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A THEORY OF RIEMANNIAN SUBMANIFOLDS

BY TOMINOSUKE OTSUKI

As is well known, the most useful method of studying the properties of a curve
in a euclidean space or more generally Riemannian space, from the standpoint of
differential geometry, is making use of the Frenet formula, in which the first
curvature and the second curvature and so forth are the essential quantities for
the curve. Regarding a submanifold of dimension ^ 2 in a higher dimensional
space, the situation is quite different from the case of curves. We have, at
present, only the Gauss and Weingarten formulas and the Gauss and Codazzi
equations as the complete integrability conditions for the formers, in which the
system of the second fundamental tensors corresponding to the normal unit vectors
are performing important roles. Recently, O'Neill [2—5] obtained many interesting
results on submanifolds considering the system of the second fundamental tensors
as an operator from the tangent space to the normal space at each point of a
submanifold which is called the shape operator. This idea is an interesting
method for treating submanifolds but it seems to the author that there remains a
direction of exploring analogous formulas and quantities for submanifolds to those
of curves.

Let C: x=x(s) be a C°° curve in the euclidean /z-space En parameterized with
arclength 5 and let (x(s), eu •••, en) be the field of its Frenet frames. Then, we
have the Frenet formulas:

dx dei u

Ίϋ=ei' Ίϋ=kl{s)eΐ'

2 k()+k()
ds l K J l '

ds

den , f v
—^ = —kn-1(s)en-i.

For any normal vector e=Σ»=2 ξaea at x(s), we have

Hence we can consider the first curvature k^s) as
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(0. 1) kί(s)=max| ~τγ e, eQNx^=ei±, M=lf,

where NxW denotes the normal space to the tangent line TX^C of C at x(s). e2

is uniquely determined as a normal unit vector by

(0. 2)

when &I(S)^FO. Since k^s) is differentiable on a subarc of C in which ki(s) ^FO, e2

is also differentiable on it. Then, the field e2{s) defines a linear transformation

(0. 3) φ±: TXWC -* Nxωne2-L

at each point such that &X(S)^F0 by

(0. 4) ψι{X)= Σ (X'ei)\—r- ' ea)ea= Σ (de2(X)'ea)ea,
α>2 \ CIS I α>2

then the second curvature k2{s) of C can be considered as

(0.5) &2(s)=max{|^i(0)|, eξTx^C, |β |=l}.

Making use of these interpretations of the curvatures of the curve, we may define
the curvatures for a submanifold. For simplicity, let Mn be an ^-dimensional
submanifold in the euclidean space En+N. Let (p, eh •••, en+jy), p€Mn, be an ortho-
normal frame of En+N at p such that eί9 -~,en are tangent and en+i, •••, en+N are
normal to Mn at p. Then for any normal vector e=Σa=n+i ξaea at p9 the quantity

does not depend on the choice of the frame (p, eh ••-, en) of Mn and is linear on the
normal space Np to Mn at p. Then, we can define the first curvature of Mn at p by

(0.6) &(/>)=max{m(e), ^eiVp, | e |= l } ,

which is a continuous scalar of Mn. If kι(p)^0, there exists an uniquely de-
termined normal unit vector e such that

(0.7) k1(p)

On the domain of M π such that &i= 0̂, ^ is differentiable. Then, the field e defines
a linear transformation

at each point such that kχ(p)^0 by

(0.8) ^i(-3Γ)= Σ (de(X)>ea)ea9 XeTpM
n.

a>n+l

1) In the right hand side, ( -^— e\\dx denotes ( — ~ ~ e\ where x(s) is a

\ds2 )us=eι \ ds2 Λ
smooth curve through p, x(Q)=py and — }- ] —eι.

ds |s=o
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Then the second curvature k2{p) of Mn can be defined by

(0.9) k2(p)={m2Lx\φ1(e)\, esTpM71, \e\=l}.

In this paper, the author will show that we can introduce the concepts of the
Frenet frame, the Frenet formulas and some kinds of curvatures for submanifolds
in the theory of Riemannian submanifolds according to the methods mentioned
above and investigate a special immersions of Riemannian manifolds by making
use of these concepts.

§ 1. Preliminaries.

