10} \log \frac{3}{2}+\frac{2^{10^{\nu}}}{\pi}\left(-\frac{\delta}{2} \log 2+\delta+\delta \log \pi-\delta \log \frac{\delta}{2}\right) .
\end{aligned}
$$

Here by Shea's result [3]

$$
\begin{aligned}
2^{10^{\nu}} & =r_{\nu}^{\rho} \leqq n\left(2 r_{\nu}\right) \\
& \leqq N\left(2 e r_{\nu}\right) \leqq \frac{1}{K} m\left(r_{\nu}, g\right)
\end{aligned}
$$

with a positive constant $K$ being independent of $\nu$. Therefore we have the desired result. Here

$$
D(\delta)=\frac{1}{K \pi}\left(-\delta \log \frac{3}{2}-\frac{\delta}{2} \log 2+\delta+\delta \log \pi-\delta \log \frac{\delta}{2}\right) .
$$

Hence $D(\delta)$ does not depend upon $\nu$ and $D(\delta) \rightarrow 0$ when $\delta \rightarrow 0$.
Next we prove

$$
\frac{2}{\pi} \int_{0}^{\delta / 2} \log \left|g\left(r e^{i \theta}\right)\right| d \theta \leqq \sin \frac{\delta}{2} m(r, g)
$$

By the well known representation

$$
\begin{aligned}
& \frac{1}{\pi} \int_{0}^{\delta / 2} \log \left|g\left(r e^{i \theta}\right)\right| d \theta=\frac{1}{\pi} \int_{0}^{\infty} N(t) \frac{r \sin (\delta / 2)}{t^{2}+2 t r \cos (\delta / 2)+r^{2}} d t \\
\leqq & \sin \frac{\delta}{2} \frac{1}{\pi} \int_{0}^{\infty} N(t) \frac{r}{t} \frac{t}{t^{2}+r^{2}} d t \\
= & \sin \frac{\delta}{2} \frac{1}{\pi} \int_{0}^{\pi / 2} \log \left|g\left(r e^{i \theta}\right)\right| d \theta \leqq \frac{1}{2} m(r, g) \sin \frac{\delta}{2} .
\end{aligned}
$$

Finally we consider

$$
g(z) f^{2}+g\left(z e^{i \partial}\right) f+g\left(z e^{i \delta}\right)=0
$$

Here $\delta$ is a positive number which is sufficiently small. For the two-valued algebroid function $f$, whose order is $\rho$,

$$
2 \mu(r, A)=m(r, A)-m\left(r, \frac{1}{A}\right)
$$

and

$$
\begin{aligned}
& m(r, g) \leqq m(r, A) \leqq m(r, g)+\frac{2}{\pi} \int_{0}^{\delta / 2} \log \left|g\left(r e^{i \theta}\right)\right| d \theta, \\
& m\left(r, \frac{1}{g}\right)-\frac{2}{\pi} \int_{\pi-\delta / 2}^{\pi} \log ^{+} \frac{1}{\left|g\left(r e^{i \theta}\right)\right|} d \theta=m\left(r, \frac{1}{A}\right) \leqq m\left(r, \frac{1}{g}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{2 \mu(r, A)}{m(r, A)} \leqq & 1-\frac{m(r, 1 / g)}{m(r, g)} \\
& +\frac{2}{m(r, g)}\left(\frac{1}{\pi} \int_{0}^{\delta / 2} \log \left|g\left(r e^{i \theta}\right)\right| d \theta+\frac{1}{\pi} \int_{\pi-\delta / 2}^{\pi} \log ^{+}\left|\frac{1}{g\left(r e^{i \theta}\right)}\right| d \theta\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{\varliminf_{r \rightarrow \infty}}{} \frac{2 \mu(r, A)}{m(r, A)} & \leqq \frac{\varliminf_{m \rightarrow \infty}}{m \rightarrow\left(r_{m}, A\right)} \\
& \leqq D(\delta)+\sin \frac{\delta}{2} .
\end{aligned}
$$

Now we can choose $\delta$ so that

$$
D(\delta)+\sin \frac{\delta}{2}<\varepsilon .
$$

This implies the desired result.
The following fact is suggestive: Assume

$$
\min _{0 \leq j \leq n} \Delta\left(0, A_{j}\right)=0
$$

Then

$$
m(r, A) \sim n \mu(r, A)
$$

The proof of this fact is almost immediate. Since

$$
\Delta\left(0, A_{j}\right)=\varlimsup_{r \rightarrow \infty} \frac{m\left(r, 1 / A_{j}\right)}{m\left(r, A_{j}\right)} \geqq \varlimsup_{r \rightarrow \infty} \frac{m\left(r, 1 / A_{j}\right)}{m(r, A)},
$$

there is an index $j_{0}$ such that $m\left(r, 1 / A_{j_{0}}\right)=o(m(r, A))$. This implies that $m(r, 1 / A)$ $=o(m(r, A))$ and hence $m(r, A) \sim n \mu(r, A)$.

