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A TURNING POINT PROBLEM OF AN ra-TH ORDER
DIFFERENTIAL EQUATION OF

HYDRODYNAMIC TYPE

BY TOSHIHIKO NlSHIMOΊΌ

§ 1. Introduction.

In this paper, we propose to study a linear ordinary differential equation of the
n-ih order of the form:

(1. 1) e»-Λ

where n— 2^m^Q and

Lm(y)=
v=0

Here ε is a small positive parameter, x is a complex independent variable, y is an
unknown function of x, Rv(x, ε) are asymptotic power series of ε with coefficients
holomorphic in x in the domain

(1.2) 0<ε^ε0, |α?|^c0<l,

and Pv(x) are holomorphic functions in x, in particular, Pm+ι(x) has a zero of order
q at the origin. Thus we can consider that the equation (1. 1) has a turning point
of order q at the origin, and our purpose is to give complete informations about
the asymptotic behavior of the solutions of (1. 1) in the neighborhood of the origin
when ε tends to zero. Our method is based on the matching method which was
used for the first time by Wasow [10] with the rigorous mathematical justification
in the case of an almost diagonal second order system, and thereafter has been
generalized by Wasow [11] and Nishimoto [5] to the n-th order equation with m=0.
Introductory descriptions of this method are seen in Friedrichs [1] and Wasow [13].

When n=4, m=2 and q=l, the equation (1. 1) is equivalent to the well-known
Orr-Sommerfeld equation which plays a fundamental role in the theory of stability
of incompressible fluid dynamics. There are many investigations about this equation,
for example, by Wasow [9], and by Lin and Labenstein [4]. They used the method
of comparison equations to attempt to find a transformation which reduces the
given equation to a simpler equation, and to attempt to solve the simplified equation
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DIFFERENTIAL EQUATION OF HYDRODYNAMIC TYPE 219

by some explicit technique, for example, by Laplaces integral. In fact, the Orr-
Sommerfeld equation was essentially solved by this procedure. To generalize this
method to other cases, there are two approaches: one is to enlarge the class of
differential equations which can be solved by some technique and are available for
our purpose, and the other is to construct a nonsingular transformation which makes
the given equation as simple as possible. About the second problem, Sibuya [6,7]
succeeded in obtaining a certain transformation for the equation (1.1) with n—2l^m,
and #=1, and some of the simplified equuations can be solved by the Laplace
integral but there remain the equations which are unresolved, moreover when q>l
we can no longer construct such a transformation. On the first problem, our data
of the equations whose behavior are already known can not almost be seen other
than Sibuya [6], Wasow [11] and Nishimoto [5] in the general theory, and so this
paper is devoted to this problem of the equation of the form (1.1). Thus we may
consider that the equation (1.1) is already simplified by some transformation. Our
method based on the matching method, in spite of rather complexity of the actual
calculations of the solutions, enables us to understand the asymptotic natures of
the solutions of (1.1) in the full neighborhood of the origin under fairly reasonable
assumptions. This method may also be applicable to the problem of the stability
of boundary layers in a compressible gas (Lees and Lin [3]) which is not yet
completely solved.

In § 2, we give notations, a preliminary transformation which makes further
treatment simpler, and assumptions on the coefficients of (1.1), one of which is so-
called one segment condition and dominates all of the studies in this paper. In § 3,
we construct the formal outer solution, and in § 4, § 5 obtain the outer domain Di
where there exists the actual solution of (2.1) whose asymptotic expansion coincides
with the formal outer solution. The domain A does not contain the turning point
itself and then to understand the asymptotic behavior of the one outer solution at
the turning point or beyond the boundary lines of Di is just the turning point
problem. Therefore to solve this problem, it needs to construct an inner soluion
in a direct neighborhood of the turning point itself. In § 6 and § 7, it is calculated
the formal inner solution by introducing the stretching variable, and prove the
existence of actual solutions in the inner domain D2 in §8. The domain D2, in
general, shrinks to the origin when ε tends to zero, but it is easily seen that Di and
Dz overlap with each other for an arbitrarily small ε. From this fact, we can match
the two types of solution, and then in § 9 it is given an asymptotic expansion of
the matching matrix between them, from which we can understand the asymptotic
behavior of the one outer solution in the complete neighborhood of the turning point.

The author expresses his heartiest thanks to Prof. Y. Hirasawa for his valuable
advices and his kind encouragements in preparing this paper.

§ 2. Notations and assumptions.

1. For the subsequent study, it is convenient to write the equation (1.1) by
the vector form, that is, by the usual transformation
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the equation (1. 1) becomes

(2.1)' ε
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(2. 1)

To simplify the descriptions of further calculations we write the above equation as

U'=AU+BV,

εV'=CU+DV,

where

U=

'*"

•

_ ? / m _

F=
w.+Γ

•

. ^n _

0

A=

n-

0 1

o ' .Ί
o_

β_ 0
.1,0, - ,0_

r ° . 1 . .0 1
p +κ '— .; V

2. A following transformation of V and # into V and ^ makes it possible to
assume from the outset that Pm+ι(x)=xq (for details, see Wasow [12]).

F=diag (1,

where

Clearly, the functions ί(#) and ω(x) are holomorphic in ΛΓ, and can be written

ω(x)=a+Q(x).

Since it is easily verified that this transformation does not make any essential
change in the subsequent analyses, we assume that pm+1(x)=xq already in the equa-
tion (2. 1).

3. Next, we write here the fundamental assumption which states that the
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characteristic polygon associated with (2. 1) consists of only one segment. Now let
each of the elements of coefficient matrices C and D has the asymptotic expansion
of the form

P£x)+eRj(x, ε)= Σ (fl Av^V O'=l, 2, -, m+ΐ),
v=Q \«=0 /

(2. 2)

(j=m+2, •
/ί=0

In the (X, Y) plane, we plot the points PJvμι for which the coefficients pjvp of the
above expansions are not zeros, of the coordinates

and the point R=(+l, —1). The one segment condition means that all of the
points PJvμ are on or above the segment L0 which combines the point R and
Pm+ιto,q=(ΰ,q/n—m), or equivalently for nonzero coefficients p^μ the indices must
satisfy the following inequality:

(2. 3) n-m+q ^+m+l_(j+q)^ (j=l,2, .. ,m+l).
n— m

Here it is noticed that from the inequality (2. 3) we can easily see that when ε
tends to zero in the equation (1. 1), the reduced equation:

m

(2.4) Σ P.+ιOΌ»w=o
v=0

has a regular singular point at the origin. About this equation, we make an as-
sumption to avoid complexity that the difference of any two characteristic roots of
(2. 4) is not an integer.

