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ON CONTACT METRIC IMMERSION

By Masarumi OKUMURA

Introduction. The theory of complex submanifolds in a complex manifold is
one of the most fruitful aspects in the study of complex manifold. In fact, after
Schouten and Yano [6] established the notion of so-called invariant submanifold of
a complex manifold many beautiful theorems concerning this have been proved.

On the other hand Sasaki [4] established a differential geometric method to
study a contact manifold and this permits us to study contact manifold by use of
tensor calculus. Making use of Sasaki’s method, Watanabe [7] and the present
author [2, 3] studied some submanifolds of a contact manifold.

However, in their papers, they observed rather Riemannian structures of the
submanifold than contact metric structures.

In this paper, the author tries to establish a theory of submanifold which is
inherited a contact metric structure by the enveloping contact metric manifold.

In §1 we give first of all the definition of contact metric manifold and in § 2
a summary of theory of submanifolds of codimension 2 in a Riemannian manifold.
These two paragraphs are rather expository. After these preliminaries we give in
§ 3 some formulas in a submanifold of codimension 2 in a contact metric manifold.

In §4 we define the notion of contact metric immersion of a manifold into a
contact metric manifold of codimension 2 and show conditions for an immersion
to be a contact metric one.

Further in this paragraph we study the relations between a contact metric
immersion and an immersion which is called F-invariant one.

In §5 we define the notion of normal contact immersion of a manifold into a
normal contact manifold of codimension 2 and prove conditions for an immersion
to be a normal contact one.

Finally in §6 we show an example which is an umbilical submanifold in
normal contact manifold but not a normal contact submanifold.

§1. Contact metric manifold.

A (2n-+1)-dimensional differentiable manifold M2+t s said to haveNa contact
structure and called a contact manifold if there exists a 1-form # on M***! such
that

1.1 FA @) =0

everywhere on M+ where dj is the exterior derivative of 7 and the symbol A
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390 MASAFUMI OKUMURA

means the exterior multiplication. 7 is called a contact form on M2m+1,
Since (1.1) means that the two-form dj is of rank 2z everywhere on M*"+!
we can find a unique vector field £ on M?**! satisfying

1. 2) HE)=1,  ay& =0
for an arbitrary XeT ().

It is known® that there exists a positive definite Riemannian metric § such
that if we define a linear transformation F on M?***! by

a.3) 20FX, V)=d5X, V),
then (F, E, 7, §) satisfies, for arbitrary Xe T(W2n+Y),

) FX=—X+5X)E,

(1. 5) #(FX)=0,

(L. 6) WE, H=#X),

1.7 §FX, F¥)=dX, T)—5(X)5).

The set (F, E, 7, §) which satisfies (1. 1), (1. 2), (1. 3), (1. 4) and (1. 5) is called
a contact metric (or Riemannian) structure and the manifold with such a struc-
ture is called a contact metric (or Riemannian) manifold. If in a contact metric
manifold the tensor defined by
1.8) NX, V=X, Y1+FIFX, Y1+ FIX, FY1-IFX, FY1+ 58— X5(¥)E
vanishes everywhere, the structure is said to be normal and the manifold is called
a normal contact manifold.

In a normal contact manifold the following identities hold® for arbitrary
vector fields X, Y, Z on M+
1.9 VeE=F X,
(1. 10) Tz X, V=25, Z)-5a(X, 2,
where ¥ 5 denotes the covariant differentiation with respect to the Riemannian
metric § in the direction of Z.

From (1.9) it follows that

iV 2E, ¥)+aVsE, X)=0,

which shows that the vector field £ is an infinitesimal isometry.

Now let {y*} be a local coordinate of M1 and U the coordinate neigh-
borhood. Then the set of vector fields

0 a

is called the natural frame of M?*! and it spans the tangent plane of M?**! at

1) Sasaki [4], Hatakeyama [1].
2) Sasaki and Hatakeyama [5].
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each point of U. The dual basis of the natural frame is given by the set of 1-
forms (dy?, -+, dy*»*?).
If we represent N by

_l [ 2 ._i_
N=5 NS @dy' @ -

it follows that
M 5= (5 57)
— (PO F —0F)— F0F, —0,F.5)+ 0.5, 0,E°7,) %
or using the Riemannian connection ¥,
W10 N e = (F O P B~ FY O = PP B, By}

where we have put

5 . a

1.12) Fw-——Fx a—y,—,
Ik 0 d N
(1.13) E=E F 77(6—@/‘>_77"

§2. Submanifold of codimension 2 in a Riemannian manifold.