This fact enables us to say that $m(r, A) \sim n \mu(r, A)$ if a coefficient $A_{j}$ satisfies

$$
\overline{\lim }_{r \rightarrow \infty} \frac{m\left(r, A_{j}\right)}{(\log r)^{2}}<\infty
$$

Indeed in this case

$$
m\left(r, A_{j}\right) \sim \log \max _{|z|=r}\left|A_{j}(z)\right| \sim N\left(r, \frac{1}{A_{j}}\right)
$$

is well known. Hence $\Delta\left(0, A_{j}\right)=0$. This leads to the desired fact.
Especially every entire algebroid function satisfies

$$
|m(r, A)-n \mu(r, A)|=O(1) .
$$

4. In what follows we denote the following condition by (A):

There is at least one index $j$ satisfying

$$
m\left(r, \frac{1}{A_{j}}\right) \leqq c m(r, A), \quad c<1
$$

Theorem 1. Suppose that there is an index $\nu$ satisfying

$$
\sum_{j \neq \nu} m\left(r, A_{j}\right) \leqq d m\left(r, A_{\nu}\right), \quad d<1
$$

and that $f$ satisfies the condition (A). If there is a non-zero finite value a with $\delta(a, f)=1$, then the order of $f$ is a positive integer, unless it is $\infty$.

Proof. By

$$
\begin{gathered}
a^{\nu} A_{\nu}=F(z, a)-\sum_{j \neq \nu} a^{j} A_{j}, \\
m\left(r, A_{\nu}\right) \leqq m(r, F(z, a))+\sum_{j \neq \nu} m\left(r, A_{j}\right)+O(1),
\end{gathered}
$$

and hence

$$
(1-d) m\left(r, A_{\nu}\right) \leqq m(r, F(z, a))+O(1)
$$

By Lemma 5

$$
\begin{aligned}
(1-c) m\left(r, A_{\nu}\right) & \leqq(1-c) m(r, A) \leqq n \mu(r, A) \\
& \leqq \sum_{j=0}^{n} m\left(r, A_{j}\right)+O(1) \leqq(1+d) m\left(r, A_{\nu}\right)+O(1)
\end{aligned}
$$

Hence

$$
n \mu(r, A) \leqq \frac{1+d}{1-d} m(r, F(z, a))+O(1) .
$$

By Lemma 4 we have $\delta(0, F(z, a))=1$. Since $F(z, a)$ is entire, its order must be a positive integer, unless it is $\infty$. Since

$$
\begin{aligned}
m(r, F(z, a)) & \leqq \sum_{j=0}^{n} m\left(r, A_{j}\right)+O(1) \\
& \leqq(1+d) m\left(r, A_{\nu}\right)+O(1) \leqq \frac{1+d}{1-c} n \mu(r, A)+O(1)
\end{aligned}
$$

both orders of $F(z, a)$ and $f$ are coincident with each other, which gives the desired result.

Theorem 2. Suppose that there are two indices $\mu_{0}, \nu_{0}\left(n>\mu_{0}>\mu_{0}>0\right)$ such that

$$
\sum_{j \neq \mu_{0}, \nu_{0}} m\left(r, A_{j}\right) \leqq \alpha n \mu(r, A), \quad \alpha<\frac{1}{3}
$$

and that $f$ satisfies the condition (A). Further suppose that there is a non-zero finite value $b$ such that $m(r, F(z, b))=o(\mu(r, A))$. If there are $\mu_{0}-\nu_{0}+1$ non-zero finite values $a_{\text {}}$ such that $\delta\left(a_{j}, f\right)=1$, then the order of $f$ is a positive integer, unless it is $\infty$.

