ON ANALYTIC MAPPINGS OF A CERTAIN RIEMANN SURFACE INTO ITSELF

By Yoshihisa Kubota

1. We shall be concerned with the study of analytic mappings of a Riemann surface into itself. Heins [5] showed that every non-constant analytic mapping of a Riemann surface of parabolic type with non-abelian fundamental group into itself is univalent. In the present paper we shall establish a similar result in a case of certain Riemann surfaces of hyperbolic type.

Let W be a Riemann surface of hyperbolic type, let $\mathfrak{G}_W(p,q)$ be the Green function with a pole at $q \in W$ and let π be a projection mapping of the universal covering surface W^{∞} onto W. We take, as we may, W^{∞} as $\{|z|<1\}$. Then $\mathfrak{G}_W(\pi(z), q)$ has the angular limit 0 a.e. on $\{|z|=1\}$. We denote by \mathfrak{F} the set of all points of such kind on $\{|z|=1\}$. We say that two points z_1 and z_2 of \mathfrak{F} are equivalent provided that there exists an element T(z) of \mathfrak{G} such that $z_2=T(z_1)$, where \mathfrak{G} denotes the group of linear fractional transformations of $\{|z|<1\}$ onto itself which leave π invariant. This requirement defines an equivalence relation in \mathfrak{F} . We call an equivalence class of this relation an ideal boundary point of W and call the set of all points of \mathfrak{F} belonging to an ideal boundary point its image. Each ideal boundary point belongs to a single ideal boundary component in the sense of Kerékjártó-Stoilow. Namely, let $e^{i\theta}$ be a point of the image of an ideal boundary point and let λ : z=z(t) ($0 \le t < 1$) be a curve in $\{|z|<1\}$ such that $\lim_{t\to 1} z(t) = e^{i\theta}$ and there exists a positive number ε satisfying

$$\left|\arg \frac{e^{i\theta}-z(t)}{e^{i\theta}}\right| < \frac{\pi}{2}-\varepsilon.$$

Then $\pi(z(t))$ tends to a single ideal boundary component α as $t \to 1$. This α is independent of a choice of $e^{i\theta}$ and λ . We denote by F the set of all ideal boundary points of W. If the image \mathfrak{M} of a subset M of F is measurable on $\{|z|=1\}$, we say that M is measurable and call $\omega_M(p) = \omega_{\mathfrak{M}}(\pi^{-1}(p))$ the harmonic measure of Mwith respect to W, where $\omega_{\mathfrak{M}}(z)$ is the harmonic measure of \mathfrak{M} with respect to $\{|z| < 1\}$.

Let M be a subset of F of positive measure. According to Constantinescu-Cornea [1], we say that M is HB-indivisible if, for any bounded harmonic function u(p) on W, $u(\pi(z))$ has the same angular limit a.e. on the image \mathfrak{M} of M.

Let $\{\Omega_{\nu}\}_{\nu=1}^{\infty}$ be an exhaustion of W satisfying: for each ν , Ω_{ν} is relatively com-

Received May 30, 1968.

pact, $\bar{\Omega}_{\nu-1} \subset \Omega_{\nu}$, the relative boundary $\partial \Omega_{\nu}$ of Ω_{ν} consists of a finite number of regular analytic closed Jordan curves $\gamma_{\nu,1}, \dots, \gamma_{\nu,N_{\nu}}$, and each component of $W - \bar{\Omega}_{\nu}$ is not relatively compact. We assume that each curve $\gamma_{\nu,i}$ divides W into two parts and denote by $G_{\nu,i}$ the part which does not contain Ω_{ν} . Denote by $\beta_{\nu,i}$ the part of the ideal boundary of W which belongs to $G_{\nu,i}$, and denote by $B_{\nu,i}$ the set of all ideal boundary points which belong to one of the ideal boundary components on $\beta_{\nu,i}$.

We shall consider a Riemann surface W having the following three properties: (1) W contains $n \ (1 \le n < \infty)$ HB-indivisible sets on its ideal boundary, (2) for sufficiently large ν , each $B_{\nu,i}$ either consists of HB-indivisible sets or else contains no HB-indivisible sets, (3) for sufficiently large ν , there exist at least two $B_{\nu,i}$, $B_{\nu,j}$ of positive measure.

We shall call such a Riemann surface an admitted surface. For instance, a Riemann surface obtained by deleting a parametric disk from a Riemann surface, belonging to the class $O_{HB}-O_{G}$, and a Riemann surface belonging to the class $O_{HB}-O_{HB}$ with at least two ideal boundary components which contain *HB*-indivisible sets are admitted surfaces.

The purpose of this paper is to show that there exist only a finite number of non-constant analytic mappings of an admitted surface into itself and they are conformal automorphisms having finite periods.

2. Throughout this paper, we shall denote by W an admitted surface. Each *HB*-indivisible set is contained in a single ideal boundary component save for a set of measure zero [1]. Let $\alpha_1, \dots, \alpha_m$ $(1 \le m \le n)$ be ideal boundary components of W containing at least one *HB*-indivisible set. By the property (2), each A_i $(1 \le i \le m)$, the set of all ideal boundary points belonging to α_i , consists of n_i *HB*-indivisible sets $M_i^i, \dots, M_{n_i}^i, \sum_{i=1}^m n_i = n$. Let $\{Q_{\nu}\}_{\nu=1}^{\nu}$ be an exhaustion of W satisfying the requirements stated in §1. In the sequel, we may assume that $B_{1,i}$ $(1 \le i \le m)$ consists of A_i and a set of measure zero, and $B_{1,i}$ $(m+1 \le i \le N_1)$ contains no *HB*-indivisible sets. Further we may assume that there exist at least two $B_{1,i}, B_{1,j}$ of positive measure. For simplicity, we denote $\beta_{1,i}, B_{1,i}, G_{1,i}$ and $\gamma_{1,i}$ by β_i, B_i, G_i and γ_i , respectively.