§3. Formal outer solution.

4. At first, if we transform the equation (2. 1) by the relations

(3.1) U=Ωι(x)Uι, V=Ω2(x)Vι, t=εx~α (α=(n-m+q)l(n-m}\

where

£i(a?)=diag [xm, xm~\ •••, a?], ^2(^)-diag [1, χ«'<*-m\ •••, ^cn-m-o/cn-m)

then after a short calujation we have
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(3.2)

with

TOSHIHIKO NISHIMOTO

dUi Λ Ίχ

tx

dx

dVl

dx

'—m 1

-w+Ί '

0 ' α,o, ,oj

Cl =
0

0

Now we prove the following lemma.

0
n—m

o
w—w—1.

LEMMA 3. 1. Each element in the matrices Ci and D\ can be expanded asymp-
totically in power series of t whose coefficients are holomorphic functions of xl/(n~m)
in the domain (1. 2).

Proof. From (2. 2) we have for ;=1, 2, •••, ra+1,

S ;

> . / p - m - n - m n - m ^

v=0 j«=0

If we consider the assumption (2. 3), the above expression can be written

where $v(x) are power series of χl/^n~m\ For the elements (tx)n~j+lRJy it is the
same as above, and the lemma is proved.

5. From the above lemma, we can write the matrices Ci and Di by

(3.3) C&ΣCiM?,

with

^Σ Dlv(x)tv

ι>=0
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0

Ό 1
• . ' . 00 ' :ι

1, 0, »., 0

0
> 0, •••, 0_

<ι
n—m

where the constants Cιo/0) and cn/0) are the quantities £/o^0 and ^/i^ respectively
in the expression (2.2) for which μv+m+\—(q+j)+av=Q (y=0,1), and dnm+ι is
Pm+ι,ι,μ for which μ—q+(n—m+q)/(n—m)=Q.

To solve the equation (3. 2) by formal power series of t, it is conventient to
make the principal parts of the coefficient matrices of (3. 2) diagonal and this is
accomplished by the following lemma.

LEMMA 3. 2. We can construct a nonsingular linear transformation of the form

(3.4)

where Qfj(x) are holomorphic functions of χl/^n-m^y and the equation (3. 2) is reduced
by this transformation to

(3.5)
dx

=A B

dx

where the coefficient maίήces have asymptotic expansions in power series of t such
that

(3.6)

Λ2^

in the domain

(3.7) 0<e^ei,

for sufficiently small positive number ei, Ci and c2. Here A20(x) is diagonal matrix,
holomorphic in x, and the difference of any two diagonal elements at x=0 is not an
integer, D2Q(x) is a constant diagonal matrix, and D2ί(x) is a diagonal holomorphic
matrix function of #1/(w~m).

Proof. Firstly, if the equation (3. 2) is transformed by

(3.8) Uι=U2+tQΫ2, Vι=RU2+V2,
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(here the symbol R is different from the one in the definition of equation (1. 1))
then we have

dx
-tx ~\ \

(3.9)

- (tC1Q+A)

where Ir denotes the r-dim unit matrix. Here we choose the matrices Q and R by
the form

Q=Qo, R=Ra(x)+R1(x)t

with

(3. 10)

Then it is easily verified that

-x-. =Q(iC1Q+D1)+0(t),
ax

tx—

which imply that (3. 9) can be written

(3. 11)

Here it is noted that from (3. 3) and (3. 10) we have

"— m 1

0
< .o

• . . i
_ C l Q l \ % ) > "*> ^ιθm( ̂ ) -L _

+0(0,
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The assumption imposed on the coefficients of the reduced equation (2. 4) implies
that the difference of any two characteristic roots of the matrix Aι+ BiR at x— 0
is not an integer, and from this and from the form of Ao, we can easily verified
by the usual method that there exists a non-singular transformation of the form

(3. 12) U2=Qn(x}U2, V2={Q$(x)+Q$(x)t} V2

which makes Aι+BιR and Ao+(Aι(>)4-Cιo(#)QX diagonal. If we combine the
transformations (3. 8) and (3. 12), the lemma is proved.

6. Now we are ready to construct a fundamental system of formal solutions
of the equation (3. 5) by the form

(3. 13) W= \ Σ Wv(x)f\ exp Γ£(ΛT, f)dx
U=o J J

with

A2Q(x)/x 0 1 ΓWn(x) W12(x)
, W(x)=\

0 [Λo+Λι(a?)fl/teJ \_W2\x) W22(x).

where W11, W12, W21 and W22 are mxm, mx(n—m), (n—m)xm and (n—m)x(n—m)
matrices respectively, and the integral in (3.13) is to be determined such that the
constant term is zero. If we substitute (3.13) into (3. 5), replace the matrices
A2, B2, C2 and D2 by their asymptotic power series (3. 6) and compare the coefficients
of F (μ=0,1, 2, •••) of the left and right hand sides, then we obtain the recursion
formulas for Wμ(x)\

(3.14),

ΓΌ 0 1 [A2Q 0 1 dw_ , _ ΓA.ι-1
Wtμ ,-

dxO AoJ L O AJ x »+wLC2., D2

where PFLi^O and Wo=In O-dim unit matrix). From this equation, we can de-
termine all of the matrices Wμ(x) by the following way. For μ=l (3. 14) becomes

ΓO, 0 Ί ΓO, 0 1 ΓO, W\2D20Ί Γ 0 0
(3.14)! Wι(x)\ \ = \ \W,(x\ or

LO, AoJ LO, AoJ LO, Wl2D2o] LDMW?, D20Wl2.

from which we can conclude by using the facts that the matrix D20 is nonsingular
and any of the two diagonal elements does not coincide that W1

1

2=Wl1=Qt and if
each element of the matrix Wl'm (l,m=l,2) is denoted by wlfkj then we have

k—Q for j^k. Clearly we can not determine the matrix W\l and the elements
from (3. 14)ι, and these elements will be obtained from the equation (3. 14) with
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ΓO, W?D2Q-} ΓWllA*0, W12D211 d \W\\ Wl2-]
+ +^^H \~a\

LO, WTZ>2oJ LWFAn, W12D21]
 dxlWl\ Wl2] [_Wl\ W?

