PSEUDO-UMBILICAL SUBMANIFOLDS WITH M-INDEX ≤1 IN EUCLIDEAN SPACES

By Tominosuke Otsuki

1. Pseudo-umbilical submanifolds with M-index 0.

In this note, the author will use the notations in Otsuki [5]. Let M^n be an *n*-dimensional manifold immersed in the (n+N)-dimensional Euclidean space E^{n+N} by a mapping ψ : $M^n \rightarrow E^{n+N}$.¹⁾ We denote this simply by $M^n \Subset E^{n+N}$. Let $\omega_i, \omega_{ij} = -\omega_{ji}, \omega_{i\alpha} = -\omega_{\alpha i}, \omega_{\alpha\beta} = -\omega_{\beta\alpha}, i, j=1, 2, \dots, n; \alpha, \beta = n+1, \dots, n+N$, are the differential 1-forms associated with the immersion ψ : $M^n \rightarrow E^{n-N}$ which are defined on *B* of all orthonormal frames (p, e_1, \dots, e_{n+N}) such that $p \in M^n, e_1, \dots, e_n \in T_p M^n$. As is well known, $\omega_{i\alpha}$ can be written as

(1.1)
$$\omega_{i\alpha} = \sum_{j} A_{\alpha i j} \omega_{j}, \qquad A_{\alpha i j} = A_{\alpha j i}.$$

Let N_p be the normal tangent space to M^n at $p \in M^n$. For any normal unit vector $e = \sum \xi_{\alpha} e_{\alpha} \in N_p$, let

(1. 2)
$$\Phi_e(\omega, \omega) = \sum_{\alpha, i, j} A_{\alpha i j} \omega_i \omega_j$$

be the second fundamental form corresponding to e. Let \overline{m} : $N_p \rightarrow R$ be the mapping as follows: For any $X = \sum_{\alpha} \xi_{\alpha} e_{\alpha} \in N_p$,

(1.3)
$$\overline{m}(X) = \frac{1}{n} \sum_{\alpha, \iota} \xi_{\alpha} A_{\alpha i \iota}.$$

Let ${}^{M-}N_p$ be the kernel of \overline{m} at p which is called the *minimal normal space* at p. Let $k_1: M^n \to \mathbf{R}$ be the first curvature of M^n as an immersed submanifold in E^{n+N} . At p such that $k_1(p) \neq 0$, let $\overline{e}(p)$ be the mean curvature normal unit vector, that is

(1.4)
$$\sum_{\alpha,i} A_{\alpha i i} e_{\alpha} = k_1(p) \overline{e}(p) \qquad k_1(p) > 0.$$

At the point p, we make use of only the frames $b=(p, e_1, \dots, e_{n+N})$ such that $e_{n+1}=\bar{e}(p)$. Then, we have

Received November 16, 1967.

¹⁾ We consider M^n as a Riemannian manifold with the metric induced from E^{n+N} by ϕ .

(1.5)
$$\overline{m}(e_{n+1}) = k_1(p), \quad \overline{m}(e_{n+2}) = \cdots = \overline{m}(e_{n+N}) = 0.$$

If we have

(1. 6)
$$\Phi_{\overline{e}(p)}(\omega, \omega) = k_1(p) \sum_i \omega_i \omega_i$$

that is, in matrix form,

(1.6')
$$A_{n+1ij} = k_1(p)\delta_{ij}, 2$$

we call M^n is *pseudo-umbilical* at *p*. If M^n is pseudo-umbulical at each point of M, the immersion $\phi: M^n \rightarrow E^{n+N}$ is called *pseudo-umbilical*

If M^n is umbilical at p, then we have by definition

$$\Phi_e(\omega, \omega) = \lambda(e) \sum_i \omega_i \omega_i$$

for any normal unit vector $e \in N_p$, where $\lambda(e)$ is a real number depending on e. The above condition can be written as, in matrix form,

$$A_{\alpha ij} = \lambda(e)\delta_{ij}, \quad \alpha = n+1, ..., n.$$

Hence we have $\lambda(e) = \overline{m}(e)$. For any $e \in {}^{M^-}N_p$, we get $\Phi_e(\omega, \omega) = 0$, and so M-index at p is equal to 0. Accordingly, if M^n is not totally geodesic at p, then $\lambda(\overline{e}(p)) \neq 0$ and so M^n is pseudo-umbilical. The converse is true. We have

LEMMA 1. M^n is umbilical and not totally geodesic at p, if and only if M^n is pseudo-umbilical and of M-index 0 at p.