Let M™ be an m-dimensional orientable differentiable manifold and ¢ be an
immersion of M™ into an m-+2-dimensional Riemannian manifold M™*2, Then
the Riemannian metric § of M™*? induces naturally a Riemannian metric ¢ on
M™ by the immersion ¢ in such a way that

9(X, Y)=§(d«(X), d«(Y)),

where we denote by d: the differential map of ¢ and by X, Y tangent vectors to
M™. In order to simplify the presentation we identify, for each point peM™, the
tangent space Tp(M) with du(Tp(M))C T,(,,,(JVI) by means of d..

A vector in T, (M) which is orthogonal, with respect to §, to the subspace
di(Tp(M)) is said to be normal to M™ at p. Since M™ is orientable, if we assume
that M™*2 is also orientable, in a certain neighborhood U of p we can choose two
fields of mutually orthogonal unit normal vectors N and N to M™ at each point

1 2
of U in such a way that, if (B, -+, Bx) is a positively orientable frame of tangent
vectors at p then the frame (du(By), -+, d«(Bn), 1:/’, ];7) at «(p) is positively oriented.

Then we have

{ §(X, N)=§(X, N)=§(N, N)=0,
(2. 1) 1 2 1 2

g, N)=§(N, N)=1.
11 2 2
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If X and Y are tangent to M™ the covariant derivative of d«(Y) in the direc-
tion of di(X) is expressed as

2.2 ¥ ooy dd V)=V x Y+ H(X, Y)N+K(X, Y)N.

Though FxY denotes the tangential components of 7 wxd(Y), it is easily
verified that FxY is identical with the covariant derivative of Y in the direction
of X with respect to the induced Riemannian metric ¢. Thus we can write (2. 2)

as
2. 3) VyY=FyY—H(X, Y)N—K(X, Y)N,

by means of the above identification.
The 2-forms H and K over M™ are called the second fundamental forms of

M™ in M™* with respect to the normal vectors N and N respectively.
1 2
Since N and 12\4' are both unit vectors we have from (2. 1)
1

@. 4) I, PxN)=0,  i=1,2,
from which we can write

2. 5) VxN=—AX)+L&X)N,
. 6) FxN=—A"(X)-LX)N,

where A(X) and A’(X) mean the tangential components of FxN and FxN to M™

1 2
respectively and L is the connection form of the normal bundle to M™ Differ-
entiating both members of the equations

g, Y)=0, =12,

covariantly in the direction of a tangent vector field X, we get
W =N, Y)+i(N, PxY)=0, i=1,2.
3 T
Substituting (2. 3) into the above equation, we have the equations of Weingarten:

@7 a(ﬁxzy, V)=—H(X, Y), a(ﬁxzy, V)=—K(X, Y).

Let {x'} i=1,2,---,,m be local coordinates in an open neighborhood ¥ of
peM™. The set of vector fields

(2 2)
oxt’ ’ ox™

is called the natural frame of M™ and it spans the tangent plane of M™ at each
point of V. We choose a positively oriented frame (B, -+, Bm, ]1V’ N), where
2

Bi=de <i) i=1,2, -, m,
ox?
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at each point of the neighborhood UNV of «p)eM™*2. Then A(X) and A/(X)
are represented as linear combinations of B;, i=1, 2, .-, and consequently we
have from (2.5) and (2. 6)

(2. 8) ﬁlev= — L HiB+LX)N,
1= 2
2.9) ﬁxzy=— gKiBi—L(X)Jl\T,
or denoting L(d/6x’) by L,
@.10) Po,N=— 3 Hi B LN,
@11) PoN=— 3 K/ Bim LN,
=1
Hence, by virtue of (2. 7), we get

P ] - m
2.12) H(%;J— ) W) = —(7(73]1:7, By)= §H1k6(3k> Bi)=Hj*gi.,

P P - m
@19 K(oar o)==, B= 5 KpaB B)=Kfu,

where ¢;; means ¢(9/0x/, 9/0z) and we use Einstein’s summation convention for
brevity. Further, in what follows, we use the standard identification by the
induced Riemannian metric ¢ and so we put

9 0 bl 0

H(a—x]—, E’L‘T)=Hﬂ and K(W’ W)=Kji'
Since the Riemannian connections ¥ and 7 are both torsionless we easily see that

HX, Y)=H(Y,X), KX Y)=K(,X),
or equivalently that
Huy=Hy;, Ku=Ki;.

When at each point of M™ there exist differentiable functions % and % such that
HX, YV)=m(X,Y), KX Y)=kg(X,Y) or equivalently
2.14) Hu=hgju,  Ku=kgj,
we call M™ a totally umbilical submanifold in M™** and the immersion ¢ a totally
umbilical immersion. Moreover when the proportional factcirs k and k vanish
identically we call M™ a totally geodesic submanifold in M™% and ¢ a totally
geodesic immersion.

