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ON HYPERSURFACES IN SASAKIAN MANIFOLDS
By Sencui YAMAGUCHI

§1. Introduction.

Recently, Okumura [3] has studied hypersurfaces of an odd dimensional sphere
S**1 and obtained a sufficient condition for a hypersurface M in S*™! to be totally
umbilical. Also, Watanabe [6] has studied totally umbilical hypersurfaces in a
Sasakian manifold and proved

Tueorem (Watanabe). Let M be a complete orientable conmected totally um-
bilical hypersurface in a Sasakian manifold. If M is of constant mean curvature
H, then M is isometric with a sphere of radius 1//1+H? in the Euclidean space.

It might be interesting to obtain other sufficient conditions that a hypersurface
in a Sasakian manifold is isometric to a sphere. In §2, we recall first of all the
definition of a Sasakian manifold and those parts of the theory of hypersurfaces
in a Sasakian manifold which are necessary for what follows. Some general pro-
perties of a hypersurface in a Sasakian manifold are derived in §2. In §3, taking
account of the theorem above, we prove Theorem 3. 3.

This theorem plays an important role in §5. In §4 we shall consider a totally
umbilical hypersurface in certain Sasakian manifolds. In the last section we prove
the main

THEOREM. Let M (n>2) be a complete orzentable connected hypersurface in a
Sasakian manifold M. If the contact form 7 over M is not tangent to M almost
everywhere and if f commutes with h, then M is isometric with a spherve of radius
1/N14+H? in a Euclidean space.

§2. Preliminaries.

An (n+1)-dimensional contact metric manifold is by definition a Riemannian
manifold admitting a structure (g, &, 3, §), p=(7:) being a 1-form, £=(£*) a con-
travariant vector field, p=(¢,*) a (1, 1)-type tensor field and §=(§,;,) the Rieman-
nian metric tensor, which is positive definite, such that

2.1 08" =0, ©2"9.=0, =1,
2.2 s =—0u+9,£,
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2.3 Nn=§2.E%0
(2~ 4) Gaﬁﬂoxaﬁopﬁ:gm—m?]m
1
2.5 O =par” = ”2‘(3177”"3/:7/1),

where (72), (%), (") and (§:,) denote respectively the components of n, & ¢ and §
with respect to local coordinates {X*}.» A contact metric manifold M is said to
be Sasakian, if the structure (g, &, 5, §) satisfies the conditions

(2~ 6) (/71;::717/;0 Vpgalv:"]lgyv—vvg,ub

where 7 denotes the operator of the covariant differentiation with respect to §.
Let M be a Sasakian manifold and M® an orientable hypersurface represented
locally by the equations

X =X"(xY,
where {x'} are local coordinates of M. If we put

oX*

oxr ’

Bi‘=
B*(i=1,2,---,n) are linearly independent local vector fields tangent to M. The
induced Riemannian metric ¢ of the hypersurface M is given by
2.7 05:=0p B B;".

Since the Sasakian manifold A/ and the hypersurface M are both orientable, we
can choose a unit normal vector field C* along the hypersNurface M in such a way
that (C*, B;") form a frame having the positive sense of M and (B;") form a frame
having the positive sense of M. Then we have

(2. 8) GﬂaBiﬁCRZO, {i,qaCﬁC“=1.

The transforms ¢,*B;* of B" by ¢." and ¢.,"C* of C* by ¢." are expressed as linear
combinations of B;* and C* as follows:

0" Bif=f,"B,"+f;C",
0" C*=k"B,"+¢'C*,
7 =p"B,"+qC",

1) In the following we use a notation 7? in stead of &
2) The indices run over the following ranges respectively:

@, B, dppy =12, 0 mymt 1
Rydy, ooy ¥, 8 o=1,2, 0, .
3) In this paper we assume that M is connected.
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from which

2.9 Jit=Baps"Bf,

2. 10) J1= =k =B,"0SCy,
2. 11) 2i=B;"Na

2.12) =7.L",  q¢=0,

where we have denoted by (B, C,) the coframe dual to the frame (B;%, C%).
virtue of (2. 1)~(2. 5) and (2. 9)~(2. 10), we have

(2.13) F1=0uf " =—Vu,

2.14) Iy frr=—05+1 bt

2. 15) fifr=ap;  FiPr=—afs
(2.16) ' f=p"pr=1—¢"  fpr=0.

