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ON ANALYTIC MAPPINGS AMONG ALGEBROID SURFACES

BY HIDEO MUTO

§ 1. Introduction.

Let Rn (n^2) and Sm (m^2) be algebroid surfaces defined by irreducible
equations

(1. 1)

and

(1. 2) um+B1(w)um-ί+ "+Bm(w)=09

respectively, where Aι, ~,An, Bi, •• ,5m_ι and Bm are meromorphic functions in
the finite plane. In this case we shall extend every boundary component of Rn

(resp. Sm) over 2=00 (resp. w=oo) if it has an algebraic character, that is, for a
certain large value r0 it has no branch point over |z|^r0 (resp. M^r0) with the
exception of points over 0=00 (resp. w=oo). Here we assume that Rn and Sm

have an infinite number of branch points.
Let $Rn (resp. $Sm) be the projection map (z,y)-+z (resp. (w,u)-+w). Let φ be

a non-trivial analytic mapping of Rn into Sm In the sequel when we speak of an
analytic mapping of Rn into Sm we shall always mean a non-trivial one. If φ
preserves the projection maps, that is

$smφ(P)=$smφ(<ϊ) whenever $Rnp=$Rnq,

then φ is called a rigid analytic mapping of Rn into Sm. Otherwise we say that
φ is a non-rigid analytic mapping of Rn into Sm.

In the subsequent lines we make use of the inverse mapping p^, as an n-
valued analytic branch, of the z sphere onto Rn. We set

Then h(z) reduces to a single-valued function of z when and only when φ is rigid.

In the present paper we shall study analytic mappings of Rn into Sm. In § 3
we give two sufficient conditions for the rigidity of any existing analytic mapping
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of Rn into Sm. In the case of n=m=2 and n=m=3, Ozawa [8] and Muto [5]
showed that every analytic mapping of Rn into Sm is rigid. Hiromi and Muto [4]
gave a sufficient condition for the rigidity of any existing analytic mapping of Rn

into Sm. In §4 we give several non-existence criteria of analytic mappings. In
§ 5 we study the multivaluedness of h(z)t when ψ is non-rigid. In § 6 we give a
relation between the orders of branch points of Rn and STO, when there exists a
rigid analytic mapping of Rn into Sm. In § 7 we give a theorem on the growth of
analytic mappings. Some of the results in §4, §6 and §7 contain earlier results
in Ozawa [7], [8], Muto [5] and Hiromi and Muto [3], [4]. In § 8 we discuss analytic
mappings of Rn into itself. Our basic tool is an elegan.t result obtained by Heins [2].

The author wishes to express his heartiest thanks to Prof. M. Ozawa for his
valuable advices.

§ 2. Preliminary.

Let φ be an analytic mapping of Rn into Sm and h(z) the corresponding func-
tion of z. We assume that the function h is a ^-valued algebroid function. Let
Rn be the proper existence domain of h(z). Let po, $Rnpo=zQ be a point on Rn

whose order of ramification being counted with respect to R'n is μo—1. Let
#o, psm#o=^o be the ^>-image of po on Sm whose order of ramification is Λ0—1. Then
we have the following expansion in a neighborhood of ZQ:

(2.1)

or

We define

N(r; q<), Sm) = —— \ (n(t\ q0, S m) — n(Q; qQ, Sm)) —- -\ -̂y—^— log r,

where

n(r\qQίSm)= Σ τ.

Suppose that the point q0 whose order of ramification is Λ0—1 lies over w0.
Then we define a function uQ(q) as follows: In the case of

=0 otherwise;
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In the case of w0—oo

•j J v-^o <>
/O 00

=Q otherwise.

By making use of this function we define m(r, qo, Sm) in the following manner:

1
,Sm) =

J|Z|=7

For another point qi on Sm we define N(r, qλ, Sm) and m(r, qi, Sm) analogously.
It is well known that there exists a function u(q; qo, q\), which is harmonic in q on
Sm save at q0 and qi where it has a positive normalized logarithmic singularity and
a negative normalized logarithmic singularity respectively, and which is bounded
in the complement of some compact neighborhood of {q^qi}. Using this function
we can obtain a simple relation between the sum m(r; q, Sm)+N(r, q, Sm) and T(r, ti),
where T(r,h) is the Nevanlinna-Selberg characteristic function for h(z). That is