Let B and R be curvature tensors of M™*? and M™ respectively. Then the
equation of Gauss, Mainardi-Codazzi and Ricci-Kiihne are respectively given by

(2. 15) ] (ﬁ (B, B)Bi, Br)= Ry jin— HjiHin+ Hes Hpn— Ky Kin+ K Kjn,



394 MASAFUMI OKUMURA

[ G(ﬁ(Bk; B))B;, JIV)=VkHji-Viji—LkKﬂ+L1KM,

@. 16) N

1 G(R(Bw, BBy, N)=V1Kji—V K+ LuHji— L,
and
@.17) 0(R(By, Bj)N, N)=V L~V ;Li—KuiHp-+ K yiHy,
where

0 0 0 ad
Ran=o(R(53 37) 5 75)

and /; denotes the operation of covariant differentiation in classical tensor calculus.
If th(z Riemannian manifold M™*? is of constant curvature, that is, if we have,
for any X,Y and Z belonging to 7'(M™*%),

ﬁ()?, I7)Z~:c{g7(l7, Z>X-g(}?, Z~)l7}, c=const.,
then, from (2. 5), (2. 16) and (2.17), we get
(2.18) Ry jin=c(9ji9%n— %9 1)+ Hji Hin— His Hjn + K i Kon— K Kjny

ViHji—V jHyi= LK ji— LK,
2. 19

VkKﬁ—VijiZ —LkHji+Lijzy
and
(2. 20) VeL;i—V jLy=KiHj— K Hy".

§3. Submanifold of codimension 2 in a contact Riemannian manifold.

Let M?**' be a contact metric manifold and M?*! a submanifold of codiNmen-
sion 2 in M?**, The transform FX of a tangent vector field Xe T (M?**Y)c T (M?"+1)
can be expressed as a sum of its tangential part (FX)T to M** ! and its normal
parts, that is,

FX=(FX)T+SD(X)11V+¢(X)12V-

The correspondence XeT'(M? ') to (FX)T defines a linear transformation f:
T(M*1—T(M?**1) and the correspondence XeT(M?***) to ¢(X) and to ¢(X)
define respectively 1-forms ¢ and ¢ on M2l So the equation above can be
rewritten as

3.1) FX=FX+o(X)N+g(X)N,

from which we get
(3.2 P(X)=4(FX, N)=—§(X, FN),

3.3 HX)=4(FX, N )=—0(X, FJZV' )-
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By means of definitions of F' and f we see immediately that
B9 9(fX, ¥)=—g(X, fY).
%et {z°} be a local coordinates in a neighborhood U of peM?**~'. We choose a
rame

bl .
(B -+, Bunsy I, N Bi=d:(5;>, i=1,2, e 201,

in T(MZ”“), then, from (3. 1), we have

2n—1

3.5) FB;= ’;:1 fi”Bn+fi11\7+gi]2\7,

where f;* are components of the matrix which defines the linear transformation
f and f, and ¢; those of the 1-forms ¢ and ¢ respectively.
On the other hand the transforms Fjl\/' and Flz\/' are respectively expressed as

2n—1

3. 6) FN= ) h*By+7N,
1 h=1 2

2n—1
3.7 FN= }} k"By+sN,
2 h=1 1

from which we have

- fi=0(FB;, N)=—§(Bi, FN)=—h"3(Bn, B)=—'gin=—"hs,
©-9 { 9s=0(FB;, N)=—0§(By, FN)=—k§(B;, B)=—klgs=—khs.
and

B9 r=§(FN, 12\7)=—!7(11V, FN)=—s.

The vector field E being tangent to M2+, it is represented as a linear com-
bination of B;, ]1\/' and 12\/' Hence we put

. 2n—1
(3. 10) E= 3, uiBi—]—aZlV+bZﬂV
=1
from which we get
@11 7(B)=0(E, B)=u'§(Bs, B)=u'gij=u,
@.12) HN)=4(E, N)=a, 7(N)=0(E, N)=b.

Transforming again the both members of (3.5) by F and making use of
1. 4), (3.5), (3.6), (3.7) and (3. 10), we find

—B;+ %i%ij'l-duzly—l-butlzv=ft"fnj3j+fi”fn]y+fi"gn1¥—ftffBj—i—7fizz\f— gingj_rgily,

from which
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(3.13) Sl =—0tuud+1if 149,

(3.14) S u=auitrg,  firgn=bu;—1f..