Proof. Firstly by Lemma $5(1-c)(m(r, A) \leqq n \mu(r, A) \leqq m(r, A)$. Since

$$
\begin{aligned}
& b^{\mu_{0}} A_{\mu_{0}}+b^{\nu} A_{\nu_{0}}=F(z, b)-\sum_{j \neq \mu_{0}, \nu_{0}} b^{j} A_{j} \equiv g(z), \\
& m(r, g) \leqq m(r, F(z, b))+\sum_{j \neq \mu_{0}, \nu_{0}} m\left(r, A_{j}\right)+O(1) \\
& \leqq(n \alpha+\varepsilon) \mu(r, A) .
\end{aligned}
$$

Among the given $\left\{a_{j}\right\}$ there is at least one $a_{k}$ such that

$$
a_{k}^{\mu_{0}-y_{0}} \neq b^{r_{0}-\nu_{0}}, \quad \delta\left(a_{k}, f\right)=1 .
$$

Hence we have

$$
a_{k}{ }^{\mu_{0}} A_{\mu_{0}}+a_{k}^{\nu_{0}} A_{\nu_{0}}=F\left(z, a_{k}\right)-\sum_{j \neq \mu_{0}, \nu_{0}} a_{k}^{j} A_{j} \equiv g_{1}(z) .
$$

By solving the equation we have

$$
\begin{aligned}
& A_{\mu_{0}}=c_{0} g+c_{1} g_{1} \\
& A_{\nu_{0}}=d_{0} g+d_{1} g_{1} .
\end{aligned}
$$

Let $A^{*}$ be $\max \left(\left|A_{\mu_{0}}\right|,\left|A_{\nu_{0}}\right|\right)$. Then

$$
\begin{aligned}
n \mu(r, A) & \leqq m(r, A) \leqq m\left(r, A^{*}\right)+\sum_{j \neq \mu_{0}, \nu_{0}} m\left(r, A_{j}\right) \\
& =m\left(r, A^{*}\right)+n \alpha \mu(r, A)
\end{aligned}
$$

and

$$
\begin{aligned}
m\left(r, A^{*}\right) & \leqq m(r, g)+m\left(r, g_{1}\right)+O(1) \\
& \leqq m\left(r, g_{1}\right)+(n \alpha+\varepsilon) \mu(r, A)+O(1)
\end{aligned}
$$

Further

$$
\begin{aligned}
m\left(r, g_{1}\right) & \leqq m\left(r, F\left(z, a_{k}\right)\right)+\sum_{j \neq \mu_{0}, v_{0}} m\left(r, A_{j}\right)+O(1) \\
& \leqq m\left(r, F\left(z, a_{k}\right)\right)+(n \alpha+\varepsilon) \mu(r, A)+O(1)
\end{aligned}
$$

Hence

$$
\varliminf_{r \rightarrow \infty} \frac{m\left(r, F\left(z, a_{k}\right)\right)}{n \mu(r, A)} \geqq 1-3 \alpha>0
$$

Then by Lemma 4 we have $\delta\left(0, F\left(z, a_{k}\right)\right)=1$, which implies the positive integrity of order of $F\left(z, a_{k}\right)$, unless it is $\infty$. Since

$$
\begin{aligned}
m\left(r, F\left(z, a_{k}\right)\right) & \leqq m(r, A)+O(1) \\
& \leqq \frac{1}{1-c} n \mu(r, A)+O(1)
\end{aligned}
$$

we have the desired result.
By a slight modification of proof we have the following
Theorem 3. Suppose that there are two indices $\mu_{0}, \nu_{0}\left(n>\mu_{0}>\nu_{0}>0\right)$ such that

$$
\sum_{j \neq \mu_{0}, \nu_{0}} m\left(r, A_{j}\right) \leqq n \alpha \mu(r, A)
$$

and that there is a non-zero finite value $b$ such that

$$
m(r, F(z, b)) \leqq n \beta \mu(r, A)
$$

with $0 \leqq 3 \alpha+\beta<1$. Further suppose that $f$ satisfies the conditions (A). If there are $\mu_{0}-\nu_{0}+1$ non-zero finite values $\left\{a_{j}\right\}$ such that $\delta\left(a_{j}, f\right)=1$, then the order of $f$ is a positive integer, unless it is $\infty$.

