ON ANALYTIC MAPPINGS AMONG ALGEBROID SURFACES

By Hideo Mutō

§1. Introduction.

Let R_n $(n \ge 2)$ and S_m $(m \ge 2)$ be algebroid surfaces defined by irreducible equations

(1.1)
$$y^n + A_1(z)y^{n-1} + \dots + A_n(z) = 0$$

and

(1.2)
$$u^m + B_1(w)u^{m-1} + \dots + B_m(w) = 0,$$

respectively, where A_1, \dots, A_n , B_1, \dots, B_{m-1} and B_m are meromorphic functions in the finite plane. In this case we shall extend every boundary component of R_n (resp. S_m) over $z=\infty$ (resp. $w=\infty$) if it has an algebraic character, that is, for a certain large value r_0 it has no branch point over $|z| \ge r_0$ (resp. $|w| \ge r_0$) with the exception of points over $z=\infty$ (resp. $w=\infty$). Here we assume that R_n and S_m have an infinite number of branch points.

Let \mathfrak{p}_{R_n} (resp. \mathfrak{p}_{S_m}) be the projection map $(z, y) \rightarrow z$ (resp. $(w, u) \rightarrow w$). Let φ be a non-trivial analytic mapping of R_n into S_m . In the sequel when we speak of an analytic mapping of R_n into S_m we shall always mean a non-trivial one. If φ preserves the projection maps, that is

$$\mathfrak{p}_{S_m}\varphi(p) = \mathfrak{p}_{S_m}\varphi(q)$$
 whenever $\mathfrak{p}_{R_n}p = \mathfrak{p}_{R_n}q$,

then φ is called a rigid analytic mapping of R_n into S_m . Otherwise we say that φ is a non-rigid analytic mapping of R_n into S_m .

In the subsequent lines we make use of the inverse mapping $\mathfrak{p}_{R_n}^{-1}$, as an *n*-valued analytic branch, of the *z* sphere onto R_n . We set

$$h(z) = \mathfrak{p}_{S_m} \circ \varphi \circ \mathfrak{p}_n^{-1}(z).$$

Then h(z) reduces to a single-valued function of z when and only when φ is rigid.

In the present paper we shall study analytic mappings of R_n into S_m . In § 3 we give two sufficient conditions for the rigidity of any existing analytic mapping

Received September 12, 1968.

of R_n into S_m . In the case of n=m=2 and n=m=3, Ozawa [8] and Mutō [5] showed that every analytic mapping of R_n into S_m is rigid. Hiromi and Mutō [4] gave a sufficient condition for the rigidity of any existing analytic mapping of R_n into S_m . In §4 we give several non-existence criteria of analytic mappings. In §5 we study the multivaluedness of h(z), when φ is non-rigid. In §6 we give a relation between the orders of branch points of R_n and S_m , when there exists a rigid analytic mapping of R_n into S_m . In §7 we give a theorem on the growth of analytic mappings. Some of the results in §4, §6 and §7 contain earlier results in Ozawa [7], [8], Mutō [5] and Hiromi and Mutō [3], [4]. In §8 we discuss analytic mappings of R_n into itself. Our basic tool is an elegant result obtained by Heins [2].

The author wishes to express his heartiest thanks to Prof. M. Ozawa for his valuable advices.

§2. Preliminary.

Let φ be an analytic mapping of R_n into S_m and h(z) the corresponding function of z. We assume that the function h is a k-valued algebroid function. Let R'_n be the proper existence domain of h(z). Let $p_0, \mathfrak{p}_{R_n} p_0 = z_0$ be a point on R_n whose order of ramification being counted with respect to R'_n is $\mu_0 - 1$. Let $q_0, \mathfrak{p}_{S_m} q_0 = w_0$ be the φ -image of p_0 on S_m whose order of ramification is $\lambda_0 - 1$. Then we have the following expansion in a neighborhood of z_0 :

(2.1)
$$h(z) = w_0 + a_r \left(\sqrt[\mu_0]{z - z_0} \right)^r + \cdots \qquad a_r \neq 0$$

or

(2.2)
$$h(z) = \frac{a_{-\tau}}{\binom{\mu_0}{\sqrt{z-z_0}^{\tau}}} + \cdots \qquad a_{-\tau} \neq 0.$$

