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ON CONTACT METRIC IMMERSION

BY MASAFUMI OKUMURA

Introduction. The theory of complex submanifolds in a complex manifold is
one of the most fruitful aspects in the study of complex manifold. In fact, after
Schouten and Yano [β] established the notion of so-called invariant submanifold of
a complex manifold many beautiful theorems concerning this have been proved.

On the other hand Sasaki [4] established a differential geometric method to
study a contact manifold and this permits us to study contact manifold by use of
tensor calculus. Making use of Sasaki's method, Watanabe [7] and the present
author [2, 3] studied some submanifolds of a contact manifold.

However, in their papers, they observed rather Riemannian structures of the
submanifold than contact metric structures.

In this paper, the author tries to establish a theory of submanifold which is
inherited a contact metric structure by the enveloping contact metric manifold.

In § 1 we give first of all the definition of contact metric manifold and in § 2
a summary of theory of submanifolds of codimension 2 in a Riemannian manifold.
These two paragraphs are rather expository. After these preliminaries we give in
§ 3 some formulas in a submanifold of codimension 2 in a contact metric manifold.

In § 4 we define the notion of contact metric immersion of a manifold into a
contact metric manifold of codimension 2 and show conditions for an immersion
to be a contact metric one.

Further in this paragraph we study the relations between a contact metric
immersion and an immersion which is called F~ invariant one.

In § 5 we define the notion of normal contact immersion of a manifold into a
normal contact manifold of codimension 2 and prove conditions for an immersion
to be a normal contact one.

Finally in §6 we show an example which is an umbilical submanifold in
normal contact manifold but not a normal contact submanifold.

§ 1. Contact metric manifold.

A (2^+l)-dimensional differentiate manifold M2w+1 is said to have a contact
structure and called a contact manifold if there exists a 1-form η on M2n+1 such
that

(1. 1)

everywhere on M2n+1 where dή is the exterior derivative of η and the symbol Λ
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390 MASAFUMI OKUMURA

means the exterior multiplication, η is called a contact form on M2n+1.
Since (1. 1) means that the two-form dη is of rank 2n everywhere on M2n+1

we can find a unique vector field E on M2n+1 satisfying

(1.2) ?(£)=!, dy(E,X)=0

for an arbitrary XζT(M2n+1).
It is knownυ that there exists a positive definite Riemannian metric g such

that if we define a linear transformation F on M2n+1 by

(1. 3) 20(FX, Ϋ)=dη(X, Ϋ ),

then (F, E, η, flf) satisfies, for arbitrary

(1.4) F2X=

(1. 5) *I(FX)=Q,

(1. 6) flf(£, X)=η(X

(1. 7) flf(FX, FΫ)=0(X, Ϋ)-

The set (F, £, 9, g) which satisfies (1. 1), (1. 2), (1. 3), (1. 4) and (1. 5) is called
a contact metric (or Riemannian) structure and the manifold with such a struc-
ture is called a contact metric (or Riemannian) manifold. If in a contact metric
manifold the tensor defined by

(1. 8) N(X, ?)=[*, Ϋ]+F[FX, Ϋ]+F[X, FΫ]-[FX, FΫ]+(Ϋη(X}-Xyj(Ϋ)}E

vanishes everywhere, the structure is said to be normal and the manifold is called
a normal contact manifold.

In a normal contact manifold the following identities hold2) for arbitrary
vector fields X, Ϋ, Z on M2n+1:

(1. 9) VχE=FX,

(1. 10) (Mθ(£ Ϋ)=2(η(X}q(Ϋ , Z}-η(Ϋ)g(X, Z)},

where P % denotes the covariant differentiation with respect to the Riemannian
metric g in the direction of Z.

From (1. 9) it follows that

which shows that the vector field E is an infinitesimal isometry.
Now let {yλ} be a local coordinate of M2n+1 and U the coordinate neigh-

borhood. Then the set of vector fields

is called the natural frame of M2n+1 and it spans the tangent plane of M2n+1 at

1) Sasaki [4], Hatakeyama [1].
2) Sasaki and Hatakeyama [5].
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each point of U. The dual basis of the natural frame is given by the set of 1-
forms (dy\- ,dy2n+1).

