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MEASURE-THEORETIC CONSTRUCTION FOR
INFORMATION THEORY
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1. Introduction.

In the measure theoretic viewpoints, the information theory originated by
Shannon [13] can be divided into a couple of basic parts, that is, the one is con-
cerned to information source and the other is concerned to information channel.
Kolmogorov [lOa, b] and Sinai [14] gave the concept of entropy of measure preserving
transformation, modifying the method of information source, and they classified
certain dynamical systems which belong to the same spectral type.

Halmos introduced a measure theoretic construction of information source in
his lecture note [7]. Under such a measure theoretic form, we can apply the theory
to both the classifications of dynamical systems and the composition of the concrete
information theory constructed on alphabet spaces. In this paper, we shall study
a measure theoretic construction of information channel. For this purpose, main
themes are devoted to define channels, between two abstract measurable spaces,
and ergodic or stationary capacities of such channels, and to find conditions under
which these two capacities coincide.

At first, an integral representation of entropy function will be done for the
latter intention, namely to find the conditions for coincidence of the capacities.
Parthasarathy [12] and Jacobs [9a] proved that the representation is possible when
entropy is defined on alphabet space, and Umegaki [17a] showed that it is also possible
even when the space is a compact totally disconnected topological space. Their
constructions are available for the case of the abstract dynamical system, reducing
to the special cases by certain mappings (see [9b]). But the method employed here
needs only some simple calculations of entropy, and some knowledges of the ergodic
theorem and the martingale convergence theorem.

Seconderly necessary and sufficient conditions for ergodicity of channels will
be researched. Hinchin believed in his paper [8] that finite memory channels are
ergodic, who gave the first mathematical and systematical construction to discrete
information theory originated by Shannon. But, Takano [15] pointed out that finite
memory channels are not always ergodic and it needs a concept so called " in-
dependence", in addition to the assumption of finite memory, for ergodicity of
channels.

Adler [1] showed that "weakly mixing" and "strongly mixing" channels in

Received July 23, 1968.

133



134 YATSUKA NAKAMURA

his sense are always ergodic, and M-dependent channels are strongly mixing, (so
the assumption of finite memory is needless). But the necessary and sufficient
conditions for ergodicity of channels were not known, (cf. Billingsley [2], p. 161)
Recently Umegaki [17c] showed some necessary sufficient conditions independently
from the author, by beautiful functional analysis methods. In this paper we also
give some conditions by pure measure theoretic methods.

Lastly a condition of " completeness for ergodicity of a system (X, 3C,Π)" will
be studied when X is a completely regular topological space. Alphabet spaces
(even if alphabets are countable) satisfy the topological assumption, so our theory
is applicable to the information theory with countable alphabets.

The author expresses his sincere thanks to Professor Umegaki for many instruc-
tive suggestions and advices in the course of preparing the present paper.

2. Notations and Preliminaries.

In this section, we shall refer to the several notations and functions and funda-
mental notions relative to the amounts of information and entropy which were
given and formulated by Halmos [7].

Let (X, 3C,p) be a probability measure space, and Jl be any measurable finite
partition of X, or equivalently subfield of finite elements of 2£. Then information
of Jl is defined by

(2.1) /UH-ΣjulogtfA),
A

where the sum is taken all over the atoms of Jl, and χA is a characteristic function
of A. If C is any subfield of 3£, then conditional information of Jl relative to C
is defined by

(2.2) IU\C)=-ΣχAlogp(A\C\

where p(A \ C) is a conditional probability of A relative to C, and A also moves on
atoms of Jl. If S is a measure preserving transformation on X, then

(2. 3) I(JL I C}S=I(S~lJl I S~1C} a.e.

If cjc£, then I(Jl\C)=0, and if J?c^, then

(2.4) I(JL\C)^I(S\C) a.e.

Let Jl, <B and C be subfields such that <£ are finite, then

(2. 5) KJIVS I &=!(& I O+KJL \&VC) a.e.,

and similarly let &!, <B2, ~',<£n be a finite sequence of finite subfields, then

(2.6) a.e.
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The conditional entropy of a finite field Jl relative to a sub field C is defined by

(2.7)

which is equal to

(2.8)

The entropy of Jl is defined by

(2.9)

which is equal to

(2.10) -ΣP(A)logp(A).
A

If ^CK?, then

(2.11) H(JL\C)^H(Jl\^

Moreover under the same assumption as (2. 5),

(\/ ^\C\ =
W /

(2.12) H

The entropy of a measure preserving transformation S relative to a finite sub-
field Jl is defined by

(2. is) AU, S)=H(JL

which is equal to

(2.14) Urn—
n n

where the limit always exists. The entropy of a measure preserving transformation
S is defined by

(2.15) h(S)=suph(Jl,S),
Jl

where the supremum is taken over all finite subfields of 2£.

