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Introduction.

The theory of differential concomitants has been developed by Frolicher, Nijen-
huis [1], [2], [6], Schouten [9] and others.®

Schouten [9] introduced a concomitant [P, Q] formed with tensor fields P and
Q of type (»+1,0) and (g+1,0) respectively, which is a tensor field of type
(p+g+1,0).

Nijenhuis [6] introduced a concomitant [S, T'] formed with a vector s-form S
and a vector #form 7 which is a vector (s+#)-form. Frolicher and Nijenhuis
[1]1, [2], also introduced a concomitant [S, ®] formed with a vector s-form S and a
scalar #-form o which is a scalar (s+#)-form.

On the other hand it was found that, in the study of a differentiable mani-
fold M with an almost complex structure F, the tensor

N(X, V)= [F, FIX, Y)
=[FX, FY|-F[X, FY1-F[FX, Y]+ F*X, Y]

introduced by Nijenhuis [5] plays an important part. It is now well known [4]
that it is necessary and sufficient for an almost complex manifold to be complex
that the Nijenhuis tensor N formed with F' vanishes identically.

Nijenhuis [6] proved also that

[F, N]=0, [N, N]=0

and it seemed that there is no concomitant formed only with F and its partial
derivatives and being essentially distinct from N.

However Walker [13] found a tensor field of type (1,4) involving the second
partial derivatives of an almost complex structure F.

Willmore [14] introduced a tensor field W of type (1, 4)

W=[FAN, N]=[F, NAN]
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1) The numbers between brackets refer to the Bibliography at the end of the paper.
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formed with a general tensor field F of type (1,1) and showed that W reduces to
the skew-symmetric part of the tensor field introduced by Walker when F defines
an almost complex structure of the manifold, where A denotes a kind of inner
product introduced by Frolicher and Nijenhuis [1].

Recently Slebodzifiski [10] introduced a tensor field of type (1,3) formed only
with an almost complex structure F and containing the second partial derivatives
of F, but Willmore [15] proved that the tensor introduced by Slebodzihski is
identically zero.

Now, in a complex manifold, the fact that the components of a vector field or
a 1-form are analytic functions of complex coordinates of the manifold has a geo-
metrical meaning. For example, in a Ki#hlerian manifold, a vector field whose
components are analytic functions of complex coordinates is a so-called geodesic
vector field [19] and a 1-form whose components are analytic functions of complex
coordinates is a harmonic 1-form [16]. We can call them a contravariant analytic
vector field and a covariant analytic vector field. For a tensor field, the fact that
the components are analytic functions of complex coordinates has a geometrical
meaning only when the tensor is pure [16].

The analyticity of a vector field, a 1-form or a pure tensor field can be
generalized to the almost analyticity of these geometric objects in an almost
complex manifold.

The almost analyticity of a vector field, a 1-form or a pure tensor in an
almost complex manifold is defined by the vanishing of certain quantities formed
with the components of these geometric objects.

It is known that these quantities are components of differential concomitants
formed with the almost complex structure F' and these geometric objects.

The main purpose of the present paper is to generalize these differential con-
comitants and to discuss relations between these and concomitants already known.

In the sequel, we assume that the manifold, the geometric objects such as
vector fields, differential forms, and tensor fields are all of differentiability class
C». We denote by g75(M) the sets of tensor fields of contravariant degree r and
covariant degree s. A function belongs to M), a vector field to JyM) or
briefly to (M) and a 1l-form to gYM) or briefly to g (M). We use also the
notation

Sf’l:pip—l ee21]

to denote the so-called skew-symmetric part of Si,_;...; (See, e.g. [9]).

§1. Operator @F(X) applied to a vector field.

We first define an operator @F(X) associated with a given Feg¥M) and an
arbitrary Xe (M) and applied to an arbitrary Yeg¥M) by

1.1 PF(X)Y=—(LrF)X,
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that is,

1.2) OF(X)Y=[FX, Y]-FI[X, Y].

We see that @F(X)Y is linear in X, but not in Y. We have in fact
1.3 P (X)9 Y)=g{PF(X) Y} +(FX)9) Y—(X9)F Y

for any ge TYM). )

When F defines an almost complex structure in M, that is, when F satisfies
F?=—I,] denoting the unit tensor, a vector field Y which satisfies _LyF=0 is
said to be almost contravariant analytic. Thus a necessary and sufficient condi-
tion that a vector field Y in a manifold M with almost complex structure F is
almost contravariant analytic is @F(X)Y=0 for any Xeg¥M).

We often write &(X) for @F(X) in the sequel when it is clear that it is as-
sociated with F.

§ 2. Operator &7(X) applied to a tensor field of type (1, 1).
Let Geg(M). We consider the expression
2.1) PX)GY)-GOX)Y)=(—LorF+GLvF)X,
that is,
2.2) IX)GY)-G@(X)Y)=[FX,GY]-FI[X, GY]-G[FX, YI4GFI[X, Y],

where X, Yeg{(M). By the definition, (2. 2) is linear in X, but not in Y in general.
We have in fact

2.3) XNGW@Y)—G@X)gY)=g{P(X)NGY)—G@(X)Y)}—(Xg)FG—GF)Y,
for gegYM). Thus we have

ProPOSITION 2.1. Let GeT¥M). The expression (2.2) is linear in X and Y
and defines a tensor field e T M) if and only if FG=GF.

Thus, if the condition FG=GF is satisfied, we put
@4 IX)GY)—GO(X)Y)=((X)G) Y=(2G)X, Y).
Since FG=GF is trivially satisfied for F=G, we have
COROLLARY 2.1. (@(X)F)Y defines a tensor field € T¥M).
Since
(IX)F)Y=0(X)FY)—-F(@(X)Y)
=[FX, FY|-F[X, FY]-F[FX, Y]+F*X, Y],
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(O(X)F)Y is nothing but the Nijenhuis tensor N(X, Y) constructed from F:
(2.5) (@X)F)Y=N(X, Y).