(2. 3) m(r, q, Sm)+N(r, q, Sm)= — T(r, A)+O(1).
m

Let Rn(r) be the part of Rn which lies over \z\^r. Put

1 f r dt n(0' Sh)
N(r, SΛ) = — \ (n(t\ Sh) - »(0; SΛ)) —- H ! log r,

/ί Jo t n

n(r,Sh)= Σ (r-l),

where τ has already been defined in (2.1) and (2. 2). By the Nevanlinna-Selberg
second fundamental theorem for h(z) we have

(2. 4) (/-2ft)Γ(r, A)^ Σ (̂̂  wv)-N(r9 Sh)+O(\ogrT(r, h)}
v=l

outside a set of finite measures, [6], [10]. Using (2. 3), we have

(2. 5) (/- — Σ λ)Γ(r, A)+0(l)^ Σ ̂ (r; wv)- Σ λ^V(r; ̂ , Sm).
\ m v=ι / v=ι v=ι

Hence, by (2. 4) and (2. 5), we have

(2. 6) (— Σ λ-2*)r(r, A)^ Σ λjf(r, qv,Sm)-N(r; S^+O(\ogrT(r, h))
\ m v=ι I v=1
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outside a set of finite measure. Hiromi and Muto gave this relation in [4].

§ 3. Sufficient conditions for the rigidity.

First, we introduce two counting functions. We denote by n(r, B, Rn} the
number of branch points of Rn and n*(r; B, Rn) the number of branch points of Rn

whose order of ramification is n—l, which lie over |z|^ir, respectively. Corre-
spondingly we define

N(r, B, Rn) = - (r(n(t; B, Rn) - n(0; B, Rn)}^-Λ- *(°; B' Rn) logr,
n Jo t n

N*(n B, Rn) = ~((n*(t; B, Rn)-n*(0; B,Rn})~ + n*®>B<Rn) logr.n Jo t n

We obtain the following

THEOREM 1. Assume that the inequality

r; B, Rn)
N(r, B, Rn]

holds for a set of r of infinite measure. Then every analytic mapping of Rn into
Sm is rigid whenever it exists.

Proof. Let φ be an analytic mapping of Rn into Sm and h(z) corresponding
function. A theorem in [4] implies that the proper existence domain of h(z) is not
Rn. So, let Rn be the proper existence domain of h(z). Suppose that h(z) is k(^2)
valued function of z, then Rf

n has an infinite number of branch points whose order
of ramification is k—\. Hence h(z) is an algebroid function of z. Therefore we
can apply the Nevanlinna-Selberg second fundamental theorem, [6], [10].

Let n2(r,qo,Sm) be the number of simple qQ points of φ, that is, r=l in (2.1)
or (2. 2), na(r~,qo,Sm) the number of multiple qQ points of φ, that is, τ^2 in (2.1)
or (2. 2), being counted multiply and n\(ry qQ, Sm) the number of distinct multiple q0

points of φ, which lie over \z\^r, respectively. Correspondingly we define

N2(r, q0, Sm)= - - ; ̂ o, Sm) - n2(0; q*, Sw)) - + m log r,

N3(r, q0, Sm)= ~ {(n3(f, qt, Sm) - m(0; qβ, Sm))~ + ' m ]og r,nλo Jo / nλo

N1(r, q«, Sm)= ~ {(nti; q0, Sm) - n,Φ; ?„ S.))-^- + "l(°: f' Sm) log r,
nλo Jo t HΛQ
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where λ0~ 1 is the order of ramification of q0. Let {qv} be the branch points of
Sm. By (2. 6), we have

g Σ λjf(r, qn Sm)-N(r; Sft)+0(log rT(r, h))
v-l

^ Σ λJVita q., Sm) + Σ War, q., Sm)-N(r; Sύ+OQagrT(r, h))
v=l > v=l

^ Σ *Jf*(r, q., Sm)+Σ ^Vι(Π q., Sm)+O(\ogrT(r, h))
v=l v=l

m)+Σ^- T(r, h)+O(log rT(r, A))

outside a set of finite measure where Λ— 1 is the order of ramification of qv. Since
only the branch points of Rn can be simple qv points, by εN(r\ B, Rn)^N*(r, B, Rn),
we have

(3. 1) g Σ MfJr, q,, Sm)+0(log rT(r, h))

