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§ 1. Introduction.

1. In the present paper we shall first discuss the continuity of the extremal
distance between two sets of the boundary of a plane region with respect to its
exhaustion. Here the continuity of the extremal length means the convergence of
a sequence of extremal lengths of curve families to that of a well-defined family.
The continuity of a sequence of increasing curve families was shown by the author
[14] and Ziemer [17]. In the problem for extremal distance, the corresponding is
regarded as a decreasing sequence. The problem was dealt with by Wolontis [16]
for two compact sets in a region, later by Strebel [11] for two compact sets of
boundary components of a Riemann surface and recently by the author [15] for two
boundary parts on a boundary component of a plane region. Another generalization
for curves was given by Marden and Rodin [6].

In this paper we shall define a new boundary part of a plane region Ω which
is considered as a sort of element in the research of ideal boundary by means of
a filter. Let {Ωn} be an exhaustion of Ω towards two disjoint boundary parts.
Then we shall show the continuity, if the extremal distance of the two sets of the
relative boundary components of Ω± is positive. The proofs due to Wolontis and
Strebel are based on the semicontinuity of the distance measured by an admissible
metric and the second proof in [15] on a conformal representation. In the present
proof we shall make use of an auxiliary metric so that the former method may
be available.

After the continuity is established, cannonical conformal mappings as in [14]
and [15] can be easily constructed, which will be discussed in § 4. The images of
boundary parts will be investigated by making use of the method of extremal
metrics. The continuity of the extremal distance will be effective in such con-
formal mappings.

In the final section we shall give an extension of the notion of prime ends,
first introduced by Caratheodory [2], to an arbitrary plane region in such a way
that it gives a compactification in a suitable topology. Every conformal mapping
of the region is extended to the compactification and it introduces a well-defined
boundary correspondence.
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§ 2. Preliminaries.

2. Definition of boundary part. Let Ω be a plane region which is not the
Riemann sphere. We may assume that Ω does not contain the point at infinity
throughout this paper. We shall mean a boundary part by a sequence of open
subset {Δv} of Ω satisfying:

I) the relative boundary of Δv consists of a finite number of Jordan curves
either closed or open, both of whose end arcs tend to a common boundary com-
ponent in the latter case,

II) the open set Ω—ΔV is connected, where Δv denotes the closure of Δv with
respect to the relative topology in Ω,

III) J,DJυ f l, and
IV) ΓΊ4, = 0.
Two boundary parts {Δv} and {Δ'v} are said to be equivalent, if every Δn con-

tains a Δ'm and vice versa. The sequence {Δv} is termed a defining sequence of
the boundary part. A boundary part A'={Δf

v] is said to lie on A={ΔV], if the
first half of the conditions of the above equivalence is satisfied.

A sequence {Ωv} with ΩV=Ω—ΔV is called an exhaustion of Ω towards A={ΔV).
We say that two boundary parts A = { Δ f ] and B = { Δ f ] are disjoint, if ΔnftΔ%=φ
for some n. Then we can construct an exhaustion {Ωv} of Ω towards A and B
with ΩV=Ω-Δ$+VUΔ*+V.

For a boundary part A={Δn}1 the set I(A) = ΠC1(JW) is called the realization
of A, where Cl(*) denotes the closure on the Riemann sphere.

3. Prime ends. We mention prime ends of a simply connected region which
are needed to establish an important lemma in the proof of our continuity theorem
of extremal distance. Let Δ be a bounded simply connected region. A prime end
is a boundary part ξ={Δn] with the following properties: the relative boundary of
Δn, denoted by qn, is a Jordan arc with end points on the boundary of Δ in the
Riemann sphere, no two of qn have any point, including their ends points in common
and the diameter of qn tends to zero. Following Collingwood and Lohwater [3], we
call the sequence {qn} a chain. It is known that every prime end can be defined
by a chain consisting of concentric circular arcs [3].

4. Let ί/be the unit disc z\<\ and let c0 be a Jordan curve z=z0(t),
in U such that z0(t)\—>l as ί— »0 and t— >1 respectively. The c0 divides U into two
simply connected subregions, say V\ and F2. Let z\ be a fixed point in V\ and
let c be an arbitrary curve in U joining Zi and a point of F2. Then we state

LEMMA 1. There exist at most two points ζ} on the circle \z\=\ and a sequence
of discs \z—ζj\<rf^ with r5w)— »0 such that the first intersection of c with c0 lies on
a fixed compact subarc cn of c0, unless it runs through the two discs for fixed n.