When F is an almost complex structure in M, a tensor field Geg (M) which
satisfies FG=GF is said to be pure. Thus we have

COROLLARY 2.2. If G is a pure tensor e TYM) in a manifold M with almost
complex structure F, then (O(X)G)Y defines a tensor field € TXM).

When (@(X)G)Y=0 for a pure tensor GegJ (M) and for any X, Yeg M), M
being a manifold with almost complex structure F, G is said to be almost analytic.
Equation (2. 3) shows that

2. 6) OF(XNGY)—-G@F(X)Y )+ 04X )NFY)—F(9%X)Y)
is linear in X and Y. Thus we have

ProrosITION 2. 2. Let F,Gegi(M). The expression (2.6) defines a tensor
field e T M).

Since
PF(X)GY)—G@F(X)Y)+ 04 XNFY)—F(0%X)Y)
=[FX, GY]-F[X, GY]-G[FX, Y14+GFI[X, Y]
+I[GX, FY1-GIX, FY]-FI[GX, Y]+ FGILX, Y],
the expression (2. 6) is nothing but the torsion [F, GI(X, Y) of F and G:
en I XNGY)—G@T(X)Y)+ P X)FY)—F (94 X)Y)
=[F, GI(X, Y).

On the other hand, we have from (2. 3)
P(fXNG@Y)—GO(fX)9Y)—P9 Y XG(fX)N+G(@(Y)(f X))
=fe{P(X)GY)—G@X)Y)—P(Y)CX)+G(O(Y)X)} —(FG—GF)(f (X9) Y—9(Yf)X).
This equation and
X, 0Y1=f9lX, Y]+f(Xo) Y—9(Y)X
show that
2.8 XN GY)—GOX)Y)—NYNGCX)+GO(Y)X)+(FG—-GF)X, Y]

is linear in X and Y, This also coincides with the torsion [F,Gl(X, Y) of F
and G,
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ReEMARK 2.1. Let X*, Y*» F* and G;* be components of X, Y, F and G
respectively with respect to a natural coordinate system in M. Then the expres-
sion (2. 1) has components

(2.9) (F)0.G"— G0 F 1+ G0 Fy*— Ford,Gi*) XY i—(F G — G Fi*)( X', Y).
This equation shows, as Proposition 2.1 says, that
(2. 10) (F, G)ji*=F}0,Gi"— G F o+ Gyt F,* — Fod,G*

are components of a tensor field of type (1,2) when the condition FG=GF is
satisfied.

But (2. 9) shows also that
{(F, G)s"—(F, G} XY i—(F G — G " P X, Y]
are components of a vector field for any X”» and Y”* and consequently
2.11) (F, G)ji"—(F, G)if*

are components of a tensor field of type (1, 2), skew-symmetric in j and i, without
the condition FG=GF. This coincides with the torsion tensor [F, GI:

(2.12) (F, G)—(G, F)=IF, G].

§3. Operator @®F(X) applied to a tensor field of type (1, 2).
Let SegyM). We consider the expression
O(X)S(Y, 2)—S(0(X)Y, Z)—S(Y, (X)Z)
=—(Lsa,5,F)X+S(LYF)X, Z)+S(Y, (L2F)X),

@B.1

that is,
; IXXS(Y, Z2)—S(@(X)Y, Z2)—-S(Y, ¢(X)Z)
=[FX, S(Y, 2)]-F[X, S(Y, 2)]-S(FX, Y]-FI[X, Y1, 2)—-S(Y,[FX, Z]- F[X, Z])

for any X, Y, Ze TYM).
By the definition, (3. 1) is linear in X, but not in ¥ and Z in general. We
have in fact

O(X)S(@Y, hZ)—S(@(X)9Y), hZ)—S(gY, N X)hZ)
3.3 =gh{O(X)S(Y, 2))—S(P(X)Y, Z)—S(Y, N(X)Z)}

—(X(gh)F (S(Y, 2)+(X)hS(FY, Z)+9(Xm)S(Y, FZ)
for any g, he TY(M). Thus we have
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ProrosITION 3.1. Let SegyM). The expression (3.1) is linear in X, Y and
Z and defines a tensor field e TY(M) if and only if S satisfies

B4 F(S(Y, Z))=S(FY, Z)=S(Y, FZ)

for any Y, Ze Y M).
Thus if the condition (3. 4) is satisfied, we put

DX)S(Y, 2)—=S(MX)Y, Z)—S(Y, 2(X)Z)
(3.5 =(0(X)S)(Y, Z)
=(05)(X, Y, Z).

When F is an almost complex structure in M, an SeJy)M) which satisfies
(8.4) is said to be pure. Thus we have

COROLLARY 3.1. If S is a pure tensor €eIYM) in M with almost complex
structure F, (3.1) defines a tensor field € JYM).

