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A THEORY OF RIEMANNIAN SUBMANIFOLDS

By ToMINOSUKE OTSUKI

As is well known, the most useful method of studying the properties of a curve
in a euclidean space or more generally Riemannian space, from the standpoint of
differential geometry, is making use of the Frenet formula, in which the first
curvature and the second curvature and so forth are the essential quantities for
the curve. Regarding a submanifold of dimension =2 in a higher dimensional
space, the situation is quite different from the case of curves. We have, at
present, only the Gauss and Weingarten formulas and the Gauss and Codazzi
equations as the complete integrability conditions for the formers, in which the
system of the second fundamental tensors corresponding to the normal unit vectors
are performing important roles. Recently, O’Neill [2~5] obtained many interesting
results on submanifolds considering the system of the second fundamental tensors
as an operator from the tangent space to the normal space at each point of a
submanifold which is called the shape operator. This idea is an interesting
method for treating submanifolds but it seems to the author that there remains a
direction of exploring analogous formulas and quantities for submanifolds to those
of curves.

Let C: z=x(s) be a C* curve in the euclidean #z-space E™ parameterized with
arclength s and let (x(s), es, --+,en) be the field of its Frenet frames. Then, we
have the Frenet formulas:

z—j =ey, % =ki(s)es,
‘:11632 =—Fki(s)e:+ka()es, -+,
Cée; =—ki_i(s)eirthi(S)ei, -,
‘ijs" = —kn1()en-r.
For any normal vector e=X"_, &.e, at x(s), we have
% s e=ki(s)é1.

Hence we can consider the first curvature 4i(s) as
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0.1 ki(s)= max{ [; >

where N, denotes the normal space to the tangent line Ty,C of C at x(s). e:
is uniquely determined as a normal unit vector by

- e, e€Nyy=eiL, |e|=

©. 2) ki(s)= % ez

when £i(s)x0. Since £ki(s) is differentiable on a subarc of C in which Z(s)=0, e,
is also differentiable on it. Then, the field esx(s) defines a linear transformation

. 3) 01 ToyC — NaiyNet

at each point such that %,(s)=0 by

©. 4) ¢1(X)=Z(X~el)<‘fle e,,)ea X (desX)-e2)e
a>2

then the second curvature k,(s) of C can be considered as

0.5) ky(s)=max{|pi(e)], e€ Trv,C, |e|=1}.

Making use of these interpretations of the curvatures of the curve, we may define

the curvatures for a submanifold. For simplicity, let M" be an n-dimensional

submanifold in the euclidean space E™*¥. Let (p, ey, -, enrn), PEM™, be an ortho-

normal frame of E™'¥ at p such that ey, -, e, are tangent and en,s, -+, en,y are

normal to M™ at p. Then for any normal vector e=> ¥, £.e, at p, the quantity

12 /dx

m0= o 5 (G o)) -

das

L

does not depend on the choice of the frame (p, ey, -++, ¢,) of M™ and is linear on the
normal space N, to M™ at p. Then, we can define the first curvature of M™ at p by

(0. 6) ki(p)=max{m(e), eeN, |e|=1},

which is a continuous scalar of M" If ki(p)x0, there exists an uniquely de-
termined normal unit vector & such that

0.7 ki(p)=m(&).

On the domain of M™ such that %20, ¢ is differentiable. Then, the field é defines
a linear transformation

o TpM™ — Nyneét
at each point such that £,(p)=0 by

. 8) ou(X)= >Z}+1(dé(X )en)e.,  XeT,M™
a 1) In the right hand side, <%2%-e> az _, denotes <did'7i(:—) ~e> where z(s) 1s a
ds i §=0

dx(s) —e,.
s=0

smooth curve through p, z(0)=p, and
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Then the second curvature kx(p) of M™ can be defined by
0.9 ky(p)={max |¢:(e)], eeT,M", l|e|]=1}.

In this paper, the author will show that we can introduce the concepts of the
Frenet frame, the Frenet formulas and some kinds of curvatures for submanifolds
in the theory of Riemannian submanifolds according to the methods mentioned
above and investigate a special immersions of Riemannian manifolds by making
use of these concepts.

§1. Preliminaries.

