ON THE SOLUTION OF THE FUNCTIONAL EQUATION
 $f \circ g(z)=F(z)$, III

By Mitsuru Ozawa

In our previous papers [3], [4] we discussed transcendental entire solutions of the functional equation $f \circ g(z)=F(z)$ and gave several transcendental unsolvability criteria, which based upon the existence of a Picard exceptional value, perfectly branched values, finite asymptotic paths and so on. All the criteria proved there do not work when F is an entire function of order less than $1 / 2$ and even when $F(z)$ is $1 / \Gamma(z)$. In this note we shall give a very useful criterion, which is based upon an elegant theorem due to Edrei [2] and which does work to some entire functions of order less than $1 / 2$ and to $1 / \Gamma(z)$ and the n-th Bessel function $J_{n}(z)$. And we shall give certain variants of this result. Further we shall give several criteria based upon Denjoy-Carleman-Ahlfors theorem.

Let $f(z)$ be an entire function and $M_{f}(r)$ its maximum modulus on $|z|=r$. We shall use the following notations:

$$
\rho_{f}=\varlimsup_{r \rightarrow \infty} \frac{\log \log M_{f}(r)}{\log r}, \quad \lambda_{f}=\lim _{r \rightarrow \infty} \frac{\log \log M_{f}(r)}{\log r}
$$

and

$$
\hat{\rho}_{f}=\varlimsup_{r \rightarrow \infty} \frac{\log \log \log M_{f}(r)}{\log r}, \quad \hat{\lambda}_{f}=\lim _{r \rightarrow \infty} \frac{\log \log \log M_{f}(r)}{\log r} .
$$

Lemma 1. [4]. $\rho_{f}<\infty$ implies $\hat{\rho}_{f \cdot g} \leqq \rho_{g}$.
Lemma 2. $\lambda_{f}>0$ implies $\hat{\rho}_{f_{0 g}} \geqq \rho_{g}$ and $\hat{\lambda}_{f o g} \geqq \lambda_{g}$.
Proof. By Pólya's method we have

$$
M_{f_{\circ g}(r)} \geqq M_{f^{\circ}}\left(d M_{g}\left(\frac{r}{2}\right)\right)
$$

for a constant $d, 0<d<1$. For a sufficiently small positive number ε there is an r_{0} such that for $r \geqq r_{0}$

$$
\log \log M_{f}(r)>\left(\lambda_{f}-\varepsilon\right) \log r
$$

and there is a sequence $\left\{r_{n}\right\}$ of radii such that
Received November 6, 1967.

$$
\log \log M_{g}\left(\frac{r_{n}}{2}\right) \geqq\left(\rho_{g}-\varepsilon\right) \log \frac{r_{n}}{2}
$$

for $n \geqq n_{0}$. Hence

$$
\log \log M_{f \cdot g}\left(r_{n}\right) \geqq\left(\lambda_{f}-\varepsilon\right)\left[\log d+\left(\frac{r_{n}}{2}\right)^{\rho_{g}-\epsilon}\right]
$$

Thus

$$
\begin{aligned}
\hat{\rho}_{f \circ g} & \geqq \varlimsup_{n \rightarrow \infty} \frac{\log \log \log M_{f_{0 g}}\left(r_{n}\right)}{\log r_{n}} \\
& \geqq \varlimsup_{n \rightarrow \infty} \frac{\log \left(\lambda_{f}-\varepsilon\right)+\log \left[\log d+\left(r_{n} / 2\right)^{\rho_{g}-\varepsilon}\right]}{\log r_{n}} \\
& =\rho_{g}-\varepsilon .
\end{aligned}
$$