When (3.1) vanishes for a pure tensor SeJ (M) and for any X, Y, Ze T M)
in M with almost complex structure F, S is said to be almost analytic.
On the other hand, we have from (3. 3)

O(fXNSY, hZ)—S(O(fX)9Y), hZ)—S@Y, X(fX)hZ))
+ (9 Y)ShZ, fX)—SD(gY XhZ), fX)—ShZ, (g Y)(FX)
FORZ)S(FX, Y )—S@hZ)fX), 9Y)—S(fX, D(hZ)9Y))
=fh{D(X)S(Y,. Z2)—S(@(X)Y, Z)—S(Y, HX)Z)
(3.6 +O(YXS(Z, X)—S(@(Y)Z, X)—S(Z, (Y)X)
+O(Z)S(X, Y)—SD2)X, Y)-S(X, ¢(Z2)Y)}
—(fXMFS(Y, 2)+MX)S(FY, Z)+fo(Xm)S(Y, FZ)
=Y NF(S(Z, X)) +aof (YW)S(FZ, X)+9h(Yf)S(Z, FX)
—(hZ(fOF(S(X, Y)+he(Z)SFX, Y)+hf (Z9)S(X, FY).
This equation and
FSUrX, oY1, hZ2)+FSU9Y, hZ), fX)N+F(S(hZ, £X]1,9Y))
—S(FIfX, ¢Y1, hZ)—S(FlgY, hZ], fX)—S(F[hZ, fX],¢Y)
=foh{F (S([X, Y], Z)+F (Y, Z], X)+F(S(X, Z], Y))
3.7 —S(FIX, Y1, Z)—-S(F[Y, Z], X)—S(F[Z, X], Y)}
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+FX(9INE (S(Y, Z)+ Y (R NF(S(Z, X)) +(hZ(FoNF(S(X, Y))
—fHXOSFY, Z)—af (YW)S(FZ, X)—hg(Z)S(FX, Y)
+o(YN)S(FX, Z)+hf (Zo)S(FY, X)+fo(XRS(FZ, ¥)
give
ProrosiTION 3.2. The expression

.8 X, Y, 2N0(X)S(Y, 2))—-S(0(X)Y, Z)—S(Y, H(X)Z)

+—;~{F(S([X, Y], Z)+FSY, [X, ZD)-S(FIX, Y], 2)—S(Y, FIX, ZD}]
is linear in X, Y,Z and defines a tensor field e M), where C(X, Y, Z) denotes
the sum of terms obtained by applying a cyclic permutation of X, Y and Z.
The actual expression for (3. 8) is
[FX,S(Y, 2)]-F[X, S(Y, 2)]-S(FX, Y]-F[X, Y], 2)-S(Y, [FX, Z]-F[X, Z])
+[FY,S(Z, X)1-F[Y,S(Z, X)1-S(FY, Z]-F[Y, Z], X)—S(Z, [FY, X]-F[Y, Z])
+[FZ,S(X, Y)]-FI[Z,5X, Y)|-S(IFZ, X1-F[Z, X1, Y)-S(X,[FZ, Y]-FI[Z, Y])
+F(SIX, Y1, Z2)+FSTY, Z], X)+F(S(Z, X1, Y))
—S(FIX, Y], Z)-S(F[Y, Z], X)—S(F[Z, X], Y),

if S is skew-symmetric.
We can check by an elementary but rather tedious tensor computation that,
if S(Y, Z) is the Nijenhuis tensor

S(Y, Z)=[FY, FZ]—F|Y, FZ]-F[FY, ZI+FY, Z]

then the expression (3. 8) is identically zero.
Thus

PRrROPOSITION 3.3. The expression (3.8) is identically zero for F and S(X, Y)
=N(X, Y).

ReEMARK 3.1. Let X*, Y* Z* F* and Sj"* be components of X, Y, Z, F and
S respectively with respect to a natural coordinate system in M. Then the ex-

pression (3. 2) has components
3.9 (Fy®0aS " — Fa01S i*— S0 F 5"+ Sai0 1 F 4 +S,"0: Fx*) X * Y I Z+
(3.
F(Fy2Sui = Fo"Sji® (X *0r Y ) Z1+4-(F.2S 10" — FoS 1) Y (X %3, Z7%).

Thus (3. 9) shows, as Proposition 3.1 says, that
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(3. 10) (Fy, S)iji" =F"0.S " — FoP01S 5" — S:°0aF 3" +Sai™0 i F 4+ S 10" 0: F
are components of a tensor field of type (1, 3) when the conditions
FoSut=F"Sai*=F,%Sa"

are satisfied.
On the other hand, (3. 9) shows that,

3(F, Shrji* X* Y IZi4-(F ) *Spain — FoSpjin X[ X, YVZ+[Y, ZVX+[Z, X Y7)
and consequently
(3.11) (£, Shxjir®

are components of a tensor field of type (1, 3), skew-symmetric in %,j and i,
without the condition (3.4). For a skew-symmetric tensor S, this tensor is equal
to [F, S] introduced by Nijenhuis and was proved to be zero when S is the Nijen-
huis tensor formed with F ([6]).

The expression (3. 11) can be written as

(F3%0aS "+ F,%0aSix™ + F,%04Sk ) — Fo(0%S i+ 0,S:1*+3:Sk,%)
—(Sk;%0aF " 4-S ;%0 F 3"+ Six"0aF i)
+Sra™(0;F* — 0. F)%) S0 (0:F 2 — 0x F2*) + Sia™ (0 F,* — 0;F%%),

when S is skew-symmetric.

As Willmore [15] showed it, this reduces to the tensor introduced by Slebod-
zihski ([10]) when F is an almost complex structure and S is the Nijenhuis tensor
formed with F, and hence the Slebodzihski tensor is identically zero.