Transforming again the both members of (3.6) by F and making use of
1. 4), 3.5), (3.7) and (3. 10), we find

—N+awBita*N+abN=—1f B—f f iN—=Fq;N—rg' Bi= N,

from which

(3.15) fufi=1—a*—7,

(3.16) gift=—ab.
In exactly the same way we get

3.17) gigt=1—b%—7%

N SirLce the second conditior} of (1.2) is equivalent to §(FE, X)=0 for any
XeT(M**), it follows that FE=0 and consequently we have

FE=uiFBi+aFJI\7+bFZZV'=O,
because of (3.10). Substituting (3. 5), (3. 6) and (3. 7) into the equation above, we
find
u*(fifBj+fz{V+gi13\’ )+a(711\’—f ’Bj)—b(ngj+rl2\/')=0,

from which
(3.18) wifi=af "+ bg™,
3.19) u fi=br, uigt=—ar.

By virtue of (3.10) the first condition of (1.2) can be rewritten as
#(E)=4(E, E)=a(u‘B,~+a]}/'+bZ;/‘, wBj+aN+bN)=uau+a*+b*=1,

that is,

(3. 20) uut=1—a?—0b2.

Let M?**! is a normal contact manifold. Differentiating (1. 3) covariantly in
the direction of Z and taking account of (1.9) and (1.11), we find

@.21) PyanX, Yn—dp: X, ¥)—dpX, 7 :¥)=26(X0a ¥, 2) -5 X, 2)).
Substituting B;, B, and Bi for X,V and Z respectively in (3. 21) and observ-
ing the fact that
LA, V)=iFX, H=gfX, V) for X, YeT(M™™,

we obtain
(3.22) Vifp=Ff iHe—fiHeit91Kei—9eKej+ 091 — tigrs.
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Substituting ]1\/', B; and Bj for X, Vand Z respectively in (3. 21), we find

(3. 23) Vifi=—agj—rKj—Hjpfi*+ Lgi.
In the same way, we get
3. 24) Vi9i=—b9+vHji— K fi*—L; f.

On the other hand, in a normal contact manifold, we have (1.9) and con-
sequently

Vs,E=FB;.

Substituting (3.5) and (3.10) into the equation above and making use of
2.7), (2.8) and (2. 9), we get

(3. 25) Vjut=fi+aH +bKf,
3. 26) Via=f;— uiHji + bLj,
(3. 27) ij=gj—utKj¢—(le.

§4. Contact metric immersion.

. Let M?*** be a contact metric manifA(')ld, M?*-! an orientable submanifold of
MeEntt gnd ¢ the immersion of M?**~! into M?***!, Making use of the contact form
7 on M**! we define 1-form # on M?®** by

w(X)=7(de(X))

or equivalently
0
@1 u(ﬁ)=a<3i)=ui.
ox

DEeFINITION 4.1. Let G be a Riemannian metric homothetic to the induced
Riemannian metric ¢ of M?*', If there exists a pair of positive constants ¢ and
¢ such that p=tu and G=cg constitute a contact metric structure of M?**~' we
call the immersion ¢ a contact metric immersion and the submanifold M?*! a
contact metric submanifold.

Since (3, G) constitutes a contact metric structure of M?*~1, the linear mapping
fr T(M*»H—T(M?*-1) and the vector field E, which are defined respectively by

.2 CGX V=% V), GUE, X)=n(X),
satisfy

“.3) WE)=G(E, E)=1,

@4 FE)=0,  2(fX)=0,

. 5) F2X=—X+7(X)E.
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In the following, we put

[ @ -, 0 d
4. 6) f<W>=f,.fa_ﬂ, p=grl.

DeFINITION 4.2. Let M?*! be a contact metric manifold and F a linear
mapping T(A'712"+1)—>T (M?+7) defined by (1.3). If the immersion ¢: M2—1—][2n+!
satisfies F(Tod(M?1))C Toe(M?*~1), the immersion ¢ is called an F-invariant immer-
sion and the submanifold M?*~! is called an F-invariant submanifold.

PrROPOSITION 4. 3. If an immersion of M?*' into a contact metric manifold
M+t is F-invariant, the immersion is necessarily contact metric immersion.

Proof. Since ¢ is F-invariant, (3. 5) shows that

FB=f#B, FN=rN, FN=-1},

or equivalently f;=g;=0. Hence (3.10) and FE=0 give
FE=u1ffBi—l—aﬂy—br]1\/'=0.
Consequently we have
@7 wif i=0,
4.8) ar=>br=0.
Now let P be a point of M?»! at which #(P)=0. Then at P we have
a*(P)=b*P)=1,

because of (3.15) and (3.17). However, (3.16) show that the absolute value of
fig* is equal to 1 at P. This contradicts to f,=g¢;=0. Thus, it follows that there
is no zero point of 7 in M*!. Consequently we have ¢a=b=0 on M? !, This
shows that

fitful=—04um! and  wwi=1,

because of (3.13) and (3. 20).
Now we put p=u, G=g, then it follows that

a0 a0\ . o N
1o ) =( s ) = 8(Bss BO=20(F B3y B)=2f
On the other hand, by the definition, we get
0 0 d d
6(7 307> 05) =0(F 0 3as) T
Combining the above two equations, we get dyp(X, Y)=2G(fX,Y) for any

X, YeT'(M?*-1). This means that the pair (y, G) constitutes a contact metric
structure on M**, Q.E.D.
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PROPOSITIOE 4.4. Let M be a contact metric manifold and ¢ an immersion
of M®* into M**', In order that ¢ is F-invariant it is necessary and sufficient
that r*=1.

