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A TURNING POINT PROBLEM OF AN n-TH ORDER
DIFFERENTIAL EQUATION OF
HYDRODYNAMIC TYPE

By Tosuiaiko NisHIMOTO

§1. Introduction.

In this paper, we propose to study a linear ordinary differential equation of the
n-th order of the form:

1.1) " " Loy(y)+Lu(y)=0,

where n—2=m=0 and

n—1
Ln(y)= _y(n) + Z . Rv+1(xy e)y(V)y
v=m+

Lu(w)= i; (Prar(@)+¢Ro i, )y

Here ¢ is a small positive parameter, x is a complex independent variable, ¥ is an
unknown function of x, R(x,¢) are asymptotic power series of ¢ with coefficients
holomorphic in z in the domain

(1.2 0<e=eo, |z|=co<1,

and P,(x) are holomorphic functions in @, in particular, Pn.:(x) has a zero of order
q at the origin. Thus we can consider that the equation (1. 1) has a turning point
of order ¢ at the origin, and our purpose is to give complete informations about
the asymptotic behavior of the solutions of (1.1) in the neighborhood of the origin
when ¢ tends to zero. Our method is based on the matching method which was
used for the first time by Wasow [10] with the rigorous mathematical justification
in the case of an almost diagonal second order system, and thereafter has been
generalized by Wasow [11] and Nishimoto [5] to the #-th order equation with #=0.
Introductory descriptions of this methoed are seen in Friedrichs [1] and Wasow [13].

When n=4, m=2 and ¢=1, the equation (1. 1) is equivalent to the well-known
Orr-Sommerfeld equation which plays a fundamental role in the theory of stability
of incompressible fluid dynamics. There are many investigations about this equation,
for example, by Wasow [9], and by Lin and Labenstein [4]. They used the method
of comparison equations to attempt to find a transformation which reduces the
given equation to a simpler equation, and to attempt to solve the simplified equation
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DIFFERENTIAL EQUATION OF HYDRODYNAMIC TYPE 219

by some explicit technique, for example, by Laplaces integral. In fact, the Orr-
Sommerfeld equation was essentially solved by this procedure. To generalize this
method to other cases, there are two approaches: one is to enlarge the class of
differential equations which can be solved by some technique and are available for
our purpose, and the other is to construct a nonsingular transformation which makes
the given equation as simple as possible. About the second problem, Sibuya [6, 7]
succeeded in obtaining a certain transformation for the equation (1.1) with n—2=m,
and ¢=1, and some of the simplified equuations can be solved by the Laplace
integral but there remain the equations which are unresolved, moreover when ¢>1
we can no longer construct such a transformation. On the first problem, our data
of the equations whose behavior are already known can not almost be seen other
than Sibuya [6], Wasow [11] and Nishimoto [5] in the general theory, and so this
paper is devoted to this problem of the equation of the form (1.1). Thus we may
consider that the equation (1.1) is already simplified by some transformation. Our
method based on the matching method, in spite of rather complexity of the actual
calculations of the solutions, enables us to understand the asymptotic natures of
the solutions of (1. 1) in the full neighborhood of the origin under fairly reasonable
assumptions. This method may also be applicable to the problem of the stability
of boundary layers in a compressible gas (Lees and Lin [3]) which is not yet
completely solved.

In §2, we give notations, a preliminary transformation which makes further
treatment simpler, and assumptions on the coefficients of (1. 1), one of which is so-
called one segment condition and dominates all of the studies in this paper. In §3,
we construct the formal outer solution, and in §4, §5 obtain the outer domain D,
where there exists the actual solution of (2. 1) whose asymptotic expansion coincides
with the formal outer solution. The domain D; does not contain the turning point
itself and then to understand the asymptotic behavior of the one outer solution at
the turning point or beyond the boundary lines of D; is just the turning point
problem. Therefore to solve this problem, it needs to construct an inner soluion
in a direct neighborhood of the turning point itself. In §6 and §7, it is calculated
the formal inner solution by introducing the stretching wvariable, and prove the
existence of actual solutions in the inner domain D, in §8. The domain D, in
general, shrinks to the origin when ¢ tends to zero, but it is easily seen that D; and
D, overlap with each other for an arbitrarily small e. From this fact, we can match
the two types of solution, and then in §9 it is given an asymptotic expansion of
the matching matrix between them, from which we can understand the asymptotic
behavior of the one outer solution in the complete neighborhood of the turning point.

The author expresses his heartiest thanks to Prof. Y. Hirasawa for his valuable
advices and his kind encouragements in preparing this paper.

§2. Notations and assumptions.

1. For the subsequent study, it is convenient to write the equation (1.1) by
the vector form, that is, by the usual transformation
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y=y1, ¥P=yix (=0,1,--,m), YP=y;x (=m+1, -, n-1),

the equation (1.1) becomes

(Y [0 <. 0 i
Ym O O ¢ Ym
@1 - = e, ST
: 0 1
Ym +1 O ., Ym 41
: 1
Lvn ) U Pi+eRy, -, PnteRn Pri1FeRmyi1, € ™ ' Ryya, '-',eRn_ L ¥Yn |

To simplify the descriptions of further calculations we write the above equation as

U’'=AU+BY,
2.1 {
eV'=CU+DYV,
where
B2 Ym +1 Q 1. 0 O
v=l -, v=| -} A= -l | B= :
: : o .1
| Ym Yn 0 1,01"')0
0 0 10
C= . D= () BRI
_P1+€R1, oy PpteRp Pm+1+ eRn11, 8" ™ Rinys,y -+, eRm

2. A following transformation of ¥V and z into ¥ and # makes it possible to
assume from the outset that P,,:(z)=2? (for details, see Wasow [12]).

V=diag (1, (), -+, oz ™ W,  t=t=),

where

o(x)=

(n—m)/(n—m+¢q)
dz’ ] ’

H=) =[S:Pm+1(x)1"""")dx

Clearly, the functions #(x) and o(x) are holomorphic in z, and can be written
Hx)=azx+0(z?) (ax0), o(z)=a+0(x).

Since it is easily verified that this transformation does not make any essential
change in the subsequent analyses, we assume that p,,.(xr)=2? already in the equa-
tion (2. 1).