§4. Operator @®F(X) applied to a tensor field of type (1, s).
Let TegyM). We consider the expression
OXNT(Yy, Yo, oo, YO)—T(O(X)Yy, Yo, oo+, Y)—+--—T(Yy, Yo, -+, O(X)Y)
=—(Lra, vy v )X+ T(Lr,F)X, Yo, -, Yo)+--+T(Y3, Yo, -, (Ly F)X),
that is,
O XNT(Y1, Yo, oo, Y)—T(@(X) Y1, Y, -+, Y)—---—T(Yy, Yo, -, D(X)Y5)
=[FX, T(Yy, Yz, -+, YOl —=F[X, T(Y1, Yz, -+, Y5)]
“2 —T(FX, Y1), Ys, -+, Y)+T(FIX, Y3, Y, -+, ¥7)

_"'_T(YI; YZ) Tty [FXy E])—I—T(Yl) YZ) ) F[‘X) I7‘8])
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fOI' —Xv, Yly Y2’ ) Ysegé(M)'
By the definition, (4. 2) is linear in X, but not in Yi, Y3, -+, Ys in general. We
have in fact

O(X)NT(9:1Y1,9: Y5, -+, 95 Yo)— T(D(X)(91 Y1), 02 Yo, -+, 05 V)
— o= T(01 Y1, g2 Yo, -+, D(X )95 Y3))
=(9192 -+ gHOXNT (Y1, Yo, -+, Y)—T(D(X) Y1, Y, -+, V)
— o= T(Y1, Yo, -, (X)) Yo)}
—(X (9192 -+ gNF (T (Y1, Yo, -+, Yo))+(Xg1)gz -+ 0T (FYy, Yo, --, Y5)

4. 3)

+9:(Xgs) -+ 9T (Y1, FYo, -, Yo)++ 40192 -+ (Xgs) T(Yy, Yo, -+, FYy)
for g1, 92, -+, 9s€ TYM). Thus we have

ProroSITION 4.1. Let Teg¥M). The expression (4.2) is linear in X, Y1, Y5,
-, Y5 and defines a tensor field € (M) if and only if T satisfies

F(T(Yy, Y, -, Y)=TFYy, Yo, -+, Y5)
=T(Yy, FYy, -, Yy
4. 4
=T(Yy, Yo, -+, F'Y5).
Thus, if (4.4) is satisfied, we put
QXN T(Yy, Y, -, Yo)—T@(X) Y1, Y, -, Yi)— - —T(Yy, Y, -+, O(X)Ty)
4.5) =@X)T)Yy, Yz, -+, Yy)
=(0T)X, Yy, Y5, -, Yy).

When F is an almost complex structure in M, a TeJYM) which satisfies
(4.4) is said to be pure. Thus we have

CoROLLARY 4.1. If T is a pure temsor €Y M) in M with almost complex
structure F, (4.2) defines a tensor field € ;. (M).

When (4. 2) vanishes for a pure tensor 7€ TL{(M) for any X, Y1, Yo, -+, Yse T3(M),
T is said to be almost analytic (See, for example, [7], [11], [16]).
On the other hand, we have from (4. 3)

C(fX’ 2% Yl) [P YZr s Ys)[Q(fX)( T(gl Yl, g2 Y2y 0 0s YS))
—T(@(fX)9. Y1), 9: Y5, -+, 9 V) — - —T(9:1 Y1, 92 Y5, -+, O(FX )95 Y5))]
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=CX, Y1, Yy, -, Yolf 019z -+ 0:{ QX NT(Y3, Y, -+, ¥3))
—T(@OX)Yy, Yo, oo, Yi) = —T(Yy, Yo, -+, (X)) Yy)}]
—CUX, 0111, 022, -, 0 YIS X (0292 -+ g)F(T(Y, Yo, -+, ¥3))
—f(X91)g2 -+ ¢sT(FY, Yo, -+, Yo)—++—fg1 - X(g) T (Y1, Yo, - FYy)],

from which we have
ProposITION 4. 2.
X, Yy, -+, YIOXNT(Yy, Yo, -+, Y5))
4.6) —T(@X)Yy, Yo, -, V)= —T(Y1, Yo, -+, (X)) Yy)
g B FCTVs, X, B oy YO+ TCT, o, FIX, il o, V)]
is linear in X, Y1, -, Ys and defines a tensor field € Ti.(M), where C(X, Y1, -+, Ys)
denotes the sum of terms obtained by applying a cyclic permutation of X, Yy, -, Y.

Remark 4.1. Let X* Yy, ., Y* Fi* and Ty,...,* be components of X, Y7,
-, Y5, F and T respectively with respect to a natural coordinate system in M.
Then the expression (4.2) has components

(Fi®0uT g5, —Fo0x Ty 5, — Ty..ns,"0aF 3"
4.7 + Tjs...a...jihajtFka)Xk Yyis ... Yt
t=1

S (F Ty g Fah Ty s D Vi ooe (X43, Y 9) oo Y
t=1

Thus (4.7) shows, as Proposition 4.1 says, that

(F, T)kjs...jlh
4. 8)

=F,,“a,,Tj8 ...jl"'—Fa,ha/c Tj, ..‘jla'— Tjs...,l“aaFkh+ tz:l Tjs ...a...,l"ath“
are components of a tensor field of type (1, s+1) when the conditions
FTyy*=F Tjpas® (#=1,2,-+,5)

are satisfied.
On the other hand, (4.7) shows that

(S+1)(F, T)[kfs"'h]h
13 o
o B B Ty sorn = P Ty XY [X, T Yol

+ 23 Yys - [V, Y. Jie - Ym

t¥xu
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and consequently, we see that
4.9 S+, Terggsi™

are components of a tensor field of type (1,s+1), skew-symmetric in all covariant
indices without the condition (4.4).

We can easily verify that (4.9) coincides with [F, T'] introduced by Nijenhuis
([61), when T is skew-symmetric.

§5. Operator @(X) applied to a 1-form.
Let weT(M). We consider the expression
FXNA(Y)—X(o(FY)—a(9(X)Y)
=(Lrxo— Lx(0F)XY),
where X, YeT (M) and the 1-form woF is defined by
(@ F)(Y)=o(FY)

5.1

for any Yeg(M).
The expression (5.1) shows that the 1-form

(5. 2) O X)o=_Lrxo— Lx(w-F)
is linear in X and consequently we have

ProposiTION 5. 1. Let weJYM). Then the expression (5.2) defines a tensor
field of type (0, 2).