(3.14)2

u, u -^j-20 yyi ί -^J 2o yyi \ \ r* 2i>

Wκ D pp.J + L Wκ D w»\+\C

Firstly, since the elements W12 and Wl1 are known, W12 and Wl1 are determined
uniquely, and also since tvlj jc (j^k) are known and the matrix D21 is diagonal, then
we can obtain the elements wlfa (j^k\ Next the elements wljj will be determined.
From (3.14)2 wljj satisfies the differential equation

dwljj

where d22jj is the j—j element of the matrix D22. Since d22j j is a holomorphic
function of .^1/Cn~n), the above equation has a solution of the form

Mφ/=/iG&)+/2(ff) log x,

where /ιO) and /2(a?) are holomorphic functions of a?
1/<«-i») and /2(0)=0. At last,

we will determine Wl1. The equation for which w^ must satisfy are from (3.14)2,

where a20j(x) is the y-th diagonal element of A20(x) and a^^(x) is the — & element
of A21(x).

Here we assume for simplifications of further calculations of formal solution that

(3. 15) none of the quantities (n—m) feo/0)— #20fc(0)}

(y, &=1, 2, •••, m, y=^^) fs integer.

This assumption also simplifies descriptions of Proposition 6. 1, Lemma 7. 2 and the
proof of Theorem 9. 1 (see Remark of § 9).

Now since a2ijk(%) is a holomorphic function of #1/<w-m>, the above equations
can be solved by the forms

where fι(x),f2(x) and ΛO) are some holomorphic functions of tf1^-™) and /3(0)=0.
Therefore from the equation (3. 14)2, we can obtain the elements W\\ wftj, W¥, Wl1

and wfjic (j^k) and undetermined elements are Wi1 and wf^ which will be obtained



DIFFERENTIAL EQUATION OF HYDRODYNAMIC TYPE 227

from the equation (3.14)3 by the same method as for W\l and wljj.
By repeating the above procedure, we can determine all of the coefficient

matrices Wv(x) and then the formal solution (3.13). Here we summarize the results:

PROPOSITION. 3.1. The differential equation (3. 5) has a fundamental system
of formal solutions of the form

(3.16) W

tvhere the matrices Wv(x) are bounded in \x\^Cι and are polynomials of log^ of
degree at most v with holomorphic coefficients of #1/c™-™>, In particular Wo(x)=I,
and F(t, x) is diagonal and can be written

A^\ 0

0,
(3.17) F(t, x)=

Henceforth we denote for convenience the diagonal elements of A*o(0), D2Q and
£>2ι(0) by the letters

(3.18)

diag Aι(0)={rfι»+ι, — , dm}.

§4. Existence theorem of outer solution (1).

7. In this section we prove that for each formal solution there exists an actual
solution whose asymptotic expansion coincides with it. The domain of existence
Di is maximal in the sense of the angle of sector, and this fact is sometimes
useful, for example, when we apply the results to the boundary value problems.

Our argument is given for the equation (3. 5), and rewrite this by the form

dW
(4.1) tx~=G(tίx}Wίax

where

Γί72Ί tA2, tBi
W=

F2 LC2,

The equation (4. 1) has a fundamental system of formal solution (3. 15).
Let r be a positive integer, and define the matrix functions T7Cr)(7, x) and

G(r)(ί, x) by

, x)=\rΣ Wv(x)f\F(t, x\
U=o J
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Clearly W^(t, x) is a fundamental solution of the differential equation

,
ax

and GCr)(/,αO satisfies

(4. 2) G(t, j?)-GCr>(f, x)=O(tr+z).

We write (4. 1) in the form

(4. 3) tx~ = {G^(t, x)+G(t, x)-G^(t, x)}W,
ax

then by the method of variation of constants, any solution of the integral equation

(4. 4) W(t, χ)= W«\t, x)

is a solution of (4. 1). Here Γ(x) denotes a set of paths of integration λjk(x)
(j, k=l,2, ,ri) in the ξ plane which are chosen appropriately for each pair of (j, k\
and τ=εξa.

If we put

(4. 5)
W™(t, x)=W«>(t, x)F(t, x),

then (4. 4) becomes

(4. 6) W(t, x) =
Γ(α )

From (3. 16) and (4. 2), the integral term of the above equation can be written for
each j, k,

r+ιf ξ-«r+»-i(xiςγj-'*LJk[fir(τ,
j λ j l c

(j, k=l, -, m\

er+lΓ €-αCr+l)-l(a?/f jα^-d!* {eχp ε- 0̂,(^_^)}L

J-^ 7 fc
(47) (j=l,-,m,k=m+l, ,n),

r+1Γ _α(r+1 _ j
£ \ v \%/ζ) ^ l^ ̂ P ^ aoj\x

J ̂ ^

r+1f _α(r+1 -!s \ ^ \x/ζ) 1 ^ -̂  \exp s \doj
J ^ jif
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where Ljk[}¥] is a linear form of the ^-components in the k-th column of W.
From (4. 2) and the form of f/(t, x\ the coefficients of this linear form are bounded
if t, x, τ and ξ are bounded.

Here we define a sector Sg?. Let k=l, 2, •••, m and chose arbitrarily one of the
arguments of dOJ (j=m+l, •••, n), denote it by d0μι and reorder the remainder
arguments of dOJ such that

Then the sector Sg? is of the central angle less than (n—m+2)π/(n—m+q) of the
form

om n— m ί 3 7 , 1 ^ ^ ^— m [3

where 7* is a sufficiently small positive constant.
Next let k=m+\, ~,n, and order the arguments of — d^, d0j—dQk O'=w+l, •••,

by

0μp<arg doμι+27c(β^n—

and define the sector Sίf

0,,,. n— m ί 3
- -

The central angle of this Sg° is less than either (n—m+l)πl(n—m+q) or
2(n— m+l)π/(n— m+q) according to the selection of d0μι.

In the next section we will prove a following proposition.

PROPOSITION 4.1. For each k (k=l,2, ,n), there exists a region D{k:> which
contains a domain Aα) defined by

such that for all xξΐ)^, we can construct paths of integration λjk(x) which are
contained in Aα) except of its end point and for ξ on λjk(x)y we have

(4.8)

(4. 9) the exponential factors in the integrands of (4. 7) are bounded for arbitrarily
small ε.

Here εi, Ci and c% are sufficiently small positive constants, and K is some positive
number independent of x.

If it is assumed that the above proposition is true, we can estimate that the
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every integral in (4. 7) is of the order O(ir+1) and so we can show that there exists
a solution of the integral equation (4. 6) by a standard method of successive approxi-
mation or a fixed point theorem, and therefore exists a corresponding solution of
the differential equation (4. 1) in the domain Aα) Furthermore we can prove that
the actual solution thus obtained does not depend on r and has an asymptotic
expansion which coincides with the formal solution. The details of this procedure
are here omitted and are rendered to the previous paper [5]. From the above
descriptions we obtain immediately an existence theorem of fundamental system of
solutions.