3. Next, we write here the fundamental assumption which states that the
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characteristic polygon associated with (2. 1) consists of only one segment. Now let
each of the elements of coefficient matrices C and D has the asymptotic expansion
of the form

Pyz)+eRi(xw, ¢) = }o_:o} <

|||_V_]8

Jlmx”)ev (7=1,2, ---,m+1),
2. 2)

IR (n )= 3 (Zzwc) (G=mt2, -+, ).

v=n—j+1 \p=0

In the (X, Y) plane, we plot the points P,,,, for which the coefficients p;,, of the
above expansions are not zeros, of the coordinates

_(m—itlty  p ) 1,2, m41; p=0,1,
PJVII_< n_]+1 ’ n__]+1 (.7'_1:2; ;m+1’ ﬂ‘—oy 1s ))

—_— v # ] — oo . = ee
PJv,u—( n—j+1 ’ n—j+1 ) (]_m+2’ ’ n’ # 0’ 1’ )y

and the point R=(+1, —1). The one segment condition means that all of the
points P,, are on or above the segment L, which combines the point R and
Pri1.0,¢=(0, g/n—m), or equivalently for nonzero coefficients p;, the indices must
satisfy the following inequality:

@.3) w%ﬂ FmAl—(+@=0  (j=1,2, -, m+1).

Here it is noticed that from the inequality (2.3) we can easily see that when =
tends to zero in the equation (1. 1), the reduced equation:

2.4 Z‘)Pm(:c)y‘”’ =0

has a regular singular point at the origin. About this equation, we make an as-
sumption to avoid complexity that the difference of any two characteristic roots of
(2. 4) is not an integer.

§3. Formal outer solution.
4. At first, if we transform the equation (2.1) by the relations
3.1 U=2(2)Us, V=02x)V1, t=ex™® (a=m—m+q)(n—m)),
where
2(z)=diag [z™, 2™, -, 2],  Qo(x)=diag[l, 27"™, ..., gln-m-D/ =M

then after a short calulation we have
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X dUl =A1U1+81V1,
dxz
3.2)
tx dVl =C1U1+D1V1
dx
with

C] = O },
La= T ™(PiteRy), -, 2~ ™I (Pit-eRy), ++-, 27 (Prt-eRm)
] 0 1 O 0 O

= R q 1

D= -

' O 1 n—m g O

| 2™ 4@+ Rms1), ()" " Rz, o, ()" IRy, -, taRm n—m—1_

Now we prove the following lemma.

LemMmA 3. 1. Each element in the matrices C, and D1 can be expanded asymp-
totically in power servies of t whose coefficients are holomorphic functions of xzV(*™)
in the domain (1. 2).

Proof. From (2.2) we have for j=1,2, .-, m+1,

Ms
Ms

amTmi=i(P, LRy

— -7V
j)jw,x/' q+m+1 Je

1 0

v

=
I

n
M
Ms

—q - — v/(n—-m)4¥
pjupﬂ')” Crmt1-j+n-—m+Ov/ (n—m)y¥
0

<
Il
=

®
Il

If we consider the assumption (2. 3), the above expression can be written

D)t

I3
IMs

where p,(xz) are power series of xV™ ™, TFor the elements (fz)*7*'R,, it is the
same as above, and the lemma is proved.

5. From the above lemma, we can write the matrices C; and D; by
(3. 3) CIE Z(,C]"(x)f’ DIE Z(]D]v(x)tu

with
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Cm(x')=|7 O } Cu(x)=|i O }
c10(x), +++, Crom(x) c1(), +++, Crm(®)

oL, 0 0
Du=| ¢ . Du(x)= __ 49 . O O,

i n—m O

1» 07 Y 0 d11m+1, 0, tery 0 n_m_l

where the constants ¢10;(0) and c¢115(0) are the quantities pjo,, and pji,, respectively
in the expression (2.2) for which p+m+1—(g+7)+av=0 (v=0,1), and dim1 is
DPmir1,, Tor which p—g+m—m+q)/(n—m)=0.

To solve the equation (3.2) by formal power series of ¢, it is conventient to
make the principal parts of the coefficient matrices of (3.2) diagonal and this is
accomplished by the following lemma.

LEMMA 3. 2. We can construct a nonsingular linear transformation of the form
U1=Qu:(x) Uz HRP(x)t +QP(x)£*} Ve,
&9 Vi={QR(x)+Q(2)t} Uz +{Q(2) + QP ()t} Ve,
where Q¥ (x) are holomorphic functions of xV "™, and the equation (3. 2) is reduced

by this transformation to

aU,
dx

aVs

3.5) z d

=A2 U,+B. Vz, tx

=Cz U2+D2 Vz,

where the coefficient malrices have asymptotic expansions in power Series of t such
that

A= ;)sz(x)tu; B,= ZIBZU(x)tVy
3. 6)
CzE' Z CZv(.’I/')tv, ng Z()Dz,,(l‘)tu
y=2 y=

in the domain
3.7 0<e=ey, |x|=Zc, |t =ce

for sufficiently small positive number ¢, ¢, and c.. Here Asx(x) is diagonal matrix,
holomorphic in x, and the difference of any two diagonal elements at x=0 is not an
integer, Dy(x) is a constant diagonal matrix, and D (x) is a diagonal holomorphic
matrix function of z¥ ™™,

Proof. Firstly, if the equation (3. 2) is transformed by
3. 8) U1=ﬁ2‘|‘tQV2, V1=Rﬁz+172,
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(here the symbol R is different from the one in the definition of equation (1. 1))
then we have

z U, _ (In—tQR)! [{A1+BIR — Q(Cl—l—DlR—tx ﬁ) }172
dx dx
-+ {tAlQ+ Bl*‘-%‘ % "(ClQ+D1)} Vz],
3. 9)
1z Ve =(L,_m—tRQ)‘1“tR(Al-I—BlR)— (CI+DIR—m -i@) }[72
dx dx
atQ

+{ tR(tAlQ—l— Bi—=z )— (tCIQ+D1)} 172],

dx
where I, denotes the 7-dim unit matrix. Here we choose the matrices @ and R by
the form

Q=0Q,, R=Ry(x)+Ri(x)t
with

QoD1o— B1=0, Clo($)+D10Ro($)=0,
3.10)
dRo(x) —

T 0.

D1oRy(2)+D1y() Ro(2)+Cia(x) — Ro(x)(A1+ B1Ro(x)) — 2

Then it is easily verified that

t4.Q+ Bi-a %2 —Quc.Q+Da+0w,
dR
Cit DiR— -9 <tR(A+ B.R)+O(,

which imply that (3. 9) can be written

x déﬁ; - =(Ai+BiR+0O):+00)V s,
3. 11) 7
tn-E 0@ A UCQE DA OENY.

Here it is noted that from (3. 3) and (3. 10) we have

—m 1. O
AtBR=| () ~m=D Voo,

—c1ou(@), -y —Crom(@)—1

D, +1CiQ=D1o+(D1i(x)+Cio(2)Q)t 0.
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The assumption imposed on the coefficients of the reduced equation (2.4) implies
that the difference of any two characteristic roots of the matrix A;+B:R at z=0
is not an integer, and from this and from the form of D,, we can easily verified
by the usual method that there exists a non-singular transformation of the form

(3.12) 0.=0u@) 0  Vo={0Q(x)+0P@)t} Va

which makes A;+BR and Djy+(D1i(x)+Cuo(x)Q)t diagonal. If we combine the
transformations (3. 8) and (3. 12), the lemma is proved.