3. Integral Representation of Entropy.

The following is a reformation of a theorem of Tulcea [16], which is a key
point for our integral representation of entropy, and the proof is similar to that of
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Tulcea. (X, 2£, P) and S are the same as in § 2.

THEOREM 3.1.1} Let Q be a subfield of 2C with the property

/o ι \ C-i /•> r> 2)
(Λ>. Λ.) o ώ = ώ >

ίΛβw ̂  sequence of functions

(3.2) /„

converges to some S-invariant function q(x) in Ll-mean and in almost everywhere
sense. Moreover if ^c VΓ=ιS~*<Jf, then

(3.3)

Proof. Putting

and

gn(χ)=l(jί n=l,2, ,

then the function fn(x) defined by (3. 2) is expressed by

because

l^)=/(vιS-

n (
•Σ2i(s-«

ώ')+Σ/(s-<re-i:)cJ

=/Ulώ')Stl-1 + Σ

Jl-l

by (2. 6),

.7=1
by (3. 1),

by (2. 3),

By the martingale convergence theorem, for any atom Ae<Jl,

1) If ^ is trivial, i.e. £=2=[φ, X}, then Theorem 3.1 is just the McMillan's theorem.
2) It means {S^E; Eζ £}={F', Fe Q}.
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pi A \fS-*JL\/β\-+p(A
\ ι = l / \

So because of the continuity of log t on (0, oo),

n \ /

ι=l I \

and by (2.11),

a.e. as n-*oo.

oo \

V'S~lJl \/ Q }=g(x) say, a.e. as n-*oo,
=ι I

hence g(x) is integrable. By the ergodic theorem, (l/ri) Σ?=o ΰ(Sn~k~lx) converges
a.e. to an S-invariant integrable function g(x). Putting

= x] max <

and

where f(j\x)=— logp(Al\ V|=iS~ i

cJV^>) and Al is an atom in Jl, then

Since the set F^} is \f\=ιS~lJί\/ Ω -measurable,

Let r be the number of atoms in ĉ , then

because FPΓ\F&=Φ for ^^F^X. It follows that

\ sup firΛ(α?) > λ \ ̂  re
* I

as λ— >oo,

which shows sup Qk(x) is integrable. And so

is also integrable. Hence the Cesaro mean exists a.e., say GN(x):

GN(x)=\im — *Σ GN(Sn-
TO W Jc=Q

a.e.
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and by the monotone convergence theorem,

Since GN(x) is decreasing, lim A (?#(#) =0 a.e.. Moreover

-Σtn k=o

=GN(X) a.e. as N-+OO,

which implies that fn(x) converges to g(x) in the both of the a.e. sense and the
Z/ mean sense.3)

If we assume <?cvΓ-ιS~\jί, then

Hence

{g(x)dp=lim { fn(χ)dp = lim — H(V
J n J n n \l=Q

lim —n n
Jί

k

V !
ι=l

Q.E.D.

Let (X 3f,S) be a measurable space with measurable transformation S and Π
be a class of some S-invariant probability measures on 3f . (We assume that Π
is not empty.) If we fix a jί) in /7, then we can consider (X, 3C,p,S) being a
probability measure space with measure preserving transformation S. Over this
space, we can also construct the entropy h(Jt, S), of S relative to a finite partition

, which depends on psΠ. Hence it should be denoted by

hp(Jl,S)=h(Ji,S).

Now we prove the following

THEOREM 3. 2. There exists an S-invariant
which does not depend on pzΠ, and for every

-measurable function h(x) on X,

3) The ίΛmean convergence of fn(x) is similarly proved as the McMillan's theorem.
(See, e.g. [7], p. 28)



MEASURE-THEORETIC CONSTRUCTION FOR INFORMATION THEORY 139

kP(Jl,S)=(h(x)p(dx).