By

Now, denoting by F the symbol of the covariant differentiation along the

hypersurface M, we have respectively the equations of Gauss and Weingarten
N

K K a Ic K r K
ViB;*=0;B;"+ B*B; {,B a}_BT {] i}:hjic ,

K

VjC'E 6jC‘-{—B,"Cﬁ{a ‘B

} — _h]?"BT:’

where {,’\';} (resp. {}) are the Christaffels symbols with respect to § (resp. g)
and /%;; are components of the second fundamental tensor of M. Differentiating

covariantly (2. 9)~(2. 12) along the hypersurface M, we obtain

2.17) Vifi=bi9xi—DiGx; + 1 shxi—S iy,
2. 18) V,fi=—q9;—f"hry,

(2. 19) Vipi=f i+ ahj,

(2. 20) Vig=Fi—1"hry.

We here prove an identity for the later use. Operating Vi to (2. 20) and tak-

ing account of (2.18) and (2. 19), we have
@.21) Vil jq=—qgxi—Ff; bri— (fi"+q") e j— D"V 1hgy.

If we subtract (2.21) from the equation obtained by interchanging the indices &

and j in (2. 21), we obtain
(2 22) pr(th‘,r—V]hm):O,
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§ 3. Totally umbilical hypersurfaces.

When, at each point of the hypersurface M, the second fundamental tensor
hj; is proportional to the induced Riemannian tensor g; of M, ie., when the
condition

3.1 hijs=Hgj;

is satisfied, the hypersurface M is called a fotally wmbilical hypersurface. The
proportional factor H is the mean curvature of the hypersurface. A totally um-
bilical hypersurface with vanishing mean curvature is said to be fotally geodesic.
We shall prove now that, for an orientable totally umbilical hypersurface M of a
Sasakian manifold M the mean curvature H is constant.

If we put My={(z*)eM|q*(x*)*1}, then M, is an open set in M. We assume
now that M, is not empty. Then, substituting (3. 1) into (2. 22), we obtain

DiV e H—piV ;H=0.
Contracting this with p’ and making use of (2. 16), we get
A—@WH=pup'V -H,
from which
3.2 ViH=apy

in M, where « is a certain scalar function defined over M,. Differentiating this
covariantly, we have

VijH=kaja+anpk.

If we take the skew-symmetric part of this tensor equation and take account of
(2. 19), we have

DV ja—piV o +-2af j1=0.

Transvecting the last equation with f* and f7p* respectively, we have
a7 ja—a(n—2+24%)=0,
A=)V ja—2ag)=0.

In M, from the two equations above we have (#—2)a=0. Thus we get a=0 if
n>2. Therefore from (3. 2) we see that the mean curvature H is locally constant
in M,, that is, it satisfies V;H=0. Consequently we have

LemMA 3. 1. If M, is not empty, the mean curvature H of a totally umbilical
hypersurface M (n>2) is locally constant in M,.

Next, if we put M,={(z)e M|V H(+")=0}, then we see that M—A is an
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open set in M and we have M—M,C M—M, by virtue of Lemma 3. 1. Hence, by
virtue of definition of M,, we get ¢?=1 in M—M,. Therefore, we have f,=p;=0
in M—M, by virtue of (2.16). We assume now that M—M; is not empty. Then
M—DM, being an open set in M, we find

@3 995+ Hf =0,

if we differentiate f,=0 covariantly and take account of (2.18) and (3.1). If we
add (3. 3) to the equation obtained by interchanging the indices j and 7 in (3. 3)
and take account of (2. 13), we have ¢g;;=0. Thus we get ¢=0 in M—M,, which
contradicts the condition ¢*=1. Since M is connected, the mean curvature H is
constant over M. Consequently we have

THEOREM 3. 2. Let M (n>2) be an orientable connected totally umbilical hyper-
surface of a Sasakian manifold M. Then the mean curvature H is constant over M.