6. Now we are ready to construct a fundamental system of formal solutions
of the equation (3. 5) by the form

3.13) W={ 3> M(x)t"} eXpSzE(x, Bz
v=0
with
Ago()] 0 Wi z) W'™(x)
E(x, t)=[ }, ={ ],
0 [DatDau(z)fliz Wo(z) Wa)

where W, W2, W2 and W?*2 are mXm, mX(n—m), (n—m)Xm and (n—m)X(n—m)
matrices respectively, and the integral in (3. 13) is to be determined such that the
constant term is zero. If we substitute (3.13) into (3.5), replace the matrices
As, Bs, C; and D, by their asymptotic power series (3. 6) and compare the coefficients
of # (#=0,1,2, ) of the left and right hand sides, then we obtain the recursion
formulas for W.(z);

3. 14),

W I:O 0 ]+ W [Azo 0 }—l— AW, (=)W, 5 [Az.i—l Bz.i—1:| -
- r——" —a(p— = ,
! Dy, ! 0 21 dz : ' vhi=e | Cs,, D, ; !

where W_,=0 and Wy,=I, (n-dim unit matrix). From this equation, we can de-
termine all of the matrices W.(x) by the following way. For p=1 (3. 14) becomes

0, O 0, 0 0, WDy 0 0
(3' 14)1 I’Vl(x) = m(x), or = ’
0, D20 Oy D20 Oy WgzDZO D20 W%I; D20 sz

from which we can conclude by using the facts that the matrix D, is nonsingular
and any of the two diagonal elements does not coincide that Wi*= W#=0, and if
each element of the matrix W!™ (/,m=1,2) is denoted by w!, then we have
wi,=0 for jxk. Clearly we can not determine the matrix W and the elements
wi; from (3. 14),, and these elements will be obtained from the equation (3. 14) with
r=2;
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[o, W;ZDZO} [W:IAZO, W:ZDZI} d[ 1, W:Z} [W Wi
+ +r— —a
0, W2Ds) |W#Aw, W2D,| 4o|wzn, wz wa, W?}
(3. 14),

l: 0, 0 :l [Azo Wi, As Win [Azl, lej|

= + + .

D20 ngy D20 W§2 D21 ng) D21 sz 22y D22

Firstly, since the elements W1? and W% are known, W3 and W% are determined
uniquely, and also since w¥; (j2k) are known and the matrix D, is diagonal, then

we can obtain the elements w#; (j3k). Next the elements w?; will be determined.
From (3. 14); w#; satisfies the differential equation

2 dwﬁ ki

az =aw¥;+dss, jj,

where ds,, is the j—j element of the matrix Dy. Since ds;; is a holomorphic
function of z'~™, the above equation has a solution of the form

wiyj= f1(x)+1(z) log z,

where fi(x) and fi(xz) are holomorphic functions of z' ™ and f3(0)=0. At last,
we will determine W. The equation for which w!; must satisfy are from (3. 14),,

d 11 .
z —Z};’k ={a+ @20 1(2) — W) Wi+ @2rii(x)  (G=R),
dwu
d';jj =awi};j+as;i(x)

where @z ;(x) is the j-th diagonal element of As(x) and as1;(x) is the j—k element
of A21(x).
Here we assume for simplifications of further calculations of formal solution that
(3.15) none of the quantities (n—m) {@z0;0)—az0(0)}
(4, k=1, 2, ---,m, jxk) is integer.
This assumption also simplifies descriptions of Proposition 6.1, Lemma 7. 2 and the
proof of Theorem 9.1 (see Remark of §9).

Now since as15x(x) is a holomorphic function of xV ™, the above equations
can be solved by the forms

wip(@)=5(x)  (G=k),
wiji(@)= fo(z)+Ss(z) log z,

where fi(x), fo(x) and fs(x) are some holomorphic functions of x/=™ and f3(0)=0.
Therefore from the equation (3. 14),, we can obtain the elements Wi, w%; W, W3
and wi (73 k) and undetermined elements are W3' and w3j; which will be obtained
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from the equation (3. 14); by the same method as for Wi and w?,.
By repeating the above procedure, we can determine all of the coefficient
matrices W,(x) and then the formal solution (3.13). Here we summarize the results:

ProrosiTiON. 3.1. The differential equation (3.5) has a fundamental system
of formal solutions of the form

3. 16) W~{ 5 mx)t”}F(t, ),
v=0

where the matrices W (x) are bounded in |x|=c1 and are polynomials of logx of
degree at most v with holomorphic coefficients of xV™ ™, in particular Wox)=1,
and F(t, x) is diagonal and can be written

2420(0 , 0

3.17 Ft, o)=
3.17) ¢, x) 0 ex{D°

2 }.331721(0) '

)

Henceforth we denote for convenience the diagonal elements of A.i(0), D, and
D,,(0) by the letters

diag Azo(O):{al, Ty a’m};

2(k—m—1);
—m

. D 1 . .
(3.18) dlag% ={dom+1y ***, don}, dox= " exp { + 2m‘l (i:M—l),

diag Dey(0)={dim+1, -+, din}.

§4. Existence theorem of outer solution (1).

7. In this section we prove that for each formal solution there exists an actual
solution whose asymptotic expansion coincides with it. The domain of existence
D; is maximal in the sense of the angle of sector, and this fact is sometimes
useful, for example, when we apply the results to the boundary value problems.

Our argument is given for the equation (3. 5), and rewrite this by the form

“.1) tx -d—VK =G, )W,
dxz
where
U, tAs, B,
W=[ } a, x>=[ }
V2 CZ, D 2

The equation (4.1) has a fundamental system of formal solution (3. 15).
Let » be a positive integer, and define the matrix functions W™(¢, z) and

G™(t, z) by
W(T)(t, x)_‘: {721 VV,(JL‘)tD}F(t, x)’
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AW, x)

@ —Fr- . (€] -1
G (¢, x)=tx d WD, z)~2.