Let S, be the set of all real symmetric square matrices of order n. We
consider it as a vector space over the real field R and the orthogonal group
O(n, R) of order »n operates on it as follows: For any Ae€S, T€O#, R)

a1n T(A)=T"AT,

where 77 denotes the transposed matrix of 7.
Now we define an inner product of any two elements A, B in S, by

1.2 {4, B)=% trace (AB),

then we have
. race ( A2)
a.3) MAl=n/ A Ay =/ 22 ang =1,

where I, denotes the unit matrix in S,
Let m: S,—R be a linear transformation defined by

1.4) m(A)= %trace A

and put M,=m"*(0), that is

1.5) M,={A|trace A=0, AeS,}.

We call an element of M, minimal in the following. Since we have
<A’ In>:m(A); AGSm

S, is decomposed in a direct sum as follows:

1. 6) S,=M, ® RI,, M, | RI,.
Let p: Sh—M, be the projection according to the direct sum (1.6), that is
a7 o(A)=A—m(A)I.

Now, we define real valued functions P,: S,—R of order 7», r=0,1, ---, #, by
the equality:
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det (I, +t4)= 3 ( ’: )t’P,(A), AeS,,
=0

where ¢ is an auxiliary variable. We have especially
Py(A)=1, Pi(A)=m(A), Pu(A)=det A

and
P(A)————Z—Z( i ii— Qi@
2 - %(ﬂ—l) 2, dua]] azjdjz)
—_ _1— 2__ 2
= =0 {(trace A)?—trace A%},
that is
1.9 PuA)= " m(ayy— L4l
) 2 n—1 n—1 )

From the above equation we get easily the following

LemMma 1. P, is a non-singular quadratic form om S, negative definite on
M, and of index dim M,=n+2)(r—1)/2 on S,.

Substituting A=p(A)+m(A)I, in (1.8), we get

Pid)= =" (W)~ A+ (AL
= ()~ 2 I+,
that is
1
.9 PAD=m (M)~ L A

We get from (1.9) the classical result.
LemMMA 2. For any symmetric matrix A of ovder n, we have
{PA(A)}* = Py(A)
and the equality holds if and only if AeRI,.

Lastly, we remark that the mappings, functions, subspaces in this section are
all invariant under the group O(z, R).

§2. The first curvature.

Let M=M" and M=M""" be two differentiable Riemannian manifolds of
dimension # and n#+N respectively and let ¢: M—M be an isometric immersion.
Let F(M) and F(M) be the bundles of orthonormal frames of M and M with
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the projections n: F(M)—M and 7 F (1\2)9]\7[. Let B be the set of elements
b:(py €1, €2y en+N) SuCh that
(pr €1, €2, ***, e'ﬂ)eF(M)r (¢(p)y €1, €3, **, en,,.N)GF(M),
identifying e; with dy(es), i=1,2, -, n. B is considered as a differentiable manifold
in a natural way. Then, let ¢: B—F(M) be the natural immersion covering ¢.
We denote the basic forms and connection forms of M by
ZDA) ZBAB::——&hLb 14,13::1,2,"3 n_klv
and the induced ones on B by ¢ from @4, @ap by
ws=¢* 041,  wap=¢*@Wan.

Then we have, as is well known,
@1 0e=0, o= Awwy, a=n-+t1, - ntND
=1

For any normal unit vector e= Y, .., 2« £2=1, we have the second fundamental
from @, defined by

. 2) D)= 3] EuAmmie,.

at,]

We denote the normal space to ¢(M) at ¢(p) by

n+N
Np={X: X= 3 &, EaeR}

a=n+1
and define a linear mapping m: N,—R by

n+N
2.3 m(X)= _Z.'Hfam(Aa), Ae=(Auj).
Since m(A), AeS,, is invariant under O(xn, R), the mapping 7 is well defined. We
denote the kernel of 7 at p by ¥~N, and call its element minimal. We denote
the unit sphere in N, by ¥#-S, and define the first curvature at p by

2. 4) ki(p)=max{/i(e), ee¥Sp}.

It is clear that the function ki M—R is continuous and differentiable on the
domain U,={p: peM, ki(p)>0} of M. When M is a curve in E? k, is clearly
the first (principal) curvature of M.