Let Sn be the set of all real symmetric square matrices of order n. We
consider it as a vector space over the real field R and the orthogonal group
O(n, R) of order n operates on it as follows: For any AGSΠ, TeO(n, R)

(1.1) T(A)=TΆT,

where Tr denotes the transposed matrix of T.
Now we define an inner product of any two elements A7 B in Sn by

(1. 2) <Λ B)= — trace (AB),
n

then we have

(1.3) \\A\\ = \/(A, A)=y — - and | | / w | | = l ,

where In denotes the unit matrix in Sn,

Let m: Sn—>R be a linear transformation defined by
(1. 4) m(A) = — trace A

and put Mn=nr\0), that is

(1.5) Mn={A I trace ^4=0, AQSΠ}-

We call an element of Mn minimal in the following. Since we have

<A,In>=m(A), AεSn,

Sn is decomposed in a direct sum as follows:

(1. 6) Sn = Mn@ RIn, Mn JL Rln-

Let p: Sn-*Mn be the projection according to the direct sum (1. 6), that is

(1.7) p(A)=A-m(A)In.

Now, we define real valued functions Pr: Sn-^R of order r, r = 0 , 1 , •••, n, by

the equality:
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r=0

where t is an auxiliary variable. We have especially

PO(A)=1, P1(A)=m(A)f Pn(A)=άet A

and

2

= , 1

 Λ. {(trace A ) 2 - t r a c e A2},
n(n—l)

that is

(1. 8) Λ U ) = ^ ^

From the above equation we get easily the following

LEMMA 1. P2 i5 a non-singular quadratic form on Sn, negative definite on
Mn and of index dim Mn=(n-\-2)(n—1)/2 on Sn.

Substituting A=p(A)+tn(A)In in (1.8), we get

n l n

Γτm\A)^p(n x. n I

that is

(1. 9) P2{A)=m\A)- - ^ \\p{A)\\\

We get from (1.9) the classical result.

LEMMA 2. For any symmetric matrix A of order n, we have

and the equality holds if and only if AξRIn.

Lastly, we remark that the mappings, functions, subspaces in this section are
all invariant under the group O(n, R).

§ 2. The first curvature.

Let M=Mn and M=Mn+N be two differentiate Riemannian manifolds of
dimension n and n-\-N respectively and let ψ: M->M be an isometric immersion.
Let F(M) and F(M) be the bundles of orthonormal frames of M and M with
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the projections π: F(M)-+M and π: F(M)—>M. Let B be the set of elements
b=(P, eu e2, •••, en+N) such that

(A eu e2, -", en)eF(M), (ψ(p), elt e2, •••, en+N)eF(M),

identifying et with dψ(ei), i=lt2, ,n. Bis considered as a differentiable manifold
in a natural way. Then, let φ: B-^F(M) be the natural immersion covering ψ.
We denote the basic forms and connection forms of M by

ωA, aJAB=—o)BA, A, B=l, 2, •••, n+N

and the induced ones on B by ψ from ωA, ωAB by

ωA=ψ*ωA, (OAB=ψ*ωA B.

Then we have, as is well known,

(2. 1) ωa=0, ωia= f] Aaljωh a=n+l, •••, n+NP

For any normal unit vector e=Σaξaea, Σ«f«=l> we have the second fundamental
from Φe defined by

(2. 2) φβ(α>)= Σ f ^ ^ y ^ ^ .

We denote the normal space to ψ(M) at (̂/>) by

f n+N
X: X= Σ ξ«e«> fα€

α=n+l

and define a linear mapping m: NP—>R by

(2.3) m(X)= Σ Lm(Aa), Aa={Aaιj).
a=n+l

Since m(A), AGSH, is invariant under O(«, R), the mapping m is well defined. We
denote the kernel of in at p by M~NP and call its element minimal. We denote
the unit sphere in Np by N~SP and define the first curvature at p by

(2.4) k1(p) = τmx{m(e)9 e£NSp}.

It is clear that the function kχ\ M-^R is continuous and differentiable on the
domain Ui={p: psM, ki{p)>0} of M. When M i s a curve in E3, h is clearly
the first (principal) curvature of M.

At any point p of U\y there exists a uniquely determined normal unit vector
en+i€Np such that

(2. 5) kι(p)

enγ\ is a differentiable vector field on ί/i. On Z7i, we take only the frame (p, eh

such that βn+i=βΛ+i. Then we have

2) In this note, Latin indices i, j , ••• r u n from 1 to w and Greek indices a,β, - take

values in {«+!» ^ + 2 , •••, n+N}.
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(2.6) m(ea)=0, n+l<a.

Accordingly for any normal unit vector e=Σa=n+iξaea at peUi, we have

(2.7) fn(e)=ξn+ik1(p)9

hence

The condition that M is a minimal submanifold in M is its first curvature ̂ Ξ
on M.

§ 3. The M-index of a submanifold.