We shall write
(5.3) (X)) Y)=(Pu)X, Y).

When F is an almost complex structure in M, a 1-form w satisfying &(X)w=0
for any Xeg'¥M) is said to be almost covariant analytic.

ReEMARK 5.1. Let X* Y* F* w; be components of X, Y, F, o respectively with
respect to a certain natural coordinate system in M. Then the expression (5.1)
has components

{F,%0qw;—0 (o F,*)+ wa0: F,*} X Y,
This shows, as Proposition 5.1 says, that
(5. 4) (F, w)ji:Fjaaawi_Ftaajwa"‘wa(asza_aiFJq)

are components of a tensor field of type (0, 2).
The (F, w);; is not skew-symmetric in j and 7 in general. We have
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(F, 0)ji—(F, 0)ij=[F, 0]—[I, 0°F;

in the notation of Frolicher and Nijenhuis ([1], [2]), I being the unit tensor.

§6. Operator @(X) applied to a tensor field of type (0, 2).
Let 0egTYM). We consider the expression

FXNOY, 2)—XOFY, 2)—00(X)Y, Z)—0(Y, X)Z)
=(Lrx0—Lx(0-F)Y, Z)+0Y, FLxZ)—0(FY, LxZ),

6.1)

where X, Y, Ze M) and the tensor #-F is defined by
(6.2) (0-F)XY,Z)=0(FY,Z)

for any Y, Ze g i{M).
By the definition, (6.1) is linear in X, but not in Y and Zin general. We have
in fact

FX)0WQY, hZ)—XOF @Y ), hZ))—0P(X)9Y), hZ)—0(0Y, H(X)hZ))
(6.3)  =gA{(FX)O(Y, Z)—XO(FY, 2)—0PX)Y, Z)—0(Y, H(X)Z)}

—0(XR) O(FY, 2)—0(Y, FZ)),
where ¢, he gY(M). Thus we have

PROPOSITION 6.1. Let 0eGYM). The expression (6.1) is linear in X, Y and
Z and defines a tensor field e T M) if and only if the tensor field 0 satisfies

(6. 4) O(FY,Z)=0(Y, FZ)
for any Y, Ze T M).
Thus if (6.4) is satisfied, we put
FX)OY, 2)—X(OFY, 2)—NX)Y, Z)—6(Y, (X)Z)
=(@X)Y, 2)=(P0)X, Y, Z).

(6. 5)
When F is an almost complex structure in M, a tensor field 9 ¥ M) which
satisfies (6.4) is said to be pure. Thus we have

COROLLARY 6.1. If 0 is a pure tensor field eGYM) in M with almost com-
plex structure F, then (6.1) defines a tensor field € TYM).

When this tensor vanishes, # is said to be almost analytic.
On the other hand, (6.3) shows that
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OX, Y, 2 (FX)N0(Y, 2)—X(OFY, Z)—0(dX)Y, Z)—0(Y, H(X)Z)
+5 16, FIX, Z)~0(FY, [X, ZD)]
is linear in X,Y,Z and defines a tensor field of type (0,3), where C(X,Y,Z)

denotes the sum of terms obtained by applying a cyclic permutation of X, Y, Z.

REMARrk 6.1. Let X* Y* Z* Fi* and 6, be components of X, Y, Z, F and ¢
respectively with respect to a natural coordinate system in M. Then the expres-
sion (6.1) has components

{F%"000 ji— 0400 ") +0100:F %" + 0000, F3* } X* Y IZ
©0 +(0,F 0 F XY i Z.
The equation (6.6) shows, as Proposition 6.1 says, that
6.7) (F, Oiji=F0a0 ji—05(0aiF';*) 0 1a0: F* + 0010 ; F*
are components of a tensor field of type (0,3) when the condition

0]ana = 0aiF]a

is satisfied.
But (6. 6) shows also that

(F ’ 0)[kji]

are components of a tensor field of type (0, 3), skew-symmetric in %, j,7 without
the condition (6. 4).

If the tensor # is a 2-form, then the tensor above coincides with that in-
troduced by Frolicher and Nijenhuis ([1]). In their notation, it is

3(F, Dwjir=LF, Olesi—L1, 6°Flxjs.

§7. Operator @(X) applied to a tensor field of type (0, s).
Let 7egYM). We consider the expression
(FX) (Y1, Yy, -+, Yo))— X (m(FY1, Vs, -+, Y3))
—(@(X) Y1, Yo, -+, Yo)) = —n(Y1, Yo, -, O(X)Y5)
(7.1) =(Lrxr— Lx(mF))( Y1, Yo, -+, Y5)
+a(Yy, FLxYs, -, Yot +n(Yy, Yo, -, FLxY5)
—n(FYy, LxY2 -, Yo)— - —n(FY1, Ya, -+, LxY5).
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By the definition, (7.1) is linear in X, but not in Yi, Ys, -, Y, in general.
We have in fact

(FX)1(9:1Y1,9: Y5, -, 0s Vo)) — X (e(F (91 Y1), 92 Y, -+, 95 Y5))
—(P(X)(9:Y1), 02 Y2, -+, g5 Vo) — -+ —1(91 Y3, 92 Y, -+, D(X)(95 Y5))
=(0102 -+ gHFX) (Y1, Yo, o+, Vi) =X (@(FY3, Yz, -+, Y5))
(7.2) —n(@(X)Yy, Yo, -+, Yo)—+o—a(Y1, Yo, -+, (X)) Y3)}
—01(X02)9s -+ 9(x(F Y1, Yo, -+, Vo) —n( ¥y, FY2, -+, Y5))
—0192(X0s) -+ 9s(a(FY1, Yo, -, Yi)—n(Yy, Yo, F Y, -+, Y5))