Connecting with lemma and Theorem in [5], we get easily the following

THEOREM 1. If M^n is an immersed submanifold in E^{n+N} which is pseudo-

umbilical and of M-index 0 at every point, then M^n is an n-dimensional sphere or its subdomain in a linear subspace E^{n+1} .

Proof. By the assumption, the index of relative nullity is identically 0. By Theorem 3 in [5], there exists an (n+1)-dimensional linear subspace E^{n+1} such that $M^n \Subset E^{n+1}$. Accordingly, M^n is hypersurface in E^{n+1} which is umbilical at every point. Hence M^n is a hypersphere or its subdomain in E^{n+1} .

2. Pseudo-umbilical submanifolds with M-index 1.

In this section, we suppose that M^n is an *n*-dimensional manifold immersed in E^{n+N} which is pseudo-umbilical and of M-index 1 at every point. Then, the first curvature $k_1: M^n \rightarrow \mathbf{R}$ is not zero everywhere. Since M-index is constant 1, we take only such frame $b = (p, e_1, \dots, e_{n+N}) \in B$ that

²⁾ In the following we use the notation n+1 in place of (n+1) for suffixes.

TOMINOSUKE OTSUKI

(2.1)
$$e_{n+1} = \bar{e}(p),$$

(2. 2)
$$\begin{cases} A_{n+1} = (A_{\underline{n+1}ij}) = k_1(p)(\delta_{ij}), \\ A_{n+2} = (A_{\underline{n+2}ij}) \neq 0, \\ A_{\beta} = (A_{\beta ij}) = 0, \quad \beta = n+3, \dots, n+N, \end{cases}$$

and denote the submanifold of *B* composed of these frames by B_2 . On B_2 , from $\omega_{i\beta}=0$ ($\beta>n+2$) and the structure equations of the immersion $\psi: M^n \rightarrow E^{n+N}$, we get

$$0 = d\omega_{i\beta} = \sum_{j} \omega_{ij} \wedge \omega_{j\beta} + \omega_{\underline{in+1}} \wedge \omega_{\underline{n+1}\beta} + \omega_{\underline{in+2}} \wedge \omega_{\underline{n+2}\beta} + \sum_{\gamma > n+2} \omega_{i\gamma} \wedge \omega_{\gamma\beta},$$

that is

(2.3)
$$k_1\omega_i \wedge \omega_{\underline{n+1}\beta} + \omega_{\underline{n+2}} \wedge \omega_{\underline{n+2}\beta} = 0.$$

Now, we take a frame (p, e_1, \dots, e_n) of M^n such that

(2.4)
$$\omega_{i\underline{n+2}} = h_i \omega_i, \qquad i=1, \cdots, n.$$

 $\{h_i, \dots, h_n\}$ are the eigen values of the second fundamental form $\Phi_{e_{n+2}}(\omega, \omega)$. Since $\overline{m}(e_{n+2})=0$ and $A_{n+2} \neq 0$, we have

(2.5)
$$h_1+h_2+\cdots+h_n=0, (h_1, \cdots, h_n) \neq (0, \cdots, 0).$$

It is clear that the number of distinct eigen values of $\Phi_e(\omega, \omega)$, $e \in N_p$, $e \cdot e_{n+2} \neq 0$, is the same. We call such e a generic normal unit vector. Making use of this frame (2.3) becomes

 $\omega_i \wedge (k_1 \omega_{n+1\beta} + h_i \omega_{n+2\beta}) = 0,$

hence we can write the second factor as

$$(2. 4) k_1 \omega_{n+1\beta} + h_i \omega_{n+2\beta} = \rho_i \omega_i$$

for fixed β (>n+2). Accordingly, we have

$$(h_i-h_j)\omega_{\underline{n+2\beta}}=\rho_i\omega_i-\rho_j\omega_j.$$

If the number of distinct eigen values out of $\{h_1, \dots, h_n\}$ is not less than 3, then we have easily