Let us draw (n—m)(n—m+l) vectors dOJ, ~dOJ and doj—dok (j,k=m+l, ~,n,j*?k)
from the origin in the complex plane, select arbitrarily one of them and denote it
di and then order counterclockwise the remainder vectors such that

arg Λ

and we define the sector Si in the ^-plane by

n— m [ 3 , 1 ^ n— m [3 7 15 . - — J _ π— arg di \ <arg x < - - — \ — π— arg dβ \n—m+q [ 2 J n—m+q [ 2 J

Now we have a following theorem:

THEOREM 4. 1. Let

be a formal solution of (4. 1) defined in Proposition 3. 1. Then there exists a
fundamental system of actual solutions of (4. 1) of the form

W(t, x)=(t, x)F(t, x\

and for every positive integer r, there exists a domain Di of x, e plane defined by

(εi, Ci and cz are certain constants independent of ε) in which it holds

where Er(t, x) is a matrix function bounded in the domain DI.

The &-th colnmn vector of the fundamental system of the solutions is called
the solution of the k-ih asymptotic type, and in particular the balanced solution
if &=1, 2, ~',m, and the dominant-recessive solution if k=m+l, m+2, •••, n re-
spectively.
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§ 5. Proof of Proposition 4. 1.

8. In this section we prove the Proposition 4. 1, that is, we show the existence
of the domain Aα) and the paths of integration λjk(x) satisfying the condition (4. 8)
and (4. 9), by using the method in Iwano [2] without any essential modifications.

Note at first that

n—m 3 ^ n—m ί 3 Ί ]

^

and since the central angle of S™ is larger than (n—m)π/(n—m-\-q) for sufficiently
small γ, it contains at least one singular direction: Redoμjx

a=Q (Re 2 denotes the
real part of z), or more precisely

74. ΛJ.I]; arg*=*/=

.
ίj ,

n—m
—

n—m
(5.1)

for each y=l, 2, •••, /3), but no more than two singular directions. It is apparent that
in the region θj<argx<6j, we have Redoμjx

α>0. Here we denote for simplicity
the angles of boundary lines of SJ*} by

Now we divide the integrals in (4. 7) into four classes of the indices j for each
fixed k such that

/i: the integral whose integrand does not carry the exponential factor,

/2: the sector Sff contains only the singular direction #,

/3: the sector Sff* contains only the singular direction Ij,

/4: the sector Sίf contains both the singular directions IJ and Ij.
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The shadow regions in the above figure mean that Re doμjx
a^Q, and note that

θj-θj=π/a.
Denote by \x\eiθ and by \ξ\eίψ the polar coordinates of the points x and ξ, and

define the angles Θf (2=2,3,4), θj0 (j=l,2,~ ,n) and the initial point xjQ of the
integral path λμj(x) ( j = I , 2, ••-,#) by

(5.3) Θί=min0t, Θr=max0j (i=2,3,4),

(5.4)

for /€/!,

for

for

r
fθΓ

S θjQ

COt Φ(φ)dφ,
ΘQ

where c'ί is a certain constants, 6Ό is an arbitrary constant angle in [θ~, θ+] and
Φ(φ) is to be determined as a piecewise continuous function in the interval [θ~, θ+]
satisfying the inequality

(5. 5) aδ (a= H~™^q )

for sufficiently small positive constant δ. Then, the path of integration λμj(x)
combining the initial point xjo to x consists in general of a curvilinear part λ'μj(x):

for Ojo^φ^θ if j

(5. 6)

for O^φ^ϋj, if

and of a rectilinear part λ'μ'£x):

(5. 7) I a? I exp A J°cot Φ(φ)dφ\ ^ \ξ \ ^c( exp ί \ J°cot Φ(φ)dφ\ φ=0jo.

If we define the region D^ as a set of points x=\x\eίθ satisfying the inequalities

(5.8) c2V
/α exp ( ( cotΦ(φ)dφ\^ x\^cίexp(( cotΦ(φ)dφ\, Θ~^0^θ+,
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for suitably chosen positive constant cί, then every point x in
from the initial point XJQ along λμj(x) contained in β^ (Fig. 2).

can be reached

'c/1,/2

" ,(χ)

Fig. 2

Now we will show that the condition (4. 8) and (4. 9) are satisfied on the
integral path λμj(x) defined as above if we choose the function Φ(φ) appropriately.
Suppose at first that Φ(φ) was determined so that it satisfies (5. 5), and if we notice
that the line element ds is expressed by

ds=-d\ξ\ on λ'μ'jίx),

(5.9) ds= . . dφ on j /a?) for O^φ^O (/€/i,/« orsin Ψ(φ)

ds=- s 0 ( y ) dφ on j /aO for θ^φ^Oj, (/€/, or

then we have

λ'μ'jίX)

~ lxl~ra exp ~

and this proves the condition (4. 8).
In order to prove the condition (4. 9) it is sufficient to show that the quantity

— RedQμξ
a is monotonically increasing along the integral path λμj(x\ because then

we have

and apparently this is valid on the rectilinear part λ^(x). Therefore we want only
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to show that there exists a piecewise continuous function Φ(φ) on the interval
[<9~, Θ+] satisfying (5.5) and at the same time —Red0μζ

a is monotonically increasing
along the curvilinear part λ'μj(x), that is,

(5.10)

After a short calculation we have from (5. 9)

according as O^φ^θ or O^φ^θjo, and hence

= + Re adϋμ.ξ^ -L jw> J

according sa θjQ^φ^ϋ or θ^φ^θjo, where

(5. 11) Rj(φ) = aΐg do

Then, in order to obtain (5. 10), Rj(ψ) must satisfy

^ π f o r θjt^φ^θ,

(5. 12)

-f ^ΛX^^f for ^^^ o.

From (5. 1), (5. 5), (5. 11) and (5. 12), Φ(φ) must satisfies the inequalities

max {a(0J—φ)+π, aδ}^Φ(φ)^mm {a(OΪ—φ)+π, π—aδ] for 0^φ^θJ0.jςj2,Ji jςJzJ*

max {a(ΘJ—φ), aδ}^Φ(φ)^mm {a(θ^-φ\ π-aδ} for 0^φ^θjo.
j€J3,J* yeJs.Ji

Hence the function Φ(ψ) satisfying the above inequalities will exist if we have

max max Wj— φ) + π, a(θ^~ φ)},aδ ^min mm{a(θj—φ)+π,a(θϊ—φ)},π—ad
L jh J L j,fι J

for 04+t@Γ gygθ+ (/€/*Λ, and
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max max {a(θj—φ), a(θ^ — φ) + π], aδ ^min mm{a(θ}—φ), a(0ϊ—φ)+π}, π—aδ
L jh J L jn J

for θί^θl ^ψ^θ- (ye/,,/4, and Λe/a).

