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ON THE SOLUTION OF THE FUNCTIONAL EQUATION
fog(2)=F(z), II1

By MiTsuru OzAwA

In our previous papers [3], [4] we discussed transcendental entire solutions of
the functional equation feg(z)=1F'(z) and gave several transcendental unsolvability
criteria, which based upon the existence of a Picard exceptional value, perfectly
branched values, finite asymptotic paths and so on. All the criteria proved there
do not work when F' is an entire function of order less than 1/2 and even when
F(z) is 1/I'(z). In this note we shall give a very useful criterion, which is based
upon an elegant theorem due to Edrei [2] and which does work to some entire
functions of order less than 1/2 and to 1/7'(z) and the #z-th Bessel function /[.(z).
And we shall give certain variants of this result. Further we shall give several
criteria based upon Denjoy-Carleman-Ahlfors theorem.

Let f(z) be an entire function and M,(») its maximum modulus on |z|=7.
We shall use the following notations:

— log log M;(r) lim log log M;(r)

or= 11_.12 log » A= ey log 7
and
4,—Tm log log log My(7) , 4,—1lim log log log M(r) .
rsea log 7 Py log 7

LemMaA 1. [4]. psr<co implies fyr.q=p,.
LEMMA 2. 2,>0 implies $.g=py and Ay.4= 2.

Proof. By Pélya’s method we have
¥
Mfgg(r)E—Mf" (d My<—2—>>

for a constant d, 0<d<1. For a sufficiently small positive number ¢ there is an
7, such that for r=7,

log log M (r)>(2;—¢) log

and there is a sequence {r,} of radii such that
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log log M,,(%") =(p,—¢) log %

for n=n,. Hence
rn \ ¢
log log Mfag(rn)g(lf—e)[log d+ (7> ]

Thus
log log log My.,(7y)

fr.g= lim
n—oo

log 7,
- 7= log(2,—e)+log [log d-+(74/2)"~]
= lim
N0 log 7»
=pPg—e.

Since ¢ is arbitrary, we have the desired result: If 2,>0, §,.,=p,
Again by Pélya’s method and by

log My(r)>rir— and log My(r)>re

for r=7, and for a given sufficiently small positive number e,

Ag—¢
log log Mf.q(r)>(2f—e)[log d+ <—;~) ! ],
which implies the second desired result.
LemMma 3. Let f(z) be exp(l(z)) with an entire function L(z), then A;=1.

Proof. By Pélya’s method
Mf(r)éexp<d My, (%)) =exp(dcr)

with two constants d(0<d<1) and ¢>0. Therefore A,=1.

LemMma 4. [5]. Let F(z) be an entire function of finite order. Assume that
the functional equation fog(2)=F(z) holds for two transcendental entire functions f
and g. Then p;=0 and py=pr.

LEMMA 5. [2]. Let f(z) be an entire function. Assume that there exists an
unbounded sequence {a,}3., such that all the roots of the equations

f@R=a, (n=12,-)
are real. Then f(2) is a polynomial of degree at most two.

THEOREM 1. Let F(2) be an entire function of finite order for which F(z)=A
for some A has only real roots. Then the functional equation f-9(z)=F(z) does
not cdmit any pair of transcendental entire solutions f and g.
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Proof. By Lemma 4 f must be a transcendental entire function of order zero.
Therefore the equation f(w)=A has an infinite number of roots {w,}. Consider
the equations ¢(z)=w,, n=1,2,---. Then all the roots must be real, since they are
the roots of F(z)=A. Hence ¢(z) satisfies the assumptions of Lemma 5, whence
follows that ¢(z) is a polynomial. This contradicts the transcendency of ¢(z).

Applications. Theorem 1 can apply to the following functions:
2P sin % (p, ¢. integers g=1, p=—¢q); 1/I(2);

the n-th Bessel function J.(2); P.(2)= ﬁ (1— —5;)(/)>1);
n=1

1 <1— %) P(2)(e*—7)(e*—7e') (P: a polynomial, @: real).
n=1
THEOREM 2. Lel F(z) be an entire function of finite order for which F'(z)=0
has only real zeros. Then the functional equation f-g(z)=F(2) does not admit any
pair of transcendental entire solutions f and g.