Proof. Necessity. If ¢ is F-invariant, we have f;=¢;=0 and ¢=b=0. Hence,
because of (3.15), r2=1.
Sufficiency. Let ¢ be an immersion and 7>=1. Then it follows that

fift=—a?  gg*=—b*

by virtue of (3.15) and (3.17). The Riemannian metric g being positive definite,
we have a=b=0 and f;=g¢;=0. This, together with (3.5), implies that the im-
mersion ¢ is an F-invariant immersion.

ProrosITION 4. 5. Let yfz”“ be a contact metric manifold _and M*t a con-
tact metric submanifold of M**. If n=2 the linear mapping f is identical with
f and we have g(E, X)=u(X) or equivalently

4.9 El=ul.
Proof. First of all we have from (4. 2)

a 0 0 0
”(W)=f“(a—xe)=G(E' ‘a?>—“’(E’ W)’

which implies that

(4. 10) o(E, X)=%u(X), that s, sj=%uj.

By means of the definition of the exterior derivative, we get
dnf =2 _L)_L <_3_>_L (_3_)_ ([L L])
”( 92" ozt )~ 0w Noar )™ 9x Noa?d ) \Low?’ oz

-z 0 9
~tGpu—sap=2ca(F 57 or):

(4.11)

and
99
ox? ' Ox

If we denote by {%?} local coordinates of M?+1, the immersion ¢ is represented as
y*=y*(2*) and this implies that

2g(f ) —24(FB,, B)=dj(B,, Bi)=Bjus—Bue;—3(B,, Bi).

R PINCIDPINEE IOVVON VI )
Bif=( (7)) = st o= 5 W@ = -

ox*
Thus we have

0 0
(4.12) B B)=20(f s 5 )= Dith—dity

oz’
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Combining (4. 11) and (4. 12), we get
4. 13) f= % 7.

To show that the constant ¢/t is equal to 1, we first assume that there is a
point PeM? ! at which (FI}/‘)%', (F];l')%’ and Ep are linearly dependent. Then tak-

ing a vector

0
oxt

in such a way that at this point Y is orthogonal to the tangent plane which
contains (Fll\/')g, (F]z\/')%' and Er, we have

Y=p'

®)

0B, Vye=19(V)e=L u¥re=Lup®)=0,

9(FNY, Vye=—£ip'®)=0,  o((FN)", Y)r=—0:p'(P)=0,

from which, together with (3. 13),
S iipr=—p".
On the other hand (4. 6) and (4. 13) show that

¢t - = c? 12 c?
fifitpi= _tTf Sfpi= - <—59‘+ - uj”") P = 72—15”-

Comparing the last two equations, we have ¢/t=1. Thus in this case the mapping

f is identical with f. Next suppose that (FZIV)T, (F]2V)T and E are linearly in-

dependent at any point of M?*~! If there is a point of M?*~! at which one of
(FJI\T)T and (F]2V')T vanishes, we can take an orthogonal vector to £ and (F]z\/' )

(or (F]l\f)T). Using this vector we can prove the assertion quite similar way to the

first case. If the vector fields do not vanish at any point of M?*~! and linearly
independent, (3.18) and (4.4) show that ¢=b=0. So by virtue of (3.13), (4.6)
and (4. 13) we get

2

FAfOfi= == S
from which 72=c¢?/f2. On the other hand (3. 13) and (4.13) imply that
2
Z(n—l)% =2(n—2+77).

Combining the above two relations, we have »?=1. Thus, because of Proposition
4.4, f;=0;=0. This contradicts to our assumptions. This completes the proof.

PROPOSITION 4, 6, Under the same assumptions as those in Proposition 4.5,
we have
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4. 14) G=g(E, E)g, 9(E, E)=const.

The proof is quite easy.

PropPoSITION 4. 7. Let M®™ be a contact metvic manifold. In order that an
immersion ¢ of M®* into M?*»* is a contact metric immersion it is necessary and
sufficient that the relations

(4.15) f2X=—X+g(ET, ETy'u(X)E”,
4. 16) g(ET, ETy=const.
are both valid.