The author expresses his warmest thanks to Mr. M. Tsuzuki for his suggestions
in the proof of this lemma,
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Proof. We set

C(*0,0)=
ε>0

and

which are the cluster sets of z0(0 at 0 and 1 and write C0 and Ci for them, re-
spectively. We first see that there exist one or two prime ends of V\ with non-
void intersection of their realizations with the union C0UCι. In fact, at least one
of the end points of qn of a chain of such a prime end ζ lies on c0 except for a
finite number of n. Indeed, if both the end points lie on the circle |z|=l for
infinitely many n, we have 7(f)n(C0UCι)=0, which is a contradiction. Thus we
may assume that one of the end points is on c0 for all n. Then there are possible
two cases where both the end points lie on c0 for infinitely many n or only one of
them on the unit circle for almost all n. If one of the end points is on c0 and the
other is on the circle, then all the qm with m>n are the same in their end points.
For, if not, both the end points are on the subarc of c0 on Δnι which contradicts
the fact that /(£)n(C0nCι)^0. Hence, in the first case, we have a unique prime
end ξ={Λn], since Vι—Δn is relatively compact and there are no such prime ends.
In the second case we may assume that one of the end points of qn is on c0 and
the other is on the circle for all n. The sequence of the end points of qn on c0

has accumulation points on one of C0 and Clt say C0. Then Vι—Δn has another
prime end £'={4ί} such that I(ζ')Γ\Cι*?φ and each simply connected subregion
Vι—(Δn(JΔή) has no desired prime ends, since the intersection of its relative boundary
in U with c0 is on a compact subarc.

As is remarked in No. 3, we can take as chains of these prime ends a sequence
of concentric circular arcs with centers at ζj on the unit circle and with radii r f }

tending to zero. These points are so-called principal points [3] which are the desired.
To see this, it is sufficient to show it in the case where there exist two prime ends,
since otherwise the proof is easier. If the point z\ is contained in the subregion
Vi— (2n\j2ή) for sufficiently large n so that ΔnΓiΔ'n=φ, then the first intersec-
tion of c with the relative boundary of this region is either on qn(Jqn or on
cn=C\(C() — (Δn\J Δ'n)), which implies the assertion.

§3. Extremal distance and its continuity.

5. Extremal length. Let Γ be a family of locally rectifiable curves in Ω. We
denote by P(Γ) the family of Borel measurable metrics p(z)\dz\ defined in Ω and
satisfying

for all c€Γ, which is called the class of admissible metrics for Γ. The module of
the curve family is defined by
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modΓ= inf \\p\\2= inf (( p2 dxdy

and the extremal length of Γ, denoted by λ(Γ)9 is its reciprocal. The extremal
length of the family of curves joining two sets is called the extremal distance
between them.

We prepare a lemma for the later use.

LEMMA 2. (Hersch [5]). Let {Γn} be at most a countable member of curve
families. Then

6. The closure of the intersection of P(Γ) with the space of L2-metrics is
called the class of L2 -admissible metrics denoted by P*(Γ). There exists always a
unique metric pQ in P*(Γ) such that || jo0||

2 = mod Γ, if P*(Γ)%0 [10]. The metric
PQ is termed the extremal metric for Γ. The following inequality is known [13]:

( l ) ll^o||2^|IHI2HM2.

We quote

LEMMA 3. (Suita [14] and Ziemer [17]). Let {Γn}%=1 be a sequence of curve
families such that Γnc.Γn+ι for all n. Setting Γo=\jΓn, we have

Furthermore, the extremal metrics for Γn tend strongly to the extremal metric
for Γ0, if ^(

A curve family with vanishing module is called an exceptional family. By
Lemma 2 the union of at most a countable number of exceptional families is also
exceptional. The extremal length of a curve family remains unchanged, if an
exceptional family is added or subtracted. A proposition about a curve family is
said to be true for almost all curves, if it holds except for an exceptional family.

7. Continuity theorem. Let A and B be two disjoint ^boundary parts with
respective defining sequences {Δ%} and {Δ%} such that 3?Γ\A?=φ and let {Ωn} be
an exhaustion of Ω towards A and B. We denote by An and Bn the sets of com-
ponents of the relative boundary of Δn which are those of Δ\ and Δ% respectively.
Let Γn be the family of curves joining An and Bn in Ω. We define the curve
family Γ0 joining A and B by the family of curves running through Ω, intersect-
ing all the members of Δi and Δ% and clustering at no point of Ω. This family
was called the clustering curve family in [15]. We state

THEOREM 1. If Λ(Λ)>0, we have
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Moreover the extremal metrics pn for Γn tend strongly to the extremal po for Γo.

The condition Λ(Γι)>0 is indispensable, which was shown in [15]. After an
auxiliary metric is constructed so that StrebeΓs proof [11] may be available, we
shall need his proof and restate it here for completeness.

8. Proof. Let {Dn} be a normal exhaustion of Ω, that is an exhaustion of J2
towards the whole boundary. We may assume that Dv is disjoint from Δ£\jΔ?
with y fixed. We first show the continuity for the subfamilies of curves intersect-
ing Dv. The relative boundary of Ωn consists of a finite number of open or closed
Jordan curves and each of the former is a curve whose end arcs tend to a common
boundary component a. by definition. Suppose a. is a point. We may assume that
a is the point at the origin. Since the extremal distance of the a from Dv is
infinite in the Riemann sphere, we can construct a metric p* such that |||θ?||2<ε
and Jcpf\dz\^:l, where c is an arbitrary curve joining Dv and the disc \z\^δ for
sufficiently small δ within Ω. Next if a is not a point, by Riemann's mapping
theorem to the component of ac containing Ω, we may assume that a is the unit
circle \z\ = l which is its outer boundary. Then, by the same reason, there exists
an admissible metric p* for the family of curves joining Dv and the one or two
discs \z— ζjl^r^ in Lemma 1 for so large n that ||/of||2<ε, where each relative
boundary component of Δn tending to a is taken as c0 in the lemma.