^N(r; B, Rn)+O(\ogrT(r, h))

^Cι^*(r, B, Λn)+0(log r T(r, h))

for a set of infinite measure, where Ci is a positive constant. On the other hand
the ramification theorem implies the following relation:

r; B, RJ^

Consequently we have

Σ -^ - Ca T(r, h) ̂ 0(log r Γ(r,

for a set of infinite measure, where C2 is a positive constant. This inequality is
untenable, since Sm has an infinite number of branch points for which λv^2. Thus
h(z) must be an entire function of 2, that is, the mapping ψ is rigid. This com-
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pletes the proof of theorem 1.

REMARK. There exists a pair of algebroid surfaces Rn and Sm for which there
exists a non-rigid analytic mapping, even if the surface Rn has an infinite number
of branch points whose order of ramification is n—l. In fact, let R± and S2 be
algebroid surfaces defined by

?/4 = (exp z— l)(exp (exp 0—1)— I)2,

2— 1),

respectively. Then there exists a non-rigid analytic mapping φ of R^ into Sz

induced by h(z) = */expz—l, that is φ=^\oh^R^

However we have the following

THEOREM 2. Assume that the surface Sm has an infinite number of branch
points whose order of ramification is m—l and that n^m. Then every analytic
mapping of Rn into Sm is rigid whenever it exists.

Proof. Let φ be an analytic mapping of Rn into Sm and h(z) the corresponding
function. Let {qv} be the branch points of Sm whose order of ramification is m~ 1.
Suppose that φ is not rigid. Then, since n^m, φ has no simple qv points. Let
n(r;q,,Sm) be the number of distinct qv points of φ over \z\^r. Put

N(r, qv, Sm) = 4- Γ(*β 4*> &»)-*(<>; <?„ S«)) ~ + *(0; *;' ̂  log -r,
nλv Jo t nλv

where λv—\ is the order of ramification of qv. Further put T(r,φ)=T(r,h)/m.
Then we have

/v \ ι F— N(r, qv, Sm)
Θ(qv) = l- lim ^7 - r — ,

T(r, φ)

where K is a positive constant independent of v. Thus h(z) must be transcen-
dental. On the other hand we have, by (2. 6),

It is untenable. Therefore the mapping ψ must be rigid. This completes the proof
of theorem 2.

§4. Non-existence criteria for analytic mappings.

THEOREM 3. Assume that Sm is the same as in theorem 2 and that n<m,
Then there i$ no analytic mapping of Rn into Sm.
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Proof. Theorem 2 asserts that every analytic mapping of Rn into Sm is rigid
whenever it exists. Since n<m, we have Θ(qv)^:K) where K is a positive constant
independent of v. By the same procedure as in theorem 2 we can see that it is
untenable. Thus there is no analytic mapping of Rn into Sm. This completes the
proof of theorem 3.

THEOREM 4. Let Sm be the same as in theorem 2. Assume that n is a prime
number and that n>m. Then there is no analytic mapping of Rn into Sm

To prove this theorem we use the following theorem, [4].

THEOREM A. Assume that there exists an analytic mapping φ of Rn into Sm.
If n is a prime number, then φ is rigid. If n is not a prime number, then the
corresponding function h(z) of φ is k-valued, where k is a proper divisor of n and
ψ may or may not be rigid.

Proof of theorem 4. By theorem A every analytic mapping of Rn into Sm is
rigid whenever it exists. Let {qv} be the branch points of Sm whose order of
ramification is m—l. Since n is a prime number, we have Θ(qv)^K, where K is a
positive constant independent of v. By the same procedure as in theorem 2 we can
conclude that there is no analytic mapping of Rn into Sm.

REMARK. We can obtain the same assertions as in theorems 3 and 4 if the
number of branch points of Sm whose order of ramification is m—l is greater than
a constant dependent on n and m.

By the same method as above we can prove the following two non-existence
criteria for rigid analytic mappings.

THEOREM 5. Assume that Sm has at least three branch points whose order of
ramification is m—l and that n<m. Then there is no rigid analytic mapping of
Rn into Sm

THEOREM 6. Assume that Sm has at least three branch points whose order of
ramification is m—l and that n is not an integral multiple of m. Then there is
no rigid analytic mapping of Rn into Sm.