Since ε is arbitrary, we have the desired result: If $\lambda_{f}>0, \hat{\rho}_{f \cdot g} \geqq \rho_{g}$.
Again by Pólya's method and by

$$
\log M_{f}(r)>r^{\lambda_{f}-\varepsilon} \quad \text { and } \quad \log M_{g}(r)>r^{\lambda_{g}-\varepsilon}
$$

for $r \geqq r_{0}$ and for a given sufficiently small positive number ε,

$$
\log \log M_{f \circ g}(r)>\left(\lambda_{f}-\varepsilon\right)\left[\log d+\left(\frac{r}{2}\right)^{\lambda_{g}-\varepsilon}\right]
$$

which implies the second desired result.
Lemma 3. Let $f(z)$ be $\exp (L(z))$ with an entire function $L(z)$, then $\lambda_{f} \geqq 1$.
Proof. By Pólya's method

$$
M_{f}(r) \geqq \exp \left(d M_{L}\left(\frac{r}{2}\right)\right) \geqq \exp (d c r)
$$

with two constants $d(0<d<1)$ and $c>0$. Therefore $\lambda_{f} \geqq 1$.
Lemma 4. [5]. Let $F(z)$ be an entire function of finite order. Assume that the functional equation $f \circ g(z)=F(z)$ holds for two transcendental entire functions f and g. Then $\rho_{f}=0$ and $\rho_{g} \leqq \rho_{F}$.

Lemma 5. [2]. Let $f(z)$ be an entire function. Assume that there exists an unbounded sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that all the roots of the equations

$$
f(z)=a_{n} \quad(n=1,2, \cdots)
$$

are real. Then $f(z)$ is a polynomial of degree at most two.
Theorem 1. Let $F(z)$ be an entire function of finite order for which $F(z)=A$ for some A has only real roots. Then the functional equation $f \circ g(z)=F(z)$ does not r dmit any pair of transcendental entire solutions f and g.

Proof. By Lemma $4 f$ must be a transcendental entire function of order zero. Therefore the equation $f(w)=A$ has an infinite number of roots $\left\{w_{n}\right\}$. Consider the equations $g(z)=w_{n}, n=1,2, \cdots$. Then all the roots must be real, since they are the roots of $F(z)=A$. Hence $g(z)$ satisfies the assumptions of Lemma 5, whence follows that $g(z)$ is a polynomial. This contradicts the transcendency of $g(z)$.

Applications. Theorem 1 can apply to the following functions:

$$
\begin{aligned}
& z^{p} \sin ^{q} z(p, q \text { : integers } q \geqq 1, p \geqq-q) ; \quad 1 / \Gamma(z) ; \\
& \text { the } n \text {-th Bessel function } J_{n}(z) ; \quad P_{\rho}(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{n^{\rho}}\right)(\rho>1) ; \\
& \prod_{n=1}^{\infty}\left(1-\frac{z}{e^{n}}\right) ; \quad P(z)\left(e^{z}-\gamma\right)\left(e^{z}-\gamma e^{2 a}\right) \quad(P: \text { a polynomial, } a \text { : real). }
\end{aligned}
$$

Theorem 2. Let $F(z)$ be an entire function of finite order for which $F^{\prime}(z)=0$ has only real zeros. Then the functional equation $f \circ g(z)=F(z)$ does not admit any pair of transcendental entire solutions f and g.

Proof. Consider the derived functional equation $f^{\prime} \circ g(z) \cdot g^{\prime}(z)=F^{\prime}(z)$. Since f is of order zero and transcendental, $f^{\prime}(w)=0$ has an infinite number of roots $\left\{w_{n}\right\}$ and $g(z)=w_{n}$ has only real roots for each n. Hence by Lemma $5 g(z)$ must be a polynomial, which contradicts the transcendency of $g(z)$.

Applications. Theorem 2 can apply to the primitive functions of the functions already listed.

When $F(z)$ is of infinite order, we need some modifications in the above theorems.

Theorem 3. Let $F(z)$ be an entire function of infinite order, all of whose A points for some A lie on the real axis. Assume further that the order of $N(r ; A, F)$ is greater than $\hat{\rho}_{F}$. Then the functional equation $f \circ g(z)=F(z)$ has no pair of transcendental entire solutions f and g.