At any point p of Ui, there exists a uniquely determined normal unit vector
én11€ N, such that

(2. 5) ky(p)=1M(8n41).

&, ,11s a differentiable vector field on U;. On U, we take only the frame (p, e1, -+, €n i n)
such that e;,1=@,,;. Then we have

2) In this note, Latin indices 7,7 --- run from 1 to » and Greek indices a, §, --- take
values 1n {n+1, n+2,---,n+N}.
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(2. 6) m(e.) =0, n+l<a.

Accordingly for any normal unit vector e=Y"*%,, £&.e, at pe U;, we have
2.7 7i(e) =Enr1k:(D),

hence

—k(p)=me)=ki(p), peM.

The condition that M is a minimal submanifold in M is its first curvature %,=0
on M.

§3. The M-index of a submanifold.

At any point peM, we take a frame b=(p, e, -+, en.n)€B. Let ¢p: Npy—S, be
the linear mapping defined by

n+N n+N
3.1) ¢b< by saem)= T th Au=(Au)).
a=n+1 a=n+1

Making use of the functions P, on S,, r=0,1, -, n, defined in §1, we define func-
tions P, N,—R by

- n+N n+N
(3.2) B3 se)-r (2 an)
a=n+1 a=n+1

Since P, on 8, is invariant under O(x, R), the above defined P, on N, is well
defined, that is, independent of the choice of the frame & at p. P, is identical
with 7 in § 2.

By means of Lemma 1, P, is a quadratic form on the vector space N, and
negative semi-definite on #-N,. We call the dimension of ¢o(*~N,) the M-index
of M at p and denote it by M-index ,M.

LemMma 3. M-index ngmin{dim =Ny, W}

2
Proof. For a frame b=(p, e, -, ensn)€B, ¢o(¥~Np)C M, and
dim M,=dim S,—1= ”(”2“) 1— ("“1)2("+2) .

Since P, is negative semi-definite on M,, we get easily the above inequality.

Now, we put M-index ,M=c If p is not a minimal point, using only
such frame b=(p, ey, -+, eniw) that en,1=€ny1 in §2, then {enys -+, enin} is an
orthonormal base of ¥*~N,. For any X=X, &.e.€”~N,, we get by (1.8)

1
Z <Aar’ Aﬁ>$a$ﬂy

n—1 op5nt1

3.3) PuX)=— 1 (A, Ay=—

where A=Y, £,A,. Accordingly we can choose a frame such that
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(Ania¥0, Anysx0, -, Apio1x0,

(3. 4) VAnrcre=Aniis=+=An,5=0,

(A Apy=0, axp, a, p=n+2, -, n+c+1.

If p is a minimal point, we can choose a frame analogously such that
(Ani1%0, Ani2¥0, -+, Any 0,

(3.5) 1Anrcs1=Anipe=+=An, y=0,

{Au Apy=0, axp, a, p=n+1, -, nte

§4. The second curvature and the Frenet decomposition.

On U, we have the mean curvature normal unit vector field &,,,. Let B; be
the subset of all e B such that b=(p, ey, s, -+, enin), PEUL, €ni1=€r11. Bi can be
considered as a submanifold of B. Making use of B, we have

(4 1) ﬁén+1= Z a)n_+17;ei+ Z Wn+1 €,
3 n+1<g
where D denotes the covariant derivative of M along M. Clearly
wn_+15=0 (mOd [OJPEEN (l)n).

Making use of these relations, we define a linear mapping

o1 Myp=Ty(M)—¥"N,

by
n+N

4. 2) 0i(X)= 2, oang(X)es, XeM,.
p=n+2

We can easily see that ¢; is well defined. We denote the tangent unit sphere of
M, by S,={X: XeM,, ||X||=1}. ¢ is linear, hence ¢(S,) is an elliptic surface
with some dimension (=#—1) in *~N,. We define the second curvature of M at
p€ U1 by

4.3) k:(p)=max{||p:(e)ll, eeSp}.
Clearly k, is continuous on U, and differentiable on
Us={p: pe U, ki(p)x0}.