Clearly W™(t, x) is a fundamental solution of the differential equation
I.‘:cﬂ =GN, )W
dx

and G(f, x) satisfies

4. 2) G(t, x)— G, £)=0@"+2).
We write (4.1) in the form
@3 te L =GO )66 )-GO, YT,

then by the method of variation of constants, any solution of the integral equation
4.4 W@, x)=W(, w)+8 @)W D(E, )Wz, ) H{G(, §)—G(z, E)} Wz, §)dé
rx)

is a solution of (4.1). Here I'(x) denotes a set of paths of integration 2;i(x)
(7,k=1,2,---,n) in the & plane which are chosen appropriately for each pair of (7, &),
and r=¢e&%

If we put

ws) W, 2)=W (&, z)F(, ),
' WO, 2)=W O, 2)F (¢, ),

then (4. 4) becomes
@.6) W, )=, x>+g ( )(rerlF(t, )F Yz, OW D, )W Pz, £)7
rx

X{G—GOMW (z, &)F (z, §)F (¢, z)*d.
From (3. 16) and (4. 2), the integral term of the above equation can be written for

each j, &,

Ear D=1 g ENai k[ [ (2, E)|dE (4, k=1, -+, m),

(4. 7) (jzlr ---,m,k=m—|—1, "‘,ﬂ),
§0 DY (g €y ~% {exp e do (0" —EN Ll Wz, €))dé
(]:m_l_lr ey M, k=1, A m)y

) o= &)t~k {exp & (do;— dor) @ —EN Ly W (z, £)ldé
Jk

S

i g afepr i fexp e — oL, 12
S
S

(jy k‘:m_l_ly ) n)’
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where Lj[W] is a linear form of the #-components in the A-th column of W.
From (4. 2) and the form of W(¢, z), the coefficients of this linear form are bounded
if ¢, x, = and & are bounded.

Here we define a sector S®. Let £=1,2,---,m and chose arbitrarily one of the
arguments of do;, (j=m+1,---,n), denote it by d,, and reorder the remainder
arguments of d,;, such that

arg dou, <arg do,,<---<arg do,,<arg do,, +2n(f=n—m).

Then the sector S is of the central angle less than (#—m+2)z/(n—m-+q) of the
form

n—m
S®: {

3
m ———n—argdo,,l—l—r}éargxé

n—m {3
2

e R L }
where 7 is a sufficiently small positive constant.

Next let k=m+1, -+, n, and order the arguments of —do, doj—do; (j=m+1, -,
n,j3k) by

O=arg do, <arg do.,<---<arg do,,<arg do,,+2r(=n—m-+1),
and define the sector S{®

S M{

3 n—m 3
n—mtq — 5 n—arg do,, + Tl‘ sargr = ——{——n— arg do,,—7 }

2 n—m+tq | 2

The central angle of this S® is less than either (w—m+1)z/(n—m-+q) or
2(n—m~+-1)z/(n—m-¢q) according to the selection of do,,.
In the next section we will prove a following proposition.

ProposiTiON 4.1. For each k (k=1,2, ---,n), there exists a region ﬁi’” which
contains a domain D® defined by

D§k): arg xeS§"), 0<£§61, fz&l/aéwéfh

such that for all xeD®, we can construct paths of integration Aj(x) which are
contained in D except of its end point and for & on Ax(x), we have

4.8) S |01 dE| = K o] o,
2 g (@)

(4.9) the exponential factors in the integrands of (4.7) ave bounded for arbitrarily
small e.

Here ¢, ¢1 and ¢, are sufficiently small positive constants, and K is some positive
number independent of x.

If it is assumed that the above proposition is true, we can estimate that the
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every integral in (4.7) is of the order O("*') and so we can show that there exists
a solution of the integral equation (4. 6) by a standard method of successive approxi-
mation or a fixed point theorem, and therefore exists a corresponding solution of
the differential equation (4.1) in the domain D{®. Furthermore we can prove that
the actual solution thus obtained does not depend on 7 and has an asymptotic
expansion which coincides with the formal solution. The details of this procedure
are here omitted and are rendered to the previous paper [5]. From the above
descriptions we obtain immediately an existence theorem of fundamental system of
solutions.

Let us draw (n—m)(n—m-+1) vectors do,, —do; and doj—dor (7, k=m-+1,---, n,jxk)
from the origin in the complex plane, select arbitrarily one of them and denote it
d; and then order counterclockwise the remainder vectors such that

arg di<arg d,<---<arg dg<arg di+2z(f=(mn—m)(n—m-+1)),
and we define the sector S; in the z-plane by

.. n—m {

3 n—m |3
S mtq ———n—argd1}<argx<——-——{,—n—argdﬁ}

2 n—m-tq | 2
Now we have a following theorem:

THEOREM 4.1. Let
W~{ 5 m(x)f}p(t, )
v=0

be a formal solution of (4.1) defined in Proposition 3.1. Then there exists a
fundamental system of actual solutions of (4. 1) of the form
W(t, ©)=W(t, £)F(t, x),
and for every positive integer r, there exists a domain D: of xz,¢ plane defined by
Dy: arg xeS;, 0<e=ey, |z|=c1, HERR

(e1, ¢1 and c. are certain comstants independent of ¢) in which it holds
W, 2)— 3 Wi@)t'=Ext, z)t™
v=0

where E.t, x) is a matrix function bounded in the domain D..

The k-th colnmn vector of the fundamental system of the solutions is called
the solution of the k-th asymptotic type, and in particular the balanced solution
if k=1,2,---,m, and the dominant-recessive solution if k=wm+1,m+2,---,n re-
spectively.
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§5. Proof of Proposition 4. 1.

8. In this section we prove the Proposition 4.1, that is, we show the existence
of the domain D{® and the paths of integration 2;s(x) satisfying the condition (4. 8)
and (4. 9), by using the method in Iwano [2] without any essential modifications.
Note at first that

) _
si= (2]

3 n—m |3
]=lm — —=—n—arg do,,l‘*‘r } = arg r= —“——{—ﬂ.’_arg do,,J— 7 },

2 n—m+q | 2

and since the central angle of S¥ is larger than (z—m)r/(n—m--¢q) for sufficiently
small 7, it contains at least one singular direction: Re do,;z*=0 (Re z denotes the
real part of z), or more precisely

n—m 1
}; arg x=0% m{‘g”—arg do;:,},
5. 1)
n—m

____{_l —ared }
n—mtq| 2" &%

for each j=1,2, ---, 8), but no more than two singular directions. It is apparent that
in the region 05 <arg x<0j, we have Red,, x*>0. Here we denote for simplicity
the angles of boundary lines of S by

I7; arg x=0;=

n—m

- n—m _
6.2 o= ord P

3 +
P—— — = argdo,,l—l—r}, 6

3
5 {—I——z—n—argdo,,p—r}.