—0192 ** (ng)(”(FYh Y2) 0y Ys)—'ﬂ( Yly Yz; Tty FYS))’
where 91, 92, -+, 9s€ T ¥(M). Thus we have

PropPOSITION 7.1. Let neTYM). The expression (7.1) is linear in X, Y1, Y,
-, Y5 and defines a tensor field € $.,(M) if and only if the temsor n satisfies

a(FYy, Yz, oo, Yo)=a(Yy, FYs, -+, ¥y)
7.3)
=n(Y3, Ys, -+, FY3)
for any Y1, Yy, -, Yee THM).

When F is an almost complex structure in M, a tensor field e g% M) which
satisfies (7. 3) is said to be pure. Thus we have

COROLLARY 7.1. If n is a pure tensor field eTYM) in M with almost com-
Dplex structure F, then (7.1) defines a tensor field €T %.,(M).

When this tensor field vanishes, = is said to be almost analytic.
On the other hand, (7.2) shows

C(X’ Yl; YZ’ R Ys)[(FX)(TE(YIy Y2’ ) Ys))—X(ﬂ(FYh Y2a ) YS))
(7.4  —a(@X)Yy, Ye, -+, Yo)——a(¥y, Yo, -+, H(X) Ys)

+ 22(—1)z_1{7r(F‘X'7 Yl’ ) [Y‘t—h K]v Tty YS)—”(*X: Yl; ) F[Yt—l’ Yt]’ ) YS)}]
t=
is linear in X, Y-, Y, and defines a tensor field of type (0,s+1), where

C(X, Yy, -, Ys) denotes the sum of terms obtained by applying a cyclic permuta-
tion of X, Yy, -+, Y.
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RemARk 7.1. Let X*, Yi?, -, Y*, F*, ;. be components of X, Y3, -, Y5, F,x
with respect to a natural coordinate system in M. Then the expression (7.1) has
components

{Fk“aanh...h—a,,(:r%_l...hFJs“) -+ tgl ﬂ]s...a.‘.jlatha}Xk Vs .. Y
(7.5)
s
+ 2 @t F 3 —Tags_ gy Fa ) Y178 oo (X %0, Y(70) - Y1,
=2
Equation (7.5) shows, as Proposition 7.1 says, that
(F, ﬂ)kjs...jl=Fkaaa7fjs...]l—ak(ﬂa,js_l...leJsa)

S
+ tZ:l njs..a...jlath“

are components of a tensor field of type (0, s+1) when the conditions
Tygetog Byt =Tagg_yg Fy" E=1,2, -+, 5—1)
are satisfied. But (7.5) shows also that
(s+1)(F, m)tesgesn

are components of a tensor field of type (0,s+1), skew-symmetric in all indices,
without the condition (7. 2).
In the notation of Frolicher and Nijenhuis, we have

(S+I)E, m)iggeg1=LE, wlisgegy— L, wo F g gy

if = is skew-symmetric.

§8. Operator 7S(X, Y) applied to a vector field.

We next define an operator ¥'S(X, Y') or simply (X, Y), associated with a fixed
SeT M) and arbitrary X, Yeg M), which is applied to an arbitrary Ze T¥M) and
gives a vector field

(A VX, Y)Z=—(L2S)X, Y),
that is,
8.2) (X, Y)Z=[S(X, Y), Z1-S(X, Z], Y)—S(X, [Y, Z]).

We see from (8.1) that ¥(X, Y)Z is linear in X and Y, but not in Z in
general. We have in fact

8.3 VX Y)hZ)=hU(X, Y)Z)+((SX, Y)IIZ—(XWS(Z, Y)—(YW)S(X, Z)
for any AegYM).
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§9. Operator ¥ (X, Y) applied to a tensor field of type (1, 1).
Let Fegi(M). We consider the expression
O.1 VX, YYFZ)—F¥(X, Y)2)=(—LrzS+FL2)X, V),
that is,
VX, YYFZ)-F¥(X, Y)Z)
9. 2 =[S(X, Y), FZ1-S(X, FZ], Y)—S(X, Y, FZ))
—F{[S(X, Y), Z]1-S(X, Z], Y)—S(X, [Y, ZD}.

By the definition, (9.1) is linear in X and Y but not in Z in general. We
have in fact

VX, Y)FhZ)—-F¥ (X, Y)hZ))
9.3 =¥ X, Y)FZ)-F¥(X, Y)Z)}
—(Xh)(S(FZ, Y)—F(©S(Z, Y)—(Yh)(S(X, FZ)—F(S(X, Z))).
Thus we have

ProrosiTION 9. 1. The expression (9.2) defines a temnsor field of type (1,3) if
and only if F satisfies