If M is a curve in E®, then k, is its torsion (or the second curvature). Since we
have

l:(e)]]?= ;ﬁ oni1g(edoniple)és, — e= ) &,

we can choose a frame (p, e;, -+, e;) € F'(M) such that



THEORY OF RIEMANNIAN SUBMANIFOLDS 289
llpw@*=F5(Eh ot +Ehrpa) +or
TR s ppaat T E gy appa) T
Accordingly, we get a decomposition of M, and a decomposition #~N, as follows:
My=Ef\ @ Ef, @D Ef. @ Epa™,
{ M-Np=FEf @ Ef, @@ Efs, @ BV
where @ denote the orthogonal direct sum and gi+---+B,=N.=#, such that
elEf: Ef— Ef.

4.4

is a homothety with magnification k., r=1,2, ---,¢ and
(4. 5) k2:k21>k22>"'>k2v>0
and

01(E3579)=0.

If By, Bo, ++, B are constants, then ks, Bos, -+, k2, are scalars on U,. In such case,
we take a frame b=(p, e, -+, ensx)€ By such that

{ely R eﬁl}v {eﬂ1+17 Tty eﬁl+ﬂ2) ”'}7
{eﬁ1+'"+ﬂa—1+1’ T eﬁ1+'"+ﬁa}

are the orthonormal bases of E', -+, Efs, respectively and if e;€ Ef:., ¢1(e:)=Fkacen11a,
r=1,2, -, 0, then we get
Déy1= lZ On110€i+Re1(Cn 201t ten gy 100p)
(4. 6) +Roo(lnipyr2@p 1t i gy r1@pyp) oo
FRoo(Cni Ng-p, 120N g-p, 417 FCrs Ny 1108,).
Furthermore, making use of LEMMA 1, we can take frames b such that
{go(ea)s Pr(en)>=0,  llign(ea)lZlgulenll,
Cu, es€EL, ©=1,2,::,0, oOr Eyzvm, a<p.

4.7

We call a frame b satisfying the condition (4.6) and (4.7) a Frenet frame at p
and the decomposition of M, in (4.4) the Frenet decomposition of the tangent
space at p.

§5. Relations between the Riemannian curvature and the scalars of a sub-
manifold MeM.

On B, we denote the curvature forms of M by £;; and the induced forms
from the curvature forms of M on F(M) through §: B—F(M) by @45 Then we
have
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n
2i,=dwij— 3 wi Aoz,
%=1
n+N

=da)ij— BZ: a)iB/\(UBj+ Z wia/\wa]
=1

a>n
=00+ 2] 01 ANOay=205— Y AvinAajeon Ny
a>n a,h,k

which are written in components as
_ n+N
(5.1) Rijne=Ripmr+ 2. (AwirAajn—AcinAasi),

a=n+1

where R, are defined by 2;,=1/2)X 1.5 Rijnkon Aoy and R, are this functions
on B induced by ¢ from the components of the curvature forms of M on F(M).
Contracting with respect to j and 4, we get

®.2) Rin=Rue— X Ruaart I {mm(A) Awie— (A},
where Ry and R.s are the components of Ricci tensors of M and M. Further-
more, contracting (5.2), we get
R=R— ; Rt Z Ricrat Z. {n*m?(Aa)—nl| Adl*}.
By means of (1.8), we have |
R=R— Z Rect Z Ricratn(n—1) 3 Po(Ad),
that is |

1 — — —
(5 3) trace NpP2—~ m {R—R+ ; Raa“‘ z,Za: wza}-

From this formula and LEmMMA 1, we get easily

THEOREM 1. A Riemannian manifold with positive scalar curvature can nol
be isomelrically imbedded (immersed) in a euclidean space as a minimal sub-
manifold.

Proof. If M with positive scalar curvature can be isometrically immersed in
a Euclidean space E™*¥ as a minimal submanifold, then we have N,=%-N, at
any point peM, hence trace »,P»=0. The right hand side of (5.3) is positive in
the case. This is a contradiction.

Furthermore, we can generalize THEOREM 1 as follows.

THEOREM 2. An n-dimensional Riemannian manifold M whose scalar curva-
ture is everywhere greater than a conmstant ¢ can not be isometrically imbedded
(tmmersed) in an (n+N)-dimensional Riemannian manifold M of constant curva-
ture (n+N)n+N—1)c/n(n—1) as a minimal submanifold.