First we shall summarize certain properties of ω_{B_i} and $\omega_{M_k^i}$. Let $\omega_i^{(\nu)}$ be the harmonic function on Ω_{ν} whose boundary values are 1 on $\partial \Omega_{\nu} \cap G_i$ and 0 on $\partial \Omega_{\nu} \cap (W - \overline{G}_i)$, and put $\omega_i = \lim_{\nu \to \infty} \omega_i^{(\nu)}$. Let $\tilde{\omega}_i^{(\nu)}$ be the harmonic function on $\Omega_{\nu} \cap G_i$ whose boundary values are 1 on $\partial \Omega_{\nu} \cap G_i$ and 0 on γ_i , and put $\tilde{\omega}_i = \lim_{\nu \to \infty} \tilde{\omega}_i^{(\nu)}$. Then $\tilde{\omega}_i$ converges to 1 on every sequence of points on which ω_i converges to 1 and vice versa. This follows by the inequality

$$\tilde{\omega}_i \leq \omega_i \leq (1 - \max_{r_i} \omega_i) \tilde{\omega}_i + \max_{r_i} \omega_i \quad \text{on } G_i.$$

Let $\tilde{\omega}_{i}^{(\omega)}$ be the harmonic function on $\Omega_{\nu} \cap (W - \bar{G}_{i})$ whose boundary values are 1 on $\partial \Omega_{\nu} \cap (W - \bar{G}_{i})$ and 0 on γ_{i} , and put $\tilde{\omega}_{i}^{\prime} = \lim_{\nu \to \infty} \tilde{\omega}_{i}^{\prime(\nu)}$. Similarly, $\tilde{\omega}_{i}^{\prime}$ converges to 1 on every sequence of points on which ω_{i} converges to 0 and vice versa. Hence by the inequalities

74

$$\min_{\tau_i} \mathfrak{G}_W(r,q)(1-\omega_i(p)) \leq \mathfrak{G}_W(p,q) \leq \max_{\tau_i} \mathfrak{G}_W(r,q)(1-\tilde{\omega}_i(p)) \quad \text{on } G_i, q \notin G_i,$$
$$\min_{\tau_i} \mathfrak{G}_W(r,q)\omega_i(p) \leq \mathfrak{G}_W(p,q) \leq \max_{\tau_i} \mathfrak{G}_W(r,q)(1-\tilde{\omega}_i'(p)) \quad \text{on } W-\bar{G}_i, q \notin W-\bar{G}_i,$$

it follows that the image \mathfrak{B}_i of B_i is the set of all points on $\{|z|=1\}$ at which $\omega_i(\pi(z))$ has the angular limit 1 and $\mathfrak{F}-\mathfrak{B}_i$ is the set of all points on $\{|z|=1\}$ at which $\omega_i(\pi(z))$ has the angular limit 0. Consequently, we have

$$\omega_{B_i} = \lim_{\nu \to \infty} \omega_i^{(\nu)}.$$

Let $\tilde{\pi}$ be a projection mapping of the universal covering surface G_i^{∞} onto G_i . Take G_i^{∞} as $\{|z| < 1\}$. Denote by $\tilde{\mathfrak{F}}$ the set of all points on $\{|z|=1\}$ at which $\mathfrak{G}_{G_i}(\tilde{\pi}(z), q)$ has the angular limit 0 and denote by $\tilde{\mathfrak{B}}_i$ the set of all points $e^{i\theta} \in \tilde{\mathfrak{F}}$ such that $\tilde{\pi}(re^{i\theta})$ tends to β_i as $r \to 1$. Then in the same way as above we have that \mathfrak{B}_i is the set of all points on $\{|z|=1\}$ at which $\tilde{\mathfrak{G}}_i(\tilde{\pi}(z))$ has the angular limit 1 and $\tilde{\mathfrak{F}} - \mathfrak{B}_i$ is the set of all points on $\{|z|=1\}$ at which $\tilde{\omega}_i(\tilde{\pi}(z))$ has the angular limit 0, and hence that $\tilde{\omega}_i(p) = \omega_{\mathfrak{B}_i}(p) = \omega_{\mathfrak{B}_i}(\pi^{-1}(p))$, where $\omega_{\mathfrak{B}_i}(z)$ is the harmonic measure of \mathfrak{B}_i with respect to $\{|z|<1\}$.

It is essential in our study that every sequence of points on which $\mathfrak{G}_{W}(p,q)$ $(\mathfrak{G}_{G_{i}}(p,q))$ converges to 0 contains a subsequence on which $\omega_{B_{i}}(\omega_{B_{i}})$ converges to either 1 or 0.