Now we divide the integrals in (4. 7) into four classes of the indices j for each
fixed & such that

Ji: the integral whose integrand does not carry the exponential factor,
Jo: the sector S¥® contains only the singular direction /},

Js: the sector S{® contains only the singular direction /7,

Ji  the sector S¥® contains both the singular directions /§ and /7.

or ¢ - A Foooe e g - 6-

jelz jels jelu
Fig. 1
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The shadow regions in the above figure mean that Redo,x*=0, and note that
03 —05=n/a.

Denote by |z|e?® and by |£|e? the polar coordinates of the points x and &, and
define the angles OF (1=2,3,4), 0, (j=1,2,---,#) and the initial point xz;, of the
integral path 2, (x) (j=1,2,---,n) by

(5. 3) Of= jei? 07, o7 =1jr£ix 07 (1=2,3,4),
6- for jeJy,
6- for jeJs,

6.4 Oio=16+ for jeJs,
&gﬂ for jeJ,,

[}
|2 j0| =c{ exp S Jocot D(p)do,
9o

where ¢/ is a certain constants, ¢, is an arbitrary constant angle in [@~, ®*] and
@(¢) is to be determined as a piecewise continuous function in the interval [0-, 6]
satisfying the inequality

n—m—]—q)

(5.5) ad=V(p)=rn—ai <a= pry

for sufficiently small positive constant 6. Then, the path of integration 2, L)
combining the initial point x; to x consists in general of a curvilinear part 2, (x):

14
|e|=|x|exp(g cotaxso)dso) for 0p=p=0 if jeTu oo
']

(5. 6)
(4
|E|=|;c|exp(8 Cot@(go)dgo) for 0=¢p=0; if je€Js, ]y
A

and of a rectilinear part 2;/():
0 jo 930
5.7 |z| exp <S cot @(go)dgo) =|&|=c]exp <S cot @(go)dgo), 0=0j.
] [
If we define the region D as a set of points x=|x|e® satisfying the inequalities

@ ]
5. 8) cés““t&xp(S cot@(go)dgo)élx]éc{exp(S Cot@(go)dgo>, 6-=0=6", 0<e=el
9 9
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for suitably chosen positive constant ¢/, then every point z in D® can be reached
from the initial point x; along 2,/x) contained in D (Fig. 2).

Now we will show that the condition (4.8) and (4.9) are satisfied on the
integral path 2,,(z) defined as above if we choose the function @(¢) appropriately.
Suppose at first that @(¢p) was determined so that it satisfies (5. 5), and if we notice
that the line element ds is expressed by

ds=—d|§| on X/(x),

5.9 ds=—§ﬁ%,(—¢)—dgo on Afa) for OpSe=0 (jeTuJs or J2),

_ €]

== o) dp on ,(x) for 0=¢p=0; (jeJs or Ju),

then we have

WG e
lpj(w) 2

el--ds +
nj (@

. lelmreds
(z)

lfuj

030
= L lal e exp{ —ral " cot o] + 1l
ra 0

S:jo —éi—n;T@{expSw —ar cot (ﬁ(g[))d(/l}dgol

9

and this proves the condition (4. 8).

In order to prove the condition (4.9) it is sufficient to show that the quantity
—Re dy,£* is monotonically increasing along the integral path 2, (x), because then
we have

Re do,,x“—Re do,,faéo,

and apparently this is valid on the rectilinear part ;/(x). Therefore we want only
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to show that there exists a piecewise continuous function @(¢) on the interval
[6-, 6] satisfying (5. 5) and at the same time —Re d,,£% is monotonically increasing
along the curvilinear part 2; (), that is,

(5. 10) AR 20 on g

After a short calculation we have from (5. 9)

dg

_ e € o & e
a5 do |&] et =+ {cot @(p)+i} sin D(p)= =+ B e

ds €]
according as 0;=¢=0 or 0=¢=0;, and hence

4
ds

§

d o dE - i
it —CZ;Re doﬂj ¢—=_—Re do,,js %=+Re{ado,,j€“ l'l—s_leww)}

=F|ado,,| - 1§|*7* cos Ri(¢)
according sa 0 =¢p=0 or 0=¢p=0;, where
(5.11) Rip)=arg d0#1+a€0+¢(90)-

Then, in order to obtain (5. 10), R;(¢) must satisfy

=Rip)= %n for 0j,=¢=0,

]

(5.12)

IIA

Rip)=%  for 0=p=0s

e

From (5.1), (6.5), (5.11) and (5. 12), ®(¢) must satisfies the inequalities
max {a(0; — )+, ad} =D(p)=min {a(0} — o)+, n —ad} for 0=¢=0y.
J€J2,J4 J€J2,J4
max {a(07 —¢), ad} =P(p)=min {a(0; — ¢), =—ad} for 0=¢=0;.
J€J3,J4 J€J3,J4
Hence the function @(¢) satisfying the above inequalities will exist if we have

max [max (05— ) + 7, all; — o), aajg min [m}ln (@0 — o)+, a0F — o)), — aa]
Jh s

.
for PO o0 (jesu, T, and hels)
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max [max {a(07 — ), a(@5 — ) + =}, a5] = min[min {a(0F —), a(0F —p)+r}, n— a&]
Jh Jh

for 6: 'l'@‘ Zpz0"  (jeJs,Ji, and Ae)y).

By using the notation (5. 3), these inequalities are reduced to

max [a{max (@;—I— %, o7+ %, @s'> —<P}, 05]

(5.13) =min [ {mm (@*-I—%,@:’-I—%,@;‘)—go},n—m?:l
for @‘+—_|2_&——§g0§9+,
max[ {max(@ + — @;,@;)—go},a&]
5. 14) <min [a {min (@H z.er, @:) —go}, n—aa]

for w =Zp=6".

Since we can easily prove the following inequalities

a;<@-<o,:<0;<a,:<@+<o,:+% for jeJ, and ke,

@-<a,;<o;<a,:<@+<o;<o;+% for jeJs and kefi,

we have

(5. 15)
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and
(5. 16) @+<@;+§, 0+<0, ;<6 @;——Z—<@-.

Hence (5. 13) and (5. 14) become

max [a (@;+ —Z— —go), 0515 min [a {min (@;+ -Z—, (-)g‘) — go}, 71:—(15]

5.17)
for —Hz_i =p=06",
max [a {max <@;+ %;—, @;) —go}, aa] =min [a <(~),,+— go), 7':—(15]
(5.18)
+ -
for -g%@—‘ Zp=6".

But a simple calculation shows that the above inequalities are satisfied respectively
in the intervals

5. 19) O +5=p=min (@;+ z @;) —5
and
(5. 20) max (@;, o5 — %) Fo=p=0}—3.