§5. Non-rigidity of analytic mappings.

Let R6 and S2 be algebroid surfaces defined by irreducible equations

respectively, where G and g are entire functions having an infinite number of zeros
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whose orders are less than 6 and 2, respectively.
Let φ be an analytic mapping of R6 into S2 and h the corresponding function

of φ. Then theorem A asserts that h(z) must be ^-valued, where k is a proper
divisor of 6.

Furthermore we have the following

THEOREM 7. Assume that there exists an analytic mapping φ of R6 into S2.
Then the corresponding function h(z) is either single-valued or three-valued, that is,
the case where it is two-valued does not occur.

Proof. Let &* be the analytic mapping of S2 into the finite plane defined by
u*=u°$s2 Then u*°ψ gives an analytic mapping of RQ into the finite plane. Thus
we have

where /0, * ,/4 and /5 are meromorphic functions of z in the finite z plane. Further

u*°φ°$Rl=u°$s2

oφo$Rl=u<>h.

Hence

«°A=/o+/ι2H ----- h/δ2/5.

Since u2=g(w), we have

By y*=G(z), we have

Suppose that h(z) is two-valued function of z. Then we have

(5. 1)

(5. 2)
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(5. 3) /1

2+/42G+2/o/2+2/3/5G=0,

(5. 4) /2

2+Λ2G+2/°/4+2/ιΛ=0.

By (5. 1) and (5. 3), we have

(5. 5) (/1+/4/)2=-2(/o+/32/3)(Λ+/52/3).

By (5. 2) and (5. 4), we have

(5. 6) (/2+Λ^)2=-2(/o+/32/3)(/1+/4/W.

From (5. 5) and (5. 6), we have

Therefore we can see that

Hence

Thus every zero of g must be a perfectively branched value of h. It is untenable,
since g has an infinite number of zeros. This completes the proof of theorem 7.

Let Si be an algebroid surface defined by irreducible equation

where g has an infinite number of zeros whose orders are less than 4. Then, by
the same method as above we obtain

THEOREM 8. Let RQ be the same as in theorem 7. Then for every analytic
mapping of RQ into S4 the corresponding function h(z) is either single-valued or
three-valued, that is, the case where it is two-valued does not occur.

§ 6. Necessary condition for the existence of analytic mappings.

Let Rn and Sm be general algebroid surfaces. First, we define the order of
branch points of Rn as follows:

logr
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We also define PHUS^^ analogously.
We obtain the following theorem:

THEOREM 9. Assume that PN^B,RH )<^ and Q<PirtB.sm)<°° and that there
exists a rigid analytic mapping φ of Rn into Sm. Then

N 03, Rn ) = N 03, Sm ) >

where v is a positive integer.

To prove this theorem we use the following theorem [1]:

THEOREM B. Let E(z) and F(z) be transcendental entire functions. Assume
that the zeros of E(z) have a positive exponent of convergence. Then the zeros of
E°F(z) cannot have a finite exponent of convergence.

Proof of theorem 9. Let h(z) be the corresponding function of ψ. It is sufficient
to prove that h(z) is a polynomial. For we can prove our assertion by the same
argument as in [3].

Assume that h(z) is an entire function of infinite order. Let {qv} be the branch
points of Sm Then we have

N(r, B, φ, Sm)^N2(r, B, φ, Sm)+Ns(r, B, φ, Sm),

N*(r\ B, φ, Sm)^2N(r, 0, h')^§T(r, h)

outside a set of finite measure, where

On the other hand

Σ N(r; wv, ti)^N(r, B, φ, Sm)

for an arbitrary but fixed number p of the projections {wv}?^ of all the branch
points of Sm and for all r. By the Nevanlinna second fundamental theorem we
have
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outside a set of finite measure. Thus we have

for an arbitrary but fixed number K and for all r outside a set of finite measure.
Only the branch points of Rn can be simple q points for a branch point q of Sm.
Hence

(6. 1) KT(r, φ) ^N2(r, B, φ, Sm)^N(r, B, £»)

holds outside a set of finite measure. It is a contradiction [cf. 3, pp. 239-240].
Therefore h(z) must be of finite order.