By using the notation (5. 3), these inequalities are reduced to

max #|max(<92~H -- >04~H -- > ΦΓJ— φ\,ad

(5. 13) ^min [a ίmin fe+ -|, β4

++ ̂  βsΛ - |̂, π-^Ί

for t̂̂

max ^ J max ( β2~+ — , β3", <94~ J — ̂  L aδ\

(5. 14)

for
2

Since we can easily prove the following inequalities

θj<Θ-<θϊ<θΐ<θϊ<Θ+<θt+— for ye/2 and

— for 'e/3 and &e/4,

we have

max (βr+fw+fβrj-βr+f

(5.15)
π \ I π \

max ( ΘZ-\—, 03~, (94~) =max I <92~H—, <93~),
a / \ a /
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and

(5.16) Θ+<Θ}+~, 6>+«93

+, 6>2-<6>-, Θ;--<Θ~.
a a

Hence (5. 13) and (5. 14) become

max a(θϊ-\- — —φ),aδ ^min α j m i n (Θ2

++— , Θ3

+J — φ\, π— aδ

(5. 17)

for ^θ+,

max Λ J m a x (6>2~+-— , 6>3"j— φ\,aS £Ξmin β(θ4

+— ψ\,π— afi

(5. 18)

for JίlβL^ae-.
Δ

But a simple calculation shows that the above inequalities are satisfied respectively
in the intervals

(5. 19)

and

(5. 20) max (θϊ, θs- - —

If δ is sufficiently small the interval (5. 19) contains the interval [(θ4

++θ4~)/2, Θ+]
and the interval (5. 20) contains the interval [β~,(θ4

++β4-)/2].
Then if we put, for example

for Θ~^φ^ ®*

for

we can define the desired function Φ(φ) and so the pathes of integration.
Now in the definition (5. 8) of the domain D{k\ the constants c[, c(~λ and εί

must be taken so small that the integral equation (4. 6) has a solution and also it
contains a domain of annulus D[k:> for appropriately chosen constants ci, cz and εi,
and this is clearly possible. Thus we have proved Proposition 4. 1,
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§ 6. Formal inner solution.

9. At first we transform the equation (2. 1) by the stretching and shearing
transformations:

γ= Q^p*-*) U, Z= Ω2(pn~m) V,

where the diagonal matrices Ωι(x) and Ω2(x) are defined in (3. 1), then we have a
differential system of the form

dU
ds

(6.1)

where Aι=A, B\=B and

Cι(s, p)=

(6.2)

dV
ds

0
S, p\ €12(8, p\ • • • , Cιm(s, p)

" l 0
0 • • • • !

Here and in below we use symbols Ai, B\, ••-, Ci/5, /o), Λ/5, p\ •- which are different
from those in § 3. Now the functions cιj(s, p) and dιj(s, p) satisfy the relations

=0 μ=0

(6.3) dlm+1(s9p)=p-^m^9(x^

(j=l,2,-,m\

(n-m') (Λ-ϊ) + (n-m+tf) "

//=0

μ=Q

(j=m+2, 9n).

From the one segment condition, all of the powers of p in the above expressions
are nonnegative, then the matrix functions Cι(s, p) and D^s, p) can be expanded in
power series of p whose coefficients are polynomials of s.

Now let the equation (6.1) be written by the combined form such as
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(6.4)

where

TOSHIHIKO NISHIMOTO

and let the asymptotic expansion of G(s,p) be

oo

G(s, |θ) = Σ G*
v=0

where Gv(s) are polynomials of s, in particular

1

(6.5)
Si

s, 0), Cι2(s, 0), •••, Am+ι(s,0),0, ,0_

Here we want to construct a formal solution of (6. 4) by the form

then each of the matrices W*(s) satisfies

(6.6) **«=,

10. Firstly we analyze the above equation for y=0

(S.7)

Clearly there exists a fundamental solution of (6. 7) in the arbitrary neighborhood
of the origin, then the problem is to discuss the asymptotic behavior of W(s) in
the neighborhood of 5=00. To do this, we transform the equation (6. 7) by



(6.8)

DIFFERENTIAL EQUATION OF HYDRODYNAMIC TYPE

ζ=sa(a=(n—m+ q)/(n—m)\

-sm

s 0

0 sί

then it becomes

(6.9) ̂

1
—
a as

From (6. 5) and (6. 8), d(f) can be written

(6.10)

"" /v/ /v ~

CΛ) AW.

!

β<f

1
a

0
1

~ 1

«e

«,„ 1
l(ξ)~ a

Λ i

--« 1 . Q '

. o -•:;.
0 >

_Su(ξ),-,Clm(ξ).

, \\ Ol
(»-f»+ί)f Q '••

where

(6.11)
s, 0) (/=!, 2, -, m),

s) 0).
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Now from the asymptotic expansions (6. 3) of Ci/s, p) and £?ιm+ι(s, jθ), the polynomials
Ci/s, 0) and ί/ιm+ι(s, 0) have the forms

, 0)=Σ Σ P],μμ v=0
;=1, 2, -, m\

where for nonzero coefficients pjυμ, following relations must be satisfied
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(n—m)(μ+m+l—q—j)+(n—m+q)v=Q (j=l, 2, •••, m+l).

Then the order μ of nonzero terms sμ of (β. 12) must satisfies

and so the functions (6. 11) can be written

Cij(ξ)=ΣPj\μvξ~v 0"=1, 2, •••, m\
v=0

(6.12)

where the summations are taken for a finite terms of v for which μv=q+j—(m+'L)
—au.

Thus the matrix function Gι(ξ) is a polynomial of f"1 and if we write it by
the form

Λlv

lv Dlv

then from (6.10) and (6.12) we have

(6.13) Cn =

0 0

/V /v

(^ ΓΊ^10 u\(\

/V Λ/

An Bu

Gn Du

1
with Cιo= — 0

_£ιoι>

with

0 0
0 ϊ

Li, o, -, oj

0

C ——
a

0
M-ι,0 0

n—m+q
0

^—m—1

where the constants Cio^, ^n^ and Jnm+ι are equal to the numbers A/o//0, Pjiμv

ίm+i.i/i! in (6.3) respectively provided the indices of these numbers satisfy the
relations fr=q+j—(m+V)—a\> (y=0,1,^=1, 2, ••-, w+1). Here we remark that if we
compare the above coefficient matrices with those of (3. 2) and (3. 3), then it is
found that Aι=A/0, £11=AM C10-C10(0)/α, G10=D1o/a and ΰn=Du(Q)/a.