Let c be the union of a finite number of regular analytic closed Jordan curves in G_i which constitutes the relative boundary of a subregion G_c of G_i which has α_i as its ideal boundary component. In the sequel we shall call such a union an admitted union of curves associated with α_i . Denote by β_c the part of the ideal boundary of W belonging to G_c and by B_c the set of all ideal boundary points belonging to one of the ideal boundary components on β_c . Then we have

LEMMA 1. Let $\omega_c^{(\nu)}$ be the harmonic function on Ω_{ν} whose boundary values are 1 on $\partial \Omega_{\nu} \cap G_c$ and 0 on $\partial \Omega_{\nu} \cap (W - \overline{G}_c)$, then

$$\omega_{B_i} = \lim_{\nu \to \infty} \omega_c^{(\nu)} \qquad (1 \leq i \leq m).$$

Proof. Since $B_i \supseteq B_c \supseteq A_i$ and $\omega_{B_i} = \omega_{A_i}$, $\omega_{B_i} = \omega_{B_c}$. On the other hand, $\omega_{B_c} = \lim_{\nu \to \infty} \omega_c^{(\nu)}$. Hence we obtain

$$\omega_{B_i} = \lim_{\nu \to \infty} \omega_c^{(\nu)}.$$

As a corollary of this lemma, we have the following

LEMMA 2. Every sequence of points on which $\omega_{M_k^2}(\omega_{B_i})$ converges to 1 tends

to α_i (1 $\leq i \leq m$).

Proof. Let $\{p_{\mu}\}_{\mu=1}^{\infty}$ be a sequence of points such that $\lim_{\mu\to\infty} \omega_{M_{k}^{i}}(p_{\mu})=1$. Since $\omega_{M_{k}^{i}} \leq \omega_{B_{i}} \leq 1$, $\lim_{\mu\to\infty} \omega_{B_{i}}(p_{\mu})=1$. For an arbitrary positive integer ν_{0} , by Lemma 1 $\omega_{B_{i}} = \lim_{\mu\to\infty} \omega_{r_{\mu_{0}i}}^{(\nu)}$, and further

$$\omega_{\tau_{\nu_0,i}}^{(\mathsf{w})}(p) \leq \max_{\tau_{\nu_0,i}} \omega_{\tau_{\nu_0,i}}^{(\mathsf{w})}(r) \quad \text{for} \quad p \in \mathcal{Q}_{\nu} \cap (W - \bar{G}_{\nu_0,i}),$$

where α_i lies on $\beta_{\nu_0,i}$. Hence

$$\omega_{B_i}(p) \leq \max_{r_{\nu_0,i}} \omega_{B_i}(r) \quad \text{for} \quad p \in W - \bar{G}_{\nu_0,i}.$$

This implies that $p_{\mu} \in G_{\nu_0, \nu}$ for sufficiently large μ .

In the following sections we shall make free use of the notations introduced in this section.

3. Next we shall investigate some properties of φ_{G_i} , which is the restriction of an analytic mapping φ of W into itself to G_i $(1 \le i \le m)$.

Constantinescu-Cornea [2] showed: Let W_1 and W_2 be two Riemann surfaces, and let φ be a non-constant analytic mapping of W_1 into W_2 . For a given nonnegative superharmonic function u on W_1 , we denote by $E_{\varphi}u$ the lower envelope of the set of non-negative superharmonic functions u' on W_2 satisfying $u' \circ \varphi \ge u$. If u is a bounded minimal harmonic function on W_1 , then $E_{\varphi}u$ is a bounded minimal harmonic function on W_2 .

By this result we have the following

LEMMA 3. If φ is a non-constant analytic mapping of W into itself, then for each ω_{B_i} $(1 \leq i \leq m)$ there exists a non-constant harmonic function u on W satisfying $u \circ \varphi \geq \omega_{B_i}$, 0 < u < 1 and $u = \sum_{j=1}^r \omega_{M_j}$, where M_1, \dots, M_r are HB-indivisible sets.

Proof. Since $\omega_{M_k^i}$ is a bounded minimal harmonic function on W [1], $E_{\varphi}\omega_{M_k^i}$ is also a bounded minimal harmonic function on W. Obviously, $\omega_{M_k^i} \leq (E_{\varphi}\omega_{M_k^i}) \circ \varphi \leq 1$. It follows that $E_{\varphi}\omega_{M_k^i}$ is not a constant and $\sup E_{\varphi}\omega_{M_k^i} = 1$. Hence there exists an *HB*-indivisible set M_{j_k} such that $E_{\varphi}\omega_{M_k^i} = \omega_{M_{j_k}}$. Put $u = \text{L.M.H.} \max_{1 \leq k \leq n_i} \{E_{\varphi}\omega_{M_k^i}\}$. Then $u = \omega_{\bigcup_{k=1}^{n_i} M_{j_k}} = \sum_{j=1}^{r} \omega_{M_j}$, where M_1, \cdots, M_r are *HB*-indivisible sets and $\bigcup_{k=1}^{n_i} M_{j_k} = \bigcup_{j=1}^{r} M_j$, $r \leq n_i$. Since $\omega_{F - \bigcup_{j=1}^{r} M_j} > 0$, u is not a constant and 0 < u < 1. Moreover

$$\omega_{B_i} = \omega_{\substack{\bigcup \\ k = 1 \\ k \le n_i}}^{n_i} = \text{L.H.M.} \max_{1 \le k \le n_i} \{\omega_{M_k^i}\} \le \text{L.H.M.} \max_{1 \le k \le n_i} \{E_{\varphi} \omega_{M_k^i}\} \circ \varphi = u \circ \varphi.$$

This is the desired result.

76

By using the Lindelöf principle [4] and Lemma 3, we obtain the following lemma.

LEMMA 4. Let φ be a non-constant analytic mapping of W into itself and let φ_{G_i} denote the restriction of φ to G_i $(1 \leq i \leq m)$. Then every point of W is covered at most finitely often by φ_{G_i} .

Proof. If a point $q \in W$ were covered infinitely often, we could find an infinite sequence of points $p_{\mu} \in G_i$ with $\varphi(p_{\mu}) = q$. This sequence must tend to β_i since φ is analytic on γ_i .