We define

$$N(r; q_0, S_m) = \frac{1}{n\lambda_0} \int_0^r (n(t; q_0, S_m) - n(0; q_0, S_m)) \frac{dt}{t} + \frac{n(0; q_0, S_m)}{n\lambda_0} \log r,$$

where

$$n(r; q_0, S_m) = \sum_{\varphi(p)=q_0, |\mathfrak{p}_{R_n}p| \leq r} \tau.$$

Suppose that the point q_0 whose order of ramification is λ_0-1 lies over w_0 . Then we define a function $u_0(q)$ as follows: In the case of $w_0 \neq \infty$

$$u_0(q) = \frac{1}{\lambda_0} \log \frac{\delta_0}{|w - w_0|} \qquad |w - w_0| \le \delta_0,$$

=0 otherwise;

In the case of $w_0 = \infty$

$$egin{aligned} & u_0(q) \!=\! rac{1}{\lambda_0} \log rac{|w|}{\delta_0} & |w| \!\geq\! \delta_0, \ &=\! 0 & ext{otherwise.} \end{aligned}$$

By making use of this function we define $m(r; q_0, S_m)$ in the following manner:

$$m(r; q_0, S_m) = \frac{1}{2n\pi} \int_{|z|=r} u_0(\varphi(\mathfrak{p}_{R_n}^{-1}(re^{i\theta}))) d\theta.$$

For another point q_1 on S_m we define $N(r; q_1, S_m)$ and $m(r; q_1, S_m)$ analogously. It is well known that there exists a function $u(q; q_0, q_1)$, which is harmonic in q on S_m save at q_0 and q_1 where it has a positive normalized logarithmic singularity and a negative normalized logarithmic singularity respectively, and which is bounded in the complement of some compact neighborhood of $\{q_0, q_1\}$. Using this function we can obtain a simple relation between the sum $m(r; q, S_m) + N(r; q, S_m)$ and T(r, h), where T(r, h) is the Nevanlinna-Selberg characteristic function for h(z). That is

(2.3)
$$m(r; q, S_m) + N(r; q, S_m) = \frac{1}{m} T(r, h) + O(1).$$

Let $R_n(r)$ be the part of R_n which lies over $|z| \leq r$. Put

$$N(r; S_{h}) = \frac{1}{n} \int_{0}^{r} (n(t; S_{h}) - n(0; S_{h})) \frac{dt}{t} + \frac{n(0; S_{h})}{n} \log r,$$
$$n(r; S_{h}) = \sum_{R_{h}(r)} (\tau - 1),$$

where τ has already been defined in (2. 1) and (2. 2). By the Nevanlinna-Selberg second fundamental theorem for h(z) we have

(2.4)
$$(l-2k)T(r,h) \leq \sum_{\nu=1}^{l} N(r;w_{\nu}) - N(r;S_{h}) + O(\log r T(r,h))$$

outside a set of finite measures, [6], [10]. Using (2.3), we have

(2.5)
$$\left(l - \frac{1}{m} \sum_{\nu=1}^{l'} \lambda_{\nu}\right) T(r, h) + O(1) \ge \sum_{\nu=1}^{l} N(r; w_{\nu}) - \sum_{\nu=1}^{l'} \lambda_{\nu} N(r; q_{\nu}, S_m)$$

Hence, by (2.4) and (2.5), we have

(2.6)
$$\left(\frac{1}{m}\sum_{\nu=1}^{l'}\lambda_{\nu}-2k\right)T(r,h) \leq \sum_{\nu=1}^{l'}\lambda_{\nu}N(r,q_{\nu},S_{m})-N(r;S_{h})+O(\log r T(r,h))$$

outside a set of finite measure. Hiromi and Muto gave this relation in [4].

§3. Sufficient conditions for the rigidity.