Combining Theorem (Watanabe) stated in §1 and Theorem 3.2, we have
immediately

THEOREM 3.3. Let M (n>2) be a complete orientable connected totally um-
bilical hypersurface in a Sasakian manifold M. Then M is isometric with a sphere
of radius 1/ 1+H? in a Euclidean space.

§4. Totally umbilical hypersurfaces of a certain Sasakian manifold.
Watanabe [6] has proved

Lemma 4.1. If M is an orientable totallg umbilical hypersurface with con-
stant mean curvature in a Sasakian manifold M, then the scalar function q is not
constant in M.

This lemma plays an important role in this section.
When the Ricci tensor of a Sasakian manifold M has components of the form

~

(4. 1) Rlp:ag1p+b7]177p’

then M is called a C-Einstein (p-Einstein) manifold. In such a manifold M, a
and b are necessarily constants (Cf. Okumura [1]). A C-Einstein Iglanifold is
Einstein if 5=0. When the curvature tensor of a Sasakian manifold M has com-
ponents of the form

(4 2) ﬁl o= (k+ 1)(6/“51:—'611::61:;) +k(§0pu901: —QusPav— 2§02p§0ut)
. +E G — 0026 G — Foulie),

then M is called a locally C-Fubinian manifold (Tashiro and Tachibana [5]). In
such a manifold M, & is necessarily constant. A locally C-Fubinian manifold is
necessarily C-Einstein,
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In the first place, we consider a totally umbilical hypersurface M of a C-
Einstein manifold M. From the Codazzi equation of the hypersurface

“.3) Vihii—F ihie=Bi* B," BC* R, ey
we have

Vohi—V i, =—C*B/R.,.
Making use of (4. 1), this reduces to
“. 4 Vol —Vih"=—bqpi.

As the hypersurface M is totally umbilical, by virtue of Theorem 3.2, the mean
curvature H is constant in M if #>2. Thus we obtain bgp;=0. Hence if we
assume that a C-Einstein manifold M is not Einstein, i.e., »=0, then we have
gp;=0. Differentiating this covariantly and making use of (2.19) and %= Hyj;,
we obtain

(fi—Hpp)bi+q(fi:+Hgg;:)=0.

Transvecting this with f7 and making use of ¢p;=0, (2.15) and (2. 16), it follows
that

pit+Hg*f,.=0.

Transvecting this with p* and taking account of (2.16), we get 1—¢?*=0. This
contradicts Lemma 4.1. Thus we have 6=0. Consequently, we have

THEOREM 4. 2. If an orientable hypersurface M (n>2) in a C-Einstein mani-
fold M is a totally umbilical hypersurface, then a C-Einstein manifold M is neces-
sarily Finstein (Watanabe [6]).

COROLLARY 4.3. Let M be a C-Einstein manifold. If M is not Einstein, then
there is no orientable totally umbilical hypersurface M (n>2).

In the next place, we sNhall consider a totally umbilical hypersurface in a
locally C-Fubinian manifold M. If we substitute (4. 2) into (4. 3), it follows that

Vihyi—V b =k(f i fo—Fifi—2f ke, f)+Rq(Gr 05— 91 Dr)-

Since, by Theorem 3.2 the mean curvature H is constant, the equation above
reduces to

E(fife—Fufi—2F ks S0) ka9 pi—95: 1) =0.

Transvecting this with ¢/ and making use of (2. 15) and of Lemma 4.1, we get
k=0. Therefore we have

THEORNEM 4. 4. If an orientable hypersurface M (n>2) in a locally C-Fubinian
manifold M is a totally umbilical hypersurface, then a locally C-Fubinian manifold
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M is necessarily of constant curvature.