Proof. If we put,

then the preceding theorem is applicable; since Q is a <7-subfield of 3£, S~l^ =
and moreover, Qa Vn=-iS~nJL. Hence, with the notations in the theorem,

, S)= (θ(x)dp= (limfn(x)dp.
J J n

But Q(x) and fn(x) depend on peΠ. Now, for any atom Ae V?-oS~*<jZ

(3. 4) ΛA I £) = ΠΞ 4- Σ

since the right hand side of (3.4) is ^-measurable, and

χB(^=χs^B(^=χB(Sί^ for any

implies

Πm 4" Σ XA(S*x)P(dx)= (XB(X) ΠΞ -̂  Σ 7Ui(S%

B k K ι=l J

J * « t = l

where the last equality follows from χ^nsW being an integrable function and
from the ergodic theorem. Putting

I k
(X)= lim -r Σ %A(SIX),

k K 1 = 1

(3. 4) implies

/»(*)= - - Σ IA(X) logp(A I tf )= - ~ Σ ^W log/XΛ?) a.e.
n A^l'ls^Jl U A€V?-*S-iJl

But fn(x) converges to g(x) a.e., therefore

(3. 5) g(x)= - Πrn" - Σ ^W logΛ(a?) a.e.

We write h(x) the right hand side of (3. 5). Then the function h(x) is defined
universally over X and does not depend on psΠ, and
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Evidently g(x) is an S-invariant function with modp, hence h(x) is also an S-
invariant function with mod p. If we make non-essential alterations on a set
(x\h(x)*ϊh(Sx)}, then h(x) becomes strictily S-invariant. Q.E.D.

4. Classification of Channels.

Let us consider two measurable spaces (X, 3C), (F,3/). A channel v from X
to Y is a real valued function ux(B) on XxQJ (xzX, Be^) which satisfies the
following conditions:

( i ) If we fix x€X, then r^( ) is a probobility measure on QJ;
(ii) If we fix Z?€<y, then v.(B) is an 3^ -measurable function on X.
Let S and T be measurable transformations on X and F respectively. A

channel v is called stationary iff

(iii) vsx(B)=vx(T~lB) for all Λ;€^ and

We put Γ as a set of all stationary channels from X to Y. As in § 3, 77 is a set
of some S- invariant probability measures on 3C. Then for every pzΠ we can
construct a Γ-invariant probability measure q on 4/ and a Sx Γ-invariant probability
measure r on SCX^ as follows:

for every

r(C)= (vx(Cx)p(dx) for every Ce 3Γ X ̂ ,

where C^ is a section of C with #€X Obviously ^ and r depend on a probability
and a channel v€Γ, therefore sometimes we write as

DEFINITION 4.1. vl$Γ and iPsΓ are equivalent with mod 77 iff rί=r(p,ι>1)
and r2=r(p,ι>2) coincide as probabilities on 3Cxy for every measure ^e/7. In this
case we write

Let ΠedΠ be a set of all ergodic measures in Π with respect to S. Then we
can introduce an equivalence relation with mod77e in Γ.

DEFINITION 4.2. A system (X,3£,Π) is complete for ergodicity iff p(A)>Q
implies Pe(A)>0 for some Pβe77e.

THEOREM 4.1. If the system (X,2£,Π') is complete for ergodicity, then for
every v1 and v2 in Γ the following conditions are equivalent to each other.
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1) !/=>,* (77),

10 Ul = u*(Πe),

2 ) ι4(C*)=ι4(C*) a.e. Π for every C£3£xy,

20 !&(£*)=ι4(CΛ) a.e. Πe for every

3) ul

x(B)—v2

x(B) a.e. Π for every

30 i4CB)=i£CB) a.e. Πe for every

where a.e. Π (or Πe) means that it is true a.e. for every p in Π (or Πe).

Proof. 1) φ 10, 2) ^> 3), 3) => 30 are obvious.
10 => 20: Assume 20 is not true, then

for some C€3fχ3/ and pe^Πe. Suppose now

then

where

As

it follows

r\C Π (D X F)) > r\C K(DX Y)\

which contradicts 10, and the contradiction of the other case

follows from the same manner.
20 => 2): If 2) is not true, then

p{x\ Jχ(Cx)*Λ(Cx)}>Q for some peΠ and Ce 3? X ̂ .

Then, as (Z, 3C,Π) is complete for ergodicity,

Ate Λ(C*) ̂ F Λ(CX)} > 0 for some />β€ /7e.

30=>3): Same as the above proof,
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3)ι>l): Choose A^2C and pzΠ arbitrarily, and integrate on A the each term
in 3):

which shows that r1 and r2 coincide on SCxty. Q.E.D.