First, we introduce two counting functions. We denote by $n(r; B, R_n)$ the number of branch points of R_n and $n^*(r; B, R_n)$ the number of branch points of R_n whose order of ramification is n-1, which lie over $|z| \leq r$, respectively. Correspondingly we define

$$N(r; B, R_n) = \frac{1}{n} \int_0^r (n(t; B, R_n) - n(0; B, R_n)) \frac{dt}{t} + \frac{n(0; B, R_n)}{n} \log r,$$
$$N^*(r; B, R_n) = \frac{1}{n} \int_0^r (n^*(t; B, R_n) - n^*(0; B, R_n)) \frac{dt}{t} + \frac{n^*(0; B, R_n)}{n} \log r.$$

We obtain the following

THEOREM 1. Assume that the inequality

$$\frac{N^*(r; B, R_n)}{N(r; B, R_n)} \ge \varepsilon > 0$$

holds for a set of r of infinite measure. Then every analytic mapping of R_n into S_m is rigid whenever it exists.

Proof. Let φ be an analytic mapping of R_n into S_m and h(z) corresponding function. A theorem in [4] implies that the proper existence domain of h(z) is not R_n . So, let R'_n be the proper existence domain of h(z). Suppose that h(z) is $k(\geq 2)$ -valued function of z, then R'_n has an infinite number of branch points whose order of ramification is k-1. Hence h(z) is an algebroid function of z. Therefore we can apply the Nevanlinna-Selberg second fundamental theorem, [6], [10].

Let $n_2(r; q_0, S_m)$ be the number of simple q_0 points of φ , that is, $\tau=1$ in (2. 1) or (2. 2), $n_3(r; q_0, S_m)$ the number of multiple q_0 points of φ , that is, $\tau \ge 2$ in (2. 1) or (2. 2), being counted multiply and $\bar{n}_1(r; q_0, S_m)$ the number of distinct multiple q_0 points of φ , which lie over $|z| \le r$, respectively. Correspondingly we define

$$\begin{split} N_2(r;q_0,S_m) &= \frac{1}{n\lambda_0} \int_0^r (n_2(t;q_0,S_m) - n_2(0;q_0,S_m)) \frac{dt}{t} + \frac{n_2(0;q_0,S_m)}{n\lambda_0} \log r, \\ N_3(r;q_0,S_m) &= \frac{1}{n\lambda_0} \int_0^r (n_3(t;q_0,S_m) - n_3(0;q_0,S_m)) \frac{dt}{t} + \frac{n_3(0;q_0,S_m)}{n\lambda_0} \log r, \\ \bar{N}_1(r;q_0,S_m) &= \frac{1}{n\lambda_0} \int_0^r (\bar{n}_1(t;q_0,S_m) - \bar{n}_1(0;q_0,S_m)) \frac{dt}{t} + \frac{\bar{n}_1(0;q_0,S_m)}{n\lambda_0} \log r, \end{split}$$

where $\lambda_0 - 1$ is the order of ramification of q_0 . Let $\{q_{\nu}\}$ be the branch points of S_m . By (2.6), we have

$$\left(\frac{1}{m}\sum_{\nu=1}^{l'}\lambda_{\nu}-2k\right)T(r,h)$$

$$\leq \sum_{\nu=1}^{l'}\lambda_{\nu}N(r;q_{\nu},S_{m})-N(r;S_{h})+O(\log r T(r,h))$$

$$\leq \sum_{\nu=1}^{l'}\lambda_{\nu}N_{2}(r;q_{\nu},S_{m})+\sum_{\nu=1}^{l'}\lambda_{\nu}N_{3}(r;q_{\nu},S_{m})-N(r;S_{h})+O(\log r T(r,h))$$

$$\leq \sum_{\nu=1}^{l'}\lambda_{\nu}N_{2}(r;q_{\nu},S^{m})+\sum_{\nu=1}^{l'}\lambda_{\nu}\bar{N}_{1}(r;q_{\nu},S_{m})+O(\log r T(r,h))$$

$$\leq \sum_{\nu=1}^{l'}\lambda_{\nu}N_{2}(r;q_{\nu},S_{m})+\sum_{\nu=1}^{l'}\frac{\lambda_{\nu}}{2m}T(r,h)+O(\log r T(r,h))$$

outside a set of finite measure where $\lambda_{\nu}-1$ is the order of ramification of q_{ν} . Since only the branch points of R_n can be simple q_{ν} points, by $\varepsilon N(r; B, R_n) \leq N^*(r; B, R_n)$, we have