If 6 is sufficiently small the interval (5.19) contains the interval [(OF-+6;)/2, 6]
and the interval (5. 20) contains the interval [0, (O} +67)/2].
Then if we put, for example

P
max [a {max (@;—I— —Z—, @;) ——go}, a&] for O-=¢p= &;&,
D)=
P
min [a {min <@;—|— —Z—, @;) —go}, T— ab‘] for _@_—;i‘%_ =p=6*,

we can define the desired function @(¢) and so the pathes of integration.

Now in the definition (5.8) of the domain ﬁf"’, the constants ¢f, ¢;7* and ¢/
must be taken so small that the integral equation (4.6) has a solution and also it
contains a domain of annulus D{® for appropriately chosen constants ¢;, & and e,
and this is clearly possible, Thus we have proved Proposition 4. 1,
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§6. Formal inner solution.

9. At first we transform the equation (2.1) by the stretching and shearing
transformations:

x:pn_ms’ 6:pn-m+¢1’
Y=Q(p"™U, Z=20""™V,

where the diagonal matrices 2:(x) and 2.(x) are defined in (3. 1), then we have a
differential system of the form

(6. 1) ﬂ=A1U+B1V', £K=ClU+D1I/,
ds ds

where A=A, B,=B and

Cu(s, 0)=p""2(p" ™) 'C x, &) 1(p" ™) = O ,
- Cll(s’ p)’ 012(87 Ao)! th Clm(s» P) J
- 0 1 . O _
Di(s, p)=p""2:(0" ™)' Dz, £) 220" ™) = O BRI 1 |
..d1m+1(3, P), d1m+2($, p), ey dln(s, p) ]

(6. 2)

Here and in below we use symbols A, By, -+, ci(s, p), dij(s, p), -+ Which are different
from those in §3. Now the functions ci,(s, p) and di(s, p) satisfy the relations

o ©o
Clj(S, P) — p(n—m) (m+ 1—]—Q)(Pj+€Rj) =~ Z(:) Zopjwsﬂp(n—m) H+m+1-9—H+(n—m+ DY
v=0 p=

(]21) 2’ R m):

(6 3) d1m+1(sy p)=p—(n—m)4(x¢I+eRm+l)_:_Sq+ Z ijvﬂsﬂp(n—m) =D +n—m+q) l"

v=1 p=0

0o oo
dl.,(s, p):p—QCn-j+1)(en—j+1Rj)Ep(n-—m)(n—]+1) Z Z:Opjv”s#p(n—m)l‘+(n—m+q)v
=0 p=

(j=m+2y R n)'

From the one segment condition, all of the powers of p in the above expressions
are nonnegative, then the matrix functions Ci(s, p) and Di(s, p) can be expanded in
power series of p whose coefficients are polynomials of s.

Now let the equation (6. 1) be written by the combined form such as



238 TOSHIHIKO NISHIMOTO

(6. 4) S =csom  w=[ 7],

where

A, B,
G(S, p) = [ il’
CI(S) P) Dl(sy P)

and let the asymptotic expansion of G(s, p) be
G(s, p) = Z;) G.(s)p"

where G,(s) are polynomials of s, in particular

A, B 01
(6. 5) [ }: .......................... D
CIO(S) Dlo(S) : 1 .

: 1
;Cu(s, 0), c12(s, 0), *-+, * dim41(s, 0), 0, -++, O_

Here we want to construct a formal solution of (6.4) by the form
W~ Zb W.(s)e”,

then each of the matrices W,(s) satisfies

.6 AL G Wit 56w 4=0,1,2, ),

10. Firstly we analyze the above equation for v=0

dW(s)

6.7 s

—Gowe, o[ 9]

V(s)

Clearly there exists a fundamental solution of (6.7) in the arbitrary neighborhood
of the origin, then the problem is to discuss the asymptotic behavior of W(s) in
the neighborhood of s=oco. To do this, we transform the equation (6. 7) by
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§=s"a=(n—m-+q)/(n—m)),

(6. 8)
~m
".s O Uw
W=Q(s) WD = 1
O sq./(n—m) V(l)
L ..s(n—m—l)q(n——m)
then it becomes
( ~

6.9 2 Z” =G W = %S—q/m—mW){Q(s)‘lGo(s)Q(S)—Q(s)“igi)—}W“).
From (6. 5) and (6. 8), G:(€) can be written

~ ~ T ‘_ 1

Ay B m .

ao= ) A”1=ai€ —m=1" 01 ,
Cu®) Du@ | 0 1
5 _ 1 0 X ey L 0
(6. 10) B,= “ , Ci®)= " )
1 . 511(5), R é‘lm(é)
1 0
Bo=1 00 ————
T LI (n—mtqi| ()" ’
31m+1(8), 0 (n—m-+1)

where

Elj(&):$<m+l_j_q)/aclj(ss 0) (]:1, 2’ AR m)’
(6. 11)

d]m+1(s)=$—q/adlm+l(s) 0)°

Now from the asymptotic expansions (6. 3) of ¢i,(s, p) and dim+1(s, p), the polynomials
€14(s,0) and dim1(s, 0) have the forms

clj(s’ 0)= Z Zopjvpsﬂ (j=1; 2’ R m),
nv=
d1m+1(sy 0)=sq+ Z lem+lv,usﬂy
nv=

where for nonzero coefficients p;.,, following relations must be satisfied
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(n—m)(pt+m—+1—q—75)+m—m+qy=0

TOSHIHIKO
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(]21) 2’ ) m+1)'

Then the order p of nonzero terms s” of (6.12) must satisfies

p=q+j—(m+1)—av

and so the functions (6. 11) can be written

(6. 12)

z./:1‘7(5) :v§) ij,,{:_v

(j:]-’ 2: Y m)’

Jlm+1(§) = 1 +§1pm+lvy,)é_v7

v=0,1, ---),

where the summations are taken for a finite terms of v for which p=g+j—0(n+1)

—av.

Thus the matrix function 51(5) is a polynomial of &' and if we write it by

the form

61(5) = Zoélw’f_v =

then from (6. 10) and (6. 12) we have

Guo=

6.13) Cu=

With 61,0: l
a

With A11 = l
a

Ci11, Cr1zy+++, Cuim

~ ~
Alv Blv

2l
»=0 Clv

~
D]u

0

| C1015 ***5 C1rom ]

[~ 1..0'
Ly

- 1

~ 1 0
a

&

’

d11m+1, 00

[0 1
~ 1 ) 0
D10—~; O '1 ’
| 1,0, 0
11:’617 O )
L1
[0
e |1 0
n—m-tq O ) '
L n—m—

where the constants €105, €11, and dum+1 are equal to the numbers pjou, Piiuy, and
Dmst1s In (6. 3) respectively provided the indices of these numbers satisfy the
relations p,=g¢+j—m+1)—av (v=0,1,7=1,2,---,m+1). Here we remark that if we
compare the above coefficient matrices with those of (3.2) and (3. 3), then it is
found that 121/11=A1/d, .§11=B1/0, 610=C10(0)/d, ﬁm:Dm/d and ﬁn—‘—Du(O)/d.