REMARK. If the system (X, 3C, 77) is not complete for ergodicity then only
the following implications hold: 1)<^> 2) <̂ > 3) z> 10 <φ 20 <φ 30.

5. Ergodicity of Channel.

(X, 2C\ (Y, Of), S, T, Π and Γ are same as in the preceding section. Now we
give a new definition:

DEFINITION 5. 1. Channel vzΓ is called ergodic iff the ergodicity of pe€Πe

always implies the ergodicity of r=r(pe, v).

THEOREM 5. 1. The following five conditions are equivalent to each other for
any uzΓ.

1) v is ergodic.
2) // Ce3Cxy and (SxT)~1C=C then ι>x(Cx)=Q or 1 a.e. Πe.
3) // v=av1+(l-a)vz(Πe) for some iΛ^eΓ and 0<α<l, then v=vl = v\Πe\
4) // 2Co and QJo are any semi-rings generating, 2£ and <y respectively, then

for every Λ^€3fo, C,£>€<y0 and
5) v'χ < \>χ a.e. Πe implies v=v'(Πe} for any ι/€A

Let us give some explanations to the above: In 3),
(xeX, BG<y) is also a stationary channel, so Γ is a convex set and 3) means that
v is ergodic iff v is an extremal point in Γ classified by the equivalence relation
of mod Πe. In 5), v'x < vx a.e. Πe means that there exists a set DG 2C such that
pe(D)=l for any peεΠe and the measure v'x over (Y,6^) is absolutely continuous
with respect to the measure \>x over (Y,QJ) for every xzD. The condition 4) is a
reformation of Adler [1], The equivalences between 1), 3) and 4) are independently
proved by Umegaki [17c] for the case [X, Y] being a pair of compact Hausdorff
spaces with a pair of homeomorphisms on each X and Y.

Proof. 1)=>2): Suppose 1) true, then for every pe€Πe, r=r(pe,v) is ergodic
with a measure preserving transformation SxΓ. Therefore (SxT)~1C=C implies
KC)=0 or 1, i.e.

(vχ(Cx)pe(dx)=Q or 1.
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If this is 0, then yx(Cx)=Q a.e. pe, and on the other case, vx(Cx)=l a.e. pe, hence

vχ(Cx)=0 or 1 a.e. Πe.

2) => 1): Choose Ce 3Γ X «/ with (S x Γ)~1C-C and A€ 77β, then the ^-measurable
sets

A = {#; y* (C*) - 0} and A - fo ̂ (C*) - 1}

are S-invariant with modpe. Hence pe( Do) and A(A) are 0 or 1 from the ergodicity
of pe. Thus, the ergodicity of r follows from

r(C)=(vx(Cx)pe(dx)=0 or 1.
j

1)=>3): Suppose 3) is false, then for some v\ ^2eΓ, vl^ι?(Πe} and for α, 0<α<l,

v = avl + (l-a)ι>2 (Πe).

Hence for some pe£Πe, rl=r(pe,v
l) and r2=r(pe,v

2) are not identical and for every

that is,

which shows that r can be written by a linear combination of the different measures
r1 and r2. Consequently r is not ergodic.

3) ^> 2): Suppose 2) is false. Then for some peeΠβ and Ce 3C x Of with (S X T)~1C
=C, X/ = {χ 9vΛ(Cχ)^Qtl} is not of ^-measure null. Now we define new channels
v\v*sΓ by

\ux(DnCx)/ux(Cx) if
Ά(D)=\

(vx(D) if

\vx(Dn(Y\Cx))/vx(Y\Cx) if
Fχ(D)=\

(vx(D) if ^

where D^. These are stationary, because Cx=T~lCsx implies

Vχ(Cχ) = ̂ ( T~lCsx) = »Sx(Csx),

hence S-1^7-^"' and

W£> n c )̂ = »x( T-ID n r-1^) = ̂ ( T

Moreover £>l

α.(CΛ?)=l and %(Ca?)=0 for all α eJί7, and so
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Then we can see easily,

vx(D)=ι>x(Cχ)vlχ(D)+{1—vx((

Putting

A=\x;vx(Cx)^^Γ\ and S=L;ι;Λ(CΛ)< τl,I 2 J I 2 J

then A and 5 are 3?-measurable. Finally we define channels v1 and v2 as follows:

if

if

if

if

where Dety. Then these satisfy the conditions (i) and (ii) of channel (§4).
Moreover the stationarity of vl and v2 follows from S~1A=A, S~1B=B, the station-
arity of vl and £2, and the S-invariantness of vx(Cx). We see easily