(3.1)

$$\left(\sum_{\nu=1}^{l'} \frac{\lambda_{\nu}}{2m} - 2k\right) T(r, h)$$

$$\leq \sum_{\nu=1}^{l'} \lambda_{\nu} N_{2}(r; q_{\nu}, S_{m}) + O(\log r T(r, h))$$

$$\leq N(r; B, R_{n}) + O(\log r T(r, h))$$

$$\leq C_{1} N^{*}(r; B, R_{n}) + O(\log r T(r, h))$$

for a set of infinite measure, where C_1 is a positive constant. On the other hand the ramification theorem implies the following relation:

$$N^*(r; B, R_n) \leq N(r; B, R'_n) \leq (2k-2)T(r, h).$$

Consequently we have

$$\left(\sum_{\nu=1}^{\nu}\frac{\lambda_{\nu}}{2m}-C_{2}\right)T(r,h)\leq O(\log r T(r,h))$$

for a set of infinite measure, where C_2 is a positive constant. This inequality is untenable, since S_m has an infinite number of branch points for which $\lambda_{\nu} \ge 2$. Thus h(z) must be an entire function of z, that is, the mapping φ is rigid. This com-

pletes the proof of theorem 1.

REMARK. There exists a pair of algebroid surfaces R_n and S_m for which there exists a non-rigid analytic mapping, even if the surface R_n has an infinite number of branch points whose order of ramification is n-1. In fact, let R_4 and S_2 be algebroid surfaces defined by

$$y^4 = (\exp z - 1)(\exp (\exp z - 1) - 1)^2,$$

 $u^2 = w(\exp w^2 - 1),$

respectively. Then there exists a non-rigid analytic mapping φ of R_4 into S_2 induced by $h(z) = \sqrt{\exp z - 1}$, that is $\varphi = \mathfrak{p}_{S_2}^{-1} \circ h \circ \mathfrak{p}_{R_4}$.

However we have the following

THEOREM 2. Assume that the surface S_m has an infinite number of branch points whose order of ramification is m-1 and that $n \leq m$. Then every analytic mapping of R_n into S_m is rigid whenever it exists.

Proof. Let φ be an analytic mapping of R_n into S_m and h(z) the corresponding function. Let $\{q_\nu\}$ be the branch points of S_m whose order of ramification is m-1. Suppose that φ is not rigid. Then, since $n \leq m$, φ has no simple q_ν points. Let $\bar{n}(r; q_\nu, S_m)$ be the number of distinct q_ν points of φ over $|z| \leq r$. Put

$$\bar{N}(r; q_{\nu}, S_m) = \frac{1}{n\lambda_{\nu}} \int_0^r (\bar{n}(t; q_{\nu}, S_m) - \bar{n}(0; q_{\nu}, S_m)) \frac{dt}{t} + \frac{\bar{n}(0; q_{\nu}, S_m)}{n\lambda_{\nu}} \log r,$$

where $\lambda_{\nu} - 1$ is the order of ramification of q_{ν} . Further put $T(r, \varphi) = T(r, h)/m$. Then we have

$$\Theta(q_{\nu}) = 1 - \lim_{r \to \infty} \frac{\bar{N}(r; q_{\nu}, S_m)}{T(r, \varphi)} \ge K,$$

where K is a positive constant independent of ν . Thus h(z) must be transcendental. On the other hand we have, by (2.6),

$$\sum \lambda_{\nu} \Theta(q_{\nu}) \leq 2km.$$

It is untenable. Therefore the mapping φ must be rigid. This completes the proof of theorem 2.

§4. Non-existence criteria for analytic mappings.

THEOREM 3. Assume that S_m is the same as in theorem 2 and that n < m. Then there is no analytic mapping of R_n into S_m .