(2.5)
$$\omega_{n+2\beta}=0$$
 and $\omega_{n+1\beta}=0.$

If the number of distinct eigen values out of $\{h_1, \dots, h_n\}$ is equal to 2, we may put

$$h_1 = h_2 = \cdots = h_{\nu_0}, \quad h_{\nu_0+1} = \cdots = h_n, \quad 1 \leq \nu_0 \leq n-1.$$

If $1 < \nu_0 < n-1$, then we get also (2.5) from (2.4). If $\nu_0 = n-1$ and $n \ge 3$, then (2.4) becomes

$$k_1\omega_{\underline{n+1}\beta} + h_1\omega_{\underline{n+2}\beta} = 0,$$

$$k_1\omega_{\underline{n+1}\beta} + h_n\omega_{\underline{n+2}\beta} = \rho_n\omega_n,$$

hence we may put

$$\omega_{\underline{n+1}\beta} = \lambda_{\beta}\omega_n$$
 and $\omega_{\underline{n+2}\beta} = -\frac{k_1}{h_1}\lambda_{\beta}\omega_n$.

Furthermore, we can choose e_{n+3} , \cdots , e_{n+N} so that

$$\lambda_{n+4} = \cdots = \lambda_{n+N} = 0,$$

that is

(2.6)
$$\begin{cases} \omega_{\underline{n+1}} \underline{n+3} = \lambda \omega_n, & \omega_{\underline{n+2}} \underline{n+3} = -\frac{k_1}{h_1} \lambda \omega_n, \\ \omega_{\underline{n+1}\beta} = \omega_{\underline{n+2}\beta} = 0 & (\beta = n+4, \dots, n+4), \ \lambda \neq 0. \end{cases}$$

The case $\nu_0=1$ is analogous to the case $\nu_0=n-1$. Making use of these facts, we get the following

THEOREM 2. Let $M^n(n \ge 3)$ be an n-dimensional submanifold immersed in E^{n+N} which is pseudo-umbilical and of M-index 1 at every point. Then the number of eigen values of the second fundamental form $\Phi_e(\omega, \omega)$ for a generic normal unit vector e is not less than 2. Furthermore,

i) if this number is not less than 3 or if it is equal to 2 and the dimensions of the eigen spaces corresponding to the two eigen values are greater than 1, then there exists an (n+2)-dimensional linear subspace E^{n+2} of E^{n+N} such that $E^{n+2} \supseteq M^n$;

ii) if this number is equal to 2 and the dimensions of the eigen spaces are n-1 and 1 at every point, then we can choose frames $b=(p, e_1, \dots, e_{n+N}) \in B$ such that

$$\begin{split} & \omega_{\underline{i}\underline{n}\underline{+}1} = k_1 \omega_{i}, \\ & \omega_{\underline{a}\underline{n}\underline{+}2} = h_1 \omega_a \ (a = 1, \ \cdots, \ n - 1), \qquad \omega_{\underline{n}\underline{n}\underline{+}2} = -(n - 1)h_1 \omega_n \ (h_1 \equiv 0), \\ & \omega_{ia} = 0 \qquad (\alpha = n + 3, \ \cdots, \ n + N), \\ & \omega_{\underline{n}\underline{+}1} \ \underline{n}\underline{+}3 = \lambda \omega_n, \qquad \omega_{\underline{n}\underline{+}1}\underline{\beta} = 0 \qquad (\beta = n + 4, \ \cdots, \ n + N), \\ & \omega_{\underline{n}\underline{+}2} \ \underline{n}\underline{+}3} = \mu \omega_n, \qquad \omega_{\underline{n}\underline{+}2\beta} = 0 \qquad (\beta = n + 4, \ \cdots, \ n + N), \end{split}$$

where

$$k_1\lambda + h_1\mu = 0.$$

COROLLARY. In order that there exists an E^{n+2} such that $M^n \subseteq E^{n+2}$ under the same assumptions of Theorem 2, it is necessary and sufficient that the linear mapping

$$\varphi_2: T_p(M^n) \longrightarrow e_{n+2} \perp \cap {}^{M^-}N_p$$

is trivial, where φ_2 is defined by

$$\varphi_2(X) = \sum_{\beta=n+3}^{n+N} \omega_{\underline{n+2\beta}}(X) e_{\beta}.$$