Since there are at most a countable number of such boundary components over
all the Ωn, by arranging them, we can construct a sequence of metrics p*/2k+ι(k^l)
which are admissible for the families of curves joining Dv and Ek, where Ek is the
inverse image of the subset of the closed discs constructed above in the image
region by the Riemann's theorem. We set p't(z)=supkzι{ρ?/2t+ι(z)} which is clearly
admissible for the union of these curve families. We have ||/0«'||2^e/2.

We construct another auxiliary metric p'/ which is continuous, positive and
such that |||0."||2<e/2. Indeed, setting p'.'=κ min(|<r-tf|-2, \z-b\-*) with different
a and b, we get a desired metric for sufficiently small K.

9. We shall see how StrebeΓs proof [11] is applied. Let Γnv be the subfamily
of Γn which consists of curves of Γn intersecting Dv. It is easily verified that
mod Γnι, is decreasing with n and modΓ0,^lim mod ΓTOV. To show the opposite
inequality, setting pt=max.(ρ, p'β, p") with ||/0||2<oo and peP(Γ0v) and

Ln= inf \ p<\dz\,
cerny Jc

we show

(2) li

Contrary to the assertion, suppose lim Ln=l<l. Then there exists a sequence
of curves cn^Γnv such that

Jcn
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since Ln is increasing. Let m be arbitrarily fixed. The cn with its initial point on
An intersects Am and Bm for n^m and its last and first intersections with them are
on a compact subset Km of them in Ω respectively. In fact, if a noncompact com-
ponent of Am and Bm terminates at a component a which is a point, its intersec-
tion with Km is the complement of the interior of an E^ with respect to it. If it
terminates at a continuum or, its intersection is the conformally equivalent arc of
the arc in Lemma 1, by applying the lemma to the conformally equivalent unit
disc of the component of ac containing Ω.

Thus, by diagonal process, we may assume that the two sequences of the
above intersections are convergent to the points am and bm on Am and Bm respec-
tively. Since ||jθβ||

2<oo, there exist two sequences of discs z— am\^rm and \z— bm\^rm

contained in Ω and such that

(3) f p.\dz\+\ P<\dz\<-ι£ϊϊ (w=l,2, ).
J|z-αm|=rw J|z-δwl=rm *

We denote by off* and c£~TO) the subarcs of cn between its last intersections
with Am and Am+ί and first intersections with Bm and Bm+ί respectively. Let <40)

denote its subarc between its last and first intersections with A\ and B\. Setting

lim f oε\dz\=lm, m=Q, ±1, •••,
n->oo Jc«

we have easily

Σ /m^/'
ra= — oo

Hence we can take arcs c%% such that

and intersecting both the circles around am and bm for sufficiently large n. Con-
necting these arcs by the circular arcs passing through Ω—Ωn, we obtain a curve
c such that

(5) (p.\dz\<l'+η.
J c

The curve c belongs to Γ0v. It is sufficient to show that c has no cluster
points in Ω. Indeed, if any, there exists a relatively compact subregion containing
the closure of a neighborhood of a cluster point. Then it intersects both the
boundaries of these sets infinitely often and since pt has a positive lower bound in
any compact subregion by virtue of p(', we have hpt\dz\=<χ>, which contradicts
(5). Since η is arbitrary in (5), we get a contradiction to the admissibility of ^ε,
which implies (2).
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Then by (2) (\.+ή)pt is admissible for Γnv for a sufficiently large n and we have

Moreover ||/oe | |
2^||/o||2+ε holds by definition and since the ε is arbitrary, we have

mod A^ lim mod Γnv and

( 6 ) mod Γ0l, = lim mod Γnv.
ri— >oo

10. To show that Λ(Γn)->Λ(Γ0), we have at first

lim mod ΓTO^mod Γ0,

since P(Γw)cP(Γ0). Next let Λnv be the subfamily of Γn consisting of curves
which never intersect Dv. Then we have Γn=Γnv\jAnv and from Lemma 2

mod Γn^mod ΓWμ+mod Anv.

There exists a metric μeP(Γι) such that ||μ||2<oo by the assumption Λ(/~Ί)>0.
Then the metric

μ on Ω—DV,

0 elsewhere

is admissible for Anv, n—l,2, - and such that HμJI 2— »0 as v-^oo. Hence there
exists an AT" such that mod Anv<,ε for v^N. Letting ^^oo, we have from (6)

lim mod Γ^mod Γ0,+ε,
7l-»00

for p^ΛΓ, and by letting y-*oo, from Lemma 3

lim mod Γw^mod Γ0+ε.
n-*oo

Since ε is arbitrary, we get the assertion.
As for the convergence of pn, we have from (1)

for n^m, which implies the strong convergence of pn to a metric p0. Since
), /oo€P*(Γ0), whence ^o is extremal for Γ0.

§4. Conformal representation.