Proof. Theorem 2 asserts that every analytic mapping of R_n into S_m is rigid whenever it exists. Since n < m, we have $\Theta(q_\nu) \ge K$, where K is a positive constant independent of ν . By the same procedure as in theorem 2 we can see that it is untenable. Thus there is no analytic mapping of R_n into S_m . This completes the proof of theorem 3.

THEOREM 4. Let S_m be the same as in theorem 2. Assume that n is a prime number and that n > m. Then there is no analytic mapping of R_n into S_m .

To prove this theorem we use the following theorem, [4].

THEOREM A. Assume that there exists an analytic mapping φ of R_n into S_m . If *n* is a prime number, then φ is rigid. If *n* is not a prime number, then the corresponding function h(z) of φ is k-valued, where *k* is a proper divisor of *n* and φ may or may not be rigid.

Proof of theorem 4. By theorem A every analytic mapping of R_n into S_m is rigid whenever it exists. Let $\{q_\nu\}$ be the branch points of S_m whose order of ramification is m-1. Since n is a prime number, we have $\Theta(q_\nu) \ge K$, where K is a positive constant independent of ν . By the same procedure as in theorem 2 we can conclude that there is no analytic mapping of R_n into S_m .

REMARK. We can obtain the same assertions as in theorems 3 and 4 if the number of branch points of S_m whose order of ramification is m-1 is greater than a constant dependent on n and m.

By the same method as above we can prove the following two non-existence criteria for rigid analytic mappings.

THEOREM 5. Assume that S_m has at least three branch points whose order of ramification is m-1 and that n < m. Then there is no rigid analytic mapping of R_n into S_m .

THEOREM 6. Assume that S_m has at least three branch points whose order of ramification is m-1 and that n is not an integral multiple of m. Then there is no rigid analytic mapping of R_n into S_m .

§5. Non-rigidity of analytic mappings.

Let R_6 and S_2 be algebroid surfaces defined by irreducible equations

$$y^6 = G(z), \qquad u^2 = g(w),$$

respectively, where G and g are entire functions having an infinite number of zeros

HIDEO MUT \bar{O}

whose orders are less than 6 and 2, respectively.

Let φ be an analytic mapping of R_6 into S_2 and h the corresponding function of φ . Then theorem A asserts that h(z) must be k-valued, where k is a proper divisor of 6.

Furthermore we have the following

THEOREM 7. Assume that there exists an analytic mapping φ of R_6 into S_2 . Then the corresponding function h(z) is either single-valued or three-valued, that is, the case where it is two-valued does not occur.

Proof. Let u^* be the analytic mapping of S_2 into the finite plane defined by $u^*=u \circ \mathfrak{p}_{S_2}$. Then $u^* \circ \varphi$ gives an analytic mapping of R_6 into the finite plane. Thus we have

$$u^* \circ \varphi \circ \mathfrak{p}_{R_6}^{-1} = f_0 + f_1 y + \dots + f_5 y^5,$$

where f_0, \dots, f_4 and f_5 are meromorphic functions of z in the finite z plane. Further

$$u^* \circ \varphi \circ \mathfrak{p}_{R_6}^{-1} = u \circ \mathfrak{p}_{S_2} \circ \varphi \circ \mathfrak{p}_{R_6}^{-1} = u \circ h.$$

Hence

$$u \circ h = f_0 + f_1 y + \dots + f_5 y^5.$$

Since $u^2 = g(w)$, we have

$$g \circ h = (f_0 + f_1 y + \dots + f_5 y^5)^2$$
.

By $y^6 = G(z)$, we have

$$g \circ h = f_0^2 + f_3^2 G + 2f_1 f_5 G + 2f_2 f_4 G$$

+2(f_0 f_1 + f_2 f_5 G + f_3 f_4 G)y
+(f_1^2 + f_4^2 G + 2f_0 f_2 + 2f_3 f_5 G)y^2
+2(f_0 f_3 + f_1 f_2 + f_4 f_5 G)y^3
+(f_2^2 + f_5^2 G + 2f_0 f_4 + 2f_1 f_3)y^4
+2(f_0 f_5 + f_1 f_4 + f_2 f_3)y^5.