If we represent N by

it follows that

μλ dy" ^Y V 3y*' dyλ

• ηt-W ηtί-φ

or using the Riemannian connection F,

(LID ^'^Γ-WΓ

where we have put

(1.12)

(1.13)

§ 2. Submanifold of codimension 2 in a Riemannian manifold.

Let Mm be an m-dimensional orientable diίferentiable manifold and c be an
immersion of Mm into an m+2-dimensional Riemannian manifold Mm+2. Then
the Riemannian metric g of Mm+2 induces naturally a Riemannian metric g on
Mm by the immersion ε in such a way that

g(X, Y)=g(dc(X\ Λ(Γ)),

where we denote by dt the differential map of c and by X, Y tangent vectors to
Mm. In order to simplify the presentation we identify, for each point p€Mm, the
tangent space TP(M) with ^(71

p(M))cTί(ί»(M) by means of dt.
A vector in Γ,(1,>(M) which is orthogonal, with respect to g, to the subspace

dc(Tp(M)) is said to be normal to Mm at p. Since Mm is orientable, if we assume
that Mm+2 is also orientable, in a certain neighborhood U of p we can choose two
fields of mutually orthogonal unit normal vectors N and N to Mm at each point

1 2

of U in such a way that, if (Bί9 --,Bm) is a positively orientable frame of tangent
vectors at p then the frame (dt(Bι), ~ 9de(Bm), N, N) at c(p) is positively oriented.

1 2

Then we have

g(X, N)=
(2.1)
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If X and Y are tangent to Mm the covariant derivative of dc( F) in the direc-
tion of dt(X) is expressed as

(2. 2) fW>Λ(F)=F*F+ff(*, Y)N+K(X, Y)N.
1

Though 7XY denotes the tangential components of Pdttχ)dc(Y), it is easily
verified that Vx Y is identical with the covariant derivative of Y in the direction
of X with respect to the induced Riemannian metric g. Thus we can write (2. 2)
as

(2. 3) VzY=χY-H(X, Y)N-K(X,
1 2

by means of the above identification.
The 2-forms H and K over Mm are called the second fundamental forms of

Mm in Mm+2 with respect to the normal vectors N and N respectively.
1 2

Since N and N are both unit vectors we have from (2. 1)
1 2

(2. 4) §(N, PχN)=0, »•=!, 2,
t ^

from which we can write

(2. 5) FxiV= - ACSO+LCXW
1 2

(2. 6) F*A/= -A'(X)-L(X)N9
2 1

where ^L(X) and A'(X) mean the tangential components of V XN and P^TV to Mm

1 2

respectively and L is the connection form of the normal bundle to Mm. Differ-
entiating both members of the equations

0(N, F)=0, i=l, 2,
I

covariantly in the direction of a tangent vector field X, we get

, Y)+0(N, VχY)=V, i=l, 2.

Substituting (2. 3) into the above equation, we have the equations of Weingarten:

(2. 7) g(7χN, Y) = -H(X, F), g(V XN, Y)=-K(X, F).

Let {a?*} z=l, 2, ~,m be local coordinates in an open neighborhood V of
psMm. The set of vector fields

is called the natural frame of Mm and it spans the tangent plane of Mm at each
point of F. We choose a positively oriented frame (Blt - ,Bm, N, N), where

1 2
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at each point of the neighborhood Z7ΓΊ V of c(p)εMm+2. Then A(X) and A'(X)
are represented as linear combinations of Biy i=l,2, ,m and consequently we
have from (2. 5) and (2. 6)

m

(2. 8) VZN= - Σ H<Bt+LtX)N,
1 1=1 2

(2. 9) FXΛΓ= -
2 ι

or denoting L(d/dxj) by L.;

~
(2. 10) FB JV= -

1

~(2. 11) FS/ΛΓ= -
J 2

Hence, by virtue of (2. 7), we get

(2. 12)

(2. 13) ^ - Γ « = ~^B^ Bi)==

where gr^ means g(d/dχi, d/dx*) and we use Einstein's summation convention for
brevity. Further, in what follows, we use the standard identification by the
induced Riemannian metric g and so we put

Since the Riemannian connections F and ί7 are both torsionless we easily see that

H(X, Y)=H(Y, X\ K(X, Y)=

or equivalently that

When at each point of Mm there exist differentiate functions h and k such that
H(X, Y)=hg(X, F), K(X, Y)=kg(Xy F) or equivalently

(2. 14) Hjt^hgji, Kjt=kgjt9

we call Mm a totally umbilical submanifold in Mm+2 and the immersion c a totally
umbilical immersion. Moreover when the proportional factors h and k vanish
identically we call Mm a totally geodesic submanifold in Mm+2 and e a totally
geodesic immersion.