Proof. Let us suppose M is isometrically immersed in M as a minimal sub-
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manifold. Since M is a constant curvature, on B we have

R

Rusop= N N=1) (040B0—0400BD),
hence
= —R
Rt = G Nt N—1) P00
and
_ R .
Ra,e— n+N Oage.
Accordingly, we get
R_E'{" Z Paa— Z ﬁla‘ur
= N = nN _
=RRE AN R e D B
p nn—1) -
AR v
>c nin—1) R=0.

"~ FN)n+N-1)

On the other hand, at any point p of M we have trace »,P>=0, since Np=""N,.
This contradicts (5. 3).

REMARK. If R=c¢, then M can not be also. isometrically immersed
into an (#-+N)-dimensional Riemannian manifold M of constant curvature
(n+N)n+N—1)c/n(n—1) as a minimal submanifold with a positive M-index at
some point of M.

Now, we consider the case that M is not minimal in M at each point. Using
the notation in §4, assume that the M-index i(p) of the immersion M eM and
the dimensions of the components of the decompositions of M, and ¥*~N, in (4.4)
are all constants.

Then, making use of Frenet frames, we may put

{wLH“Zand_n_l (a=n+2! ) n+1+N2)y
Wny15=0 (n+1+N<p).

Differentiating win,1=2 An:1.j0, and using the structure equations, we get

(5.4

dwin—“:ijij/\w]L-H.+ +;< wia/\wa'l_ﬂ-"_glw
n a

=2 iAo Aop— X kaAazja)]/\wa—n—l'i"Qin_ﬂy

hn+lla

d(!)iwz = jdAMz]ij+ ZhAnqunja)h,/\wh]
A
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hence

(5. 5) DA?i]l]/\w]:— 2 EaAazjw]/\wa—n—l+gzn+ly
sn+l<aZn+14+Np —

where

DAniiiy=dAn, 105+ Zh:Awnjwhi-l‘ %} Ani1inon,
is the covariant differential of the tensor field Aniy ei®e; of M. Putting
DAﬂ—_lz] = ’Z:A_’rili]; hWhns

we get from (5.5)

23 Aptig @, N\ oy — P EaAazj(l)]/\(l)«_n_'l

Hh snt1<asn+1+N,
(5.5

1 —
+ 'é" Z Rzlt}jhw]/\whzoy
that is
An_ﬂia; b_Ang_lib; a_5n+b+1An+b+1ia

5. 6) +En+a+1An+a+1ib+ﬁzpi1ab=0, 1=a<b=Ny;

Agﬂia;r_‘An_-l-lr;a+kn+a+1An+a+1ir+Rm_ﬂar=0, 1§0§N2<r§n;
Awir;t_‘An_-uit;r‘l‘Rzn_Hn:O, Ne<vr<t=mn.

This formula is a generalization of the Mainardi-Codazzi’s equation in the case M
is a hypersurface.

§6. Submanifolds of M-index 0 in euclidean spaces.

Let M be isometrically immersed in the euclidean space E”*¥ and assume that
M is everywhere of M-index 0 and not minimal. Let &,,, be the mean curva-
ture normal unit vector field on M. Then, on B; (in §4), we have

6.1) @ia=0, i=1,2, -, n, a=n+2, -, n+N.
By means of the structure equations, we get
0=dwic= 2 0i; \Djet Gins1 \Oni11at 2 @i\,
7 — n+1<p
that is
(6. 2) wi_’/il_./\wn_-f-la:o-
Since ki(p)=m(An.1)=(1/n) trace A,,1%0, we have
rank Ap.1=1.

Let v be the index of relative nullity of M& E™*Y in the sense of Chern and
Kuiper [1], then by virtue of (6.1) we have

(6. 3) rank Ap 1 =n—v,
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Case 1. v=n—2.
From (6. 2), we have
On11.=0, a=n-+2, -, n+N.