Suppose that h(z) is two-valued function of z. Then we have

$$(5.1) f_0 f_5 + f_1 f_4 + f_2 f_3 = 0,$$

(5. 2) $f_0 f_1 + f_2 f_5 G + f_3 f_4 G = 0,$

ANALYTIC MAPPINGS AMONG ALGEBROID SURPACES

(5.3)
$$f_1^2 + f_4^2 G + 2f_0 f_2 + 2f_3 f_5 G = 0,$$

(5.4) $f_2^2 + f_5^2 G + 2f_0 f_4 + 2f_1 f_3 = 0.$

By (5.1) and (5.3), we have

(5.5)
$$(f_1+f_4y^3)^2 = -2(f_0+f_3y^3)(f_2+f_5y^3).$$

By (5.2) and (5.4), we have

(5. 6)
$$(f_2 + f_5 y^3)^2 = -2(f_0 + f_3 y^3)(f_1 + f_4 y^3)/y^3.$$

From (5.5) and (5.6), we have

$$y^3(f_2+f_5y^3)^3=(f_1+f_4y^3)^3$$
.

Therefore we can see that

$$f_1 = f_2 = f_4 = f_5 = 0.$$

Hence

$$g \circ h = (f_0 + f_3 y^3)^2$$
.

Thus every zero of g must be a perfectively branched value of h. It is untenable, since g has an infinite number of zeros. This completes the proof of theorem 7.

Let S_4 be an algebroid surface defined by irreducible equation

 $u^4 = g(w),$

where g has an infinite number of zeros whose orders are less than 4. Then, by the same method as above we obtain

THEOREM 8. Let R_6 be the same as in theorem 7. Then for every analytic mapping of R_6 into S_4 the corresponding function h(z) is either single-valued or three-valued, that is, the case where it is two-valued does not occur.

§ 6. Necessary condition for the existence of analytic mappings.

Let R_n and S_m be general algebroid surfaces. First, we define the order of branch points of R_n as follows:

$$\rho_{N(B,R_n)} = \overline{\lim_{r \to \infty}} \frac{\log N(r; B, R_m)}{\log r}$$

We also define $\rho_{N(B,S_m)}$ analogously.

We obtain the following theorem:

THEOREM 9. Assume that $\rho_{N(B,R_n)} < \infty$ and $0 < \rho_{N(B,S_m)} < \infty$ and that there exists a rigid analytic mapping φ of R_n into S_m . Then

$$\rho_{N(B,R_n)} = \nu \rho_{N(B,S_m)},$$

where v is a positive integer.

To prove this theorem we use the following theorem [1]:

THEOREM B. Let E(z) and F(z) be transcendental entire functions. Assume that the zeros of E(z) have a positive exponent of convergence. Then the zeros of $E \circ F(z)$ cannot have a finite exponent of convergence.

Proof of theorem 9. Let h(z) be the corresponding function of φ . It is sufficient to prove that h(z) is a polynomial. For we can prove our assertion by the same argument as in [3].

Assume that h(z) is an entire function of infinite order. Let $\{q_{\nu}\}$ be the branch points of S_{m} . Then we have

 $N(\mathbf{r}; B, \varphi, S_m) = N_2(\mathbf{r}; B, \varphi, S_m) + N_3(\mathbf{r}; B, \varphi, S_m),$ $N_3(\mathbf{r}; B, \varphi, S_m) \leq 2N(\mathbf{r}; 0, h') \leq 6T(\mathbf{r}, h)$

outside a set of finite measure, where

$$N(r; B, \varphi, S_m) = \sum_{\nu=1}^{\infty} N(r; q_{\nu}, S_m),$$
$$N_2(r; B, \varphi, S_m) = \sum_{\nu=1}^{\infty} N_2(r; q_{\nu}, S_m),$$
$$N_3(r; B, \varphi, S_m) = \sum_{\nu=1}^{\infty} N_3(r; q_{\nu}, S_m).$$

