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COMPLETE LIFTS FROM A MANIFOLD TO ITS
COTANGENT BUNDLE

BY ISUKE SATO

We consider the complete lift from a vector field of a manifold (base space) to
its cotangent bundle. In §1, we shall prove that the complete lift is characterized
to be an infinitesimal homogeneous contact transformation preserving each fibre in
the cotangent bundle. In § 2, we shall see that the cotangent bundle admits several
structures (symplectic structure or homogeneous contact structure etc.). In §§3
and 4, we shall discuss complete lifts in the case that the base space is Riemannian.

1. Complete lift of a vector field.υ

Let M be an ^-dimensional differentiate manifold of class C°°. Consider the
set GTp(M) of all non-zero covectors at a point P€M. Then

CT(M)= U €Tp(M)

is, by definition, the cotangent bundle over the manifold M. A point P of CT(M)
is an ordered pair (P, ωp) of a point P€M and a covector ωp€GT(M). We denote
by π the projection CΓ(M)-»M given by P=(P, ωP)-*P. The set π~l(f\ that is,
°Tp(M) is called the fibre over P, and M is called the base space.

Suppose that the manifold M is covered by a system of coordinate neighbour-
hoods {U, xh] where (xh) is a system of local coordinates in the neighbourhood U.
Then, in the open set π~\U) of CT(M) we can introduce local coordinates (xh,pί)
for P, which we call coordinates in π~l(U\ induced from (xh) or simply induced
coordinates in π~l(U).

We denote by 3f(M) the set of all vector fields of class C°° in M Suppose
that Xe3H(M). The complete lift Xc of X is, by definition [9], given by

(1.1) Xc=(dXv)ε-1

where Xv is the vertical Iift2) of X and ε"1 is a tensor field of type (2, 0) whose
components εBA in π~l(U) are

0 -δ
e™=\

I 0

Received April 11, 1968.
1) As to the notations we follow Yano and Patterson [9].
2) As to its definition, see Yano and Patterson [9].
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In π~l(U), the components of X° are

On the other hand, a vector field XA=(Xh, Pt) over °T(M) is said to be an in-
finitesimal homogeneous contact transformation [5] if it satisfies

(1. 2) JX20ί =0

where p means the basic 1-form in CT(M). Locally, the equation (1. 2) is equiva-
lent to

(1.3)

Since the components of Xc satisfy (1. 3), it follows that the complete lift of a
vector field is an infinitesimal homogeneous contact transformation.

It is known [9] that

[X°, Y°]=[X, Y]c X, F€2XM).

Therefore, the set Lf of all complete lifts of vector fields in M is a subalgebra in
Lie algebra L° of all infinitesimal homogeneous contact transformations and obvi-
ously L$ is isomorphic to the Lie algebra 3C(M). As 3C(M) is infinite dimensional,
so is L$. Thus we have

THEOREM 1. 1. [5]. The Lie algebra L° of all infinitesimal homogeneous contact
transformation of M is infinite dimensional.

A diffeomorphism

/: CT(M)-+°T(M)

is said to be a homogeneous contact transformation of M if and only if / leaves
invariant the basic 1-form p, i.e. /*£=/>, where /* is the dual map induced by /
on differential forms over CT(M). Suppose /0 be a diffeomorphism of M onto
itself. Then /0 naturally induces a diffeomorphism / of GT(M) onto itself. It is
easy to see that / is a homogeneous contact transformation. This map / is called
an extension of the diffeomorphism /0 of M.

LEMMA [5] A homogeneous contact transformation f of CT(M) onto itself is
an extension of a diffeomorphism of M onto itself if and only if f is a fibre
preserving map.

Corresponding to the above Lemma, we see easily the following

THEOREM 1. 2. In order that an infinitesimal homogeneous contact transforma-
tion of M be a complete lift of a vector field over M, it is necessary and sufficient that
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it is a fibre preserving one.

Next let XA=(Xh, P*) be components of an infinitesimal homogeneous contact
transformation X of M. The function U=pίX

i is said to be the characteristic
function of X. Then we have the following

THEOREM 1. 3. In order that an infinitesimal homogeneous contact transforma-
tion of M be a complete lift of a vector field over M, it is necessary and sufficient
that the characteristic function of the infinitesimal homogeneous contact transforma-
tion be homogeneous and linear with respect to pi.

2. Symplectic structure.

The exterior differential dp of the basic 1-form p^pidx1 is the 2-form F given
by

F==dp=dpi/\dx'l>.