For the differential system (6. 9), we prove a following lemma which is analo-
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gous to the lemma 3. 2. In order to calculate the connection matrix between the
inner solution and the outer solution in the last section, we must take always the
relation between the coefficient matrices in (3. 4), (3. 5) and those in the following
lemma into our considerations.

LEMMA 6. 1. There exists a linear nonsingular transformation

(6. 14)

where Q<ff are some constant matrices, and this transformation changes (6. 9) into

(6. 15)
2 2 —

dξ dξ

where the coefficient matrices are convergent power series of ξ~l such that

(6. 16)

C2=

// we compare the coefficient matrices of (6. 14) and (6. 16) with those of (3. 4)
and (3. 5) we have

OS^QnίO), 0§)=OS)(0), OS)=Q85(0), QS)=QS)(0),
(6.17)

Λi = Anla, D20 = D20/a, D2ι = D2ι(G)/a.

Proof. At first we transform the equation (6. 9) by

where the matrices Qly R0 and î are determined by the equations

(6. 18)
o^ 0.

Then after a little calculations as used in the proof of Lemma 3. 2, it becomes
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dξ l

and furthermore if we diagonalize the principal parts of the above equation, we
have a differential system which has a form (6. 15) with (6. 16). The relations
(6. 17) can be easily verified by a careful comparison of each step of transformation
of the above procedure with the one in the proof of Lemma 3. 2. This completes
the proof.

Now we proceed to construct an asymptotic solution of the system (6.15), but
since this is easily realized by the usual methods, we give only the results in the
following proposition.

PROPOSITION 6. 1. The differential equation (6. 15) has a fundamental system
of fotmal solutions of the form

(6. 19) W^~\Σ W?ξ-v\F(ξ\

where the matrices W^ are constant, in particular W^=In (n-άim nnit matrix},
and

Si, o

L o,

Corresponding to this formal solution, there exists a fundamental system of actual
solutions WC2)(£) which has it as the asymptotic expansion in the domain:

D2: \ζ\>ξo,

where ξ0 is some positive constant, and the sector S is defined below.

(6.20) S: -|-+tf+r^argf:g-|+tf-r,

where γ is positive and arbitrary, and α=^arg (doj, —d0j, d0j—dok) (j,k=m-{-\,

A connection formula between the convergent solution of the differential equa-
tion (6. 7) in the neighborhood of 5=0 and the asymptotic solution of it in the
neighborhood of 5=00 which is described in the above proposition can be determined
by the method of convergent matching because the asymptotic solution of (6. 9)
has a convergent expression by a factorial series from a theorem of Turritten [8].

PROPOSITION 6. 2. Let a be any angle for which
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Then there exists positive numbers ω0^l and K such that for ω^ωϋ the differential
equation (6. 15) possesses in the half plane

(6.21)

a fundamental solution W^(ξ) of the form

Ά [ξe-"lω] [ξe-«'lω+l] . [ξe-iβlω+r] '

The series converges in the half-plane (6. 21). Moreover W^(ξ) can also be re-
presented asymptotically by the formal series (6. 19) in the domain D2.

In the above definition of the sector S, we assume that γ is sufficiently small
and take the angle a so that the boundary lines of S do not coincide with any
singular direction

and contain them in the interior S. Furthermore when we calculate a matching
matrix between the outer and the inner solutions in § 9, the sector S defined by

n—m \ π , ] n—m \π , ]
—i —FT +#+r r^args^i ;—\^r-τa—r\

n—m+q [ 2 J n—m-\-q [2 J

is assumed to be contained in the sector Si defined in Theorem 4. 1.

§ 7. Solution of nonhomogeneous equations.

11. In this section we consider the nonhomogeneous equation (6. 6) for i^l,

(7.1)

At first we examine the asymptotic behavior of solutions when s tends to infinity.
The solution of (7. 1) is represented by

(7.2)
Jr

under the assumption that Wμ (μ=Q, 1, •••, ^— 1) are already known, where W0(s) is
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the fundamental solution of the homogeneous equation (6. 7) constructed in § 6, and
Γ denotes a set of paths of integrations for each function in the integrand.

Let us define matrix functions Gμ(s\ WΌ(s) and Wμ(s) by the relations

Gμ(s)=Ω(s)Gμ(s)Ω(sΓ\

(7. 3) W0(s)=Ω(sWQ(sW(s\

Wμ(s)=Ω(sWμ(s)F(s),

where Ω(s) is defined in (6.8) and F(s) = F(ξ) (ξ=sa). Then the integral (7.2)
becomes

(7. 4) Wv(s)

where

Now we prove a few lemmas in the sequel.

LEMMA 7. 1. The growth order of the matrix Gμ(s) (μ^l) when s groivs into
infinity is 5<'(+«>'<»-»o, and Gμ(s) is a polynomial of 51/u-m) and 5-

1/u-m).

Proof. From (β. 3) and the definitions of Gμ(s) and Gμ(s), this is obvious.

Here we assume for the moment that H(s) has the growth order of sb when
\s\ is large, that is, we can write that H(s)=sύH*(s) with bounded matrix H*(s),
and assume that H*(s) has an asymptotic expansion in power series of $~1/(in~m:>

whose coefficients are polynomials of logs in the neighborhood of 5=00. From the
proposition 6. 1, W0(s) and W(s)~1 are bounded and nonsingular in the neighborhood
of 5=00 and have asymptotic power series of ξ~1=s~a when ξ— >oo in the sector S.

If we replace the matrix H(s) by saH*(s) and change the variables 5 and τ by

then the integral (7. 4) becomes

(7. 5) Wv(s)= nj_ Wo(s) ( F(ξ)F(ηTlW,(τYlH*(η}F(ηW^

Since the matrix function WQ(τ)'-1H^(η) is bounded and has an asymptotic expansion
in power series of ^-i^-m+ς^ and from the definition of the matrix F(ή), the above
integral for each component of integrand has a form
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C (L\*J "khjkW
a-^-™^dr) (/, A=l, 2, ..-, wj**),

J λik \ η /

(7. 6)

O'=l,

U ^

1J β*

l, •••, », A=l, •••, w),

ϋ=ft=l, 2, ..-, n)

where ,̂ JOA; and Jι/c are diagonal elements of the matrices ΆZ1, D2o and D21

respectively. Here hjk(η) is a bounded function and has an asymptotic power series
of 2-i'<»-ro+«> in the sense that

(7. 7)

for all positive integers r, where Ay(^) are polynomials of z and in particular h0(z)
is constant.

Now under the assumption that none of the quantities (n—m) {aj—ak}
are integers, we can prove a following lemma.