©.4) F(S(Y, Z))=S(FY, Z)=S(Y, FZ).
Thus if (9.4) are satisfied, we put
VX, YYFZ)-F¥(X, Y)Z)
&9 =X, Y)F)Z=UF)X, Y, 2).
If (9.4) are satisfied, then (3.2) can be written as
(DX)S(Y, Z)
. 6) =[FX,S(Y, 2)]-F[X,S(Y,Z)]-S(FX, Y1, Z)
+FS(X, Y1, Z2)—S(Y, [FX, Z)+F(S(Y, [X, Z]).
Thus (9.2) and (9. 6) show that
9.7 @X)S)Y, Z)+ (Y, Z)F)X=0,

when (9.4) are satisfied.
Coming back to the general case, we have from (9.3)
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VX, 9YYFRZ)—FU(fX, 9Y XhZ))
=for{¥ (X, Y)FZ)—F¥(X, Y)2)} —fo(XW)S(FZ, Y)
—fo(YW)S(X, FZ)+fo(XWF (S(Z, Y )+f9(YRF (S(X, Z)),
from which
V(fX, 0Y)FRZ)—FU(FX, gY)hZ)+¥ (Y, hZ)F (X))
—FU @Y, hZ)fX)+VhZ, fX)F@Y)—F¥(hZ,fX)9Y))
=fgh{¥ (X, YYFZ)—FW (X, Y)Z)+¥ (Y, Z)(FX)
—FW(Y,2)X)+¥Z, X)FY)-F¥(Z,X)Y)}
—f9XW)SFZ, Y)—fo(YWS(X, FZ)+fo(XWF(S(Z, Y))
+fo(YWF(SX, Z2)—gh(Y)SFX, Z)—gh(Zf)S(Y, FX)
+9h(Y)F(S(X, Z2)+9WZ)FS(Y, X))—hf (Zg)SFY, X)
—hf (X9)S(Z, FY)+hf (Zg)F (S(Y, X))+hf (Xg)F (S(Z, Y)).

9.8

Forming (3. 6)—(9. 8), we obtain

O(fX)SWY, h2)—S(@(fX)gY), hZ)—SgY, ?(fX)hZ))
+P(gY ) ShZ, FX)—S( @Y )hZ), fX)—S(hZ, D¢ Y )(fX))
+OMZ)S(fX, 9Y)—S@RZ)(fX), Y)—S(fX, O(hZ)(gY))
—V(fX, gY)FhZ)—FU (X, 9Y)hZ))
=¥ Y, hZXF(fX)—FT Y, hZXfX))
Uz, fX)F(@Y)—F¥(hZ, fX)GY))
=fgr{@(X)S(Y, Z2))—S(@(X)Y, Z)—S(Y, d(X)Z)
+(Y)S(Z, X)—S(A(Y)Z, X)—SZ, (Y)X)
+O(Z)S(X, Y)—-S(@(2)X, Y)—S(X, (2)Y)
—¥(X, Y)FZ)—-F¥(X, Y)Z)
VY, 2 FX)-F¥(Y,2)X)
—U(Z, X\FY)—F@¥(Z, X)Y)}

which shows that
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CX, Y, Z)o(XXS(Y, 2)—-S(@(X)Y, Z)—-S(Y, D(X)Z)
V(X Y)YFZ)-F¥(X, Y)2)]

9.9
gives a tensor of type (1,3), where C(X,Y,Z)[ ] means the sum of terms
obtained by a cyclic permutation of X, Y, and Z.

RemARk 9.1. The expression (9.2) has components with respect to a natural
coordinate system in M,

(= F3%00S;i" — Sas™0;F %" — Sja0:Fx* + Sji* 0+ Fo0xS ;) Z ¥ Y I X
F(FarSi® =S Fx®)(0;,2 %) Y I X2+ (F " Sy — Sy F)(0:Z¥) Y I X v,

9. 10)

Equation (9.10) shows, as Proposition 9.1 says, that
9.11) (S, Fiji*=—F3*0aS " — Sai"01F 3" — S1a"0:F %"+ S1:°0aF "+ F o015 1"
are components of a tensor field of type (1,3) when the conditions
Fo"Sui® = F3*Sai"= Fi*Sea™

are satisfied.
But (3.10) shows,

(F, S +(S, F)z"=0.

Thus, when the tensor S;* is a vector-valued 2-form, the tensor (9.9) is equal
to 2[F, S].

§10. Operator (X, Y) applied to a tensor field of type (1, s).
Let Tegi(M). We consider the expression
(10.1) ¥X, YNT(Zy, Ze, -+, Ze))—TH (X, Y)Z1, Zs, -+, Zs)—+++—T(Z1, Zo, -, (X, Y)Z5)
=(—Lrzy, 2525 X, Y)
+T(L2SX, Y), Zoy -+, Z) Ao+ T(Z1, Zs, -+, (L2,S)X, Y)),
that is,
VX, YNT(Z1, Zoy -y Z))— TW (X, V)21, 23y -+, Zs)— - — T (21, Za, -+, ¥ (X, Y)Z5)
=[S(X, Y), T(Zy, Zs, -+, Z)|—SUX, T(Z1, Z, -+, Zo)), Y)—=SX,[Y, T(Z1, Z2y -+, Z5)))
(10.2) —T(S(X, Y), ZJ-SUX, Z.], Y)—S(X, Y, Z\]), Zs, -+, Z5)

—_—

- T(Zly ZZ) R [S(){’ Y)) ZS]—S([)(: Z-‘]’ Y)—S(){’ [Y’ ZS]))'
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We see from (10.1) that
VX, YNT'(Zy, Zs, +++, Z3))
—TWX, Y)Zy, -, Z)——T(Z1, 2o, -+, ¥ (X, Y)Z)
is linear in X and Y, but not in Zi, Z,, ---, Zs in general. We have in fact
VX, YTz, hoZs, -+, hsZy))
—TW X, Y)IZ), hoZs, -+, bsZs)— - — T(Z1, hoZs, -+, T (X, V) (1:sZs))
=(hs - b){W (X, YNT(Z1, Zs, -+, Z5))
—TWX, Y)21, Zsy -y Zs)—++—T(Z1, Zoy -+, W (X, Y)Z5)}
—( Xk - h(S(T(Z1, Zs, -+, Zs), Y)—T(S(Z1, Y), Zs, +++, Z))
0. 9 —(Xhs) - h(S(T(Z1y Zay -+ Zs), Y)—T(Z1, (20, Y), +++, Zs))
—lahy - (Xhs)(S(T(Zvy Zay -+, Zs), YV—T(Z1, Zs, -+, S(Zs, )
—(Yh)hs - h(S(X, T(Z1, Zs, +++, Zo))— T(S(X, Z1), Zs, -+, Zs))
—h(Yhy) -+ h(S(X, T(Z1, Zoy -+, Zs))—T(Z1, S(X, Z5) -+ Zy))