Suppose that $\liminf_{\mu\to\infty} \mathfrak{G}_{G_i}(p_{\mu}, r)=0$. For simplicity, we denote by $\{p_{\mu}\}_{\mu=1}^{\infty}$ a subsequence such that $\lim_{\mu\to\infty} \mathfrak{G}_{G_i}(p_{\mu}, r)=0$. Then $\lim_{\mu\to\infty} \omega_{B_i}(p_{\mu})=1$. Hence by Lemma 3

$$u(q) = \lim_{\mu \to \infty} u \circ \varphi(p_{\mu}) \ge \lim_{\mu \to \infty} \omega_{B_i}(p_{\mu}) = 1.$$

This contradicts that u is not a constant and 0 < u < 1.

Suppose that $\liminf_{\mu\to\infty} \mathfrak{G}_{G_i}(p_\mu, r) > 0$. By the Lindelöf principle

$$\mathfrak{G}_{W}(\varphi_{G_{i}}(r),q) \geq \sum_{\varphi_{G_{i}}(p)=q} n(p) \mathfrak{G}_{G_{i}}(r,p) = \infty,$$

where n(p) denotes the multiplicity of φ_{a_i} at p. This is a contradiction. Thus we complete the proof of the lemma.

We shall now prove the following

LEMMA 5. If φ is a non-constant analytic mapping of W into itself, then for each i_0 $(1 \leq i_0 \leq m)$ there exists an admitted union c_{i_0} of curves associated with α_{i_0} such that $\varphi(c_{i_0}) = k \cdot c_{j_0}$, where c_{j_0} is an admitted union of curves associated with α_{j_0} $(1 \leq j_0 \leq m)$, and k is a positive integer.

Proof. Let $\{p_{\mu}\}_{\mu=1}^{\infty}$ be a sequence of points such that $\lim_{\mu\to\infty} \omega_{\mathcal{M}} i_0(p_{\mu}) = 1$. Then

$$\lim_{\mu\to\infty}\omega_{\boldsymbol{M}_{j_0}}\circ\varphi(p_{\mu}) = \lim_{\mu\to\infty}(E_{\varphi}\omega_{\boldsymbol{M}_1^{i_0}})\circ\varphi(p_{\mu}) \ge \lim_{\mu\to\infty}\omega_{\boldsymbol{M}_1^{i_0}}(p_{\mu}) = 1,$$

where M_{j_0} is an *HB*-indivisible set. Denote by α_{j_0} the ideal boundary component of *W* containing M_{j_0} . We take a sufficiently large ν such that Ω_{ν} contains $\varphi(\gamma_{i_0})$, and let β_{ν,j_0} contain α_{j_0} . Since, by Lemma 2, $\{p_{\mu}\}_{\mu=1}^{\infty}$ and $\{\varphi(p_{\mu})\}_{\mu=1}^{\infty}$ tend to α_{i_0} and α_{j_0} respectively, $\varphi^{-1}(G_{\nu,j_0}) \cap G_{i_0} \neq \phi$. Moreover $\varphi^{-1}(G_{\nu,j_0}) \cap \gamma_{i_0} = \phi$. Hence there exists a component \varDelta of $\varphi^{-1}(G_{\nu,j_0})$ whose closure is contained in G_{i_0} . The restriction φ_{\varDelta} of φ to \varDelta is an analytic mapping of \varDelta into G_{ν,j_0} . We shall see that φ_{\varDelta} is of type *Bl*. Let *K* be an arbitrary relatively compact subregion on G_{ν,j_0} , and let *K'* be a

component of $\varphi_d^{-1}(K)$. Assume that K' does not belong to the class SO_{HB} . There exists a positive harmonic function v on K' vanishing continuously on $\partial K'$ and $\sup_{K'} v=1$. Here we note that the closure of K' with respect to W is contained in \mathcal{A} . Let $\{q_{\mu}\}_{\mu=1}^{\infty}$ be a sequence of points in K' such that $\lim_{\mu\to\infty} v(q_{\mu})=1$ and $\{\varphi(q_{\mu})\}_{\mu=1}^{\infty}$ converges to a point $q_0 \in K$. Since $\omega_{Bi_0} \geq v$, by Lemma 3 $u(q_0) = \lim_{\mu\to\infty} u \circ \varphi(q_{\mu}) \geq \lim_{\mu\to\infty} v(q_{\mu})=1$. This is a contradition. Thus we conclude that φ_d is of type Bl [9]. Consequently, by Lemma 4, it follows that $\nu_{\varphi_d}(p)=\nu_0$ save for a closed set of capacity zero, where ν_{φ_d} denotes the valence of φ_d and ν_0 is a positive integer [4]. Then we can take a regular analytic closed Jordan curve c_{j_0} in G_{ν,j_0} separating α_{j_0} from γ_{j_0} satisfying: $\nu_{\varphi_d}(p)=\nu_0$ on c_{j_0} . Each component of $\varphi_d^{-1}(Ge_{j_0})$ does not belong to the class SO_{HB} and its relative boundary is compact. Hence $\varphi_d^{-1}(G_{e_{j_0}})$ must be connected and α_{i_0} lies on the part of the ideal boundary of W belonging to $\varphi_d^{-1}(Ge_{j_0})$. Now we put $c_{i_0}=\varphi_d^{-1}(c_{j_0})$, then c_{i_0} is a desired union of curves associated with α_{i_0} .