11. After the continuity of extremal distance is established, we can give a
conformal representation of Ω onto a slit rectangle by a function related to the
extremal metric for Γ0 of special A and B,
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Let A and B be two disjoint boundary parts with Δ£f}Δ?=φ which are on a
common boundary component a of Ω. Suppose that Ω can be divided into two
subregions by a Jordan curve in such a way that A and B are regarded as the
boundary parts of different parts. Each Δn consists of a finite number of com-
ponents Δnj whose relative boundary is a single Jordan curve. Then we can select
a sequence {JίfJw}£=ι which makes a boundary part. Such a boundary part is said
to be elementary. Then A and B are decomposed into elementary boundary parts.

Let \Ωn] be an exhaustion of Ω towards A and B and let An and Bn be the
relative boundaries of Δ% and Δ% respectively. Let an denote the boundary com-
ponent of Ωn containing them. The component of ac

n containing Ωn is mapped
onto the unit disc by Riemann's mapping theorem. Then the images of Anj and
Bnk are open arcs, denoted by Anj and Bnk, on the unit circle, where Anj and Bnk

are the relative boundaries of components Δ^3 and Δζk respectively. When the
circle is positively oriented with respect to the disc, we may assume that Anj and
Bnk are arranged in such a way that A'nί, An2, ~,Bήι,Bn2, ••• He in this orientation.

Next we can construct a defining sequence {J£j of α, each of whose relative
boundaries intersects every Anj and Bnk just twice. We denote by Δ&j* the non-
compact subregion of Δa

m bounded by the subarcs of Anj, AnJ+ι and the relative
boundary of Δn

m. The {Δ&γ} defines an elementary boundary part ASj which is
called the boundary part determined by these two end arcs. We denote by B$k, C$
and D$ the boundary part between Bnk and BnJC+1, the last element of Anj and the
first of Bnk and the last of Bnk and the first of Anj similarly defined respectively.
Then we can define an exhaustion {Ωnm} of Ωn towards the sets A%j, B$k, C%, D%
and the other boundary components than a. We designate the relative boundaries of
the ra-th members of the defining sequences of the first four as A$$m\ B$k

m\
C£(m) and D$(m\ It should be remarked that these sets may be void except for C£
and D$.

12. Since the Ωnm is regularly imbedded, by a standard method [1], we can
construct a unique function unm harmonic in Ωnm and such that

i) Unm=Q on the intersection of Anj with Ωnm, denoted by A$\

ϋ) unm=l on the intersection of Bnk with Ωnm, denoted by B$&\ and

iii) du%m=Q along the relative boundary of Ωnm in Ωn

Set φnm—Unm+iVnmt where vnm is the conjugate harmonic function of unm which
is single-valued from iii), normalized so that vnm=0 on C$(m\ We have vnm^hnm

on D%(m\ The function ψnm maps Ωnm onto an incised horizontal slit rectangle in
such a way that

i) ψnm((Xnm) is the boundary of a horizontally incised rectangle, whose closure
is such that O^Re ψnm^l and O^Im ψnm^hnm, where anm is the boundary com-
ponent containing A%},

ii) ψnm(A%?) and ψnm(B(

nk

)) are arcs on the imaginary axis and the line Re ψnm=l
which are non-overlapping and whose sums over j and k are equal to hnm respec-
tively,

iii) ψnm(A$$m>) and φnm(B$k

 m)) are horizontal incisions emanating from the
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boundary points of adjacent vertical arcs,
iv) ψnm(Cί™} and ψnm(Dί(m')) are horizontal sides on the real axis and the line

Im ψnm=hnm respectively,
v) the images of the boundary components other than αnm under ψn m are a

finite number of horizontal slits, and
vi) the metric pnm=\ψnm\ is extremal for the family Γnm of curves joining

two points of Affi's and Bffl's and mod Γwm=Awm.
The properties from i) to v) are obvious since Ωnm is a regularly imbedded

subregion of Ω. We remark that the φnm can be directly constructed by duplication
[13].

The last property vi) is verified as follows: We have \\p\\2^hnm for p€P(Γnm)
by Schwarz's inequality and since pnm=\ψίm\ belongs to P(Γnm) with \\pnm\\*=hnm,
it is thus extremal.

13. The sequence Γnm is increasing and we set Γn=\JmΓnm. Note that a
curve of Γn joins two points of An and Bn within Ω. We have by Lemma 3

mod Γn= lim mod Γnm,
m—*oo

and the metrics pnm tend to the extremal metric pn strongly, if ^(JΓTO)>0. We can
deduce, from this convergence, that there exists a univalent function ψn such that
pn=\φί and \\fnn-ψ'n\\lnm^ [15]. Clearly Re ψn=Q on An and Re φn=l on Bn,
since a half neighborhood of every point of them is regularly imbedded.