Definition. Let $\mathfrak{p}$ be a 3 -vector ( $a, b, 1$ ) satisfying

$$
m\left(r, a A_{\mu_{0}}+b A_{\nu_{0}}+A_{\varepsilon_{0}}\right)=o(\mu(r, A)) .
$$

Then this vector is called exceptional for ( $A_{\mu_{0}}, A_{\nu_{0}}, A_{\varepsilon_{0}}$ ).
Theorem 4. Suppose that there are three indices $\mu_{0}, \nu_{0}, \varepsilon_{0}\left(n>\mu_{0}>\nu_{0}>\varepsilon_{0}>0\right)$ such that

$$
\sum_{i \neq \mu_{0}, \nu_{0}, \varepsilon_{0}} m\left(r, A_{j}\right)=o(\mu(r, A))
$$

and that there are two exceptional vectors $\mathfrak{p}_{1}, \mathfrak{p}_{2}$, for $\left(A_{p_{0}}, A_{\nu_{0}}, A_{\varepsilon_{0}}\right)$. Further suppose that there is a non-zero finite value a satisfying $\delta(a, f)=1$ and $\left(a^{\mu_{0}-\varepsilon_{0}}, a^{\nu_{0}-\varepsilon_{0}}, 1\right) \notin \lambda_{1}+\mu p_{2}$, $\lambda+\mu=1$ and that $f$ satisfies the condition (A). Then the order of $f$ is a positive integer, unless it is $\infty$.

Proof. Let $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ be $(\alpha, \beta, 1),(\gamma, \delta, 1)$ respectively. Then

$$
\left|\begin{array}{lll}
\alpha & \beta & 1 \\
\gamma & \delta & 1 \\
a^{\mu_{0}-\varepsilon_{0}} & a^{\nu_{0}-\varepsilon_{0}} & 1
\end{array}\right| \neq 0,
$$

since $\left(a^{r_{0}-\varepsilon_{0}}, a^{t_{0}-\nu_{0}}, 1\right) \notin \lambda p_{1}+\mu p_{2}, \lambda+\mu=1$. Hence we can solve the equations:

$$
\begin{aligned}
\alpha A_{\mu_{0}}+\beta A_{\nu_{0}}+A_{\varepsilon_{0}} & =f_{1}, \\
\gamma A_{u_{0}}+\delta A_{\nu_{0}}+A_{\varepsilon_{0}} & =f_{2}, \\
a^{\mu_{0}} A_{\mu_{0}}+a^{\nu} A_{\nu_{0}}+a^{\varepsilon_{0}} A_{\varepsilon_{0}} & =F(z, a)-\sum_{j \neq \mu_{0}, \nu_{0}, \varepsilon_{0}} a^{j} A_{j}=f_{3} .
\end{aligned}
$$

Then we have

$$
\left|A_{l}\right| \leqq \sum_{j=1}^{3}\left|c_{l j}\right|\left|f_{j}\right|, \quad l=\mu_{0}, \nu_{0}, \varepsilon_{0} .
$$

This implies

$$
\begin{aligned}
\frac{n}{3} \mu(r, A)-o(\mu(r, A)) & \leqq \frac{1}{3}\left(\sum_{j=0}^{n} m\left(r, A_{j}\right)-\sum_{j \neq \mu_{0}, \nu_{0}, \varepsilon_{0}} m\left(r, A_{j}\right)\right) \\
& =\frac{1}{3} \sum_{j=\mu_{0}, v_{0}, \varepsilon_{0}} m\left(r, A_{j}\right) \leqq m\left(r, \max _{l=\mu_{0}, \nu_{0}, \varepsilon_{0}}\left|A_{l}\right|\right) \\
& \leqq \sum_{l=1}^{3} m\left(r, f_{l}\right)+O(1)=m\left(r, f_{3}\right)+o(\mu(r, A)) \\
& \leqq m(r, F(z, a))+\sum_{j \neq \mu_{0}, \nu_{0}, \varepsilon_{0}} m\left(r, A_{j}\right)+O(1) \\
& =m(r, F(z, a))+o(\mu(r, A)) .
\end{aligned}
$$

Thus we have

$$
\varliminf_{r \rightarrow \infty} \frac{m(r, F(z, a))}{\mu(r, A)} \geqq \frac{n}{3} .
$$

Then Lemma 4 implies $\delta(0, F(z, a))=1$. Thus the order of $F(z, a)$ is a positive integer, unless it is $\infty$. Then Lemma 5 implies the desired result.