REMARK. In Lemma 3 we saw that for each i_0 $(1 \le i_0 \le m)$ there exist HBindivisible sets M_1, \dots, M_r such that $(\sum_{j=1}^r \omega_{M_j}) \circ \varphi \ge \omega_{B_{i_0}}$. Now we can infer that all M_1, \dots, M_r are contained in the same B_{j_0} , and hence $\omega_{B_{j_0}} \circ \varphi \ge \omega_{B_{i_0}}$. In fact, for each M_j there exists an HB-indivisible set $M_k^{i_0}$ contained in B_{i_0} such that $\omega_{M_j} \circ \varphi \ge \omega_{M_k^{i_0}}$. Let $\{p_\mu\}_{\mu=1}^\infty$ be a sequence of points such that $\lim_{\mu\to\infty} \omega_{M_k^{i_0}}(p_\mu) = 1$. Then $\lim_{\mu\to\infty} \omega_{M_j} \circ \varphi(p_\mu) = 1$. By Lemma 2 $\{p_\mu\}_{\mu=1}^\infty$ and $\{\varphi(p_\mu)\}_{\mu=1}^\infty$ tend to α_{i_0} and α_i respectively, where α_i is the ideal boundary component of W containing M_j . On the other hand as we saw in the proof of Lemma 5 φ maps a subregion of G_{i_0} having α_{i_0} as its ideal boundary component into G_{j_0} . Hence $\{\varphi(p_\mu)\}_{\mu=1}^\infty$ tends to α_{j_0} and hence $\alpha_i = \alpha_{j_0}$.

4. The harmonic length, the quantity assigned to cycles which was introduced by Landau-Osserman [8], is useful in our study.

Let W^* be a Riemann surface which does not belong to the class O_{HB} , and let c be a cycle on W^* . We define a quantity

$$h_W(c) = \sup_{u \in U} \int_c^* du,$$

where U denotes the set of all harmonic functions u on W^* satisfying 0 < u < 1, and call $h_W(c)$ the harmonic length of c.

In this section we shall be concerned with the harmonic length of γ_i and an admitted union c_i of curves associated with α_i $(1 \le i \le m)$, and

$$\int_{r_1} \frac{\partial u}{\partial n} \, ds, \qquad \int_{c_1} \frac{\partial u}{\partial n} \, ds$$

for bounded harmonic functions u on W. Here γ_i and c_i are oriented positively with

respect to $W-\bar{G}_i$ and $W-\bar{G}_{e_i}$ respectively, and $\partial/\partial n$ denotes the outer normal derivative. We shall prove two lemmas.

LEMMA 6. Let c_i be an admitted union of curves associated with α_i $(1 \leq i \leq m)$. Then

$$\int_{r_i} \frac{\partial u}{\partial n} \, ds = \int_{c_i} \frac{\partial u}{\partial n} \, ds$$

for all bounded harmonic functions u on W, and

$$h_W(c_i) = h_W(\gamma_i) = \int_{r_i} \frac{\partial \omega_{B_i}}{\partial n} ds.$$

Proof. Since the region $G_i - \overline{G}_{c_i}$ belongs to the class SO_{HB} ,

$$\int_{r_i} \frac{\partial u}{\partial n} \, ds = \int_{c_i} \frac{\partial u}{\partial n} \, ds$$

for all bounded harmonic functions u on W.

Let u be an arbitrary harmonic function on W satisfying 0 < u < 1. Since

$$h_{\mathcal{Q}_{\nu}}(\gamma_{i}) = \int_{r_{i}} \frac{\partial \omega_{i}^{(\nu)}}{\partial n} ds$$

[8], we have

$$\int_{c_i} \frac{\partial u}{\partial n} ds = \int_{r_i} \frac{\partial u}{\partial n} ds \leq \int_{r_i} \frac{\partial \omega_i^{(\nu)}}{\partial n} ds \quad \text{for all } \nu.$$

Hence it follows that

$$\int_{c_i} \frac{\partial u}{\partial n} ds = \int_{r_i} \frac{\partial u}{\partial n} ds \leq \lim_{\nu \to \infty} \int_{r_i} \frac{\partial \omega_i^{(\nu)}}{\partial n} ds = \int_{r_i} \frac{\partial \omega_{B_i}}{\partial n} ds = \int_{c_i} \frac{\partial \omega_{B_i}}{\partial n} ds.$$

This implies that

$$h_W(c_i) = h_W(\gamma_i) = \int_{r_i} \frac{\partial \omega_{B_i}}{\partial n} ds.$$

LEMMA 7. If u is a positive harmonic function on W which converges to 0 on every sequence of points on which ω_{B_i} converges to 1, then

$$\int_{r_i} \frac{\partial u}{\partial n} ds < 0.$$

Proof. Let u_{ν} be the harmonic function on $\Omega_{\nu} \cap G_i$ whose boundary values are u on γ_i and 0 on $\partial \Omega_{\nu} \cap G_i$. Then we can verify that $u = \lim_{\nu \to \infty} u_{\nu}$. On the other hand, since $u_{\nu} - \min_{\tau_i} u(1 - \tilde{\omega}_i^{(\nu)})$ is positive on $\Omega_{\nu} \cap G_i$ and vanishes on $\partial \Omega_{\nu} \cap G_i$,

$$\int_{c} \frac{\partial u_{\nu}}{\partial n} ds + \min_{r_{i}} u \int_{c} \frac{\partial \tilde{\omega}_{i}^{(\nu)}}{\partial n} ds = \int_{\partial \mathcal{Q}_{\nu} \cap G_{i}} \frac{\partial}{\partial n} \{u_{\nu} - \min_{r_{i}} u(1 - \tilde{\omega}_{i}^{(\nu)})\} ds < 0$$