LEMMA 7. 2. By choosing an appropriate path of integration or by taking an
appropriate indefinite integral for each integral of (7. 6), we have

where WY(s) is bounded and has an asymptotic power series of $~1/(in~m:> in the same
sense as (7. 7) when s—>oo in the sector S

n—m ί 7r , , 1 ^ n—m ί π
S:

n—m+q[ 2 J n—m+q[2

Proof. Case 1. k,j=l,2, ,m,j*?k. Let άj—άk=λ+iμ (λ, μ real) and let the
integrand divide into three parts such that

(7.8) AG7)Ξ=3-<*rtoAj*G^
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where

n—m-\-q

n \ f-r,+fτ>-»nft-<N/r» ,„+</. vu •> r2-\-(n—nί)b—q Λ, (log3?V rz+Cn m)δ β}/Cn m+ff) with —>ί i. = —1,
n—m-\-q

Here we remark that the imaginary part of άj—άk is not zero if h2( η)^Q from the
assumption made above the Lemma 7. 2.

Now if we define the integral of (7. 8) by

(7. 9)

then we can easily see that the statements of the lemma hold.
Case 2. j=l, 2, - ,m, k=m+l, --yn. From the shape of the sector S in the η-

plane there exists a vector l$k in S which satisfies

cos (arg doA+arg /,/*)< 0,

then as the paths of integration λjk(ξ), we choose the line parallel to ljk, starting
from ζ and extending to infinity in S. Clearly for all η on this path of integration,
there exists a positive constant δjk such that

(7. 10) Re {

Since we have from the integration by parts

for all number α and /3>0, then if we substitute the asymptotic expression (7. 7)
of /tytfy) into the integrand of (7. 6) and write it by

dΓ'^{exp-3^-
(7.11)

where r0 may be negative integer such that b/a—q/(n—mJrq) = —r0/(n—m-\-q)J then
we have by repeated integrations by parts,
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S ~ / £ \ <*/-*!*>

^ -̂i J {exp -Ά^(ξ-

(7. 12)

where

S °° / £ \ tfj-ϊίto
^ {ϊ-J {exp -rfot(£-?)}Ar+ι(log ^-σ+D/u-

Now we estimate the remainder therm Rr. Let

then from (7. 10) we have

where hί+ι(z) and h"+\(z) are polynomials of 2, and ./£ is some positive constant.
This inequality implies that the integral of (7. 11) along λjk(ξ) can be represented
by an asymptotic expansion in power series of 3rΓ

1/^-™+<D m the sense of (7. 7) and
in particular has a growth order of ^δ/α-?/cn-m+?)=5δ-«/cn-m) as ̂ ^ jn ^e sector

S, and then in this case we proved the desired properties.
For other cases of j, k, we can prove by the same method as in the case 1 or

case 2 that the integrals (7. 6) have properties stated in the Lemma 6. 2. Thus we
have the Lemma 7. 2.

LEMMA 7. 3. The nonhomogeneous differential equation (7. 1) possesses a
particular solution such that

(7. 13) Wv(s) = sevQ(sW*(s)F(s).

Here the matrix Ω(s) is defined in (6. 8), the matrices F(s)=F(ξ) and the matήx
W*(s) is bounded at s=oo and has an asymptotic expansion in power seήes of

5-ι/cw-no when s— »oo in the sector S. Here the number e denotes

(7.14) e=
n—m
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Proof. For y=0, the equation (7. 1) becomes homogeneous equation (6. 7), then
the statements of the lemma is satisfied from the Proposition 6. 1. Assume it to
be true for y<r. Then by using the Lemma 7. 1 the μ-th term of the summation
in (7. 1) has a form

Gμ(s) Wr-μ(s) =

=5'(r'">£(5)G*(5) Wf-μ(s)F(s),

where G*(s) and Wf-μ(s) are bounded, and

The exponent f(r,μ) is the largest for μ=l, and then if we apply the Lemma 7. 2
to the integral (7. 5) with &=/(/,!), we have the Lemma 7. 3.

12. Now we want to determine the values of the solutions Wv(s) of (6. 6) in
the neighborhood of 5=0. This is essential to solve the connection problems, that
is to understand an asymptotic behavior of an outer solution at the turning point
itself. For y=0, we have already stated at the last of § 6 that the value at 5=0
of the asymptotic solution Ω(s)W^(ζ) of (6. 7) whose existence was proved in Pro-
position 6. 1 can be obtained by the method of convergent matching. Then we
consider here the equation (7. 1).

Let Wo(s) be a fundamental solution of the homogeneous equation (6. 7) in the
neighborhood of 5=0, and assume that the solutions Wμ(s) (μO) of (6. 6) are
determined in the neighborhood af 5=0, then the solution Wv(s) can be written as

(7. 15) Wv(s)= Γ Wo(s) W0(τΓΉ(τ)dτ+ W0(s)C
Jo

where H(τ) is an entire function whose asymtotic behavior in some neighborhood
of 5=00 is known. The problem is to determine the constant matrix C=(cjk\

The values of the matrix Wv(s) in the neighborhood of 5=00 are determined
by taking some special integrals of the integrand of (7. 15) as stated in the Lemma
7. 2, and then corresponding to those, the matrix C must be determined as follow.

Case 1. y, k=l, 2, ••

Jθ Joo

Case 2. ;'=!, 2, •••, m, k=m+l, •••, n.
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The definite integrals which define cjk are clearly exist from the natures of the
integrand and the choice of the paths of integrations. For other cases of j, k we
can determine cjk by the same method as above.

Here we summarize the results of § 6 and § 7 in the following proposition.

PROPOSITION 7.1. The differential equation (6. 4) has a fundamental system
of formal solutions in power series of p such that if |s|^s0 for some positive
constant s0,

(7.16) W~ΣWv(s)pv if M^o,
v=0

where Wv(s) are holomorphic in the domain |s|^=So, and if |s|>s0 and argseS,

(7. 17) W~Ω(s)\ Σ W*(s)[sepY\F(s) (e= -̂ ± +l).
U=o J \ n—m /

Here the sector S is defined in the Lemma 7. 2, the matrix Ω(s) is in (6. 8), the
matrix F(s) is of the form

F(s)=
0

0
(exp d0

n-m+q \

n—m Γ

and the matrices W*(s) ate bounded and have asymptotic expansions such that

l-^l °°

(7.18) T7*(s)= Σ Wvμ(logs)s~-μ/<n-m>,

where Wvμ(log s) are polynomials of log 5 of degree at most ι>.

% 8. Existence theorem of inner solution.

13. In the older treatments of a turning point problem, the existence domain
of an inner solution is limited only in the neighborhood of the origin and then the
existence domains of an outer and an inner solution do not overlap for small ε
which makes it impossible to calculate a connection matrix between the inner and
the outer solutions. The consideration of an asymptotic nature of the inner solution
at 5=00 is due originally to Wasow [11].