Proof. When $f(w)=A$ has an infinite number of roots, the same method as in theorem 1 works and then we have a contradiction. If $f(w)=A$ has a finite number of roots, then

$$
f(w)=A+P(w) e^{L(w)}, \quad f \circ g(z)=A+P \circ g(z) e^{L \circ g(z)}
$$

with a polynomial P and an entire function L. By Lemma $3 \lambda_{f} \geqq 1$. Hence $\rho_{g} \leqq \hat{\rho}_{f \circ g}$ by Lemma 2. On the other hand by its form

$$
\rho_{N(r ; A, F)}=\rho_{N\left(r ; 0, P_{\circ} g\right)} \leqq \rho_{g} .
$$

This implies an absurdity relation $\hat{\rho}_{F}<\rho_{N(r ; A, F)} \leqq \hat{\rho}_{F}$.
Theorem 4. Let $F(z)$ be an entire function of infinite order. Assume that
$F^{\prime}(z)$ has only real zeros. Further assume that the order of $N\left(r ; 0, F^{\prime}\right)$ is greater than $\hat{\rho}_{F}$. Then the functional equation $f \circ g(z)=F(z)$ has no pair of transcendental entire solutions f and g.

Proof. If $f^{\prime}(w)=0$ has an infinite number of roots, then the same procedure as in theorem 2 is applicable and we have a contradiction. If $f^{\prime}(w)=0$ has a finite number of roots, then

$$
f^{\prime}(w)=P(w) e^{L(w)}, \quad f^{\prime} \circ g(z) \cdot g^{\prime}(z)=P \circ g(z) e^{L \circ g(z)} g^{\prime}(z)
$$

with a polynomial P and an entire function L. Evidently $\lambda_{f} \geq 1$ and hence $\rho_{g} \leqq \hat{\rho}_{f^{\prime} \circ g}$ by Lemma 2. Thus $\rho_{g}=\rho_{g^{\prime}} \leqq \hat{\rho}_{f^{\prime} \circ g \cdot g^{\prime}}$. On the other hand

$$
\rho_{N\left(r ; 0, F^{\prime}\right)}=\rho_{N\left(r ; 0, P o g \cdot g^{\prime}\right)} \leqq \rho_{g} \leqq \hat{\rho}_{F^{\prime}},
$$

which is a contradiction.
We shall give another result based upon a different principle.
Theorem 5. Let $F(z)$ be an entire function of finite hyper-order $\hat{\rho}_{F}$. Assume further that the order of $N(r, A, F)$ is less than $\hat{\rho}_{F}$ for some A and $F(z)=\Lambda$ has either at least two roots for the same A or one root which is not a Fatou exceptional value of F. Then there is no entire solution f of the functional equation $f \circ f(z)=F(z)$.

Proof. Evidently. f must be transcendental. If $f(w)=A$ has no root, $f \circ f(z)=A$ has no root, which is a contradiction. If $f(w)=A$ has only one zero w_{1}, then $f(w)$ has the form

$$
A+\left(w-w_{1}\right)^{n} e^{L(w)}
$$

where n is an integer >0 and L is an entire function. We, then, have

$$
F(z)=f \circ f(z)=A+\left(A-w_{1}+\left(z-w_{1}\right)^{n} e^{L(z)}\right)^{n} e^{I_{\circ}\left(A+\left(z-w_{1}\right)^{n} L(z)\right.} .
$$

Assume that $A=w_{1}$. Then

$$
F(z)=A+(z-A)^{n^{2}} e^{n L(z)+L^{*}\left(A+(z-A)^{n_{e}} L(z)\right)},
$$

which shows that A is a Fatou exceptional value of F. This contradicts our assumption. Assume that $A \neq w_{1}$. Then

$$
\rho_{N(r ; A, F)}=\rho_{e L} L=\rho_{f} .
$$

By Lemma $3 \lambda_{f} \geqq 1$. Hence $\rho_{f} \leqq \hat{\rho}_{F}<\infty$ and then $\hat{\rho}_{F} \leqq \rho_{f}$ by Lemma 1 . Thus we have

$$
\hat{\rho}_{F}=\rho_{f}=\rho_{N(r ; A, F)},
$$

which is a contradiction,

If $f(w)=A$ has at least two roots w_{1} and w_{2}, then

$$
\begin{aligned}
N(r ; A, F) & \geqq N\left(r ; w_{1}, j^{\prime}\right)+N\left(r ; w_{2}, f\right) \\
& \geqq m(r, f)-O(\log r m(r, f))
\end{aligned}
$$

by the second fundamental theorem for f. We, then, have

$$
\rho_{N(r ; A, F)} \geqq \rho_{f} .
$$

Hence $\rho_{f}<\hat{\rho}_{F}<\infty$, whence follows $\hat{\rho}_{F} \leqq \rho_{f}$ by Lemma 1. This is again a contradiction.