for all ν , where c is a regular analytic closed Jordan curve in G_i being homologous to γ_i . Hence we have

$$\int_{r_{*}} \frac{\partial u}{\partial n} ds = \int_{c} \frac{\partial u}{\partial n} ds = \lim_{\nu \to \infty} \int_{c} \frac{\partial u_{*}}{\partial n} ds \leq -\min_{r_{*}} u \cdot \lim_{\nu \to \infty} \int_{c} \frac{\partial \tilde{u}_{*}^{(\nu)}}{\partial n} ds$$
$$= -\min_{r_{*}} u \cdot \int_{c} \frac{\partial w_{\tilde{B}_{i}}}{\partial n} ds = -\min_{r_{*}} u \int_{r_{*}} \frac{\partial w_{\tilde{B}_{i}}}{\partial n} ds < 0.$$

This is the desired result.

5. Now we turn to the study of global properties of analytic mappings of W into itself.

We shall first prove the following

LEMMA 8. Let φ be a non-constant analytic mapping of W into itself and let $h_W(\gamma_{i_0}) = \min_{1 \le i \le m} \{h_W(\gamma_i)\}$. Then $\omega_{B_{j_0}} \circ \varphi(p) = \omega_{B_{i_0}}(p)$ for an integer j_0 $(1 \le j_0 \le m)$.

Proof. By Lemma 5 there exists an admitted union c_{i_0} of curves associated with α_{i_0} such that $\varphi(c_{i_0}) = kc_{j_0}$, where c_{j_0} is an admitted union of curves associated with α_{j_0} $(1 \le j_0 \le m)$. Since $h_W(c_{i_0}) \ge h_W(\varphi(c_{i_0}))$ [8], we have

$$h_W(c_{i_0}) \ge h_W(kc_{j_0}) = kh_W(c_{j_0})$$

and hence by Lemma 6

$$h_W(\gamma_{\iota_0}) = h_W(c_{\iota_0}) \ge kh_W(c_{\iota_0}) = kh_W(\gamma_{\iota_0}) \ge kh_W(\gamma_{\iota_0}).$$

On the other hand by Lemmas 6 and 7

$$h_W(\gamma_{i_0}) = \int_{\gamma_{i_0}} \frac{\partial \omega_{B_{i_0}}}{\partial n} ds > 0.$$

80

Then it follows that $\varphi(c_{i_0}) = c_{j_0}$ and

$$\int_{c_{i_0}} \frac{\partial \omega_{B_{i_0}}}{\partial n} ds = \int_{c_{j_0}} \frac{\partial \omega_{B_{j_0}}}{\partial n} ds$$

Hence we obtain

$$\int_{r_{i_0}} \frac{\partial}{\partial n} (\omega_{B_{j_0}} \circ \varphi - \omega_{B_{i_0}}) ds = \int_{c_{i_0}} \frac{\partial}{\partial n} (\omega_{B_{j_0}} \circ \varphi - \omega_{B_{i_0}}) ds$$
$$= \int_{c_{j_0}} \frac{\partial \omega_{B_{j_0}}}{\partial n} ds - \int_{c_{i_0}} \frac{\partial \omega_{B_{i_0}}}{\partial n} ds = 0.$$

Moreover, since $\omega_{B_{j_0}} \circ \varphi \ge \omega_{B_{i_0}}$ it follows that $\omega_{B_{j_0}} \circ \varphi - \omega_{B_{i_0}}$ is not negative and converges to 0 on every sequence of points on which $\omega_{B_{i_0}}$ converges to 1. Consequently, by Lemma 7, we conclude that $\omega_{B_{j_0}} \circ \varphi = \omega_{B_{i_0}}$.

This lemma allows us to infer the following

LEMMA 9. If φ is a non-constant analytic mapping of W into itself, then φ is univalent and $W-\varphi(W)$ is a closed set of capacity zero.

Proof. First we shall see that φ is of type Bl. Let K be an arbitrary relatively compact subregion of W and let K' be a component of $\varphi^{-1}(K)$. Assume that K'does not belong to the class SO_{HB} . There exists a positive harmonic function v on K' vanishing continuously on $\partial K'$ and satisfying $\sup_{K'} v = 1$. By the same argument as in the proof of Lemma 5, we can find admitted unions c_{i_0} and c_{j_0} $(1 \le i_0, j_0 \le m)$ of curves associated with α_{i_0} and α_{j_0} respectively satisfying: (1) φ maps $G_{c_{i_0}}$ into $G_{c_{j_0}}$, (2) $K \cap G_{c_{j_0}} = \phi$, where $h_W(\gamma_{i_0}) = \min_{1 \le i \le m} \{h_W(\gamma_i)\}$. Since $K' \cap G_{c_{i_0}} = \phi$, 1-v $\ge \lim_{\nu \to \infty} \omega_{c_{i_0}}^{(\nu)} = \omega_{B_{i_0}}$ on K'. Hence we have $\inf_{K'} \omega_{B_{i_0}} = 0$. Let $\{q_{\mu}\}_{\mu=1}^{\nu}$ be a sequence of points in K' such that $\lim_{\mu \to \infty} \omega_{B_{i_0}}(q_{\mu}) = 0$ and the sequence $\{\varphi(q_{\mu})\}_{\mu=1}^{\infty}$ converges to a point $q_0 \in K$. By Lemma 8

$$\omega_{B_{j_0}}(q_0) = \lim_{\mu \to \infty} \omega_{B_{j_0}} \circ \varphi(q_\mu) = \lim_{\mu \to \infty} \omega_{B_{i_0}}(q_\mu) = 0.$$

This is a contradiction, whence follows that φ is of type *Bl*.