Proof. Consider the derived functional equation f’0g(2)-¢’(z)=F’(z). Since f
is of order zero and transcendental, f/(w)=0 has an infinite number of roots {w.}
and ¢(z)=w, has only real roots for each #. Hence by Lemma 5 ¢g(z) must be a
polynomial, which contradicts the transcendency of g¢(z).

Applications. Theorem 2 can apply to the primitive functions of the functions
already listed.

When F(z2) is of infinite order, we need some modifications in the above
theorems.

THEOREM 3. Let F(2) be an entire function of infinite order, all of whose A-
points for some A lie on the real axis. Assume further that the order of N(r; A, F)
is greater than pp. Then the functional equation fo9(2)=F(z) has no pair of trans-
cendental entire solutions f and g.

Proof. When f(w)=A has an infinite number of roots, the same method as
in theorem 1 works and then we have a contradiction. If f(w)=A has a finite
number of roots, then

S w)=A+Pw)e™ ™,  foq(z)=A+Peg(z)e™?®

with a polynomial P and an entire function L. By Lemma 3 A,=1. Hence
09=0s.¢ by Lemma 2. On the other hand by its form

ON (r; A, Fy= PN (r;0, Poq)épg-
This implies an absurdity relation gr<pwa, 4,7 =p0r.

THEOREM 4. Let F(z) be an entire function of infinite order. Assume that
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F'(2) has only real zeros. Further assume that the order of N(r;0, F’) is greater
than pr.. Then the functional equation f-9(2)=F(z) has no pair of transcendental
entire solutions f and g.

Proof. If f/(w)=0 has an infinite number of roots, then the same procedure
as in theorem 2 is applicable and we have a contradiction. If f’(w)=0 has a finite
number of roots, then

J'w)=Pw)e ™, f'g(z)-9'(2)=Pog(2)e""¢' (2)

with a polynomial P and an entire function L. Evidently 2,=1 and hence
09=P0s.qg by Lemma 2. Thus p;=py=p .. On the other hand

ON (r;0,F'y = 0N (r;0, Pogeg') épgéém
which is a contradiction.

We shall give another result based upon a different principle.

THEOREM 5. Let F'(z) be an entire function of finite hyper-order pp. Assume
Jurther that the ovder of N(r; A, F) is less than pr for some A and F(2)=A has
either at least two roots for the same A or one root which is nol a Fatou excep-
tional value of F. Then there is no entive solution f of the functional equation

Sof(@)=F(2).

Proof. Evidently- f must be transcendental. If f(w)=A has no root, fof(z2)=A
has no root, which is a contradiction. If f(w)=A has only one zero w;, then f(w)
has the form

A+ (w—w)rel®,
where # is an integer >0 and L is an entire function. We, then, have
F@)=1f ()= A-+(A—w1-+(z—10,)"e" P Yrgl- G mel ),
Assume that A=w,. Then
F(z)=A+(Z_A)nzenL(z)+L°(A+(Z—A)"Lerf(z)),

which shows that A is a Fatou exceptional value of F. This contradicts our
assumption. Assume that Axw;. Then

O cr, 4, 7> = PeL=pj.

By Lemma 3 1,=1. Hence py=<gr<co and then gr=p; by Lemma 1. Thus we
have

Br=pr=pNo; 4.7y,

which is a contradiction,
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If f(w)=A has at least two roots w; and w,, then
N A, F)=N(@r; wy, 7)+N@; we, f)
=m(r, £)—O(log rm(r, f))
by the second fundamental theorem for f. We, then, have
ON(r; 4,7 Z 0F-

Hence p;<pgr<oo, whence follows pr=p, by Lemma 1. This is again a con-
tradiction.

A corresponding result for feg(2)=F(z) may be stated in the following form

THEOREM 6. Let F(2) be a transcendental entire function of finite hyperorder
or. Assume that the order of N(r; A, F) is less that ¢r for some A and F(z2)=A
has at least one root for the same A. Then the functional equation fog(z)=F(z)
has no pair of transcendental entire solutions f and g which satisfy the following
condilions: (@) f is of finite ovder and (b) g is of finite order and has no Borel
exceptional value.