Finally letting n-^oo, we have λ(Γrϊ)—*λ(Γ0) from Theorem 1 and the metrics
ρn tend to its extremal metric pQ strongly where Γ0 is the family of curves join-
ing A and B. Suppose further that λ(Γ0)<oo, that is hQ=moά Γ0>0. Then ψn

tends to a univalent function φ0 in such a way that \\φή—φί ||έn—»0 as n—κχ>.
Then we state

THEOREM 2. Suppose Λ(A)>0 and Λ(Γ0)<oo. The function ψ0(z), above con-
structed, is univalent and possesses the following properties'.

i) I(ψo(ά)) is the boundary of horizontally incised rectangle whose closure is
such that O^Re ψo^l and O^Im ψo^ho,

ii) I(φ0(A)) (resp. φo(B)) contains the vertical side [0, iho] (resp. [1, Ί.-\-ih0]) and
is disjoint from the open opposite side including its possible incisions,

iii) I(ψo(ξ)), ξ€A(resp. ξsB\ is either a closed arc (possibly a point) on the
vertical side [0, ihQ] (resp. [1, H-ίΛ0]) with possible horizontal incisions emanating
from it or a segment (possibly a point) on an incision, where ξ denotes an ele-
mentary boundary part,

iv) I(φo(dΩ—a)) is a minimal set of horizontal slits,

v) the area of I(φ0(dΩ)) vanishes, and

vi) the metric pQ=\ψ'Q\ is extremal for Γ0 and mod Γ0=Ao.

14. Proof. We have already proved vi). To prove i), iv) and v), we shall
make use of Reich's method [8].
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Let c be a curve of Γ0 with its parametrization z=z(t), 0<ί<l, which inter-
sects all the members of a defining sequence of A as £— »0. Then we show

( 7 ) lim Re φ0(z(t))—lim Re φo(z(t)) = 1
t->I ί-*0

for almost all curves c€Γ0. In fact, the function ψn in No. 13 is such that
Re ^τι=0 and Re ψn=l on An and Bn respectively. Set

φn)\ in Ωn,
μn=

[0 elsewhere,

then we have by a lemma given in [6] or directly as in [13]

K d Re ψQ-d Re φn
\Jcr\Ωn

for almost all c€Γ0 as n-^oo, since ||μnll2-^0, which implies (7).
Let A denote the exceptional family of curves along which the equality (7)

does not hold. Set w=φo, Δ=ψQ(Ω) and denote by Γί and A' the families of the
image curves of the members of ΓΌ and A under φ0, respectively. Then mod Γί
=mod(Γ'Q—A')—ho, since Af is also exceptional. Next consider two rectangles
Re: 0<Re w<ε, 0<Im w<h0 and R(: l-ε<Re w<l, 0<Im w<h0 and the family,
denoted by Γ.', of curves joining two points of vertical sides within d&=d\jRε\J R's.
Then we have Γ.'DΓό—A' and mod Γ'.^ho. On the other hand the metric p==l
is admissible, which thus extremal and mod Γ'ε=h0. Then by a criterion of mini-
mality given in [13] (cf. [15]) the inner boundary components of Δ, form a mini-
mal set of horizontal slits. Thus we have proved the properties other than ii)
and iii).

In order to prove ii), suppose at first that, for example, I(φQ(Λ)) does not
contain the side [0, ih0]. Then there exists an open segment / contained in the
vertical side [0, ih0] and disjoint from I(ψo(Aj). As before, the module of the
subfamily Γ' of Γ0 consisting of the curves satisfying (7) is equal to h0. Consider
another module problem for the family Γ" of curves joining the vertical side [0, ihQ]
less / and the opposite vertical side in the rectangle: 0<Rez#<l, 0<Im w<hQ.
Clearly Γ"DΓ' and mod Γ"^mod Γ. On the other hand, from the result in No.
12 and the unicity of the extremal metric, we get mod Γ"<mod Γ', which is a
contradiction.

Next suppose that I(ψ0(A)) contains an interior point of the side [1, l+ih0] or
a point of an incision emanating from it. Let ω be that point with 0<Im ω<A0

and let Λ and /2 be two closed subsets of I(ψQ(B)) divided by the line Imw=Imω.
Then one of Λ is contained in a single I(ψo(ξQ)), ξo^A. If it were not, we would
construct a Jordan curve with ends in ψ0(B) dividing a boundary part of </>o(A)
containing ω from its boundary parts on [0, ihQ], which contradicts the assumption
in No. 11.

Let /' denote the projection of the Λ into the line Re w=l. Then there exists
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a disc \w—Wo\.<r, contained in Δ whose projection to the line Re w=l is contained
in the segment /'. By the same reason as above, a curve c* joining the disc and
the 0o(ίo) enjoys

( 8 ) Re w^Q

as w tends to </»o(?o) along almost all c*. Let Λ* be the exceptional family for the
property (8). Then from StrebeΓs inequality given in [15] for the disc and the
segment we get

ί
lmwQ+r Jy

-~
ImwQ-r l(y)

where l(y) is the length of the horizontal segment with Im w=y (\y— Im w0\<r)
between them, which is a contradiction to the property (8). Thus the property ii)
has been completed. The property iii) immediately follows from the connectedness
of ψo(ζ).

15. Remarks. The realizations I(ψo(ξ)) and I(φo(ξ')) with f, ξ'dA\jB may
'have their intersection containing a continuum (not a point), if they are distinct.
Note that these two elementary boundary parts are disjoint by definition. There
exists an elementary part ξ disjoint from A and B such that I(ψo(A)) Γ\ I(ψ0(ξ))
contains a segment on the vertical side [0, ihό\. The latter example was given in
[15] and examples of the former type can be constructed by making use of a
characterization theorem in the next No. 16 which will be omitted.