For the differential system (6. 9), we prove a following lemma which is analo-
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gous to the lemma 3.2. In order to calculate the connection matrix between the
inner solution and the outer solution in the last section, we must take always the
relation between the coefficient matrices in (3. 4), (3.5) and those in the following
lemma into our considerations.

LeMMA 6. 1. There exists a linear nonsingular transformation
UO=QPU®HQPE +QPEV®,

(6. 14) N - ~ ~

VO—Go+Qee U +HQe+Qpe Ve

where @5’;’ are some constant matrices, and this transformation changes (6.9) into

@) ~ ~ @) ~ ~
(6. 15) % =A,UP+B,V®, %— =C.UP+D,V®,

where the coefficient matrices are convergent power sevies of &' such that

A’z; 2122115_”, §2= §§2»S_v’
(6. 16)
62= [;; 621}&_»’ ﬁz: _0ﬁ2”$_v'

v

If we compare the coefficient matrices of (6.14) and (6.16) with those of (3.4)
and (3. 5) we have

IP=Qu(0), GP=QP0), JY=QP©0), JL=QVO),

6.17) .
A21=A20/¢, ﬁzo=Dzo/d, ﬁz1=sz(O)/d.
Proof. At first we transform the equation (6. 9) by

U(l)=ﬁ(1)+@'1€—117(1)’ U“’=(ﬁo+ﬁ’/1$'1)[j“)+f7“),

where the matrices @y, R, and B, are determined by the equations

élﬁlo—§11=0, 610+ﬁ10ﬁo=0,
(6. 18) o . o~ o o~
C11+D11ﬁ0+D1oR1—ﬁoAn—RanRo:0-

Then after a little calculations as used in the proof of Lemma 3. 2, it becomes

ffa -~ o~ . .
A =B+ 0E 0™ 0,
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avm N .
G =D+ Du+Cr@)e +O0E VO +0E2T D,

and furthermore if we diagonalize the principal parts of the above equation, we
have a differential system which has a form (6.15) with (6.16). The relations
(6. 17) can be easily verified by a careful comparison of each step of transformation
of the above procedure with the one in the proof of Lemma 3. 2. This completes
the proof.

Now we proceed to construct an asymptotic solution of the system (6. 15), but
since this is easily realized by the usual methods, we give only the results in the
following proposition.

ProrosiTiON 6. 1. The differential equation (6.15) has a fundamental system
of formal solutions of the form

o

(6. 19) W<2)~{Z WS”E"”}ﬁ(S),

v=0

where the matvices W® are constant, in particular WP =I, (n-dim #nnit matrix),
and

gin, 0 1
F(E):l’ N - J (S-:sa-: -t—>.
0, {exp Dut}-£P2
Corresponding to this formal solution, there exists a fundamental system of actual
solutions W (&) which has it as the asymptotic expansion in the domain:
Da: |g]>6,  argéeS,
where &, is some positive constant, and the sector Sis defined below.

~

(6. 20) S: —%+a+r§arg Eé%ﬂv—r,

where y is positive and arbitrary, and a=arg (do;, —do;, doj—dox) (4, k=m~+1,--+, n, j=k).

A connection formula between the convergent solution of the differential equa-
tion (6.7) in the neighborhood of s=0 and the asymptotic solution of it in the
neighborhood of s=co which is described in the above proposition can be determined
by the method of convergent matching because the asymptotic solution of (6.9)
has a convergent expression by a factorial series from a theorem of Turritten [8].

PROPOSITION 6. 2. Let a be any angle for which

ax+arg (doj, —doy, doj—dox)  (j, k=m+1, -, n,jxEk).
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Then therve exists positive numbers wo=1 and & such that for w=w, the differential
equation (6. 15) possesses in the half plane

(6. 21) Re (Ee*) >«
a fundamental solution WP (€) of the form

W (&) ={w@)F &),

© Cr,ay
u)]k(é):Bjk‘l‘ rZ=0 [Se“'“/w] . [Ee-—ia/w_i_l]...[ge—i"/w—kf] .

The series converges in the half-plane (6. 21). Moreover W (€) can also be re-
Dresented asymptotically by the formal series (6.19) in the domain D,.

In the above definition of the sector S, we assume that 7 is sufficiently small

~

and take the angle « so that the boundary lines of S do not coincide with any
singular direction

Re (dOj)Szoy Re (dOj_d(llc)'f:O; jy k:m+1: Tty ”)j:k)

and contain them in the interior S. Furthermore when we calculate a matching
matrix between the outer and the inner solutions in §9, the sector S defined by

n—m

n—m
m{ - _725 +a+r}§arg S= —{% ta— r}

n—m-q

is assumed to be contained in the sector S; defined in Theorem 4. 1.

§7. Solution of nonhomogeneous equations.

11. In this section we consider the nonhomogeneous equation (6. 6) for v=1,

aw,
ds

—=Go(s)Wo+H(s)
7. 1)
H(s)= z G (5) Wi i(s)

At first we examine the asymptotic behavior of solutions when s tends to infinity.
The solution of (7.1) is represented by

(7. 2) W)= SF Wa(s) Wo(z)*H(z)dz

under the assumption that W, (¢=0,1,---,v—1) are already known, where Wy(s) is
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the fundamental solution of the homogeneous equation (6. 7) constructed in §6, and
I" denotes a set of paths of integrations for each functlon in the integrand.
Let us define matrix functions G,,(s), Wo(s) and W,,(s) by the relations

G (5)=2()G (5)2s) 7,
7. 3) Wi(s)=2(sWo($)F (s),
W(8)=82S)W ()F(s),

where Q(s) is defined in (6.8) and F(s)=F£(©& (€=s%. Then the integral (7. 2)
becomes

(7.4 W,(s)=S W o($)F(5)F ()" ‘W o(0) " H@)F (2)F (s)~dr,
r
where
A(r)= ilé,,@Wv_,,(r).
=

Now we prove a few lemmas in the sequel.

LemMa 7.1, The growth order of the matviz &,(s) (rz=l) when s grows into
infinity is s“TP/m - agnd GS) is a polynomial of s¥"™ and sV ™,

Proof. From (6. 3) and the definitions of G.(s) and 5,,(3), this is obvious.

Here we assume for the moment that H(s) has the growth order of s® when
Is| is large, that is, we can write that H(s)=s"H*(s) with bounded matrix H*(s),
and assume that H*(s) has an asymptotic expansion in power series of s~¥/®—m™
whose coefficients are polynomials of log s in the neighborhood of s=oco. From the
proposition 6.1, W(s) and W(s)~! are bounded and nonsingular in the neighborhood
of s=co and have asymptotic power series of &'=s"% when &—oo in the sector S.