Let R and R be curvature tensors of Mm+2 and Mm respectively. Then the
equation of Gauss, Mainardi-Codazzi and Ricci-Kuhne are respectively given by

(2. 15)
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ί g(R(Bk,
(2.16)

I S(R(Bk, BJBi, N)=l7leKβ-!7ίKkt+LkHίl-LjHkl,

and

(2. 17) g(R(Bk, Bi)N, N^V^L-V ̂ -
1 2

where

and V j denotes the operation of covariant differentiation in classical tensor calculus.
If the Riemannian manifold Mm+2 is of constant curvature, that is, if we have,

for any X, Ϋ and Z belonging to Γ(Mm+2),

β(X, Ϋ)Z=c{g(Ϋ, Z)X-g(X, Z)Ϋ], c= const.,

then, from (2. 5), (2. 16) and (2. 17), we get

(2. 18) Rkjίh — c(gjiQkh — QkiQjh) + HjiHfch — HjcίHjh + KjiKich —

i — F jfίjci =

and

(2. 20)

§ 3. Submanif old of codimension 2 in a contact Riemannian manifold.

Let M2w+1 be a contact metric manifold and M2n~l a submanifold of codimen-
sion 2 in M2n+1. The transform F.X" of a tangent vector field Xε T(M2n~l}cι T(M2n+1)
can be expressed as a sum of its tangential part (FX)T to M271'1 and its normal
parts, that is,

FX = (FX)T+ φ(X)N+ ψ(X)N.
1 2

The correspondence XεT(M2n~1) to (FJ^)Γ defines a linear transformation/:
T(MZn-l)-*T(M*n~l) and the correspondence X^T(MZn~l) to )̂ and to φ(X)
define respectively 1-forms ^ and ψ on M271"1. So the equation above can be
rewritten as

(3. 1) FX=fX+φ(X)N+ψ(X)N,

from which we get

(3. 2) φ(X)=g(FX, N) = -g(X, FN),

(3. 3) ψ(X)=g(FX, N)=-tKX, FN).
2 2
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By means of definitions of F and / we see immediately that

(3.4) g(fX, Y) = -

Let {x*} be a local coordinates in a neighborhood U of p$MZn~l. We choose a
frame

in T(M2n+1), then, from (3. 1), we have

(3. 5) #R= *Σfi*
7ι=l 1 2

where /iΛ are components of the matrix which defines the linear transformation
/ and f^ and gt those of the 1 -forms φ and φ respectively.

On the other hand the transforms FN and FN are respectively expressed as
1 2

271-1

(3. 6) FN= Σ hhBh+rN,

(3.7)
2 ft=l 1

from which we have

f fί=g(FBt, N)=-g(Bt, FN)=-hh9(Bh, 5i)=-
(3.8)

I gi=g(FBi, N)=-9(Bt, FN)=-Vg(Bh B^-
2 2

and

(3. 9) r=g(FN, N)=-g(N, FN) = -s.
1 2 1 2

The vector field E being tangent to M2n+1, it is represented as a linear com-
bination of Bi, N and JV. Hence we put

1 2

(3. 10) *

from which we get

(3. 11)

(3.12) y(N)=g(E,N)=a, q(N)=0(E, N)=b.

Transforming again the both members of (3. 5) by F and making use of
(1. 4), (3. 5), (3. 6), (3. 7) and (3. 10), we find

-Bi+ιw'Bj+aUiN+bUiN=fihfh'Bj+fi*fhN+ffr
1 2 1 2 2 1

from which
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(3. 13)

(3. 14)

Transforming again the both members of (3. 6) by F and making use of
(1. 4), (3. 5), (3. 7) and (3. 10), we find

I 1

from which

(3. 15)

(3.16) Qifi=-ab.