16. Extremal property of ψQ. Let £F be the family of univalent function f(z)
in Ω such that 0<Re/<l, Inf Im/=0, and Re/0)->0 and Re/(z)-4 as z tends
to A and B along almost all curves joining A and B respectively. Setting
£Γ(/)=sup«€fi Im/, we have similarly as in [15]

THEOREM 3. Suppose that the extremal distance between A and B in Ω is
positive and finite. Then the function ψ0, if it exists, is the unique function which
minimizes the quantity H(f) in £F.

Proof. We have from (1) for ψ0 and /

I I l /Ί-Wi ll2^ll/ΊI2HI0oΊI2^W)-A0,

with p=\ff\ and po=\ψί\. It is obvious, from Theorem 2 and its proof, that ψo
belongs to £F

An example in which the assumption of the theorem does not guarantee the
construction of ψ0 was given in [15].

The image is called a minimal horizontal slit rectangle with respect to A and
B. We cite its characterization without proof (cf. [15]).

COROLLARY 1. Let Ω be a region whose outer boundary is the periphery of the
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rectangle 0<Re 2<1, 0<Im 2<A with possible horizontal incisions emanating from
its vertical sides and let A and B be two disjoint boundary parts on the outer
boundary component a whose realizations contain the sides [0, ih] and [1, l+ίh]
respectively. Suppose that the extremal distance of the relative boundaries of the
first members of their defining sequences is positive. Then any two of the follow-
ing three conditions imply the minimality of Ω with respect to A and B:

i) dΩ—a is a minimal set of horizontal slits,
ii) Re z-+0 and Re 2—>1 as z tends to A and B along almost all curves

joining A and B respectively, and
iii) the extremal distance of A and B is equal to l/h.
Conversely a minimal slit rectangle with respect to A and B possesses all the

above properties.

§ 5. Boundary elements.

17. Introduction. In this section we shall generalize the notion of prime ends
for an arbitrary region, which introduces a well-defined boundary correspondence.
Several approaches to the theory of prime ends in terms of extremal length and
its extension were given by Schlesinger [9], Gal [4] and Ohtsuka [7]. Here we
shall define a boundary element which corresponds to either a point or an incision
in a radial slit disc mapping with a finite radius.

The author expresses his sincere thanks to Professor K. Oikawa with whom
he had many valuable discussions.

18. Definitions. Let Ω be a region which is not the Riemann sphere. Let K
be a compact disc z—a\^r contained in Ω. Consider an elementary boundary
part ξ={dn}%=ί satisfying Jni)Jn+ι. The_ relative boundary of every Δn is either
closed or open. In either case Vn=Δn—Δn+ι is a region and we denote by Γn the
family of curves running within Vn and intersecting all the curves joining the relative
boundaries of Δn and Jn+ι. Such a family is called a dividing curve family. An
elementary boundary part ζ with the following properties is called a boundary element

I) λ(Γn)<oo i.e. modΓn>0, and
II) the extremal distance between K and ζ is infinite.

The condition II) is equivalent to the following
II*) lim Λ(Γrc) = oo, where Γn is the family of curves joining K and Jw,

from Theorem 1.

19. Radial slit disc mapping. We review the properties of radial slit disc
mappings. Let a be a boundary component of Ω. Suppose that the extremal
distance of K and α, denoted by d(K, α) for simplicity, is finite. Then the radial
slit disc mapping g« with a finite radius R=R(ά) normalized by ga(ά)=Q and
g'a(a) = \ is uniquely constructed, which has the following properties:

i) /(0α(α)) is a circle \w\=R with possible radial incisions emanating from it,
ϋ) I(ga(dΩ—a)) is a minimal set of radial slits,

iii) the area of I(ga(dΩ)) vanishes, and
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iv) \ga(z)\—>jR as z tends to a along almost all curves joining K and a.
The properties except for iv) are essentially due to Strebel [11] (cf. [8], [10]) and
iv) was shown in [13] and [6]. We called g«(Ω) a minimal radial slit disc.

If d(K,a)=oo, the a is a boundary element by definition and a radial slit disc
mapping with radius infinite can be constructed [11, 12], but the uniqueness is not
yet established. We show

LEMMA 4. Let Ω be a minimal radial slit disc with a finite radius R in the
w-plane. The points Reίθ from which no incisions emanate are accessible in Ω.
They form a Gδ set on the circle \w =R with angular measure 2π. Moreover each
Reίθ is accessible in the intersection of Ω with a sector \aτgw—θ\<ε for an
arbitrary positive ε.

Proof. The set of incisions whose lengths are not less than 1/n is compact,
whence so is its projection into the circle \w\=R, denoted by Θn. Since the
angular measure of Θn vanishes from the property iii), so does the union \jnθn.
Hence the set in the lemma is a Gδ set of angular measure 2π. Next let Reίθ be
a point in the lemma. Consider an exhaustion {Ωn} of Ω towards a and set
Vn=Ωn—Ωn+l. Let An denote the set of boundary components of Vn other than
its relative boundary. Each boundary component βeAn is enclosed by a Jordan
curve along which the oscillation of arg w is less than ε, since I(β) is a radial
segment. We denote by Un its interior. I(An) is covered by a finite number of
Ws, since it is compact. Then the segments on the radius [0, Reiθ] interior of
all the Ufa are at most countable and replacing them by a union of subarcs of
the boundary of U&, we get a desired curve.