3. Pseudo-umbilical submanifolds in E^{n+2} with M-index 1.

Let M^n be an *n*-dimensional submanifold imbedded in E^{n+2} which is pseudoumbilical and of M-index 1 at every point. Then we have a linear mapping φ_1 : $T_p(M^n) \rightarrow M^- N_p = \mathbf{R}e_{n+2}$ defined by

$$\varphi_1(X) = \omega_{\underline{n+1}} \underline{n+2}(X) e_{\underline{n+2}}, X \in T_p(M^n).$$

Then the second curvature of M^n at p is defined by

(3.1)
$$k_2(p) = \max\{|\omega_{\underline{n+1}},\underline{n+2}(X)|; X \in T_p(M^n), ||X|| = 1\}.$$

Now, making use of the fact that k_1 does not vanish everywhere, we consider the following mapping ψ : $M^n \rightarrow E^{n+2}$ by

(3.2)
$$q = \phi(p) = p + \frac{1}{k_1(p)} \bar{e}(p)$$

where p and q denote the position vectors in E^{n+2} .

Case $k_2(p) \neq 0$ at every point $p \in M^n$.

In this case, we can choose frames $b = (p, e_1, \dots, e_n)$ such that

(3.3)
$$\omega_{n+1 n+2} = k_2 \omega_n$$

From this we get

$$egin{aligned} &d\omega_{n+1\,n+2}=dk_2\wedge\omega_n+k_2d\omega_n\ &=\sum\limits_{\imath}\omega_{n+1\imath}\wedge\omega_{in+2}=-k_1\sum\limits_{\imath}\omega_{\imath}\wedge\omega_{in+2}=0, \end{aligned}$$

hence

$$(3. 4) d\omega_n = -d \log k_2 \wedge \omega_n,$$

which shows that the Pfaff equation

$$(3.5) \qquad \qquad \omega_n = 0$$

is completely integrable. Let the family of integral hypersurfaces of (3.5) be Q(v) and we may suppose that v is the arclength of an orthogonal trajectory of this family. By means of the Gauss' lemma, we have

$$(3. 6) \qquad \qquad \omega_n = dv.$$

By (3. 4) and (3. 6), k_2 is a positive function of v. Differentiating (3. 2) and making use of $\omega_{in+1} = k_1 \omega_i$, (3. 3) and (3. 6), we have

(3.7)
$$dq = -\frac{dk_1}{k_1^2} \bar{e} + \frac{k_2 dv}{k_1} e_{n+2}.$$

This shows that $\psi(M)$ is generally two dimensional. If $dk_1 \neq 0$ along Q(v), then $\psi(Q(v))$ is a curve whose tangent direction is that of \bar{e} . But \bar{e} varies (n-1)-dimensionally on Q(v). This is impossible since $n-1 \ge 2$. Hence, we have $dk_1=0$ along Q(v), in other words k_1 is also a function of v. Hence the image of Q(v) by ψ is a point denoted by q=q(v) and Q(v) is contained in a hyper sphere $S^{n+1}(v)$ with centor q(v) and radius $1/k_1(v)$. Then, (3.7) can be written as

$$\frac{dq}{dv} = \frac{k_2}{k_1} e_{n+2} - \frac{k_1'}{k_1^2} e_{n+1}$$

and so the right hand side depends only on v. Making use of $\omega_{in+1} = k_1 \omega_i$, (3.3) and (3.6), we have