In exactly the same way we get

(3. 17) 0<0«=l-δ2-Λ

Since the second condition of (1. 2) is equivalent to S(FE, X)=0 for any
^€Γ(M2w+1), it follows that FE=Q and consequently we have

FE=uiFBi+aFN+bFN=Q9
1 2

because of (3. 10). Substituting (3. 5), (3. 6) and (3. 7) into the equation above, we
find

1 2 1

from which

(3. 18) uίfi

h=afh+bgh,

(3. 19) «i/* = br, Uig* = - ar.

By virtue of (3. 10) the first condition of (1. 2) can be rewritten as

f}(E)=9(E, E)=g(ul

1
1 2 1 2

that is,

(3. 20) uiu
i=l-a2-b2.

Let M2n+1 is a normal contact manifold. Differentiating (1. 3) covariantly in
the direction of Z and taking account of (1. 9) and (1. 11), we find

(3. 21) 9ϊ(dq(X, Ϋ})-dη(Ψ~2X, Ϋ)-dη(X, fsΫ)=2®(X)g(Ϋ, Z)-η(Ϋ}g(X, Z)).

Substituting Bif B3 and Bk for X, Ϋ and Z respectively in (3. 21) and observ-
ing the fact that

^dη(X, Γ)=g(FX, Y}=g(fX, Y) for X,
£l

we obtain

(3. 22)
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Substituting N, Bi and Bj for X, Ϋ and Z respectively in (3. 21), we find

(3. 23) F,/i= -agfi-rKfi-

In the same way, we get

(3. 24) 7jgi= -

On the other hand, in a normal contact manifold, we have (1. 9) and con-
sequently

Substituting (3. 5) and (3. 10) into the equation above and making use of
(2. 7), (2. 8) and (2. 9), we get

(3. 25) Vjit

(3. 26) Vj

(3. 27) Vjb

§ 4. Contact metric immersion.

Let M2n+l be a contact metric manifold, MZn~l an orientable submanifold of
M2n+1 and c the immersion of M2n~l into M2n+1. Making use of the contact form
η on M2n+1 we define 1-form u on MZn~l by

or equivalently

(4.1) .(-A-) =#«)=*.

DEFINITION 4. 1. Let G be a Riemannian metric homothetic to the induced
Riemannian metric g of M2""1. If there exists a pair of positive constants t and
c such that η=tu and G=cg constitute a contact metric structure of M2n~l we
call the immersion c a contact metric immersion and the submanifold MZn~l a
contact metric submanifold.

Since (37, G) constitutes a contact metric structure of M2*"1, the linear mapping
/: TXM^-O-^TW2"-1) and the vector field E, which are defined respectively by

(4. 2) GCΛY, F)= dη(X, F),

satisfy

(4.3) q(E)=G(E, E)=l,

(4.4)

(4.5)
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In the following, we put

DEFINITION 4. 2. Let M2n+1 be a contact metric manifold and F a linear
mapping T(M2n+1)-* T(M2n+1) defined by (1.3). If the immersion c: M2n-l-*M2n+l

satisfies F(T°c(M2n~1))<^T°c(M2n-1), the immersion c is called an F-invariant immer-
sion and the submanifold M2n~l is called an F-invariant submanifold.

PROPOSITION 4. 3. If an immersion of M2n~l into a contact metric manifold
M2n+1 is F-invariant, the immersion is necessarily contact metric immersion.

Proof. Since c is F-invariant, (3. 5) shows that

FBi=fi3B3, FN=rN, F
1 2

or equivalently /<=g<=0. Hence (3. 10) and FE=0 give

FN=rN, FN=-rN,
1 2 2 1

Consequently we have

(4. 7) ff>//=0,

(4. 8) ar=br=Q.

Now let P be a point of M2n~l at which r(P)=0. Then at P we have

because of (3. 15) and (3. 17). However, (3. 16) show that the absolute value of
f i g 1 is equal to 1 at P. This contradicts to Λ=0ί=0. Thus, it follows that there
is no zero point of r in M2n~l. Consequently we have a=b=Q on M2n~l. This
shows that

fihfhJ= -dl+UiU* and uiu
ί= 1,

because of (3. 13) and (3. 20).
Now we put η=u, G=g, then it follows that

On the other hand, by the definition, we get

Combining the above two equations, we get dη(X, Y)=2G(fX, Y) for any
X, Y€T(M2n-1). This means that the pair (η, G) constitutes a contact metric
structure on M2n~\ Q.E.D.
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PROPOSITION 4. 4. Let M2n+l be a contact metήc manifold and c an immersion
/x/

of M2n~l into M2n+1. In order that c is F-invariant it is necessary and sufficient
that f*=l.