Theorem 5. Let $\mathfrak{p}_{j}, j=1, \cdots, n$ be a system of linearly independent $(n+1)$-vectors ( $\alpha_{j n}, \alpha_{j, n-1}, \cdots, 1$ ) satisfying

$$
m\left(r, \alpha_{\jmath n} A_{n}+\alpha_{\jmath, n-1} A_{n-1}+\cdots+A_{0}\right)=o(\mu(r, A))
$$

Suppose that there is a value a such that $\delta(a, f)=1$ and

$$
\left(a^{n}, a^{n-1}, \cdots, 1\right) \notin \sum_{j=1}^{n} \lambda_{j} \mathfrak{p}_{j}, \quad \sum_{j=1}^{n} \lambda_{j}=1
$$

Further suppose that $f$ satisfies the condition (A). Then the order of $f$ is a positive integer, unless it is $\infty$.

Proof. Let

$$
\sum_{\mu=0}^{n} \alpha_{j_{\mu}} A_{\mu}=f_{\jmath}, \quad j=1, \cdots, n, \quad \alpha_{\jmath o}=1
$$

and

$$
\sum_{\mu=0}^{n} a^{\mu} A_{\mu}=f_{n+1}
$$

Here

$$
\left|\begin{array}{cccc}
\alpha_{1 n} & \alpha_{1, n-1} & \cdots & 1 \\
& \cdots \cdots \cdots \cdots \cdots & \\
\alpha_{n n} & \alpha_{n, n-1} & \cdots & 1 \\
a^{n} & a^{n-1} & \cdots & 1
\end{array}\right| \neq 0
$$

and

$$
m\left(r, f_{j}\right)=o(\mu(r, A)), \quad j=1, \cdots, n .
$$

Therefore by solving the above equations

$$
\begin{aligned}
n \mu(r ; A) & \leqq m(r, A) \\
& \leqq m\left(r, f_{n+1}\right)+\sum_{j=1}^{n} m\left(r, f_{j}\right)+O(1) \\
& =m\left(r, f_{n+1}\right)+o(\mu(r, A)) .
\end{aligned}
$$

This shows that

$$
\lim _{r \rightarrow \infty} \frac{m\left(r, f_{n+1}\right)}{n \mu(r, A)} \geqq 1
$$

By Lemma $4 \delta(0, F(z, a))=1$, which implies that $F(z, a)$ has either a positive integral order or an infinite order. By Lemma 5 we have the desired result.

Theorem 6. Let $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{n}$ be $n$ linearly independent $n+1$ vectors satisfying

$$
\begin{aligned}
& \mathfrak{p}_{l}=\left(\alpha_{l n}, \alpha_{l, n-1}, \cdots, \alpha_{l 1}, 1\right), \\
& m\left(r, \alpha_{l n} A_{n}+\cdots+A_{0}\right) \leqq n \beta_{l} \mu(r, A), \quad \sum_{l=1}^{n} \beta_{l}<1, \quad \beta_{l} \geqq 0 .
\end{aligned}
$$

Suppose that $f$ satisfies the condition (A) and that there is a value a such that $\delta(a, f)=1$ and

$$
\left(a^{n}, a^{n-1}, \cdots, a, 1\right) \notin \sum_{j=1}^{n} \lambda_{j} \mathfrak{p}_{\jmath}, \quad \sum_{j=1}^{n} \lambda_{j}=1 .
$$

Then the order of $f$ is a positive integer, unless it is $\infty$.
Proof. Essentially the same method as in Theorem 5 does work. We have

$$
\begin{aligned}
n \mu(r, A) & =n \mu\left(r, \max _{1 \leq l \leq n+1}\left|f_{l}\right|\right)+O(1) \\
& \leqq m\left(r, f_{n+1}\right)+\sum_{j=1}^{n} m\left(r, f_{j}\right)+O(1) \\
& \leqq m\left(r, f_{n+1}\right)+n \mu(r, A) \sum_{l=1}^{n} \beta_{l}+O(1)
\end{aligned}
$$

Hence

$$
n\left(1-\sum_{l=1}^{n} \beta_{l}\right) \mu(r, A) \leqq m\left(r, f_{n+1}\right)+O(1)
$$

which implies the desired result.
5. We can make use of recent results in the theory of meromorphic functions [1].

Theorem 7. Let $f$ be an algebroid function of order less than $1 / 2$. Suppose
that there is an index $\nu$ satisfying

$$
\sum_{j \neq \nu} m\left(r, A_{j}\right)=o\left(m\left(r, A_{\nu}\right)\right) .
$$

Then there are at most two deficient values 0 and $\infty$, for which $\delta(0, f)=1$ and $\delta(\infty, f)=1$ if they are actually deficient values.