Hence if we write

F= -y- εcudx0' /\dxB,

we have

-dl 0

The matrix (ε^) being non-singular, the 2-form F, the exterior differential of the
basic 1-form p, furnishes a symplectic structure in °T(M). Because of Fn=F/\F/\
.../\F^O, owing to Yano and Mutδ [8], CT(M) admits a homogeneous contact
structure and consequently °T(M) is non-compact.

Consider an action of an infinitesimal transformation X over F:

j:(X)F=di(X)F+i(X)dF

that is, F being closed,

X defines a symplectic infinitesimal automorphism if it leaves F invariant, that is,

(2.1) £(X)F=di(XW=Q

We denote by L^ the Lie algebra of all symplectic infinitesimal automorphisms.
Next we make a 1-form ξ correspond to XsX(GT(M}) by

(2.2) ξ=-i(X)F
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Thereby we define an isomorphism μ of 3£(CT(M}) onto 3C*(CT(M)):

-), ξe %

We denote by Lj the set of all vectors of CT(M) such that its image by μ is
derived. If X, YzLs, we have

μ([X, Y])=d{i(XΛYW},

that is, [X, Y]€L$ [3]. Consequently we see that L? is an ideal of ZA From (2. 2)
1-form ξ is locally expressed by

where we put XA=(Xh, Pt). Especially if XzLj, there exist a function / over
°T(M) such that ξA=dAf Consequently, the components of X can be written as

(2. 3) X*=(X\ P,)=@*/, -%/).

Conversely, J^ΓeL5' having the components of type (2. 3) belongs to L£.
On the other hand, every infinitesimal homogeneous contact transformation X

is locally expressed as

(2. 4) XA=(X\ P,)=@*Z7, -3itf),

where £7 is the characteristic function of X, [5]. From (2. 3) and (2. 4), we can see
that algebra L° is a subalgebra of L£. Summerizing the above facts, we get the
following.

THEOREM 2. 1. L* D L? -^LG^L^T (M).

COROLLARY [3]. The Lie algebra of all symplectic infinitesimal automorphisms
of CT(M) is infinite dimensional

The skew-symmetric tensor ε is of maximum rank 2n, and, using a theorem
due to Lichnerowicz [2] and Hatakeyama [1], we can introduce a positive definite
metric GOB in °T(M) such that

defines an almost complex structure:

and consequently this metric is Hermitian with respect to the almost complex
structure. The almost Hermitian manifold thus defined is almost Kahlerian since
the form dp is closed.

THEOREM 2. 2. In a cotangent bundle associated with an almost Kahlerian
structure φ, in order that an infinitesimal homogeneous contact transformation X
is infinitesimal isometry, it is necessary and sufficient that X is almost analytic^
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Proof. Necessity: Since an infinitesimal homogeneous contact transformation
is always a symplectic automorphism by virtue of Theorem 3. 1, X(X)F=Q follows
from j£(X)p=Q. Then we have

Sufficiency: We have

Q=

from which we get

3. Cotangent bundle of a Riemannian manifold.

Let M be a Riemannian manifold with the fundamental metric tensor g and
gjk the components of g with respect to a coordinate neighbourhood U(xί) in M.
We define a line element in a coordinate neighbourhood π~1(U)(x1'9 pi) of CT(M) by

(3. 1) gjidx'dxi+gVDpjDpt

where Dpi means the covariant differential of pi. The components of the funda-
mental metric tensor of °T(M) can be obtained by putting (3. 1) in the form

(3. 2) gCBdxcdxB,

from which we have

Sji = Qjί + TjcTibQC\ gjί = - QJαTαι Qjϊ = QJi (ϊii = Γjiαpα).

The contravariant components of the fundamental metric tensor are given by

ih = ih ϊh = αh ϊn =

If we put PB

A=εBEgEA, then it gives us an almost complex structure on CT(M).
Moreover, it is known that (g, F) is an almost Kahlerian structure on CT(M), [4],

On the other hand let £Γ(M) be the tangent bundle of M Then T(M) = 2(M)
—M, a set of all non-zero tangent vectors, is an open submanifold of £Γ(M). In
the remaining part of this paper, by T(M) we mean the tangent bundle of M. It
is known that the tangent bundle T(M) of a Riemannian manifold M is naturally
reduced to an almost Kahlerian manifold. The fundamental metric tensor G and
the almost complex structure F are given by [6]

and
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where we put

t, y*) being coordinates in T(M).
Now we consider a mapping

which is locally expressed by

It is easily verified that at any point P of T(M)

G(X, Y)=g(f*x,f*Y)

for all X, YeTP(M). This shows that T(M) is isometric to CT(M\ Next let F
and F be fundamental 2-form of T(M) and °T(M) respectively. Then we get also

F(X, Y}=F(f*X,f*Y)

for all X, YzT?(M\ Consequently, Γ(M) is not only equivalent to CT(M) as
Riemannian manifold but also as almost Kahlerian manifold.