Proof. Necessity. If t is F-invariant, we have fi=gt=Q and a=b=Q. Hence,
because of (3. 15), r2=l.

Sufficiency. Let c be an immersion and r2=l. Then it follows that

by virtue of (3. 15) and (3. 17). The Riemannian metric g being positive definite,
we have a=b=0 and fi=Qi=Q. This, together with (3. 5), implies that the im-
mersion c is an F-invariant immersion.

PROPOSITION 4. 5. Let M2n+1 be a contact metric manifold and M271'1 a con-
tact metric submanifold of M2n+1. If n^2 the linear mapping f is identical with
f and we have g(E, X)=u(X) or equivalently

(4. 9) ξ'=uJ.

Proof. First of all we have from (4. 2)

which implies that

(4. 10) g(E, X)= — u(X), that is, ζj= —HJ.
c c

By means of the definition of the exterior derivative, we get

_\_ -a f
* * η

(4. ii)

and

If we denote by {yλ} local coordinates of M2w+1, the immersion c is represented as
yλ=yλ(xί) and this implies that

Thus we have

(4.12)
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Combining (4. 11) and (4. 12), we get

(4.13) /=y/.

To show that the constant c\t is equal to 1, we first assume that there is a
point PeM2"-1 at which (FA/")?, (FN)$ and EP are linearly dependent. Then tak

1 2

ing a vector

in such a way that at this point Y is orthogonal to the tangent plane which
contains (FN)%, (FN)% and EF, we have

1 2

)p=-5?(F)p=-«(F)p=-
c c c

g((FN)τ, F)p=-Λ^(P)=0,
1

from which, together with (3. 13),

On the other hand (4. 6) and (4. 13) show that

Comparing the last two equations, we have c/t=l. Thus in this case the mapping
/ is identical with /. Next suppose that (FN)T, (FN)T and E are linearly in-

1 2

dependent at any point of Mzn~l. If there is a point of M2n~l at which one of
(FNY and (FN)T vanishes, we can take an orthogonal vector to E and (FN)T

1 2 2

(or (FN)T). Using this vector we can prove the assertion quite similar way to the

first case. If the vector fields do not vanish at any point of M271"1 and linearly
independent, (3. 18) and (4. 4) show that a=b=Q. So by virtue of (3. 13), (4. 6)
and (4. 13) we get

from which r2=c2/t2. On the other hand (3. 13) and (4. 13) imply that

2(«-l) ̂ r =2(n-2+r2).
ΐ

Combining the above two relations, we have r2=l. Thus, because of Proposition
4. 4, /ί=flrί=0. This contradicts to our assumptions. This completes the proof.

PROPOSITION 4, 6, Under the same assumptions as those in Proposition 4. 5,
we have
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(4. 14) G=g(E, E)~lg, g(E, £)=const.

The proof is quite easy.

PROPOSITION 4. 7. Let M2n+1 be a contact metric manifold. In order that an
immersion c of M2n~l into M2n+1 is a contact metric immersion it is necessary and
sufficient that the relations

(4. 15) f*X= -X+g(ET,

(4. 16) g(ET, Eτ)= const.

are both valid.

Proof. Let c be a contact metric immersion of M271"1 into Mzn+1. Then by
Proposition 4. 6 and the proof of Proposition 4. 5 it follows that

(4. 17) η=g(Eτ, ETΓ^ E=ET, G=g(ET, ETY^g, g(ET, ^)=

and consequently

f*X= -X+η(X)E= -X+g(ET, ETTlu(X)ET.

Conversely if (4. 15) and (4. 16) are both valid, we put

η=g(Eτ, ETY^ G=g(ET, EτrιQ.