A corresponding result for $f \circ g(z)=F(z)$ may be stated in the following form
Theorem 6. Let $F(z)$ be a transcendental entire function of finite hyperorder $\hat{\rho}_{F}$. Assume that the order of $N(r, A, F)$ is less that $\hat{\rho}_{F}$ for some A and $F(z)=A$ has at least one root for the same A. Then the functional equation $f \circ g(z)=F(z)$ has no pair of transcendental entire solutions f and g which satisfy the following conditions: (a) f is of finite order and (b) g is of finite order and has no Borel exceptional value.

Proof. It should be remarked that $\hat{\rho}_{F} \leqq \rho_{g}$ when ρ_{f} is finite. Firstly $f(w)=A$ has at least one root. If $f(w)=A$ has only one root $w_{1}, f(w)$ has the form:

$$
f(w)=A+\left(w-w_{1}\right)^{n} e^{L(w)}
$$

with a positive integer n and a polynomial $L(w)$. Thus

$$
F(z) \equiv f \circ g(z)=A+\left(g(z)-w_{1}\right)^{n} e^{L \circ g(z)} .
$$

By lemma $3, \lambda_{f} \geqq 1$ and hence $\hat{\rho}_{F} \geqq \rho_{g}$. Hence g is of finite order. Then

$$
\hat{\rho}_{F}>\rho_{N(r ; A, F)}=\rho_{N\left(r ; w_{1}, g\right)}
$$

which is equal to ρ_{g}, since g does not have any Borel exceptional value. Thus we have $\hat{\rho}_{F}>\rho_{g}$, which is a contradiction.

If $f(w)=A$ has at least two roots w_{1}, w_{2}, we have $\rho_{N\left(r ; A, F^{\prime}\right)} \geqq \rho_{g}$ by the second fundamental theorem. This leads us to an absurdity relation $\rho_{g}<\hat{\rho}_{F} \leqq \rho_{g}$.

Baker [1] proved the following two results:
i) Let $f(z)$ be an entire function with $\hat{\rho}_{f \cdot f} \leqq A, 0 \leqq A<\infty$. Then $\lambda_{f}=0$ unless $\rho_{f} \leqq A$.
ii) Let $f(z)$ be an entire function with $\hat{\rho}_{f \circ f} \leqq A, 0 \leqq A<\infty$. Then $f \circ f(z)$ has at most $2[2 A]$ different finite asymptotic values.
i) is an immediate corollary of Lemma 2. Baker's proof for i) is not straightforward. We shall extend ii) to $f \circ g(z)$.

Theorem 7. Let $n_{f \circ g}$ be the number of finite different asymptotic values of
$f \circ g(z)$. Then

$$
n_{f_{0} g} \leqq\left[2 \lambda_{f}\right]+\left[2 \lambda_{g}\right] .
$$

Proof. It should be firstly remarked that the cluster set of a transcendental entire function along a path, which extends to infinity, is a continuum, unless it is a point which may be a finite value or ∞. Let Γ_{\jmath} be an asymptotic path of $f \circ g(z)$ along which $f \circ g(z)$ tends to A_{\jmath}. By the remark mentioned above we only have two possibilities: (a) $g(z)$ has a finite asymptotic value a_{3} along $\Gamma_{\text {, }}$ or (b) $g(z)$ tends to ∞ along Γ_{\jmath}, and $f(w)$ tends to A_{j} along $g\left(\Gamma_{j}\right)$. Since A_{1}, \cdots, A_{p} ($p=n_{f \cdot g}$) are different with each other, all the possible finite $\left\{a_{\}}\right\}$are different and all the possible paths $g\left(\Gamma_{j}\right)$ are non-contiguous. By the Denjoy-Carleman-Ahlfors theorem

$$
n_{f \cdot g} \leqq\left[2 \lambda_{g}\right]+\left[2 \lambda_{f}\right] .
$$

Now Baker's result ii) is easy to prove.
If $n_{f_{\circ} g}$ is replaced by the number of finite non-contiguous asymptotic paths in theorem 7, the result does not hold in general. Baker remarked this fact already in the case $f \circ f$. However, if $\lambda_{f}<1 / 2$, we can replace the $n_{f_{\circ} g}$ by that of the wider sense. This fact have been proved in [4] already and is very useful. In this connection we can prove the following two results, which are slight extensions of our results in [4].