20. Boundary correspondence. If a boundary component a is a boundary
element, then it contains no other boundary element. To see it we prove

THEOREM 4. If a boundary element ξ exists on a boundary component a with
ξ^a, then the extremal distance between K and a is finite.

Proof. Set ξ={Δn}. We may suppose that the relative boundary of every Δn

is an open Jordan curve, since a^ξ. The end arcs of the relative boundary of
Vn=Δn—Δn+ι determine two boundary parts ξn and ξ'n. Take an auxiliary disc
Kf\ \z—b\^δ contained in the region Vn. We show that the extremal distances
d(K'j ξn) and d(K', ξή) in Ω are both finite. In fact, if one of them, for example,
d(Kf, ξn)=o°, the subfamily Γξ' of curves of Γn passing through K' is excep-
tional, since every curve of Γξ' contains a curve of the former module problem
as a subset. The finiteness of the extremal distance is independent of such a
reference set [13]. Enlarging Kf so that it may remain simply connected in the
region Vn and approach to both the relative boundary of Δn and Δn+\, we see that
Γn is the union of such /T We have Λ(/*n)=oo from Lemma 3 which con-
tradicts the condition I) of the definition of a boundary element. So the extremal
distances d(K', ξn) and d(K>', ζ'n) or equivalently d(K, ξn) and d(K, ξί) are finite.
Since they are on α, we have d(K, α)<oo.
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We now state

THEOREM 5. If the extremal distance between K and a boundary component a
is finite and if a boundary element ξ is on the a, then the image I(ga(ξ)} is either
a point on the circle \w\ = R or a possible incision including its end point on the
circle, where ga is the radial slit disc mapping with radius R.

Proof. ga(K) contains a disc M^r', denoted by K' '. I(ga(ζ)) is a continuum

and so is its projection into the circle \w\=R. If it is an arc ReίθlReίθ2 (not a
point), we get as in No. 13 by StrebeΓs inequality [10] a contradiction

where /(#) is the logarithmic length of the radial segment between rfeίθ and the
set I(ga(ζ)) for θ^θ^θ*.

If no incision emanates from the projection of /(#«(<?)), it is really a point.
We show that if an incision τ emanates from the projection, /({/«(£)) coincides
with τ. We parametrize the relative boundary of ga(Δn\ denoted by γn, by wn(t)
(0<ί<l) in such a way that wn(f) runs positively with respect to ga(dn) as it
moves from 0 to 1, where {Δn} denotes a defining sequence of ξ. We can deduce
that the intersections of the projections of the cluster sets C(wn, 0) and C(wn+ι, 0)
and the cluster sets at ί=l are both void. Suppose, for example, that the inter-
section of the projections of the cluster sets at £=0 contains a point Reiθ. If no
incision emanates from the Reίθ, we can construct, by Lemma 4, a defining
sequence of an elementary boundary part f*={J*} such that I(ξ*)=Reiθ and that
the relative boundary of J* intersects both the Δn and JΛ+ι. Then every curve of
Γn clusters at the point Reiθ since it must pass through all the Δ%, and the metric

^ \w-Reίθ\ \\og\w-Reiθ\ \

is admissible for Γn [15]. We get ||με||
2-+0 as ε—>0, which contradicts the con-

dition I).
Next, if an incision emanates from the point Reίθ, we take again, by Lemma

4, a defining sequence {J*} such that its realization coincides with the incision
and that the relative boundary of J* intersects both the Δn and Δn+ι Then every
curve of Γn clusters either at the point Reίθ or a point on the incision and in the
disc w\<R. Let K" be a compact disc in the region ga(Δn—Δn+\). Then both
the families of curves of the former and the latter type are exceptional. Enlarg-
ing K" as before, we get the same contradiction.

Therefore the projection of the cluster set C(wn, 0) is left to the incision τ
and that of C(wn, 1) is right to it with respect to the outer normal. Then the set

n)) contains τ which implies the assertion.

21. Next we show, using the above conformal representation,
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THEOREM 6. If two boundary elements ζ and ξ' are distinct, then they are
disjoint.

Proof. Set ζ={Δn} and £'={J4} If they are on distinct boundary com-
ponents separately, there is nothing to prove. Suppose that they are on a boundary
component α. Then from Theorem 4 we have d(K, α)<oo and there exists the
radial slit disc mapping ga with finite radius R normalized at a$Ω. Contrary to
the assertion, we have Δnϊ\Δ'n^φ for all » and I(ga(ξ))=I(ga(ξ')). To see their
equivalence, we denote by Θn (resp. Θ'n) the circular arc between the left and right
ends of the projections of the cluster sets of the relative boundary of Δn (resp. Δβ
at ί=0 and ί=l, respectively, where the relative boundaries are parametrized as
before. Θn+1 is contained in the open arc between the right and left ends of the
projections of the cluster sets from Θn as is seen in the proof of the preceding
theorem. Let nϋ be fixed. Then Θ'n is contained in the open arc of ΘHQ for a
sufficiently large n^n0, since Θn and Θ'n are shrinking to a point as n-^oo. There-
fore g«(//™) is contained in ga(Δnf) for a sufficiently large m and, hence, we get
their equivalence.