Using the Lindelöf principle and Lemma 8 we can prove, in the same way as in the proof of Lemma 4, that every point of W is covered at most finitely often by φ .

Hence it follows that $\nu_{\varphi}(p) = \nu_0$ save for a closed set of capacity zero, where ν_{φ} denotes the valence of φ and ν_0 is a positive integer.

Now we shall see that $\nu_0 = 1$. Let $h_W(\gamma_{i_0}) = \min_{1 \le i \le m} \{h_W(\gamma_i)\}$ and let c_{i_0} and c_{j_0} be admitted unions of curves associated with α_{i_0} and α_{j_0} respectively obtained in

Lemma 5, so that, the restriction of φ to $G_{c_{i_0}}$ is an analytic mapping of $G_{c_{i_0}}$ into $G_{c_{j_0}}$ of type *Bl*. Let \varDelta be an arbitrary component of $\varphi^{-1}(G_{c_{j_0}})$, then the restriction φ_{\varDelta} of φ to \varDelta is an analytic mapping of \varDelta into $G_{c_{j_0}}$ of type *Bl* and $\nu_{\varphi_{\varDelta}} \leq \nu_0$. Hence it follows that \varDelta contains $n'_{j_0} (\geq n_{j_0})$ *HB*-indivisible sets on its ideal boundary [3]. By the same reasoning each component of $\varphi^{-1}(G_i)$ $(1 \leq i \leq m, i \neq j_0)$ contains $n'_i (\geq n_i)$ *HB*-indivisible sets on its ideal boundary $(1 \leq i \leq m, i \neq j_0)$ are mutually disjoint. This implies that W contains at least $\sum_{i=1}^{m} l_i n_i (\geq \sum_{i=1}^{m} n_i = n)$ *HB*-indivisible sets on its ideal boundary, where l_{j_0} and l_i are the numbers of the components of $\varphi^{-1}(G_{c_{j_0}})$ and $\varphi^{-1}(G_i)$ respectively. Hence each l_i $(1 \leq i \leq m)$ must be equal to 1, whence $\varphi^{-1}(G_{c_{j_0}}) = G_{c_{i_0}}$. Consequently we obtain $\varphi(c_{i_0}) = \nu_0 c_{j_0}$. By the inequality

$$h_{W}(\gamma_{i_{0}}) = h_{W}(c_{i_{0}}) \ge h_{W}(\varphi(c_{i_{0}})) = h_{W}(\nu_{0}c_{j_{0}}) = \nu_{0}h_{W}(c_{j_{0}}) = \nu_{0}h_{W}(\gamma_{j_{0}}) \ge \nu_{0}h_{W}(\gamma_{i_{0}})$$

we obtain $\nu_0 = 1$. This completes the proof of the lemma.

Finally we shall prove two theorems which lead us to our main result.

THEOREM 1. The number of conformal automorphisms of W onto itself is finite.

Proof. Assume that there exist infinitely many distinct conformal automorphisms of W onto itself, $\{\varphi^{(k)}\}_{k=1}^{\infty}$. Let $h_W(\gamma_{i_0}) = \min_{1 \le i \le m} \{h_W(\gamma_i)\}$. By Lemma 8 we may assume that

$$\omega_{B_{i_0}} \circ \varphi^{(k)} = \omega_{B_{i_0}}$$
 for all k .

Put $\psi^{(k)} = \varphi_{-1}^{(1)} \circ \varphi^{(k)}$, where $\varphi_{-1}^{(1)}$ denotes the inverse mapping of $\varphi^{(1)}$, then

$$\omega_{B_{i_0}} \circ \psi^{(k)} = \omega_{B_{i_0}}$$
 for all k .

Since $\{\psi^{(k)}\}_{k=1}^{\infty}$ are also infinitely many distinct conformal automorphisms of W onto inself, there exists an integer k such that $\psi^{(k)}(\gamma_{i_0}) \cap \gamma_{i_0} = \phi$ [6]. Let $\{p_{\mu}\}_{\mu=1}^{\infty}$ be a sequence of points such that $\lim_{\mu\to\infty} \omega_{B_{i_0}}(p_{\mu}) = 1$, then $\lim_{\mu\to\infty} \omega_{B_{i_0}} \circ \psi^{(k)}(p_{\mu}) = 1$ and hence $\{p_{\mu}\}_{\mu=1}^{\infty}$ and $\{\psi^{(k)}(p_{\mu})\}_{\mu=1}^{\infty}$ tend to α_{i_0} by Lemma 2. This implies that either $\psi^{(k)}(G_{i_0}) \equiv G_{i_0} \equiv \psi^{(k)}(G_{i_0})$. If $G_{i_0} \equiv \psi^{(k)}(G_{i_0})$, $\psi^{(k)}_{-1}(G_{i_0}) \equiv G_{i_0}$. Consequently there exists a conformal automorphism φ of W onto itself having the following properties: (i) $\omega_{B_{i_0}} \circ \varphi = \omega_{B_{i_0}}$, (ii) $\varphi(G_{i_0}) \equiv G_{i_0}$ and (iii) if $\lim_{\mu\to\infty} \omega_{B_{i_0}}(p_{\mu}) = 1$, then $\{\varphi_n(p_{\mu})\}_{\mu=1}^{\infty}$ tends to α_{i_0} for all n (this is a consequence of (i)). Here φ_n denotes the n-th iterate of φ . By the properties (ii) and (iii), $\{\varphi_n(G_{i_0})\}_{n=1}^{\infty}$ is a defining sequence of α_{i_0} . We note that $\{\varphi_n(\gamma_{i_0})\}_{n=1}^{\infty}$ tends to the ideal boundary of W. Since the region $G_{i_0} - \varphi_n(G_{i_0})$ belongs to the class SO_{HB} ,

$$\omega_{B_{i_0}} \leq \max_{r_{i_0} \cup \varphi_n(r_{i_0})} \omega_{B_{i_0}} \quad \text{on} \quad G_{i_0} - \overline{\varphi_n(G_{i_0})} \quad \text{for all } n.$$