Proof. Let ¢ be a contact metric immersion of M?*! into M2+, Then by
Proposition 4. 6 and the proof of Proposition 4.5 it follows that

4.17)  9=g(ET, ETy'u, E=ET, G=g(ET, ET)9, ¢(ET, ET)=const.,
and consequently
F2X=—X+9X)E=—X+g(ET, ET)'u(X)E".
Conversely if (4.15) and (4. 16) are both valid, we put
7=9(ET, ET)u,  G=g(E7, E)q.
Since g(ET, X)=u(X), we have
n(ET)=g(ET, ET)u(ET)=g(E7, ETyg(ET, EN)=1,
fiX=—X+9E7, EN)"'u(X)ET=— X+ 9(X)ET.
As to relations of dy and f we get, by (4. 16) and (1. 3),
dp<£7, %)q(ét ET)‘ldu(%, %)

=g(E?, ET)'dj(B;, B)=29(E?, ET)'§(FB,, B:)

5t f s a9
—20(BT, Er)yfu=20(B7, o ooy o)

This shows that (3, G) thus defined is a contact metric structure of M-, Q.E.D.

PROPOSITION 4. 8. Under the same assumptions as those in Proposition 4.5,
we have

(4.18) 9(E?, ET) =g sulut=uui=1r

Proof. Since ¢ is a contact metric immersion, (3. 18), (4.4) and (4. 9) show
that af*+bg*=0, from which, together with (3. 15), (3. 16), we get

afifi+bgifi=a(l—r*—a®*—b?)=0.
In the same way, using (3. 17), we get
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ag:f*+bgigt=b(1—r*—a*—b*=0.
The last two equations imply that
(@* 4051 —r*—a?—b%)=0.
As we have, from (3. 20) and Proposition 4. 6, that @®+-b%=const, it follows that
9(E?, ET)=g(E, E)=uu*=1—a?—b2=1*
or
a®+b*=0.

Thg first case is just our assertion. If the second case occurs, (3.20) shows
that g(E7, ET)=1. In this case, since we also have a=b=0 it follows that

fihfh]fi': '_fj‘f‘ uifiul—i-f,,fifj—l—gifig]: — 2fj

because of (3. 13), (3. 15), (3.16) and (3. 19).
On the other hand (3.19) and (4. 15) show that

Sl fi=—f7,
which implies that »>=1. Thus, in this case we also have (4.18). Q.E.D.
COROLLARY 4.9. r=constant.

TueOREM 4.10. Let M**' be a contact metric manifold. In order that an
immersion ¢ of M into M?**' is contact metric it is necessary and sufficient
that the following relations are all valid.

4.19) 9(E?, EP)=uur=const.,

(4. 20 (FN)T=—g(ET, ET)-124(E, ].Y)ET = —b(u,u")"V 2ut 311 ,
1

. 21) (FN)T=g(E~T’ E~T)—1/2§(E, N)ET =a(u,u")" V2 831“ .
A 1

Proof. Let ¢ be a contact metric immersion of M?*! into ]\712"“, then from
Proposition 4. 6, (4.19) is valid. Now, we put

4. 22) (FNY'=AE™+Z,  (FNY'=BE"+W,
where Z and W are vectors orthogonal to ET. Then Proposition 4.8 gives
9(ET, (FNY)=Ag(E", EN=Ar*,  g(ET, (FN)")=Bg(E", E")=Br".
On the other hand (3. 19) implies that
g(E7, (FJIV)T)=—<7(E, ZzV)r= —br,  g(E7, (FIZV)T)=§(E, 11\7)7’=dr-

Thus combining these relations, we get
(4. 23) A=—brt, B=arl,
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Substituting (4. 23) into (4. 22), we have
(FJIV)T= —brET+Z, (F12V)=dr‘1E‘T+ w,

from which
g((FJIV)T, (FJIV)T)=bZT‘2G(ET, EN+9(Z, Z)=b*+9(Z, Z).

On the other hand (3. 15) and Proposition 4. 8 show that

o(ENF, FND=1~a*—r=1-a’—(1—a*~b)=0".
From the last two equations we have ¢(Z, Z)=0 and consequently Z=0. In ex-
actly the same way we get W=0. Hence we have (4.20) and (4. 21).

Conversely if an immersion ¢ satisfies the conditions of Theorem 4. 10, accord-
ing to (3. 20) and Proposition 4.8 we get,

Fifu=—8+g(ET, ETy (ur+b*+a>uzur
=—3i+g(ET, ET) wy.

Thus it satisfies the conditions of Proposition 4. 7. This completes the proof.

§5. Normal contact immersion.

In this paragraph we define the notion of normal contact immersion of /%!
into a normal contact manifold M?**! and give conditions of a contact metric
immersion to be a normal contact immersion.