On the other hand

$$\sum_{\nu=1}^{p} N(r; w_{\nu}, h) \leq N(r; B, \varphi, S_m)$$

for an arbitrary but fixed number p of the projections $\{w_{\nu}\}_{\nu=1}^{\infty}$ of all the branch points of S_m and for all r. By the Nevanlinna second fundamental theorem we have

$$(p-3)T(r,h) \leq \sum_{\nu=1}^{p} N(r;w_{\nu},h).$$

outside a set of finite measure. Thus we have

$$KT(r,\varphi) \leq N_2(r; B, \varphi, S_m)$$

for an arbitrary but fixed number K and for all r outside a set of finite measure. Only the branch points of R_n can be simple q points for a branch point q of S_m . Hence

(6.1)
$$KT(r,\varphi) \leq N_2(r; B, \varphi, S_m) \leq N(r; B, R_n)$$

holds outside a set of finite measure. It is a contradiction [cf. 3, pp. 239-240]. Therefore h(z) must be of finite order.

Next we shall show that h(z) must be a polynomial. Assume that h(z) is a transcendental entire function of finite order. Then, by theorem B the order of $N(r; B, \varphi, S_m)$ must be infinite. This contradicts the following relation which holds for all $r \ge r_0$:

$$N(\mathbf{r}; B, \varphi, S_m) = N_2(\mathbf{r}; B, \varphi, S_m) + N_3(\mathbf{r}; B, \varphi, S_m)$$
$$\leq N(\mathbf{r}; B, R_n) + 6T(\mathbf{r}, h).$$

Therefore h(z) must be a polynomial.

§7. Growth of analytic mappings.

THEOREM 10. Assume that there exists an analytic mapping φ of R_n into S_m , then it satisfies

$$\overline{\lim_{r\to\infty}}\frac{N(r;B,R_n)}{T(r,\varphi)}=\infty.$$

Proof. First, we assume that the corresponding function h(z) is a k-valued algebroid function of z. Suppose that our assertion does not hold. Then we have

$$N(r; B, R_n) < MT(r, \varphi)$$

for all sufficiently large r, where M is a positive constant. By the relation (3.1) we have

$$\left(\sum_{\nu=1}^{\nu} \lambda_{\nu} - 2km\right) T(r,\varphi) \leq MT(r,\varphi) + O(\log rT(r,\varphi))$$

outside a set of finite measure. Since S_m has an infinite number of branch points, it is untenable. That is, our assertion holds.

Next we assume that h(z) is a k-valued algebraic function of z. Then we have

$$T(r, \varphi) = O(\log r).$$

On the other hand, since R_n has an infinite number of branch points we have

 $\log r = o(N(r; B, N_n)).$

Hence, in both cases we have

$$\overline{\lim_{r\to\infty}}\frac{N(r;B,R_n)}{T(r,\varphi)}=\infty.$$

This completes the proof of theorem 10.

REMARK. By the same method as above, we have

$$\lim_{r\to\infty}\frac{N(r;B,R_n)}{T(r,\varphi)}=\infty,$$

when the order of φ is finite.

§8. Analytic mappings of R_n into itself.

Our surface R_n is of parabolic type and its universal covering surface is of hyperbolic type. Under this abstract situation Heins [2] discussed an analytic mapping of an open Riemann surface into itself. One of his interesting results may be stated as follows:

THEOREM C. The analytic mappings of an open Riemann surface R with nonabelian fundamental group and of parabolic type into itself are univalent. If Rdoes not have any planer boundary elements, the maps in question are onto.

By making use of this theorem we can obtain the following theorem which is an extension of earlier results in [3], [4], [9]. The earlier result in [3] and [4] was proved by making use of the Nevanlinna value distribution theory.

THEOREM 11. Let R_n be an algebroid surface and let φ be a rigid analytic mapping of R_n into itself. Then the mapping φ is an analytic mapping of R_n onto itself and the corresponding function h(z) must be of the form $e^{2\pi i p/q}z + b$ with a suitable rational number p|q.

Proof. Since φ is rigid, the corresponding function h(z) is a meromorphic function of z in the finite z-plane. If h(z) is transcendental, then there is at

least one point w such that the equation h(z)=w has an infinite number of roots. Hence there is at least one point q over w which is covered by φ infinitely often. It contradicts the univalency of φ .