$$egin{aligned} &d\omega_{i\underline{n+1}} &= \sum_{j} \omega_{ij} \wedge \omega_{j\underline{n+1}} + \omega_{i\underline{n+2}} \wedge \omega_{\underline{n+2}\ \underline{n+1}} \ &= &k_1 \omega_j \wedge \omega_{ji} + k_2 dv \wedge \omega_{i\underline{n+2}}, \ &d(k_1 \omega_i) &= &k_1' dv \wedge \omega_i + &k_1 \sum_{j} \omega_j \wedge \omega_{ji} \end{aligned}$$

and so

$$dv \wedge \omega_{\underline{in+2}} = \frac{k_1'}{k_2} dv \wedge \omega_i.$$

Substituting $\omega_{i\underline{n+2}} = \sum_{j} A_{\underline{n+2}ij} \omega_{j}$ in the above equation and making use of $\overline{m}(e_{n+2}) = 0$, we get

(3.8)
$$\begin{cases} A_{\underline{n+2ab}} = \frac{k_1'}{k_2} \delta_{ab}, & A_{\underline{n+2nb}} = 0 \\ A_{\underline{n+2nb}} = -\frac{(n-1)k_1'}{k_2}. \end{cases}$$

Since M-index is 1 at every point of M^n , $A_{n+2} \neq 0$, hence

(3.9)
$$k_1'(v) \neq 0.$$

Let us use the vector field of E^{n+2} defined over M^n by

(3.10)
$$X = k_1^2 \frac{dq}{dv} = k_1 k_2 e_{n+2} - k_1' e_{n+1},$$

which depends only on v and is normal to M^n . by means of (3.3) and (3.8), we get

$$dX = \{ (k_1k_2)'e_{n+2} - k_1''e_{n+1} \} dv \\ + k_1k_2 (\sum_{i} \omega_{\underline{n+2}i}e_i + \omega_{\underline{n+2}} + u_{\underline{n+1}}e_{n+1})$$

TOMINOSUKE OTSUKI

$$\begin{split} &-k_1' (\sum_i \omega_{\underline{n+1}i} e_i + \omega_{\underline{n+1}} \, \underline{n+2} e_{n+2}) \\ &= \{ (k_1 k_2)' e_{n+2} - k_1'' e_{n+1} \} dv \\ &+ k_1 k_2 \bigg\{ -\frac{k_1'}{k_2} \sum_a \omega_a e_a + \frac{(n-1)k_1' dv}{k_2} \, e_n - k_2 dv e_{n+1} \bigg\} \\ &- k_1' \bigg\{ -k_1 (\sum_a \omega_a e_a + dv e_n) + k_2 dv e_{n+2} \bigg\}, \end{split}$$

that is

(3.11)
$$\frac{dX}{dv} = k_1 k_2' e_{n+2} - (k_1'' + k_1 k_2'') e_{n+1} + n k_1 k_1' e_n.$$

This shows that dX/dv is linearly independent of X and normal to each Q(v). Since X(v) and X'(v) are constant vectors along Q(v), there exist linear subspaces $E_1^{n+1}(v)$ and $E_2^{n+1}(v)$ such that

and

$$Q(v) \Subset E_1^{n+1}(v), \qquad E_1^{n+1}(v) \perp X(v)$$
$$Q(v) \Subset E_2^{n+1}(v), \qquad E_2^{n+1}(v) \perp X'(v).$$

Since e_{n+1} , X(v) and X'(v) are linearly independent, we can put

$$S^{n-1}(v) = S^{n+1}(v) \cap E_1^{n+1}(v) \cap E_2^{n+1}(v).$$

Hence Q(v) is imbedded in $S^{n-1}(v)$. M^n can be considered as a locus of moving (n-1)-sphere $S^{n-1}(v)$ depending on one parameter v.