Proof. In the first place we assume that $\nu \neq 0, n$. Then

$$
m\left(r, A_{\nu}\right)-o\left(m\left(r, A_{\nu}\right)\right) \leqq m(r, F(z, a))
$$

holds for every finite $a \neq 0$. Further we have

$$
n \mu(r, A) \leqq m(r, A) \leqq \sum_{j=0}^{n} m\left(r, A_{j}\right)=m\left(r, A_{\nu}\right)+o\left(m\left(r, A_{\nu}\right)\right)
$$

and hence

$$
\varliminf_{r \rightarrow \infty} \frac{m(r, F(z, a))}{n \mu(r, A)} \geqq 1 .
$$

Therefore by Lemma $41-\delta(0, F(z, a)) \leqq 1-\delta(a, f)$. On the other hand we have $m(r, F(z, a)) \leqq m(r, A)+O(1)$ and $m(r, A)=n \mu(r, A)$ in a set of $r$ of positive upper density. Hence the order of $F(z, a)$ is less than $1 / 2$ and this implies $\delta(0, F(z, a))=0$. Hence $\delta(a, f)=0$. It is very easy to show that $\delta(0, f)=\delta(\infty, f)=1$ in this case.

If $\nu=n$, then $\delta(0, f)=1$ and $\delta(a, f)=0$ for $a \neq 0$. If $\nu=0$, then $\delta(\infty, f)=1$ and $\delta(a, f)=0$ for $a \neq \infty$.

Theorfm 8. Let $f$ be an algebroid function of order less than $1 / 2$ satisfying the following conditions: 1) There are two indices $\mu_{0}, \nu_{0}$ such that

$$
\sum_{j \neq \mu_{0}, \nu_{0}} m\left(r, A_{j}\right)=o(m(r, A)), \quad n>\mu_{0}>\nu_{0}>0
$$

2) for every $b \neq 0, \infty$,

$$
m\left(r, b^{\mu_{0}-\nu_{0}} A_{\mu_{0}}+A_{\nu_{0}}\right) \sim \alpha_{b} m\left(r, A^{*}\right), \quad A^{*}=\max \left(\left|A_{\mu_{0}}\right|,\left|A_{\nu_{0}}\right|\right), \quad 0 \leqq \alpha_{b} \leqq 1,
$$

and 3) there are at most two constants $b_{1}, b_{2}$ for which $\alpha_{b_{1}}<1, \alpha_{b_{2}}<1, b_{1}{ }^{\mu_{0}-\nu_{0}} \neq b_{2}{ }^{\mu_{0}-\nu_{0}}$. Then $\delta(0, f)=1, \delta(\infty, f)=1$ and

$$
\sum_{a \neq 0, \infty} \delta(a, f) \leqq \mu_{0}-\nu_{0}
$$

Proof. In the first place we prove $\alpha_{b_{1}}+\alpha_{b_{2}} \geqq 1 . \quad b_{1}$ and $b_{2}$ are not 0 and $\infty$ and satisfy $b_{1}{ }^{\mu_{0}-\nu_{0}} \neq b_{2}^{\mu_{0}-\nu_{0}}$. Hence we can solve

$$
\begin{aligned}
& b_{1}{ }^{\mu_{0}} A_{\mu_{0}}+b_{1}{ }^{{ }^{0}} A_{\nu_{0}}=F\left(z, b_{1}\right)-\sum_{j \neq \mu_{0}, \nu_{0}} b_{1}^{j} A_{j} \equiv g_{1}(z) \\
& b_{2}{ }^{\nu_{0}} A_{\mu_{0}}+b_{2}{ }^{\nu_{0}} A_{\nu_{0}}=F\left(z, b_{2}\right)-\sum_{j \neq \mu_{0}, \nu_{0}} b_{2}^{j} A_{j} \equiv g_{2}(z)
\end{aligned}
$$

Then

$$
\begin{array}{ll}
A_{\mu_{0}}=\gamma_{1} g_{1}+\gamma_{2} g_{2}, & \\
A_{\nu_{0}}=\delta_{1} g_{1}+\delta_{2} g_{2}, &
\end{array}
$$

Hence

$$
m\left(r, A^{*}\right) \leqq m\left(r, g_{1}\right)+m\left(r, g_{2}\right)+O(1)
$$