aAp= 2,10, de;= 2j0ijej+ @ing1€ny1, dens1= —Ziwin_uei-

This follows that there exists an (#-+1)-dimensional linear subspace E™*' in E»*¥
such that M"e E™*.
Now, we suppose that v is constant. We use only such frames d=(p, e1, ***, ensn)
that
6. 4) Ani10=0, a=1,2,,y, i=1, -, n.
Then we have
(Uuw=0,

from which

0=dwan 1= 2, 0o A\Opni1+ 20 OarA\Orniat+ 2 Wap/\ Wpn 11
— 3=y —  <rzn —  g>utl —

that is
2 @ar A0rny1=0,

v<rsn
Hence, by means of (6.3) and (6. 4), we have
Wer=0 (mod w11, W,13, *++, O).
Accordingly we get
do,= 2 0;i\N0ir=0 (mod w,,1, ©,42, **, On).
Hence, the system of Pfaff equations:
(6- 5) wu+1=0)»+2="‘=wn=0

is completely integrable. Let @ be an integral submanifold of (6.5), then we have
along @ the equations:

dp= 3, wata, dea= 3, Wasts de,= 3, wpey, den.1=0.
asv b=y t>y
These follow that @ is a v-dimensional linear subspace and é&,,; is parallel along @
in E*¥, We denote the integral submanifold through peM by E*(p).

Case 1. v=n—1.
We use only such frames b=(p, e1, +*+, ensn) that

(6. 6) wan1=0 (@=1, -, n—1), waps1=20n (A%0).
Then, from (6.2), wsi1. can be written as

6.7 Ony10= Pan(B+1< ).

From the first part of (6.6), we get
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Ozdwa_w:ijaj/\wjlﬂ+ﬁ Z+ waﬁ/\wﬂnﬂzlwan/\wn.
>n+1

Hence wan can be written as
Oan= tla®Wn (e=1,2,---,n—1).
Analogously as in Case I, the Pfaff equation
(6. 8) @, =0
is completly integrable. In this case, we have the equations

dp= 3 wiei, de‘l:bsz lwabeb—i—pawnen,
7 <n—

asn—1

den+1=<~1en+ X paea>wn.

a>n+1

These show that an integral submanifold of (6.8) is an (#»—1)-dimensional linear
subspace in E™¥, We denote the integral submanifold through p by E™ (p).
Along E™Y(p), en and &, are parallelly displaced in E""7.

In general, for any submanifold M"& E"*¥ which is not minimal at every
point, we define a mapping @: M"—S?*¥~! (the unit hypersphere in £*'¥ with
center at the origin) by @(p)=é, (), peM. We call @ the spherical mean cur-
vature mapping of M".

Now, returning to Case II, the mapping @ is constant on each integral sub-
manifold. Therefore the image M under @ is a curve on S§*¥~! and its tangent
vector is —Aen+ Y asni1pe€.. In order that there exists an (z+1)-dimensional linear
subspace E”*"' such that Me E™*, it is necessary and sufficient that

Pnie=Pni3=—""" :Pn+N:Oy

that is
172
o= T ) =0
a>n+1

where k, is the second curvature vector of M. In other words, we can say that
any orthogonal trajectory of the family of E""'(p) and its image under @ have
the parallel tangents at the corresponding points.

THEOREM 3. Let M™ be an n-dimensional isometrically immersed submanifold
in E™N which is everywhere not minimal and of M-index 0. Let assume that
the index of relative nullity of M™ in E™Y v is constant.

Then, v=n—1 and there exists a v-dimensional assymptotic linear submanifold
EY(pycM™ through any poinit peM™. Along E’(p), the mean curvature normal
unit vector field &,,1 is pavallel in E*¥. Furthermore, the following holds:

) If v=n—2, then there exists an (n+1)-dimensional linear subspace E™'*
such that E*'sM™".
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1) If v=n—1, then the normal unit vector e, along E*(p) in M™ is also
barallel in E™Y and in order that there exists an E™''DM™, it is necessary and
sufficient that k,=0 or the image of an orthogonal trajectory of the family of
E™Yp) under the spherical mean curvature mapping has the same tangent direc-
lion with the ome of the trajectory at the corresponding points.

CorOLLARY. For any immersed submanifold M™ in E™Y which is everywhere
not minimal, the mecessary and sufficient conditions in order that there exists an
(n+1)-dimensional linear subspace E"*DM™ are

1) the M-index of M™ is every where zevo, and

ii) the second curvature k:=0.

ReEMARK. If M*€E"™?¥ is everywhere of M-index 0 and minimal, then M™ is
totally geodesic and so M™ is an #u-dimensional Euclidian space E" or its sub-
domain.
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