At any point pGM, we take a frame b=(p, eh •••, en+N)eB. Let ̂ 6: Np->Sn be
the linear mapping defined by

( n+N \ n+

Σ te.) = Σ
α=w+l / a=n

n+N

n+l

Making use of the functions Pr on Sn, r=0,1, •• ,^, defined in §1, we define func-
tions P r : NP-^R by

_ / n+iV \ / n+N \

(3.2) PA Σ ξ«e«)=Pr( Σ S«AA
\α=w+l / \a=n+l /

Since Pr on 5W is invariant under O(n, R), the above defined Pr on iVp is well
defined, that is, independent of the choice of the frame b at p. Pi is identical
with m in §2.

By means of Lemma 1, P2 is a quadratic form on the vector space Np and
negative semi-definite on M~NV. We call the dimension of ψb(M~Np) the M-index
ofMatp and denote it by M-index PM.

LEMMA 3. M-index pM^minjdim *-Np,

Proof. For a frame b={p,ely -' ,en+N)€B, ψb(.M~Np)c:Mn and

dim Mn=άim Sn-1= ^^±L _ i = ^L

Since P 2 is negative semi-definite on Mn, we get easily the above inequality.
Now, we put M-index pM=c. If p is not a minimal point, using only

such frame b=(pfeh'"fen+N) that en+i=en+i in §2, then {en+2, ~',en+N} is an
orthonormal base of M~NP. For any X=Σna=n^ξaea^

M~Np, we get by (1.8)

(3.3) P2(X)=--^<A,A>=--^ Σ <Aa,Aβ>ξaξβ,
fl — L n — L aφ>n+\

where A^J^ξaA^ Accordingly we can choose a frame such that
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(3. 4)

r, Aβ)=0, a*β, a, β=n+2, ••-,

If p is a minimal point, we can choose a frame analogously such that

(3.5) J i 4 n + f + 1 = i 4 n + £ + 2 = . . . = J 4 n + J V = o ,

§ 4. The second curvature and the Frenet decomposition.

On Ui, we have the mean curvature normal unit vector field en+i Let Bi be
the subset of all bsB such that b=(p,e1,e2f •••,en+N)> P^Uu envl^en^ Bx can be
considered as a submanifold of B. Making use of Bi, we have

(4.1) Den+i= Σ (On+
i n+Kβ

where D denotes the covariant derivative of M along M. Clearly

G ^ ^ O (mod ωlf •••, ωn).

Making use of these relations, we define a linear mapping

by

n+N

(4.2) φi(X)= Σ o,n±lίt{X)eβ, XeMp.
β=n + 2

We can easily see that φx is well defined. We denote the tangent unit sphere of
Mp by SP={X: XsMp, \\X\\=1}. φx is linear, hence ψi(Sp) is an elliptic surface
with some dimension (^n—1) in M~NP. We define the second curvature of M at
peUi by

(4.3) fe(ί)=max{ | | ^ ) | | , eeSp}.

Clearly k2 is continuous on Ui and differentiable on

U2={p:peUi,

If M is a curve in Z?3, then k2 is its torsion (or the second curvature). Since we
have

ll^i(<OII2= Σ <0f>±iβ(ei)o>n±iβ(ej)ξiξj, e

we can choose a frame (p,eif -"7en)eF(M) such that
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Accordingly, we get a decomposition of Mv and a decomposition M~NP as follows:

Λfp=£fc1 Θ £fe Θ Θ £fc Θ EK»*,

where 0 denote the orthogonal direct sum and βH jrβσ=N2^n, such that

is a homothety with magnification &2r, τ=ly2, ,σ and

(4.5) k2=k21>k22> >k2σ>0

and

If βhβ2,'",βσ are constants, then k21y k22, -, k2σ are scalars on CΛ. In such case,
we take a frame b=(ptei,'~,en+N)GBi such that

are the orthonormal bases of Eβ

p\u •••, Eξ,a

tβf respectively and if ei€Eξ?fT,
τ = l , 2, •••, σ, then we get

(4. 6) -\-k22(en+β1+2θ)β1+1-\ ]ren+β1+β2+ιωβ1+β2)+'

Furthermore, making use of LEMMA 1, we can take frames b such that

), ψb(eβ)}=0,
(4. 7)

ea, eβ€Eβ

p*τ, τ=l,2,--,σ, or Eξ^~\ a<β.

We call a frame b satisfying the condition (4.6) and (4.7) a Frenet frame at p
and the decomposition of Mv in (4.4) the Frenet decomposition of the tangent
space at p.

§ 5. Relations between the Riemannian curvature and the scalars of a sub-
manifold Mm~M.