and for all

{2i;,(C,)-2}{%(C»)-i?i(C,)}^0 and ι;«(C,)pi(C»)

hence

%(C,)Φ{2p,(C,)-l}%(/>)+{2-2ι;XC,)}%(D) for

and

(Z>) for

which imply
): For any jί>e€/7e, 4, ̂ € 2C0 and C,

•
IV n=0

(5. 1) = 4f Σ v, (Γ-"C n P)A(^) - Vχ(C)pe(dx) vx(D)pe(dx)
jy n=θ[jS-nAt\B

n=0 J4
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(5. 2) +~

The first and second terms of the last hand side of (5. 2) converge to zero as
JV— >oo by the ergodicities of r and pe.

4)=>1): For any pe£Πe, A,B£2Co and C, £>€4/o, similarly to the reformation
of the formula (5. 1),

N^

+ ~AΓJ

,(C )Pe(dx)

The first and second terms of the right hand side of the equation converge to zero
as N->oo by the assumption in 4) and by the ergodicity of pe, which shows the
ergodicity of r=r(pe, v).

5) =ί> 2): Suppose 2) is false. Then for some pesΠe and Ce X x Q}. with (Sx Γ)-αC
=C, />{Λ?; 0 < vx(Cx} < 1} > 0. If we put

and define for

^(Cx) if

if x$E,

then i/eΓ and vf^v(Πe} are proved similarly in the proof of 3)=>2). Moreover if
vx(B)=Q then ι4 (#)=() for any B£<y, hence vx<vx, which contradicts 5).

2), 3)ι>5): Suppose 5) false. Then there exists ι/€Γ and vx<vx a.e. Πe and
v's=v(Πe). Assuming 2), for any Ce.χχ4/ with (SxΓ)-1C=C,

y*(Cjp)=0 or 1 a.e. 77e.

Choose Pc{a?€J?; vi<vβ}, Z>€3f and pβ(D)=l for all A€/7β, then for every xeD,
^(C^)=0 implies yi(C^)=0 and ^(C^)=l implies vJ(CΛ)=l, Consider now a channel
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which satisfies

vί/(CΛ)=0 or 1 a.e. Πe.

Hence i/'eΓ, is ergodic, which contradicts 3). Q.E.D.

REMARK. M-dependent channel is defined as follows; A and B are finite (or
countable) sets. We put

X=AI={ω— (•••, ct)_ι, ωo, ωi, •••

and 3C=FA,
 <y=FB are Borel fields generated by rectangles in A1 and B1 re-

spectively. We call such system (A1, FA) as alphabet space. S and T are shift
transformations on A1 and B1, i.e.

(Sω)n= ωn+ιt (Tω')n = ω'n+ι.

For a fixed integer M>0, a channel y from A1 to B1 is called M-dependent iff

for every #€A7 whenever u—t^M, where [ωί, •• ,ωί

/] means a rectangle of coordi-
nates from 5 to t. If we write the rectangles in B1 as 3/0, then M-dependentness
implies for any

for large ,̂ and so the condition of Theorem 1, 4) is satisfied. Hence, if we con-
sider 77 being the set of all S- invariant probability Borel measures, M-dependent
channel is always ergodic.

6. Capacity of Channel.

In this section, (X, 30, (F, 4/), S, T, 77 and Γ are same as in §§4, 5.

DEFINITION 6. 1. A transmission rate of a channel u€Γ with respect to a
measure psΠ is defined by

(6. 1) #p(ιO=sup {Ap(JZ, S)+h£&, T}-hr(Jί x .S, S x T)}

where the supremum is taken within all finite partitions Jί and <£ in 2C and
respectively, and q=q(p, v), r—r(p, v).

.REMARK. (1) Using (2. 14), (2. 13) and (2. 11), we can see easily R
(2) In finite alphabet spaces (see § 5, Remark), it holds that
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h(JL9 S)^h(S)< +00,

and4)

Rp(u)=h(S)+h(T)-h(Sx T).

The amount Rp(v) is just a transmission rate in usual sense, (cf. Feinstein [6])

DEFINITION 6. 2.

CM = sup Rp(v) and Ce(v) = sup Rp(v)
pζ.Π pζΠ'

are called stationary capacity and ergodic capacity (of a channel y€jΓ) respectively,
where

Π' = {peΠ 9r=r(p,v) is ergodic with SxT},

and if 77' =0 then we put Ce(v)=0, where 77 is always assumed non-empty.