Suppose that h(z) is a rational function. Then, as above we can see that h(z) must be of the form

$$h(z) = \frac{az+b}{cz+d}, \qquad ad-bc \neq 0.$$

Since φ is an analytic mapping of R_n into itself, we have c=0. That is, φ is onto and h(z)=Az+B. Considering the iterations of φ we can prove our assertion.

In general, there exists an algebroid surface R_n admitting a non-rigid analytic mapping of R_n onto itself. In fact, let R_4 be an algebroid surface defined by

$$y^{4} = z^{2}(1-z^{2}) \prod_{n=1}^{\infty} \left(\left(1 - \frac{z^{2}}{a_{n}}\right) \left(1 - \frac{1-z^{2}}{a_{n}}\right) \right)^{2},$$

where $\{a_n\}$ are suitable complex numbers. Then there is an analytic mapping of R_4 onto itself induced by $h^2+z^2=1$, that is, $\varphi=\mathfrak{p}_{R_4}^{-1}\circ h\circ\mathfrak{p}_{R_4}$.

However we can prove

THEOREM 12. If the part of R_n which lies over $|z| \ge r$ is connected for all r, then every analytic mapping of R_n into itself is rigid.

Proof. Let φ be an analytic mapping of R_n into itself and h the corresponding function of φ . By theorem A, h satisfies

$$h^{k}+p_{1}(z)h^{k-1}+\cdots+p_{k}(z)=0,$$

where k is a proper divisor of n. Since φ is univalent, the coefficients p_1, \dots, p_{k-1} and p_k are rational functions. Let R'_n be an algebraic surface defined by

$$y^{k} + p_{1}(z) y^{k-1} + \dots + p_{k}(z) = 0$$

and R''_n be an algebraic surface defined by

$$z^{k} + p_{1}(y)z^{k-1} + \dots + p_{k}(y) = 0.$$

Then R''_n is also k-sheeted. We can extend the mapping φ over $z=\infty$. Then the extended mapping induces an analytic mapping φ' of R'_n into R''_n . Suppose that h(z) is k-valued, then R'_n must have a branch point whose order of ramification is k-1 over $z=\infty$, since R'_n has only one boundary component. The fact that φ is onto asserts that R''_n also has a branch point whose order of ramification is k-1 over $z=\infty$. Using the analyticity of φ' around the point which lies over $z=\infty$, we can see that k=1. This completes the proof.

References

- [1] EDREI, A., AND W. H. J. FUCHS, On the zeros of f(g(z)) where f and g are entire functions. J. Anal. Math. 14 (1964), 243-255.
- [2] HEINS, M., On a problem of Heinz Hopf. Journ. Math. pures et appl. 36 (1957), 153-160.
- [3] HIROMI, G., AND H. MUTŌ, On the existence of analytic mappings, I. Kōdai Math. Sem. Rep. 19 (1967), 236-244.
- [4] HIROMI, G., AND H. MUTŌ, On the existence of analytic mappings, II. Kōdai Math. Sem. Rep. 19 (1967), 439-450.
- [5] MUTō, H., On the existence of analytic mappings. Kōdai Math. Sem. Rep. 18 (1966), 24-35.
- [6] NEVANLINNA, R., Eindeutige analytische Funktionen. Berlin, 2nd ed. (1953).
- [7] OZAWA, M., On complex analytic mappings between two ultrahyperelliptic surfaces. Kodai Math. Sem. Rep. 17 (1965), 158-165.
- [8] OZAWA, M., On the existence of analytic mappings. Ködai Math. Sem. Rep. 17 (1965), 191–197.
- [9] Ozawa, M., On analytic mappings among three-sheeted surfaces. Kodai Math. Sem. Rep. 20 (1968), 146-154.
- [10] SELBERG, H. L., Algebroide Funktionen und Umkehrfunktionen Abelscher Integrale. Avh. Norske Vid. Akad. Oslo Nr. 8 (1934), 1-72.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.