Now, we consider the second fundamental form of Q(v) as a submanifold of M^n . Since the right hand side of (3. 11) depends only on v, using (3. 3), (3. 6) and (3. 8), along Q(v), we have

$$0 = k_1 k_2' de_{n+2} - (k_1'' + k_1 k_2^2) de_{n+1} + nk_1 k_1' de_n$$

= $k_1 k_2' \sum_a \omega_{\underline{n+2}a} e_a - (k_1'' + k_1 k_2^2) \sum_a \omega_{\underline{n+1}a} e_a + nk_1 k_1' \sum_a \omega_{na} e_a$
= $-k_1 k_1' (\log k_2)' \sum_a \omega_a e_a + (k_1'' + k_1 k_2^2) k_1 \sum_a \omega_a e_a + nk_1 k_1' \sum_a \omega_{na} e_a,$

hence we have

(3.12)
$$\omega_{an} = \frac{1}{n} \left\{ -\frac{k_2'}{k_2} + \frac{k_1'' + k_1 k_2^2}{k_1'} \right\} \omega_a \quad \text{on} \quad Q(v).$$

On the other hand, we get from (3.4) and (3.6)

$$0=d\omega_n=\sum_a\omega_a\wedge\omega_{an}=0$$
 on M^n .

This shows that (3.12) is true on M^n . Along Q(v), e_n is its normal unit vector

field and we have

$$de_n = -\sum_a \omega_{an} e_a.$$

According to the principle of Levi-Civita, the second fundamental form of Q(v) as a hypersurface of M^n is

$$\sum_{a} \omega_{an} \omega_{a} = \frac{1}{n} \left\{ -\frac{k_{2}'}{k_{2}} + \frac{k_{1}' + k_{1} k_{2}^{2}}{k_{1}'} \right\} \sum_{a} \omega_{a} \omega_{a}.$$

This shows that Q(v) is umbilical in M^n .

Case $k_2=0$.

In this case, the mapping φ_1 is trivial at each point of M^n . Since $\omega_{\underline{n+1},\underline{n+2}}=0$, we get easily

$$dq = -\frac{dk_1}{k_1^2}e_{n+1}.$$

If $n \ge 2$, by analogous argument as in Case $k_2 \ne 0$, we see that k_1 is a constant and q is a fixed point. M^n must be contained in an (n+1)-dimensional sphere S^{n+1} with centor q and radius $1/k_1$. e_{n+2} is the normal unit vector field of M^n in S^{n+1} . In this case, we have

$$de_{n+2} = \sum_{i} \omega_{\underline{n+2}i} e_i$$

and so the second fundamental form of M^n in S^{n+1} is given by

$$\omega_i \omega_{\underline{i}\underline{n+2}} = \sum_{i,j} A_{\underline{n+2}ij} \omega_i \omega_j.$$

Since $\sum_{i} A_{\underline{n+2}ii} = 0$, M^{n} must be an minimal hypersurface in S^{n+1} . Conversely, if a minimal hypersurface in S^{n+1} can be considered as a submanifold M^{n} in E^{n+2} in this case. Thus we get the following theorem.

THEOREM 3. Let M^n be an n-dimensional submanifold in imbedded in E^{n+2} which is pseudo-umbilical and of M-index 1 at every point. If the second curvature k_2 of M^n is not equal to zero at every point, then M^n is imbedded in a submanifold which is a locus of a moving (n-1)-dimensional sphere $S^{n-1}(v)$ such that the radius r(v) is not constant, the curve of the centor q(v) is orthogonal to this submanifold at the corresponding points and not to the n-dimensional linear subspace containing $S^{n-1}(v)$, and $S^{n-1}(v)$ is umbilical hypersurface in the locus. If $k_2=0$, then M^n is a minimal submanifold in a (n+1)-dimensional sphere in E^{n+2} .

TOMINOSUKE ŌTSUKI

References

- [-1] CHERN, S. S., AND N. H. KUIPER, Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space. Ann. of Math. (2) 56 (1952), 422-430.
- [2] O'NEILL, B., Umblics of constant curvature immersions. Duke Math. J. 32 (1965), 149-160.
- [3] OTSUKI, T., On the total curvature of surfaces in Euclidean spaces. Jap. J. Math. 35 (1966), 61–71.
- [4] ŌTSUKI, T., Surfaces in the 4-dimensional Euclidean space isometric to a sphere. Kodai Math. Sem. Rep. 18 (1966), 101-115.
- [5] ÖTSUKI, T., A theory of Riemannian submanifolds. Ködai Math. Sem. Rep. 20 (1968), 282–295.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.