This implies the desired result.
In general

$$
\begin{aligned}
n \mu(r, A) & \leqq m(r, A) \leqq m\left(r, A^{*}\right)+\sum_{j \neq \mu_{0}, \nu_{0}} m\left(r, A_{j}\right) \\
& =m\left(r, A^{*}\right)+o(m(r, A)) \leqq m(r, A)+o(m(r, A))
\end{aligned}
$$

Further $n \mu(r, A)=m(r, A)$ in a set of $r$ of positive upper density. Hence $n \mu(r, A)$ $=m(r, A) \sim m\left(r, A^{*}\right)$ holds in a set of $r$ of positive upper density.

By the assumption for every non-zero finite $b$,

$$
\begin{aligned}
\alpha_{b} m\left(r, A^{*}\right) & \sim m\left(r, b^{\mu_{0}} A_{\mu_{0}}+b^{\nu_{0}} A_{\nu_{0}}\right) \\
& \leqq m(r, F(z, b))+\sum_{j \neq \mu_{0}, \nu_{0}} m\left(r, A_{j}\right)+O(1) \\
& \leqq m(r, F(z, b))+o(m(r, A)) \\
& \leqq m\left(r, b^{\mu_{0}} A_{\mu_{0}}+b^{\nu_{0}} A_{\nu_{0}}\right)+\sum_{j \neq \mu_{0}, \nu_{0}} m\left(r, A_{j}\right)+O(1) \\
& \sim \alpha_{b} m\left(r, A^{*}\right)+o(m(r, A)) \sim \alpha_{b} m\left(r, A^{*}\right)
\end{aligned}
$$

Therefore

$$
m(r, F(z, b)) \sim \alpha_{b} m\left(r, A^{*}\right) \sim \alpha_{b} m(r, A)=\alpha_{b} n \mu(r, A)
$$

in a set of $r$ of positive upper density. Hence by Lemma 4

$$
1-\delta(b, f) \geqq \alpha_{b}(1-\delta(0, F(z, b)))
$$

On the other hand $\delta(0, F(z, b))=0$ which implies $\delta(b, f) \leqq 1-\alpha_{b}$. Further these are $\mu_{0}-\nu_{0}$ solutions of $z^{\mu_{0}-\nu_{0}}=b^{\mu_{0}-\nu_{0}}$. We denote them by $b \omega_{j}, \omega_{j}{ }^{\mu_{0}-\nu_{0}}=1$. Hence

$$
\sum_{j=1}^{\mu_{0}-\nu_{0}} \delta\left(b \omega_{j}, f\right) \leqq\left(1-\alpha_{b}\right)\left(\mu_{0}-\nu_{0}\right)
$$

This holds only for $b_{1}$ and $b_{2}$ at most. Hence

$$
\begin{aligned}
\sum_{a \neq 0, \infty} \delta(a, f) & \leqq \sum_{j=1}^{\mu_{0}-\nu_{0}} \delta\left(b_{1} \omega_{\jmath}, f\right)+\sum_{j=1}^{\mu_{0}-\nu_{0}} \delta\left(b_{2} \omega_{\jmath}, f\right) \\
& \leqq\left(2-\alpha_{b_{1}}-\alpha_{b_{2}}\right)\left(\mu_{0}-\nu_{0}\right) \leqq \mu_{0}-\nu_{0}
\end{aligned}
$$

If there is a non-zero finite $b$ for which $\alpha_{b}=0$, there is no non-zero finite deficient
value other than $b$. In this case we have

$$
\sum_{a \neq 0, \infty} \delta(a, f)=\mu_{0}-\nu_{0} .
$$

## References

[1] Edrei, A., and W. H. J. Fuchs, The deficiencies of meromorphic functions of order less than one. Duke Math. Journ. 27 (1960), 233-250.
[2] Selberg, H., Algebroide Funktionen und Umkehrfunktionen Abelscher Integrale. Avh. Norske Vid. Akad. Oslo 8 (1934), 1-72.
[3] Shea, D. F., On the Valiron deficiencies of meromorphic functions of finite order. Trans. Amer. Math. Soc. 124 (1966), 201-227.
[4] Valiron, G., Sur la dérıvée des fonctions algébroïdes. Bull. Soc. Math. 59 (1931), 17-39.

Department of Mathematics,
Tokyo Institute of Technology.