THEOREM 6. 1. // a system (X, 3£,Π) is complete for ergodicity and a station-
ary channel u€Γ is ergodic, then

Proof. Obviously Ce(v)^Cs(v). Now we assume G(y)<+oo. For arbitrary
ε>0 there exist a measure peΠ and finite partitions Jl and ,̂

(6. 2) hp(Jl, S)+hq($, T}-hr(Jlx$, Sx T)>CM-e,

where q=q(p,v) and r=r(p,v). Then there exist measurable functions λι(#), h2(y)
and Λ3(^, y) by Theorem 3. 2 such that

Let us denote

4) The right hand side of (6. 1) can be proved to be monotone increasing for refine-
ments of finite partitions Jl and ,̂ by the formula (2. 1. 2) in [4]. And h(Jl, S), h(&, T)
and A(cJX^, SxT) increase and approximate Λ(S), A(Γ) and h(SxT) respectively as Jl
and ^ being refined, So the formula is valid.
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h(oo)=h1(x) + \ h2(y)uv(dy)+\ hΛ(
JF JF

Then the left hand side of (6. 2) equals to

(h(x)p(dx\

Since h(x) is S-invariant, there exist simple functions

satisfying hn(x)\h(x\ where {D™}*^ (»=1, 2, •••) is a sequence of measurable
partitions with S~lDf}=Df\ By virtue of the monotone convergence theorem,

lim hn(

and hence by (6. 2)

(hn(x)p(dx)=Σ^yP(D?})>CsM-ε for some n.
J τ = l

Consequently

λ™>Cs(v)-ε P(D™)>0 for some i0,

then there exists some ^ee/7e and pe(D(V) = l, since ( X , 3 C , Π ) is complete for
ergodicity and S-lDζ^Z^. Hence

and by the ergodicity of v,

which shows

We can prove the inequality in the case Cs(y)=+oo similarly. Q.E.D.

7. Topological Argument and Application.

Let us consider a system (X, 3?, 77) and a transformation S on X, where X is
a completely regular topological space, T is a Borel field generated by open sets
in X, S is a homeomorphism on J^ and Π is a class of all S-invariant inner
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regularδ) probability measures on 3?. (We assume Π^φ.)

THEOREM 7. 1. The above system (X, 3£, Π) is complete for ergodicity.

Proof. Let X be the Cech's compactification of X, and a homeomorphism S
on X be an extension of S. (Such extension always exists.) Now for a measure

and for every Borel set A in X we write

where AnXzT because a class {B BnXςT} contains all open sets in X and
closed with countable union and complementation.

Then p is an inner regular Borel measure, since compact sets in X are also
compact in X.

Now we assume p(C)>0 for some Cs3£, then, as p is inner regular, there
exists some compact set K in C and p(K)>0, which follows p(K)>Q. Then by
the similar reason as Parrel ([5] p. 459, even if X is not a metric space), there
exists some inner regular ergodic Borel measure pe and pe(K)>0.

Now we define

pe(A)=Pe(AΠ U S~nκ} for all
\ n=-oo /

where An Uw=_ooS~wX" is a Borel set in X since a class {A; An (!%=-«> S~nK is a
Borel set in X} contains 2C.

Then pe is an ergodic probability measure on 3£, and inner regular as compact
subsets of J£~, contained in X, is also compact in X. Thus p(C)>0 implies pe(C)>Q
for some ρeeΠβ. Q.E.D.

Application: We will be able to construct information theory of countable
alphabet by Kinchin's method, on countable alphabet spaces A1 and B1. The
countable alphabet space A1, where A is a countable set and / is a set of integer,
can be seen as Polish space (separable complete metric space) with TychonofPs
product topology, because a discrete space A is of course a Polish space and a
countable product of Polish spaces is also a Polish space.

If we consider the system (AJ, FA, Π, S), where FA is a Borel field generated
by open sets in A1, S is a shift transformation, and Π is a class of all S-invariant
Borel measures, (See, Remark in § 5) then the system satisfies the topological con-
dition of Theorem 1, because every Borel measure is necessarily inner regular in
Polish spaces. (See [11] p. 64)

Therefore, when we treat the capacities of ergodic channels from A1 to B1

(or to other spaces), we need not distinguish the ergodic capacity and the stationary
capacity.

5) A finite measure μ is inner regular iff μ(E)^=supκ^Eμ(K) where K is compact.
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