Proof. It should be remarked that gr=p, when p; is finite. Firstly f(w)=A
has at least one root. If f(w)=A has only one root w;, f(w) has the form:

S w)=A+@w—w,)"e" ™
with a positive integer #» and a polynomial L(w). Thus
F(2)=fg(z)=A+(9(2)—wy)"e™7®,
By lemma 3, 2;=1 and hence gr=p,. Hence g is of finite order. Then

OF> ON(r; 4, Fy= PN r; w1, 00

which is equal to p,, since g does not have any Borel exceptional value. Thus we
have gz>pg which is a contradiction.

If f(w)=A has at least two roots wi, w,, we have pyq, 4,7 =py by the second
fundamental theorem. This leads us to an absurdity relation p,<gr=p,.

Baker [1] proved the following two results:

i) Let f(2) be an entire function with gs.,=A, 0=A<co. Then ;=0 unless
pr=A.

ii) Let f(2) be an entire function with gs;<A, 0=A<oco. Then fof(z) has
at most 2[2A] different finite asymptotic values.

i) is an immediate corollary of Lemma 2. Baker’s proof for i) is not straight-
forward. We shall extend ii) to fog(z).

THEOREM 7. Let nyy be the number of finile different asymptotic values of
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fog(2). Then
Nr.g=[225]+[24,].

Proof. 1t should be firstly remarked that the cluster set of a transcendental
entire function along a path, which extends to infinity, is a continuum, unless it
is a point which may be a finite value or co. Let I', be an asymptotic path of
fog(z) along which fog(z) tends to A,. By the remark mentioned above we only
have two possibilities: (a) ¢(z) has a finite asymptotic value «, along I", or (b)
g(2) tends to co along I', and f(w) tends to A, along ¢(I’;). Since Ai, -, Ap
(p=mny.y) are different with each other, all the possible finite {@,} are different and
all the possible paths ¢(I';) are non-contiguous. By the Denjoy-Carleman-Ahlfors
theorem

Nr.g=[220]+[24;].

Now Baker’s result ii) is easy to prove.

If ny., is replaced by the number of finite non-contiguous asymptotic paths in
theorem 7, the result does not hold in general. Baker remarked this fact already
in the case fof. However, if 2,<1/2, we can replace the 7., by that of the wider
sense. This fact have been proved in [4] already and is very useful. In this
connection we can prove the following two results, which are slight extensions of

our results in [4].

THEOREM 8. Let F be a transcendental entire function of finite order which
has p non-contiguous finite asymptotic paths. Further assume that the lower order
of N(r; A, F) for an A is less than p|2. Then there is no pair of transcendental
entire funclions satisfying the functional equation fo9(z)=F(2).

THEOREM 9. Let F be the same as in theovem 8. Further assume that the
lower order of N(r; 0, F’) is less than p|2. Then the same conclusion holds as in
theorem 8.

We do not give any proofs of these theorems.

TueoREM 10. Let F be an entire function of infinite order such that Ay, 4,7y >0
and 2[22x ¢ 4, 7] <nr, wheve nyp is the number of different finite asymptotic values
of F. Then the functional equation fof (z)=F(2) has no solution f.

Proof. Evidently f must be transcendental. By Baker’s result or by theorem
7 we have

nr=2[22/].

If f(w)=A does not have any root, then Ay¢, 4,7 =0, which is a contradiction. If
f@)=A has only one solution, then

f(w)zA_I_(w_wl)neL(w)
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F@)=fef ()= A+(A—wi+—w)et@yerso,

Assume A=w,. Then the lower order of N(7; A, F)=0, which is a contradiction.
Hence A=xw,;. In this case

N(r; A, F)=aN(r; A—w,, @—w)"el®), Ay a,m <00,

Hence L(z) is a polynomial and then

AN(r; 4,7 = PeL=2AcL=1y.

This implies that

nr=2[2271=2[22x ¢, 4, ;)] <%,

which is a contradiction. If f(w)=A has at least two roots, we have

N A, Fyzm(r, f)1—e), lim e=0

by the second fundamental theorem, and hence

ANy A, Y= A5

Therefore

2022;]1 <2[24n &r; 4, 1] <mr =2[24/],

which is a contradiction.
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