Next let Xc and X° be complete lift to T(M) and °T(M) from a vector field
X of M respectively. Then we have the following

THEOREM. 3. 1. In order that the image of X° by the isometry f of T(M) onto
. . /v . .CT(M) coincides with XG, it is necessary and sufficient that a vector X of M is an

infinitesimal isometry.

Proof. Locally, Xc and f*(Xc) can be written as

and

from which our assertion follows immediately.

N. B. It is verified that the image of the horizontal lift3' to T(M) by the
isometry / of T(M) onto CT(M) coincides with the horizontal lift to °T(M).

3) As to its definition, see [9].
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4. Complete lifts.

In this section, complete lift means only that of a vector field of Riemannian
base space. Recently Yano [7] studied properties of complete lift from Riemannian
manifold to its tangent bundle. Complete lift to T(M) leaves the basic 1-form in-
variant if and only if the vector field of M is a Killing vector, [6]. However as
we saw in §2, complete lift to CT(M) leaves always the basic 1-form invariant.
Therefore it seems to be meaningful to study properties of complete lift CT(M).

The fibre of °T(M) being represented by4)

xh=const., ph=Pn,

the integrable distribution tangent to these fibres is spanned by the n independent
vectors

/ c y \ / o \
(4.1) CVM

V cf I \ δhi I
Now let us consider the vectors

(
gίh .

^ J.

The n vectors so defined are not in the distribution determined by (4. 1). Since
the action of F on any vector is to produce an orthogonal vector, we conclude that
the two sets of vectors BtA, CIA determine two complementary distributions
orthogonal to each other. The n vectors BtA orthogonal to the fibre are called
horizontal vectors while the vectors dA of the complementary distribution are
called vertical vectors. We can easily verify that

and

We now refer our tensors to the special frame of reference given by

(4.2) Aβ

A=(

and their inverses

4) The assertions in the remaining part of this section are analogous to that in
tangent bundle, see Yano [7].
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where

α, β, γ=l, 2, ~,n; ϊ,2, —, n

and £% and Cn

s are given by

We call this special f rams of reference, the adapted frame. Thus for the components

Fΐβ^FCBArcAβ

B, Fβ

a=FB

AAβ

BA«A

of the tensors QCB, QBA, FOB, FB

A, we can write the following expressions

/ QJi 0 \ / gji 0 \
_( \ gβa=[ I,

\ 0 g_n I \ 0 flrΛ /'

0
fl^yi

0 g* \ „ I 0 5ί

-0>« 0 7 " " " V - a j 0

Now let us introduce the notations

Dβf= Aβ

BdBf, ω«=A°BdxB,

which will give, for the various types of indices,

We shall need the components of the non-holonomic object which is important
when we use a frame of reference such as (4. 2) which is not the natural one
associated with the coordinate system. They are

the only non-vanishing components of which will be

Ωj\=

(4.4)
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If ΓCBA denote the three index symbols of Christoffel with respect to the $CB,
the corresponding coefficients with respect to the adapted frame just introduced are
given by

The covariant derivative of grβ is given by

from which we can deduce

where we have put

Ωa

7β=gaegSβΩeδ

β.

The particular values of Γr"β for different indices, on taking account of (4. 3)
and (4. 4), are found to be

=0,

Consider a vector field X in M. The complete lift X° of X has components

X*

with respect to the adapted frame. The covariant derivative of the complete lift
is given by
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Thus we have

THEOREM 4.1. The complete lift to CT(M) of a vector field in M is parallel

if and only if the vector field is parallel in M.

The Lie derivative of g with respect to the complete lift X° of X is given by

from which we have

THEOREM 4. 2. The complete lift to CT(M) of a vector field in M is a Killing

vector field if and only if the vector field is a Killing vector field and have vanish-

ing second covariant derivative in M.

The rotation for the complete lift X° are

and

whence it follows that if in a symmetric Riemannian space M, X is closed and

have vanishing second derivative, then the complete lift X° is harmonic.

N. B. We hope the above facts of the complete lift to CT(M) will be com-

pared with that of the complete lift to T(M). See Yano [7].
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