Next we shall show that h(z) must be a polynomial. Assume that h(z) is a
transcendental entire function of finite order. Then, by theorem B the order of
N(r\ By φ, Sm) must be infinite. This contradicts the following relation which holds
for all ri^r0:

N(r, B, φ, Sm)-7V2(r; B, φ, Sw)+ΛΓ3(r; B, φ, Sm)

Therefore h(z) must be a polynomial.

§7. Growth of analytic mappings.

THEOREM 10. Assume that there exists an analytic mapping φ of Rn into Sm>
then it satisfies

n
lim — τ. . — =00.
r->oo 1 (Γ, φ)

Proof. First, we assume that the corresponding function h(z) is a ^-valued
algebroid function of z. Suppose that our assertion does not hold. Then we have

N(r,B,RJ<MT(r,φ)

for all sufficiently large r, where M is a positive constant. By the relation (3. 1)
we have

Jί λv - 2km}τ(r, φ)^MT(r, 0+O(log rΓ(r,
=l /
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outside a set of finite measure. Since Sm has an infinite number of branch points,
it is untenable. That is, our assertion holds.

Next we assume that h(z) is a ^-valued algebraic function of z. Then we
have

Γ(r,0=00ogr).

On the other hand, since Rn has an infinite number of branch points we have

logr=o(N(r,B,Nn)).

Hence, in both cases we have

— N(r,B,Rn)
Imr 7̂ 7 r =00.
r->oo T(Γ, φ)

This completes the proof of theorem 10.

REMARK. By the same method as above, we have

Γ N(r,B,Rn)lim —7^-(—r— =00,
r-»TO T(r, φ)

when the order of φ is finite.

§8. Analytic mappings of Rn into itself.

Our surface Rn is of parabolic type and its universal covering surface is of hyper-
bolic type. Under this abstract situation Heins [2] discussed an analytic mapping
of an open Riemann surface into itself. One of his interesting results may be
stated as follows:

THEOREM C. The analytic mappings of an open Riemann surface R with non-
abelian fundamental group and of parabolic type into itself are univalent. If R
does not have any planer boundary elements, the maps in question are onto.

By making use of this theorem we can obtain the following theorem which is
an extension of earlier results in [3], [4], [9]. The earlier result in [3] and [4] was
proved by making use of the Nevanlinna value distribution theory.

THEOREM 11. Let Rn be an algebroid surface and let φ be a rigid analytic
mapping of Rn into itself. Then the mapping φ is an analytic mapping of Rn onto
itself and the corresponding function h(z) must be of the form eZπlp/qz-\-b with a
suitable rational number p/q.

Proof. Since φ is rigid, the corresponding function h(z) is a meromorphic
function of z in the finite 2-plane. If h(z) is transcendental, then there is at
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least one point w such that the equation h(z)=w has an infinite number of roots.
Hence there is at least one point q over w which is covered by φ infinitely often.
It contradicts the univalency of φ.

Suppose that h(z) is a rational function. Then, as above we can see that h(z)
must be of the form

.
cz-\-a

Since φ is an analytic mapping of Rn into itself, we have c=0. That is, φ is onto
and h(z)=Az+B. Considering the iterations of φ we can prove our assertion.

In general, there exists an algebroid surface Rn admitting a non-rigid analytic
mapping of Rn onto itself. In fact, let R± be an algebroid surface defined by

where {an} are suitable complex numbers. Then there is an analytic mapping of
R4 onto itself induced by h2+zz=I, that is, φ^R\°h^RjL.

However we can prove

THEOREM 12. If the part of Rn which lies over \z\^r is connected for all r,
then every analytic mapping of Rn into itself is rigid.

Proof. Let φ be an analytic mapping of Rn into itself and h the corresponding
function of φ. By theorem A, h satisfies

where k is a proper divisor of n. Since φ is univalent, the coefficients plf ~,pk-ι
and pjc are rational functions. Let Rή. be an algebraic surface defined by

and Rήr be an algebraic surface defined by

Then Rn is also ^-sheeted. We can extend the mapping φ over ^=oo. Then the
extended mapping induces an analytic mapping ψf of Rή into R'n'. Suppose that
h(z) is ^-valued, then R'n must have a branch point whose order of ramification is
k—\ over 0=00, since Rή has only one boundary component. The fact that φ is
onto asserts that Rήf also has a branch point whose order of ramification is k—l
over z =00. Using the analyticity of φ' around the point which lies over z =00,
we can see that &=1. This completes the proof.
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