Corresponding to the formal solution of the Proposition 7.1 we have a following
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existence theorem.

THEOREM 8.1. Let r be any positive integer. Then there exists an actual
solution W(s, p) of (6. 4) and a domain D2 of s, p-plane defined by

(8.1) D

(p2 and cs are some constants independent of p) such that for s and p in D2 it
holds that

W(s, p)- Σ Wv(s)pv=Er+ί(s, p)pr+1 for \s\ ̂ s0,
v=0

(8. 2)

W(s, p)-Ω(s) Σ W*(s)[sepYF(s)=Ω(s)Er+ι(s, p)[sep]r+1F(s) for |s| >So,
v=0

where Er+ι(s, p) is bounded.

Proof. This is almost the same as that of, for example, the Theorem 5. 1 in
Nishimoto [5], and then is omitted.

§ 9. Matching matrix.

14. If we rewrite the domain D2 in terms of x, ε-plane, it becomes

D2: ar

Then the domain A defined in Theorem 4.1 and the above domain D2 are over-
lapped for all sufficiently small parameter ε. From this fact we want to identify
two solutions at some suitable point belonging to both domains Di and D2, and for
such a point we choose the most symmetrically located point xη such that

and then

xn

 n m =y}p , ty=y} n m pn m ,
(9. 2)

where δ=2e(n~-m) and η is a parameter such that arg3?π~meS.
Since the value of 5, becomes infinite when p-*Q for any fixed η, we use the

asymptotic representation of the inner solution for \s\>s0 in D2. The outer solution
Yι(x, ε) of the differential equation has from (3.1), Lemma 3. 2 and Theorem 5. 1
an asymptotic representation in D± of the form
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χ -l

Q

A

Q

• Σ
v=0

0

'(exp d0n

where Wv(x) are polynomials of logx of degree at most v whose coefficients are
holomorphic in ^1/Cw~m), in particular W0(0) is nonsingular. And the inner solution
Yz(s,p) in Z>2 and \S\>SQ can be written from Theorem 8.1 such that

(9.4) Y*(s,p)=

0

0

0

0

(exp d0ns
a)sd™ _

where W*(s) are bounded for |s|>s0 and have asymptotic expansions in power series
of $~l/(in~m^ whose coefficients are polynomials of logs, in particular W*(s) is
nonsingular and from Lemma 3. 2 and (6. 17) we have

(9. 5)

Now let the connection matrix C(/o) between YI(X, ε) and F2(s, |θ) be such that

(9.6)
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and let

If we substitute (9. 1) for x and 5 in (9. 6), then we have from (9. 3) and (9. 4)

(9. 7) C(p)=F(sη)-1Ϋ2(sηy prΦ&v e)F(ff,, tj.

Now from the asymptotic natures of Ϋι(x, t) and F2(s, /o), we have following
lemmas.

LEMMA 9. 1.

where the summation with respect to μ consists of a finite number of terms for
which μ— — v(mod<5) and Y$(z) are polynomials of z.

LEMMA 9. 2.

where the summation with respect to μ is taken over a finite number of integers μ
such that μ=— v(modδ) and Y$(z) are polynomials of z.

LEMMA 9. 3. From above two lemmas we have
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η,p)=I (unit matrix),

where Λ^(η, p) are polynomiols of \βgηρa~^/δ and \Qgηρ~l/δ. The summation with
respect to μ is over a finite number of integers for which μ——

Proof. We give a proof only for Lemma 9.1, and for others it is almost
obvious. If we replaced x and t by xη and tη in the asymptotic expansion of Yι(x, ε),
we have formally a series

~ * ~
VΊΓr ε")— V y W'Cv)/'10σy?/)Ca-l)/ί>)y?At-Cn-m-ί)«'ΛlCn-m+g)>'+(a-l)/']/ί
•» Iv^jyj c/ / > / i f r // \1U& Vr / / r

v=0 //=0

where t̂ J,0^) are polynonials of z. If we rearrange this series formally by col-
lecting all the terms of same power of ρ> we have

(9.8)

where

;pcfθ(̂ )=
(n

in particular we have

We remark here that for every r, Ϋ[r^(η, p) contains only a finite number of terms
W^(z)ηλ for which λ=— r(mod^). Next let us examine the asymptotic property of
(9. 8). From Theorem 5. 1 and the properties of Wv(x) we can write for every
positive integer r,

PfypY"^ Σ
v>r/(jι— m+q")

This proves our lemma.

We denote the each element of the connection matrix C(p) by c^(p). Then
from (9. 7) and Lemma 9. 3 cjk(p) can be written as
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%(η9 p)pv

(9.9)
, •••, n, k=l, •••, m),

, — ,«),

where tfKη, p) are of the same forms as the elements of Λ(ί°, and then we have

THEOREM 9. 1. Let S be a sector of central angle less than (n—m)π/(n—m-}-q)
which was defined in Proposition 6. 1, and let Yι(x, ε) and Yz(s, p) be fundamental
systems of outer solutions and inner solutions which are defined in Dι and ' D2

respectively under the assumptions (2. 3), (2. 5) and (3. 15). Then the connection
matrix C(p) between them has a form

where Cv are diagonal constant matrices > in particular CQ=I (unit matrix) and

0

0

Proof. Since the elements cjlc(p) do not depend on 37, so must be the right
hand terms of relations (9. 9). Let j or k or both / and k be larger than m. Then
the representations of cjk(p) for j^k carry the exponential factors which imply that
Cjic(p) must be identically zero, otherwise Cjk(p) must depend on η. For
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(j=m+l, •••, n\ it does not depend on η if and only if all of the coefficients cty(η, p)
are constants, but from the structures of them it is possible if and only if y=0
(mod 5). Then we have

••, n).

For the case of ;', k=l, 2, •••, m, since (n—nΐ)(aj—ak} (/, &=1, 2, m, /^β) is not an
integer the same reasons as stated as above insure us that the statements of the
theorem are satisfied and this completes our proof of the theorem.

REMARK 2. If the assumption (3. 15) is not satisfied, that is, if we have
(n—m)(aj—d]e)= integer for some j, k (j, k=l, •••, mj^k) our theory is also true
without any essential changes. In this case it may occur in the Theorem 9. 1 that
some elements Cjk(p) of the connection matrix C(p) are not always identically zero
for /,&=!, 2, ~,m,j*k. We need a little more careful constructions of the inner
and outer formal solutions and comparison of the coefficients of them than that of
§ 3, § 6 and § 9 to obtain the exact informations about Cjk(p) in this case.
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