On Bf we denote the curvature forms of M by Ωι3 and the induced forms
from the curvature forms of M on F{M) through ψ: B->F(M) by ΩAB. Then we
have
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n+N

= d0)ij— 2 Σ
B=l a>n

= Ωιj+ Σ G>iaΛωaJ = Ωιj— Σ AaihAajkωh/\ωk

a>n a,fl,k

which are written in components as

(5.1) RtjMt=Rχjhk+ Σ {AaikAajh-AaihAajk\
a=n + l

where Rtjhk are defined by Ωij={l/2)Σh,k Rιjhkθ)hΛo)k and R%JMC are the functions
on B induced by ψ from the components of the curvature forms of M on F{M).
Contracting with respect to j and h, we get

(5. 2) Rik= Rik- Σ Rtaa*+ Σ {nm(Aa)Aaik-(Aa*)it},

where Rik and RAB are the components of Ficci tensors of M and M. Further-
more, contracting (5. 2), we get

R=R- Σ K««+ Σ Rta%a+ Σ {n2m2(Aa)-n\\Aa\\2}.
a t,a a

By means of (1.8), we have

R=R- Σ R««+ Σ Rχau.+tι{n-l) Σ ΛίA,),
a l, a

that is

(5. 3) trace NpP2=
 1 \R-R+ Σ Λ . - Σ

n[n l j [ a z, a

From this formula and LEMMA 1, we get easily

THEOREM 1. A Riemannian manifold with positive scalar curvature can not
be isometrically imbedded {immersed) in a euclidean space as a minimal sub-
manifold.

Proof. If M with positive scalar curvature can be isometrically immersed in
a Euclidean space En+N as a minimal submanifold, then we have NP=

M~NP at
any point peM, hence trace ^ p P 2 ^ 0 . The right hand side of (5. 3) is positive in
the case. This is a contradiction.

Furthermore, we can generalize THEOREM 1 as follows.

THEOREM 2. An n-dimensional Riemannian manifold M whose scalar curva-
ture is everywhere greater than a constant c can not be isometrically imbedded
{immersed) in an {n-\~N) dimensional Riemannian manifold M of constant curva-
ture {n-\-N){n-t-N—l)c/n{n—l) as a minimal submanifold.

Proof. Let us suppose M is isometrically immersed in M as a minimal sub-
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manifold. Since M is a constant curvature, on B we have

hence

3P (n+N)(n+N-l)

and

δ i A p

Accordingly, we get

R-R+ΣR**-

— JV —
— JΠ.— iv H —^7 R-{-Λ+iV ' (w+iV)(w+iV-l)

(»+JSΓ)(»+iV-l)

> C ~ (^+A^)(n+ΛΓ-l) Λ = 0 '

On the other hand, at any point p of M we have trace NPP2^0, since NP=
M~NP.

This contradicts (5. 3).

REMARK. If i?^c, then M can not be also_ isometrically immersed
into an (n+N)-dimensional Riemannian manifold M of constant curvature
(n+N)(n+N—l)cln(n—l) as a minimal submanifold with a positive M-index at
some point of M.

Now, we consider the case that M is not minimal in M at each point. Using
the notation in §4, assume that the M-index i(p) of the immersion M<mM and
the dimensions of the components of the decompositions of Mp and M~NP in (4.4)
are all constants.

Then, making use of Frenet frames, we may put

{ωn+ia=£aθ)a-n-i (a=tι+2, —,
(5.4) —

10)2+^=0 (n+l+N2<β).

Differentiating ωin^i^ΣAn+njcoj and using the structure equations, we get

Σ G>ίaΛ(Oa
+l<a

h— Σ kaA+l<
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hence

(5.5) DAn + ltjAθ)j=— i
j,n+l<a

where

h h

is the covariant differential of the tensor field An+itjβi^βj of M. Putting

h

we get from (5. 5)

kaAaljW3AC0a-n-\
3,h

(5. 5')
H~ ~K Σ Rιn+ljhd)j A (*)h = Of

that is

(5.6) n+a+1 7^±llb ™+lab~ '

This formula is a generalization of the Mainardi-Codazzi's equation in the case M
is a hypersurface.

§ 6. Submanif olds of M-index 0 in euclidean spaces.

Let Mbe isometrically immersed in the euclidean space En+N and assume that
M is everywhere of M-index 0 and not minimal. Let en+i be the mean curva-
ture normal unit vector field on M. Then, on Bι (in §4), we have

(6. 1) ωίa=0y ί = l , 2, •••, n, a=n+2, ••-, n-\-N.

By means of the structure equations, we get

Q=dωίa= Σ a>ίjAa)ja+<Din+iA<ϋn+ia+ Σ
3 n+Kβ

that is

(6. 2) ωin±iAωn+la=0.