DerINITION 5.1. Let M®**' be a normal contact manifold and ¢ be a contact
metric immersion of M2~ into M**!, We say that ¢ is a normal contact immer-
sion if the contact metric structure induced on M?*~! by ¢ is normal.

THEOREM b. 2. An F-invariant immersion ¢ of M®*™ ' into M is a normal
contact immersion.

Proof. By the definition of normality we have only to examine N;»=0. As
is seen in the proof of Proposition 4.3, we have for an F-invariant immersion,
f.=9:=0 and a=0=0.

Using this facts and substituting (3.22), (3.25) and (4.2) into the similar
equation to (1. 11) we have

Nt =f Vo fr =V )= T f 4=V 1 [V &y —V 60
—(1==) o ua—riuy.

However, for an F-invariant immersion, 72=1 by virtue of (3.15). This shows
that Njih=0. QED

THEOREM 5. 3. In order that a contact metric immersion ¢ of M?* ' info a
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normal contact manifold MY be normal contact immersion it is necessary and
sufficient that ome of the following holds:

1) ¢ is an F-invariant immersion,

2) the second fundamental tensors Hj and Ky have the following forms:

(5.1) Hji=Hg ji+huju,
(5.2) Kﬁ=ngi—|-kujm.

ReEMARK. As is easily checked the forms of the second fundamental tensors
(5.1) and (5. 2) are independent of the choice of unit normal vectors to T'(M2»1),

N Proof of Theorem 5.3. Let ¢ be a normal contact immersion of M?*! into
M+t Then by the definition of normality we get

Nyt =f Vo fir =V f ) =LV f =V 1 )V iE"n—F &9, =0.
Substituting (3. 22), (3.25), (4.2) into the equation above and making use of
(3.18), (4.9) and Theorem 4. 10 we find
Njit= %ff(blﬂ"m—aKr”urH&’#ui) - %fir(bHrh”f_dth”f'{‘ran)
(5.3) . )
+ e (f*+aH*+DKM)u;— oy (fi"+aH+bK)u;=0.
On the other hand we know that if a contact metric structure is normal the

vector field & is a Killing vector field. By Proposition 4.5, & being equal to u,
we have

(5. 4) aHi+bKji=0

because of (3. 25).
Thus (5. 3) takes the form

vf,"(bH ui— a K ui+vdius) —rf (O H  u j— a Ko - 10%u )+ o j— f s =O0.
Substituting (5. 4) into the last equation, we find
S {(@+b%)rH ui+b(r*—1)0kus} — £ {(@®+0)rH u+b(r* —1)dku 3} =0.

Transvecting this with # and making use of (3. 20), Proposition 4. 8 and Theorem
4.10, we get

(@) F <H,h - %5’,’) 0.
Since a?-+b%=const, we have a?+b?=0 or
(5. 5) fr <H,h _ %5;») —0.

If a?+b2=0, it follows that 7?=1. Thus in this case the immersion is F-invariant,
If a®4b*=0, transforming the both sides of (5.5) by fi/, we have
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b, 1 b
Hir= 25+ —( Hu"us— = ).
r 7 r

Hj; being symmetric with respect to j and i, it follows that

HrhuT :puh’ = %Hjiufui_
Hence
b 1/1 b
h— S —— | —— iy — = Yy
H; r5‘+ r2<rz Hiyulu r)u,u.
Substituting this into (5. 4), we have
Kit=— 25’;—{— —17 <LZ Kjpunub+- Z) wiu®,
r 2\ r r

This proves the necessity of our assertions.
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Conversely if, in a contact metric submanifold M?**~?, the second fundamental

tensors Hj; and Kj; have the forms of (5.1) and (5. 2).
Differentiating (4. 20) covariantly, we have

(. 6) ijh= %—(uthb—I-ijuh).
Substituting (3. 23), (3. 25) and (3. 27) into (5. 6), we have
—argj—rKp—1fniHp=— % wnttj—wun Kot +0(f yn+aHpm+0Kn).

Substituting (5. 1) (5. 2) into the above, we get

—ragn+rKgjntHfnj)=— <% +K) w5 0f jn~+(abH--b2K)g jn+(abh+-b%k)u jup,.

Transvecting this with f*/, we have

=2,
r

Next differentiating (4. 21) covariantly we have also

—_2

T or
Thus we get
5.7 Hi= %&'-l—huiu",
. 8) K= — %5¥+kmu’”.

Substituting (5. 7) and (5. 8) into the left hand members of (5. 3), we have
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Nitt= S ( @0 im0 (@047 s+ = a0
J r J r T 7 7 7 J 7_2 A 7 ki 1)

Thus, by virtue of (4.18), we have N;»=0. This, together with Theorem 5. 2,
completes the proof.