Theorem 8. Let F be a transcendental entire function of finite order which has p non-contiguous finite asymptotic paths. Further assume that the lower order of $N(r, A, F)$ for an A is less than $p / 2$. Then there is no pair of transcendental entire functions satisfying the functional equation $f \circ g(z)=F(z)$.

Theorem 9. Let F be the same as in theorem 8. Further assume that the lower order of $N\left(r, 0, F^{\prime}\right)$ is less than $p / 2$. Then the same conclusion holds as in theorem 8.

We do not give any proofs of these theorems.
Theorem 10. Let F be an entire function of infinite order such that $\lambda_{N(r ; A, F)}>0$ and $2\left[2 \lambda_{N(r ; A, F)}\right]<n_{F}$, where n_{F} is the number of different finite asymptotic values of F. Then the functional equation $f \circ f(z)=F(z)$ has no solution f.

Proof. Evidently f must be transcendental. By Baker's result or by theorem 7 we have

$$
n_{F} \leqq 2\left[2 \lambda_{f}\right] .
$$

If $f(w)=A$ does not have any root, then $\lambda_{N(r ; A, F)}=0$, which is a contradiction. If $f(w)=A$ has only one solution, then

$$
f(w)=A+\left(w-w_{1}\right)^{n} e^{L(w)}
$$

and

$$
F(z) \equiv f \circ f(z)=A+\left(A-w_{1}+\left(z-w_{1}\right)^{n} e^{L(z)}\right)^{n} e^{L \circ f(z)} .
$$

Assume $A=w_{1}$. Then the lower order of $N(r ; A, F)=0$, which is a contradiction. Hence $A \neq w_{1}$. In this case

$$
N(r ; A, F)=n N\left(r ; A-w_{1},\left(z-w_{1}\right)^{n} e^{L(z)}\right), \quad \lambda_{N(r ; A, F)}<\infty .
$$

Hence $L(z)$ is a polynomial and then

$$
\lambda_{N\left(r ; A, F^{\prime}\right)}=\rho_{e L}=\lambda_{e L}=\lambda_{f} .
$$

This implies that

$$
n_{F} \leqq 2\left[2 \lambda_{f}\right]=2\left[2 \lambda_{N\left(r_{;}, 4, F\right)}\right]<n_{F},
$$

which is a contradiction. If $f(w)=A$ has at least two roots, we have

$$
N(r, A, F) \geqq m(r, f)(1-\varepsilon), \quad \lim _{r \rightarrow \infty} \varepsilon=0
$$

by the second fundamental theorem, and hence

$$
\lambda_{N(r ; A, F)} \geqq \lambda_{f} .
$$

Therefore

$$
2\left[2 \lambda_{f}\right]<2\left[2 \lambda_{N(r ; A, F)}\right]<n_{F} \leqq 2\left[2 \lambda_{f}\right],
$$

which is a contradiction.

References

[1] Baker, I. N., Zusammensetzungen ganzer Funktionen. Math. Zeits. 69 (1958), 121-163.
[2] Edrei, A., Meromorphic functions with three radially distributed values. Trans. Amer. Math. Soc. 78 (1955), 276-293.
[3] Ozawa, M., On the solution of the functional equation $f \circ g(z)=F(z)$. Kōdaı Math. Sem. Rep. 20 (1968), 159-162.
[4] Ozawa, M., On the solution of the functional equation $f \circ g(z)=F(z)$, II. Kōda1 Math. Sem. Rep. 20 (1968), 163-169.
[5] Pólya, G., On an integral function of an integral function. Journ. London Math. Soc. 1 (1926), 12-15.

Department of Mathematics,
Tokyo Institute of Technology.