Since k1(p)=m(An+i) = O-lri) trace AΠH^FO, we have

rank An+i^l.

Let v be the index of relative nullity of M<mEn+N in the sense of Chern and
Kuiper [1], then by virtue of (6.1) we have

(6. 3) rank An^x=n~v,



THEORY OF RIEMANNIAN SUBMANIFOLDS 293

Case I: v^n—2.
From (6.2), we have

Orι±ia=0, a=n+2,-~,

This follows that there exists an (n+Y)-dimensional linear subspace En+1 in En+N

such that Mn m En+1.
Now, we suppose that v is constant. We use only such frames b=(p,elf~ , en+N)

that

(6.4) ΛItnaz=0} 0=1,2,...,],, i = l , '"fn.

Then we have

(Pan \ 1 = 0,

from which

b^v v<r^n β>n+l

that is

Σ (QarΛωrn+l^O.

Hence, by means of (6.3) and (6. 4), we have

Accordingly we get

Hence, the system of Pfaff equations:

(6. 5) ωv+1 = ωv+2="' = ωn=0
is completely integrable. Let Q be an integral submanifold of (6. 5), then we have
along Q the equations:

dp= Σ (Paβd, dea— Σ (PabP-b dβr = Σ <ί>rt£t, den+i==0.

These follow that Q is a ^-dimensional linear subspace and en+1 is parallel along Q
in En+N. We denote the integral submanifold through pεM by E\p).

Case II: v=n—1.
We use only such frames b=(p,eif'~,en+N) that

(6.6) o)an+i=0 (a=l, •••, n—1), ωnn+1=λωn

Then, from (6.2), ωn+ia can be written as

(6. 7) ωn+i^ pai

From the first part of (6. 6), we get
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j Σ
β>n+l

Hence ωan can be written as

o)an=μao)n ifl=l, 2, •••,

Analogously as in Case I, the Pfaff equation

(6. 8) ωn=0

is completly integrable. In this case, we have the equations

dp— Σ (Oiβiy dea= Σ o*abei>-\-μaωnen,
b ^ 1

a>n+l

These show that an integral submanifold of (6.8) is an (n—l)-dimensional linear
subspace in En+N. We denote the integral submanifold through p by En~\p).
Along En'\p), en and en+1 are parallelly displaced in En^N.

In general, for any submanifold MnmEn+N which is not minimal at every
point, we define a mapping Φ: Mn-^S"+N~l (the unit hypersphere in EnsN with
center at the origin) by Φ(p) = en+i(p), pzM. We call Φ the spherical mean cur-
vature mapping of Mn.

Now, returning to Case II, the mapping Φ is constant on each integral sub-
manifold. Therefore the image M under Φ is a curve on S?"1"^"1 and its tangent
vector is —λen-\-Σa>n+ipaea. In order that there exists an (?z-|-l)-dimensional linear
subspace En+1 such that M<^En+1, it is necessary and sufficient that

Pn+2 = pn+3 = * *' ~ Pn+N = 0,

that is

( \ 1/2

Σ pi) =o,
a>n+l J

where k2 is the second curvature vector of M. In other words, we can say that
any orthogonal trajectory of the family of En~\p) and its image under Φ have
the parallel tangents at the corresponding points.

THEOREM 3. Let Mn be an n-dimensional isometrically immersed submanifold
in En+N which is everywhere not minimal and of M-index 0. Let assume that
the index of relative nullity of Mn in En+N v is constant.

Then, v^n—1 and there exists a v-dimensional assymptotic linear submanifold
E\p)(zMn through any point pQMn. Along E\p\ the mean curvature normal
unit vector field en+i is parallel in En+N. Furthermore, the following holds:

I) If v^n—2, then there exists an (n+T)-dimensional linear subspace En+ι

such that En+1mMn.
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II) If v=n—l, then the normal unit vector en along En~\p) in Mn is also

parallel in En+N and in order that there exists an En+1^>Mn, it is necessary and

sufficient that k2=0 or the image of an orthogonal trajectory of the family of

En~\p) under the spherical mean curvature mapping has the same tangent direc-

tion with the one of the trajectory at the corresponding points.

COROLLARY. For any immersed submanifold Mn in En+N which is everywhere
not minimal, the necessary and sufficient conditions in order that there exists an
{nΛ-V)-dimensional linear subspace En+1mMn are

i) the M-index of Mn is every where zero, and

ii) the second curvature k2=0.

REMARK. If Mn^En+N is everywhere of M-index 0 and minimal, then Mn is

totally geodesic and so Mn is an ^-dimensional Euclidian space ^ o r its sub-

domain.
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