Since g(ET, X)=u(X), we have

η(Eτ)=g(Eτ, ET)-^(ET)=g(ET

9 ETYlg(ET, Eτ)=l,

f2X= -X+g(Eτ, ETYlu(X)ET= -X+η(X)Eτ.

As to relations of dη and / we get, by (4. 16) and (1. 3),

This shows that (37, G) thus defined is a contact metric structure of M211'1. Q.E.D.

PROPOSITION 4. 8. Under the same assumptions as those in Proposition 4. 5,
we have

(4. 18) g(ET, Eτ)=gjiu^ui=uiu
ί=r2.

Proof. Since c is a contact metric immersion, (3. 18), (4. 4) and (4. 9) show
that afi+bgί=0) from which, together with (3. 15), (3. 16), we get

In the same way, using (3. 17), we get
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The last two equations imply that

(a2+b2)(l-r2-a2-b2)=Q.

As we have, from (3. 20) and Proposition 4. 6, that #2-f&2= const, it follows that

g(ET, Eτ)=g(E, E)=uiu
ϊ=l-a2-b2=r2

or

The first case is just our assertion. If the second case occurs, (3. 20) shows
that g(Eτ

y Eτ) = l. In this case, since we also have a=b=Q it follows that

because of (3. 13), (3. 15), (3. 16) and (3. 19).
On the other hand (3. 19) and (4. 15) show that

which implies that r2=l. Thus, in this case we also have (4. 18). Q.E.D.

COROLLARY 4. 9. r= constant.

THEOREM 4. 10. Let M2n+1 be a contact metric manifold. In order that an
immersion c of M271"1 into M2n+1 is contact metric it is necessary and sufficient
that the following relations are all valid.

(4. 19) g(ET, Eτ) = «<«» = const. ,

(4. 20) (FN)T= -g(ET, EτΓ1/2g(E,
i

(4. 21) (FN)T=g(ET, EτΓ1/2g(E,

Proof. Let c be a contact metric immersion of M2n~l into M2n+1, then from
Proposition 4. 6, (4. 19) is valid. Now, we put

(4. 22) (FN)T= A&+Z, (FN)T=BET+ W,
1 2

where Z and W are vectors orthogonal to Eτ. Then Proposition 4. 8 gives

g(ET, (FN)T)=Ag(ET, Eτ)=Arz, g(Eτ

y (FN)T)=Bg(ET, Eτ)=Br2.
1 2

On the other hand (3. 19) implies that

g(EΓ

9 (FN}τ}=-g(E, N}r= -br, g(Eτ

ί (FN}τ)=g(E, N)r=ar.
1 2 2 1

Thus combining these relations, we get

(4.23) A=-br1, B=ar~\
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Substituting (4. 23) into (4. 22), we have

(FN)T= -br-l£τ+Z, (FN)=ar~1E'Γ+ W,
1 2

from which

0(CW, (FN)T)=b2r-2g(ET, Eτ)+g(Z, Z)=b2+g(Z, Z\
1 1

On the other hand (3. 15) and Proposition 4. 8 show that

g((FN)τ,(FN)τ)=l-a2-r2=l-a2-(l-a*-b2)=b2.
I 1

From the last two equations we have g(Z,Z)=Q and consequently Z=0. In ex-
actly the same way we get W=Q. Hence we have (4. 20) and (4. 21).

Conversely if an immersion e satisfies the conditions of Theorem 4. 10, accord-
ing to (3. 20) and Proposition 4. 8 we get,

Thus it satisfies the conditions of Proposition 4. 7. This completes the proof.

§5. Normal contact immersion.

In this paragraph we define the notion of normal contact immersion of M2n~l

into a normal contact manifold M2n+1 and give conditions of a contact metric
immersion to be a normal contact immersion.

DEFINITION 5. 1. Let M2n+1 be a normal contact manifold and c be a contact
metric immersion of M2n~l into M2n+1. We say that e is a normal contact immer-
sion if the contact metric structure induced on M2n~l by e is normal.

THEOREM 5. 2. An F-invariant immersion c of M2n~l into M2n+1 is a normal
contact immersion.

Proof. By the definition of normality we have only to examine Njih=Q. As
is seen in the proof of Proposition 4. 3, we have for an F-invariant immersion,
/*=0ί=0 and a=b=Q.