COROLLARY 4.5. Let M be a locally C-Fubinian manifold. If M is not of con-
stant curvature, then there is no orientable totally umbilical hypersurface M (n>2).

§5. Determination of the hypersurfaces.

In this section we assume that the 1-form 7 over a Sasakian manifold M is
not tangent to a hypersurface M almost everywhere. Moreover, we assume that
f commutes with #, ie.,

5. 1) S =hf
The following Lemma is known [3].

LemmMma 5. 1. If f commutes with h and if the 1-form 5 over M is not tangent
to M almost everywhere, then we have

®.2) hiif7p*=0,
(5.3) Ry fifi=h; pp.

Now, transvecting (5. 1) with f%’ and making use of (2. 14), we get
5.9 — b+ DD ri S S o= —hrs [T

If we subtract (5.4) from the equation obtained by interchanging the indices %
and ¢ in (5. 4), it follows that

DeD i —Di D hew S r S Thri—Fof T =0.

Transvecting this with p* and with f* and taking account of (2. 16) and (5. 2), we
find respectively

A—g»p*hu;—Dshrsp"p°=0,
A=) *huj—Fihrs fTf*=0.

Now, if we put M,={(z")eM|q*(z*)=1}, then M, is an open set in M. We
suppose now that M, is not empty. Then we have from (5. 5)

(5. 6) hrjpr =apj, heyf I=af, J

in M,, where « is a differentiable function defined over M,. Differentiating (5. 6)
covariantly, we get in M,

(" gl Ve 0V ihye =DV vat-a(frj+qhes),

(. 5)

because M, is open and non-empty. If we take the skew-symmetric part of this
tensor equation and take account of (2.22) and (5. 1), we obtain
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6.7 215 hey =0V va—DiV ja+2af;.
Transvecting (5. 7) with »’ and making use of (2.16) and (5. 6), we get in M,
(5. 8) Vva=Bpr,

where B is a certain function defined in M,. Differentiating (5. 8) covariantly, we
obtain

ViV va=pul i+ BV ipx.

If we subtract this from the equation obtained by interchanging the indices j and
k in this and take account of (2.19), we have

DV 3B—DiV eB+2 B 56 =0.
Transvecting this with f7* and with f7p*, we get respectively
av ipf ' =(n—2+2¢"),
A=W pf?—2pg)=0,

where we have used (2.13)~(2.16). As a consequence of (5.9), if #>2, we have
B=0, which implies together with (5.8) that « satisfies Vja=0 in M,. Thus by
virtue of (5.7), we have

.9

flcrhm :a'fk,]s
from which
(6. 10) hji=ag .
Therefore we proved

LemMA 5. 2. If M, is not emply, the hypersurface M (n>2) is umbilical at
each point of M,.

In the next place, let M; be the set of all umbilical point of M. Then, we see
that M—M, is an open set in M and we have from Lemma 5.2 M—M,cM—M,.
Hence, by definition of M,, we get ¢*=1 in M—M,. Thus we get f,=p;=0 in
M—M, by virtue of (2.16). We assume now that M—DM, is not empty. Then
M—M, being open in M, if we differentiate f,=0 covariantly and take account of
(2. 18), we obtain

q9;ji +flah8] =0.

If we take the symmetric part of this tensor equation and take account of (5. 1),
we get gg;;=0. Thus we have ¢g=0 in M—M,, which contradicts the condition
q*=1. Therefore the set M— M, is necessarily empty.

Summing up the results obtained above, we get
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THEOREM 5. 3. Let M (n>2) be an orientable connected hypersurface of «
Sasakian manifold M. If the contact form n over M is not tangent to M almost
everywhere and if f commutes with h, then the hypersurface M is totally umbilical.

Combining Theorem 3.3 and 5.3, we have immediately the main theorem
stated in §1.
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