COROLLARY 5.4. Let ¢ be a contact metvic immersion of M into M+,
If ¢ is a totally umbilical or totally geodesic immersion, ¢ is a normal contact im-
mersion.

, THEOREM 5.5. Let M* ' be a normal contact metric manifold of constant
curvature. In order that a contact metric immersion ¢ of M® ' into M** is a
normal contact immersion it is necessary and sufficient that one of the following
is satisfied:
1) ¢ is an F-invariant immersion,
2) ¢ is a totally umbilical immersion.

Proof. The sufficiency of the conditions are clear by Theorem 5.3. So, we
have only to examine the necessity of the conditions. The proof of the sufficiency
of Theorem 5. 3 show that if ¢ is normal contact

Thus we express thg second fundamental tensors as (5. 7) and (5. 8). On the other
hand the fact that M?"*! is a manifold of constant curvature implies that

(5.9) wf IV Hjy=uwf " Ly K,
(5. 10) wf PV K= —u'f* Ly H s,
because of (2.19). Substituting (5. 7), (5. 8) into (5. 9), (5. 10), we get

wfHIP, <§ G5t ,m) — Ittt IV =2 —1)r*h =0,

wf"ka <— %gﬁ+kujui>=kwuif"fl7ku,~=2(n—l)rzk=0.

Thus we have

b a
(5. 11) Hj= - Yo Kji=— 5 Jibs

This completes the proof.
In concluding this paragraph we state a theorem on an F-invariant immersion.

DEFINITION 5. 6. An immersion ¢ of M?! into M?*! is said to be minimal
if it satisfies at arbitrary point of Af2"~!

trace H=trace K=0.
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THEOREM 5. 7. An F-invariant immersion of M*' into a normal contact
manifold M*** is a minimal immersion.

Proof. Since ¢ is F-invariant it follows that f,=g¢;=0 and ¢=b=0 on M,
which implies that

rHu=Kufi¥, rKu=Hpfi*

because of (3.23) and (3.24). As Hj, Kjz are both symmetric with respect to
their indices and f;; is skew symmetric, we have

rHp=K;f7%=0, rKi=H; fi*=0.
This completes the proof.

§6. An example.

It is well known® that an odd dimensional sphere is one of the most typical
example of a normal contact manifold.

In this paragraph we show an example of submanifolds in an odd dimensional
sphere.

In Theorem 5.3 and 5.5 we have assumed that the immersion ¢ is a contact
metric immersion and shown a condition for ¢ to be normal contact. This as-
sumption, however, can not be omitted. To show this we give an example.

Let S?**! be an odd dimensional sphere which is represented by the equation

2n+2
(6.1) 2 (y4)=1
A=1
in a (2n+2)-dimensional Euclidean space E**2? with rectangular coordinates y4
(A=1,2,---,2n+2). We put
1 n+l
(6. 2) = E Z (yn+1+adyc_,y¢dy'n+1+a),
a=1

then the 1-form # defines a contact form on S**%.
The Riemannian metric ¢ on S**! is naturally induced from the Euclidean
space E?**? in such a way that
vy
(y2n+2)2 ’

The exterior derivative of 7 given by (6. 2) becomes

(6. 3) Gre=02+ g =" —y'y~.

n+l
(6. 4) dr= 72];- Z (dyn+1+a/\dy¢_dya/\dyn_‘,“_a).

a=1

Since S?**! is defined by (6. 1), we have

3) Sasaki and Hatakeyama [5].
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2n+1
Y2ty int— Z y4dyA.
A=1

From these two relations we have

0 0 yfﬁm 1 0
0 0 yy+ 0 ~1
CR)=2du=| o L0 M L
% 0 ;’;Z 0 0
T P

Now we consider a submanifold of S?*** whose local representation is given by

yAzxA (A=1’2,...’2n_1),
2n—-1
(6. 5) (Pmyr=t— Y (2%, 0<t<l, y*+1=0,
a=1

yinte= A/].tf

Then we have

(6. 6) Bit=5; (r=1,2, -, 2n—1), Bi":—%, Bin+i=(),
We put
6.7 1}/'=(C‘)=(0, -+, 0,1), 1\27=(D‘)=(yl, e,y 0).

Then Jl\/' and N are mutually orthogonal vectors to the submanifold defined by
2

(6.5). The submanifold is, as is easily seen, totally umbilical submanifold of codi-

mension 3 in E?#*2, Since S?*!is a totally umbilical submanifold of E?"*2 the sub-

manifold defined by (6.5) is a totally umbilical submanifold of S***!. Now we

calculate 6(F]}/’, IZV' ) and find

2n+1
Y

(6. 8) 2r=2F,C*D"= —y"+ PN yrHl= —yt=—g",

Thus the function # is not constant. Hence the submanifold (6. 5) cannot be a
normal contact submanifold.
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