Using this facts and substituting (3. 22), (3. 25) and (4. 2) into the similar
equation to (1. 11) we have

W=//(PrΛΛ-P.AΛ)^^

However, for an F-invariant immersion, r2=l by virtue of (3. 15). This shows
that Njih=Q. Q.E.D.

THEOREM 5. 3. In order that a contact metric immersion c of M2n~l into a
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/v

normal contact manifold M2n+l be normal contact immersion it is necessary and
sufficient that one of the following holds:

1) c is an F-invariant immersion,
2) the second fundamental tensors Hjt and K# have the following forms:

(5. 1) Hji

(5. 2) Kji

REMARK. As is easily checked the forms of the second fundamental tensors
(5. 1) and (5. 2) are independent of the choice of unit normal vectors to T(M2n~1).

Proof of Theorem 5. 3. Let t be a normal contact immersion of M2n~l into
M2w+1. Then by the definition of normality we get

W=//(PrΛft-F*^

Substituting (3. 22), (3. 25), (4. 2) into the equation above and making use of
(3. 18), (4. 9) and Theorem 4. 10 we find

—f3\bHrhUi-aKrhUi-\-r§h

ruϊ) - —

(5. 3)

On the other hand we know that if a contact metric structure is normal the
vector field ξ* is a Killing vector field. By Proposition 4. 5, £* being equal to «*,
we have

(5. 4)

because of (3. 25).
Thus (5. 3) takes the form

j//(W7r*«i-*/&^

Substituting (5. 4) into the last equation, we find

} =0.

Transvecting this with ul and making use of (3. 20), Proposition 4. 8 and Theorem
4. 10, we get

Since a2+b*= const, we have a2+b2=Q or

(5.5)

If <z2+Z>2=0, it follows that r2=l. Thus in this case the immersion is F-invariant
If #2-|-&23Fθ, transforming the both sides of (5. 5) by /<', we have
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r r* \ r
rji being symmetric with respect to j and i, it follows that

1
Hr

hur=puh, p=

Hence

«*= 7«+ TF (75- HjkuW- A)«,ίΛ

Substituting this into (5. 4), we have

This proves the necessity of our assertions.
Conversely if, in a contact metric submanifold M27*"1, the second fundamental

tensors Hji and K# have the forms of (5. 1) and (5. 2).
Differentiating (4. 20) covariantly, we have

(5. 6) Γjfh= -ί (uJjb+Wpύ.

Substituting (3. 23), (3. 25) and (3. 27) into (5. 6), we have

Substituting (5. 1) (5. 2) into the above, we get

-r(agjh+rKgjh+Hfhj)=-

Transvecting this with fhj, we have

Next differentiating (4. 21) covariantly we have also

a

Thus we get

(5.7) ffΛ=!

(5.8) JV=--ir

Substituting (5. 7) and (5. 8) into the left hand members of (5. 3), we have



406 MASAFUMI OKUMURA

1 / 1 \ 1 / I
NjC——//( —(a2-\rb2)-\-r\Ui ff- —(<22+

r \ r / r \ r

Thus, by virtue of (4.18), we have Njih=0. This, together with Theorem 5. 2,
completes the proof.

COROLLARY 5. 4. Let c be a contact metric immersion of M2n~l into M2n+1.
If c is a totally umbilical or totally geodesic immersion, c is a normal contact im-
mersion.

THEOREM 5. 5. Let M2n~l be a normal contact metric manifold of constant
curvature. In order that a contact metric immersion c of M2n~l into M2n+1 is a
normal contact immersion it is necessary and sufficient that one of the following
is satisfied'.

1) c is an F-invariant immersion,
2) c is a totally umbilical immersion.

Proof. The sufficiency of the conditions are clear by Theorem 5. 3. So, we
have only to examine the necessity of the conditions. The proof of the sufficiency
of Theorem 5. 3 show that if c is normal contact

Thus we express the second fundamental tensors as (5. 7) and (5. 8). On the other
hand the fact that M2n+1 is a manifold of constant curvature implies that

(5. 9)

(5. 10) wfWkKji= -uγvLzHji,

because of (2. 19). Substituting (5. 7), (5. 8) into (5. 9), (5. 10), we get

(- — Qji + kujuλ = kwUifkΨkUj = 2(n - I)r2k = 0.