—huhs - (Yhs)(S(X, T(Z1, 2oy -+, Z3))—T(Z4, Z, -+, S(X, Y5)).
Thus we have

ProprosiTiON 10. 1. The expression (10.1) is linear in X, Y, Zy, ---, Zs and defines
a tensor field of type (1,s+2) if and only if T satisfies

S(T(Zly Zz, ) ZS); Y)= T(Zly RS S(Zty Y): R Zs);
(10' 4) S(X; T(Z1, ZZy R ZS))= T(Zl) R S(X, Zt); ) ZS)
1=t=s).

ReMARK 10.1. The expression (10.1) has following components with respect
to a natural coordinate system in M.

(Sk]”aa I“s"'ilh— ﬂs...zl“aaskj"—saj"ak Tzs...zl“—Ska,”ajTismil"‘
+ 3 Tiyanty"0,S,)XEY I 2008 o Zin
t=1

(10. 5)
-+ Z (ﬂs...a...ilh‘sit]a—sajhTis...ila') YIZ (X *0pZM) -+ Zsih
t=1

2 (Do S = Sed Lo XML (Y I0,24) - 24
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This equation shows, as Proposition 10.1 says, that
(S, Drjigeiy®=Ski*0a Tigoiy— Tigi,*0aSk ™
8079 Tyt "= Skad; Loty §1 Tyt 04,50,

are components of a tensor field of type (1,s+2) when the conditions
Tis...ilasa,jh’r- Tzs...a...ilhsit]a,
ns../’,laSkah: is...a...zlhskzta

are satisfied.
If S and T are both skew-symmetric, we can show that

(s+2)S, Tiksigis

are components of a tensor field without condition (10.2). Moreover we have, by
a straightforward computation,

(S+D(+2)S, Thirjigagd=2LS, Tljigms,"

in Nijenhuis’ notation.

§11. Operator (X, Y) applied to a 1-form.

In this and next sections, we always assume that the S is a vector-valued
2-form.
Let wegYM). We consider the expression

(S, Y)N(@(@)—X(o(S(Z, Y)))—Y(e(S(X, 2)))
—o(S(X, Y], 2)— 0¥ (X, Y)Z)
=(Lsx.1,0)Z)—(Lx(wNZ, Y)
—(Lr(@SHX, Z)+ (05X, Y], 2),
where X, Y, ZegJ¥(M) and the tensor weoS is defined by
(@°5)(X, Y)=0(S(X, Y))

(11.1)

for any X, YeTyM).
Since we have

(fX)(S(Z, ¢ Y ) — (0 Y )(S(FX, 2))—(S(fX, 9 Y], 2))
=(f){X(S(Z, Y))— Y (o(S(X, 2))—o(S(X, Y], Z))},

we see that (11.1) is linear in X and Y,
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We see also that (11.1) is linear in Z. Thus we have

ProprosiTiON 11.1. The expression (11.1) is linear in X,Y,Z and defines a
tensor field of type (0, 3).

We sometimes denote this tensor field by
TX, YV)o)Z)=Tw)X, Y, Z).

Remark 11. 1. The expression (11.1) has following components with respect
to a natural coordinate system

(S, (D)ka‘ =Sk Jaaawi —0 (Suawa) - aj(skzawa) + (aiskja) Wa,
from which we have,
3(S, @)exji=I[S, @lxji—2[I, ®°Slkji

in the notation of Frolicher and Nijenhuis.

§12. Operator (X, Y) applied to a tensor field of type (0, s).
Let e 3(M). We consider the expression

(Lsx,r>1)Zy, ++y Z)—(Lx(@ SN2, ¥, 2o,y -+, Zs)
_(IY(TE°S))(X) Zl, ZZ} ) Zs)+(ﬂ°s)([X, Y]; Zl) ZZ) RS) Zs)y

12.1

where
(meSNX, Z1y Z2y +++, Zs)=n(S(X, Z1), Zs, +++, Zs).
This expression defines a tensor field of type (0,s+2) if and only if
7(Zy, -+, S(X, Y), -, Zs)
(12.2) =n(S(Z1, Y), Ze, -, X, +++, Zs)
=n(S(X, Z1), Zs, +++, Y1, -+, Zs).

RemARk 12.1. Expression (12.1) has local components

Sk.laaan'isuﬂ.l + tZzl ﬂzs...a...zlaitsk]a+ak(ﬂ'°S)jis...1,1 —aj(n'° S)’“s'“zl

.

- (ms...a..‘zlSk]‘k- Skisaaams_1...]...51)Xk(aq;t YJ)

t=2

—_ &ZZ (ﬁzs...a...zlsk]a_ Sis]aaaﬂ'za_lA..k...z'l)(aith) Yj’
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S
(S, Z)kjis...zl=Sk]aaa,ﬂ.’zs...7;1+ 7 Togotionay 05 5k7"
i=1

+0x(moS) jig.1,— (T Skagay

are components of a tensor field of type (0, s+2) under the condition (12.2).
We have

(S+1)(S+2)(S, TL')[qujs...zl]:Z[S, ﬂ]kjis""’:l +2(S+1)[I, 7[°S]k;jis...7,1

in the notation of Frolicher and Nijenhuis.
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