We have immediately

COROLLARY 2. If the extremal distance between a boundary component a and
a compact disc K is finite, there exists a one to one correspondence between the
boundary elements and the points Reίθ under the radial slit mapping ga with finite
radius R.

22. A compactification. We denote by Q the set of all boundary elements.
We set Ω—Ω\] 8 and define a topology for it by giving a base for the topology.
Let ξ be a boundary element with a defining sequence {Δn}. We denote by Δn

the union of Δn and all the boundary elements a member of each of whose defin-
ing sequences is contained in Δn. The base is given by the union of the original
open sets in Ω and such a set Δn for every ξzΩ. Using the Stoϊlow compactifica-
tion and conformal representations onto radial slit discs, we show

THEOREM 7. The topological space Ω is a compact Hausdorff space.

Proof. We first see the compactness. Let {O} be a covering of Ω and let {Oα}
be the class of its elements containing a boundary element on α, where a is a
boundary component. Then there exist a finite number of O 's such that U./OJ
contains all the boundary elements on a and a member of a defining sequence of
a. Indeed, it is obvious if a is a boundary element. Otherwise, let ga be a radial
slit disc mapping with radius R. Since every O containing ζ contains a Δn of its
defining sequence {Δn}> the ga(O) contains the intersection of ga(Ω) with a disc
\w—Reίθ\<δ for a sufficiently small <5, where Reίθ is the projection of ga(ζ) into
the circle \w\ = R. The compactness of the circle implies the assertion. Using the
Stoϊlow compactification [1], we cover all the boundary components by a finite
number of such unions. The complementary set of their union is compact on the
Riemann sphere, whence Ω is compact.
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The separation of distinct ξ and ξ' of 8 follows from Theorem 6.

23. Remarks. Every conformal mapping of Ω is topologically extended to the
Ω and especially the radial slit disc mapping ga with a finite radius maps distinct
boundary elements on a onto those with disjoint realizations.

A boundary component is identified with a connected component of Q.
An elementary boundary part with extremal distance infinite from a compact

disc in Ω is contained in a unique boundary element. It is easily verified by
making use of radial slit disc mappings. But there exists a boundary part with a
finite extremal distance which contains no boundary elements.

REFERENCES

[ 1 ] AHLFORS, L. V., AND L. SARIO, Riemann surfaces. Princeton Univ. Press (1960).
[ 2 ] CARATHEODORY, C., Uber die Begrenzung emfachzusammenhangender Gebiete.

Math. Ann. 73 (1913), 323-370.
[ 3 ] COLLINGWOOD, E. F., AND A. J. LoπwATER, The theory of cluster sets. Cam-

bridge Univ. Press (1966).
[ 4 ] GAL, I. S., Conformal invariant metrics and uniform structures. Indag. Math.

22 (1960), 218-244.
[ 5 ] HERSCH, J., Longuers extremales et theoπe des functions. Comment. Math.

Helv. 29 (1955), 301-337.
[ 6 ] MARDEN, A., AND B. RODIN, Extremal and conjugate extremal distance on open

Riemann surfaces with applications to circular-radial slit mappings. Acta
Math. 115 (1966), 187-190.

[ 7 ] OHTSUKA, M., Diπchlet problem, extremal length and prime ends. Lecture Notes,
Washington Univ. St. Louis (1962-1963).

[ 8 ] REICH, E., On radial slit mappings. Ann. Acad. Sci. Fenn., 296 (1961), 12pp.
[ 9 ] SCHLESINGER, E. C., Conformal invariants and prime ends. Amer. J. Math. 80

(1958), 83-102.
[10] STREBEL, K., A remark on the extremal distance of two boundary components.

Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 842-844.
[11] STREBEL, K., Die extremale Distanz zweier Enden einer Riemannschen Flache.

Ann. Acad. Sci. Fenn. 179 (1955), 21pp.
[12] SUITA, N., Minimal slit domains and minimal sets. Kδdai Math. Sem. Rep. 17

(1965), 166-186.
[13] SUITA, N., On radial slit disc mappings. Ibid. 18 (1966), 219-228.
[14] SUITA, N., On a continuity lemma of extremal length and its applications to

conformal mapping. Ibid. 19 (1967), 129-137.
[15] SUITA, N., On slit rectangle mappings and continuity of extremal length. Ibid.

19 (1967), 425-438.
[16] WOLONTIS, V., Properties of conformal invariants. Amer. J. Math. 74 (1952),

587-606.
[17] ZIEMER, W., Extremal length and conformal capacity. Trans. Amer. Math. Soc.

126 (1967), 460-473.

DEPARTMENT OF MATHEMATICS,
TOKYO INSTITUTE OF TECHNOLOGY.