Thus we have

(5. 11) Hji= ~ Qji, KJt= - y Qjt,

This completes the proof.

In concluding this paragraph we state a theorem on an F-invariant immersion.

DEFINITION 5. 6. An immersion c of M2n~l into M2n+1 is said to be minimal
if it satisfies at arbitrary point of M2n~l

trace H= trace K=0.
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THEOREM 5. 7. An F-invariant immersion of M2n~l into a normal contact
manifold M2n+1 is a minimal immersion.

Proof. Since ι is F-invariant it follows that Λ=gΐ=0 and a=b=Q on M271'1,
which implies that

because of (3. 23) and (3. 24). As Hjk, KjΊc are both symmetric with respect to
their indices and /# is skew symmetric, we have

This completes the proof.

§ 6. An example.

It is well known3) that an odd dimensional sphere is one of the most typical
example of a normal contact manifold.

In this paragraph we show an example of submanifolds in an odd dimensional
sphere.

In Theorem 5. 3 and 5. 5 we have assumed that the immersion c is a contact
metric immersion and shown a condition for c to be normal contact. This as-
sumption, however, can not be omitted. To show this we give an example.

Let S2n+1 be an odd dimensional sphere which is represented by the equation

(6. 1)
A=l

in a (2^+2)-dimensional Euclidean space E2n+z with rectangular coordinates yΛ

CA=l,2,—,2rt+2). We put

(6. 2) y=~nΣ(yn+1+a<tya-yadyn+1+a)>
6 α=l

then the 1-form 9 defines a contact form on S2n+1.
The Riemannian metric g on S2n+1 is naturally induced from the Euclidean

space E2n+2 in such a way that

(6.3) fc,=a
, i . _ _ ,

The exterior derivative of η given by (β. 2) becomes

(6. 4) dτj= ^nΣ(dyn+1+aΛdya-d
6 a=l

Since S2n+1 is defined by (6. 1), we have

3) Sasaki and Hatakeyama [5].
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From these two relations we have

y1

0 —
yΠ

0 -

-1

0

yn+2

-1

Now we consider a submanifold of S2 Λ f l whose local representation is given by

(6. 5)

Then we have

(6.6)

We put

(6.7)

Then N and N are mutually orthogonal vectors to the submanifold defined by
1 2

(6. 5). The submanifold is, as is easily seen, totally umbilical submanifold of codi-
mension 3 in E2n+2. Since S2w+1 is a totally umbilical submanifold of E2n+2 the sub-
manifold defined by (6. 5) is a totally umbilical submanifold of S2n+1. Now we
calculate g(FN, N) and find

1 2

(6.8) 2r=2FtfC
lD*=-yn+

Thus the function r is not constant. Hence the submanifold (6. 5) cannot be a
normal contact submanifold.



CONTACT METRIC IMMERSION 409

BIBLIOGRAPHY

[ 1 ] HATAKEYAMA, Y., On the existence of Riemann metrics associated with a 2-
form of rank 2r. Tδhoku Math. Journ. 14 (1962), 162-166.

[ 2 ] OKUMURA, M., Certain hypersurfaces of an odd dimensional sphere. Tόhoku
Math. Journ. 19 (1967), 381-395.

[3] OKUMURA, M., Compact orientable submanifold of codimension 2 in an odd
dimensional sphere. Tδhoku Math. Journ. 20 (1968), 8-20.

[4] SASAKI, S., On differentiate manifolds with certain structures which are
closely related to almost contact structure I. Tδhoku Math. Journ. 12 (1960),
459-476.

[ 5 ] SASAKI, S., AND Y. HATAKEYAMA, On differentiable manifolds with contact me-
tric structures. Journ. Math. Soc. Japan 14 (1962), 249-271.

[ 6 ] SCHOUTEN, J. A., AND K. YANG, On invariant subspaces in the almost complex
X2n. Indag. Math. 17 (1955), 261-269.

[ 7 ] WATANABE, Y., Totally umbilical surfaces in normal contact Riemannian mani-
folds. Kόdai Math. Sem. Rep. 19 (1967), 474-487.

DEPARTMENT OF MATHEMATICS,
TOKYO INSTITUTE OF TECHNOLOGY.