On the other hand by the property (i)

$$\max_{r_{i_0}} \omega_{B_{i_0}} = \max_{\varphi_n(r_{i_0})} \omega_{B_{i_0}}$$

Hence we have

$$\omega_{B_{i_0}} \leq \max_{\tau_{i_0}} \omega_{B_{i_0}}$$
 on $G_{i_0} - \overline{\varphi_n(G_{i_0})}$ for all n_i

whence follows

$$\omega_{B_{i_0}} \leq \max_{r_{i_0}} \omega_{B_{i_0}}$$
 on G_{i_0} .

This is a contradiction.

THEOREM 2. If φ is a non-constant analytic mapping of W into itself, then φ is a conformal automorphism of W onto itself having a finite period.

Proof. Assume that the set $W-\varphi(W)$ is not empty. By Lemma 9 φ is univalent and $W-\varphi(W)$ is a closed set of capacity zero. Hence there exists a Riemann surface W_1 such that $W_1 \neq W$, and φ is extended to an analytic mapping $\varphi^{(1)}$ of W_1 into itself which maps $W_1, W_1 - W$ topologically onto $W, W - \varphi(W)$ respectively. Again, since $\varphi^{(1)}$ is univalent and $W_1 - W = W_1 - \varphi^{(1)}(W_1)$ is a non-empty closed set of capacity zero, there exists a Riemann surface W_2 such that $W_2 \ge W_1$, and $\varphi^{(1)}$ is extended to an analytic mapping $\varphi^{(2)}$ of W_2 into itself which maps $W_2, W_2 - W_1$ topologically onto $W_1, W_1 - W$ respectively. Repeating this argument we obtain a sequence $\{W_k\}_{k=1}^{\infty}$ of Riemann surfaces and a sequence $\{\varphi^{(k)}\}_{k=1}^{\infty}$ of analytic mappings satisfying: (i) $W_{k-1} \equiv W_k$ for all k, (ii) $\varphi^{(k)}$ is an analytic mapping of W_k into itself which maps $W_k, W_k - W_{k-1}$ topologically onto $W_{k-1}, W_{k-1} - W_{k-2}$ respectively, where $W_0 = W$. We put $W^* = \bigcup_{k=1}^{\infty} W_k$, and $\varphi^*(p) = \varphi(p)$ for $p \in W$, $=\varphi^{(k)}(p)$ for $p \in W_k - W_{k-1}$. Then φ^* is a conformal automorphism of W^* onto itself and $\{\varphi_n^*\}$ are distinct, where φ_n^* denotes the *n*-th iterate of φ^* . On the other hand, since $W^* - W$ is a closed set of capacity zero, every bounded minimal harmonic function on W is extended to a bounded minimal harmonic function on W^* . Conversely, the restriction of a bounded minimal harmonic function on W^* to W is a bounded minimal harmonic function on W. Further, let G_i^* be the component of $W^* - \Omega_1$ containing G_i , and let B_i^* be the set of all ideal boundary points of W^* which belong to one of the ideal boundary components on the part of the ideal boundary of W^* belonging to G_i^* . Then we can verify that B_i is of positive measure if and only if B_i^* is of positive measure, and that the harmonic measure of B_i^* is equal to the extension of the harmonic measure of B_i . Hence it follows that W^* is also an admitted surface. This contradicts Theorem 1. Consequently φ must be a conformal automorphism of W onto itself. Moreover, by Theorem 1 φ has a finite period.

Summing up these two theorems we have our main result.

References

- [1] CONSTANTINESCU, C., AND A. CORNEA, Über den idealen Rand und einige seiner Anwendungen bei der Klassifikation der Riemannschen Flächen. Nagoya Math. J. 13 (1958), 169–233.
- [2] CONSTANTINESCU, C., AND A. CORNEA, Über das Verhalten der analytischen Abbildungen Riemannscher Flächen auf dem idealen Rand von Martin. Nagoya Math. J. 17 (1960), 1-87.
- [3] CONSTANTINESCU, C., AND A. CORNEA, Ideale Ränder Riemannscher Flächen. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [4] HEINS, M., On the Lindelöf principle. Ann. Math. 61 (1955). 440-473.
- [5] HEINS, M., On a problem of Heinz Hopf. J. Math. Pures Appl. (9) 37 (1958), 153-160.
- [6] KUBOTA, Y., On the group of (1, 1) conformal mappings of an open Riemann surface onto itself. Kodai Math. Sem. Rep. 20 (1968), 107-117.
- [7] KURAMOCHI, Z., On the behaviour of analytic functions on abstract Riemann surfaces. Osaka Math. J. 7 (1955) 105-127.
- [8] LANDAU, H. J., AND R. OSSERMAN, On analytic mappings of Riemann surfaces. J. Analyse Math. 7 (1959/60) 249-279.
- [9] MATSUMOTO, K.. On subsurfaces of some Riemann surfaces. Nagoya Math. J. 15 (1959) 261-274.

TOKYO GAKUGEI UNIVERSITY.