If we replace the matrix H(s) by s®H*(s) and change the variables s and ¢ by

a

E=s%  g=t

then the integral (7. 4) becomes

7.5 W)= Wo<s>S F@F @)y W (o) H* ) F o F (&) 1ppro-v cvmi gy

m—l—

Since the matrix function W,(z)"'H*() is bounded and has an asymptotic expansion
in power series of 5 V@ ™ and from the definition of the matrix F(y), the above

integral for each component of integrand has a form
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AN . ,
S (?) hyp(pnt e~ =mr D dy (7, k=1,2, -, m, jxk),
ljlc

&\
S <—> {exp (—do)(E =Y u(g)y’e= 1 =m0y
AN
(=1, -, m, k=m-+1, -, n),

&\ S
@.6  § ()" exn @u—dwe— v,
Jk
(j: k:m+1y ) %,]#k),

E dl]‘ﬁ]g
S (*) {exp doj(E— Y lnyy®’ e~ ¥ =m0y
A
G=m~+1, -, n k=1, -, m),

S hjj(v)vb/u—q/(n—mﬂl)dv (j=k=]-: 2; T n)
49

where @, do and dy are diagonal elements of the matrices Asi, Dy and Dy
respectively. Here /;i(y) is a bounded function and has an asymptotic power series
of »p~¥/®=m+D in the sense that

7.7 hjlc(ﬂ) = é hv(log ”)”—”/(n—mHI) + o(v—r/(n—mﬂl))
v=0

for all positive integers 7, where #4,(z) are polynomials of z and in particular /,(z)
is constant.

Now under the assumption that none of the quantities (#r—m) {@;—ax}
(4, k=1,2, ---,m,j=k) are integers, we can prove a following lemma.

LEMMA 7. 2. By choosing an appropriate path of integration or by taking an
appropriate indefinite integral for each integral of (7.6), we have

W (s) =W X(s),

where W*(s) is bounded and has an asymptotic power series of s~V ™ in the same
sense as (7.7) when s—oo in the sector S

n—m

n—m T T
{— 5 +a+r} =sargs= —mitq {—2— —I-a—r}.

i —

Proof. Case 1. k,j=1,2,---,m,jxk. Let a¢,—dr=2+ip (A, p real) and let the
integrand divide into three parts such that

7.8 h(p) =7~ @580 f ()t o= =D = oy () +ha() + ha(7),
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where

T . .
I =14 3 b log y—rrammi-wsammin yith - E@mmbzg

v=r70 n—m-+tq
. P . ro+(m—m)b—q
/ — A= 1 =72+ (n—m)H—q}/ (n—m+q) h _— = =1,
12(7]) 77 h"‘z ( Og 7)77 Wlt n_m+q

hs(p) =07 hy(p)y =Y D — hu() — ha ().
Here we remark that the imaginary part of @;—d; is not zero if A:(y)=0 from the

assumption made above the Lemma 7. 2.
Now if we define the integral of (7. 8) by

3 3 &
@.9) Sohx(n)dn+glhz(n)drz+Sm/zx(vl)dfi,

then we can easily sce that the statements of the lemma hold.
Case 2. j=1,2,---,m,k=m+1,---,n. From the shape of the sector S in the -
plane there exists a vector /; in S which satisfies

cos (arg dox+arg %) <0,
then as the paths of integration 2;,(€), we choose the line parallel to /j, starting
from ¢ and extending to infinity in S. Clearly for all » on this path of integration,
there exists a positive constant d;; such that

(7.10) Re {—douE—n} = —dls—1l.

Since we have from the integration by parts

Sme%"”r/" (log n)Pdn= *&-10; £*(log &)Peuns — S jdlo‘k ey {a(log )P+ B(log 7)*~}dy
§

for all number « and B>0, then if we substitute the asymptotic expression (7.7)
of Z(p) into the integrand of (7. 6) and write it by

(& j-d;
<—f)—> ’ k){eXp —d o E— )Y (p)y?/e- Y (vomt D
(7. 11)

£\ € dw ) - V
=~ <;> {exp —dox(E—7)} Z'_, h(log p)y~>/ =m0,

where 7, may be negative integer such that b/a—q/(n—m-+q)=—r./(n—m-q), then
we have by repeated integrations by parts,
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o (ij-i )
Se (%) " (exp — du(E—)gelpypt s =m0y

(7.12)

Ru(log n)y~/ Wm0 4 R,

i
M-
3

where

S (& j-dy) .
RT=Se (%) " 1eXD — dusE—1)Vhrsalog )y HO - m gy,

Now we estimate the remainder therm R,. Let
p—E=pe*  (a=arg ),

then from (7.10) we have

* B ~(& j~ Ay~ (r+ 1)/ (=m0
|R| =|g|-crrvrammiop (log €D\ | (145 €
0

B
: :al(

éK;lu-l(llOg S])]E|'(7‘+1)/(n—m+q)’

ﬁeza
log 14—
og 1+ £

)i

where 4}.1(z) and %./,,(z) are polynomials of z, and K is some positive constant.
This inequality implies that the integral of (7.11) along 2;x(&) can be represented
by an asymptotic expansion in power series of 5 V™ ™*® in the sense of (7.7) and
in particular has a growth order of £¥e-%/(-—mtd—g-2/(r=m) a9 £co in the sector
S, and then in this case we proved the desired properties.

For other cases of j, k., we can prove by the same method as in the case 1 or
case 2 that the integrals (7. 6) have properties stated in the Lemma 6. 2. Thus we
have the Lemma 7. 2.

Lemma 7.3. The nonhomogeneous differential equation (7.1) possesses «
particular solution such that

(7.13) Wi(s)=s*Q(S)W*(s)F(s).

Here the matrix $2(s) is defined in (6. 8), the matrices F (s)EF &) and the matrix
W¥(s) is bounded at s=oco and has an asymptotic expansion in power series of
sTV@=m yhen s—oo in the sector S. Here the number e denotes

1+¢q

(7. 14) =

+1.
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Proof. For v=0, the equation (7.1) becomes homogeneous equation (6. 7), then
the statements of the lemma is satisfied from the Proposition 6.1. Assume it to
be true for v<7. Then by using the Lemma 7.1 the p-th term of the summation
in (7.1) has a form

G (8) Wr— () =2(5)G (W r_u()F (5)
=5/ T Q)GHS) WE L) (s),

where 5?,‘(8) and VNVf_,,(s) are bounded, and

£ == ter—p.

The exponent f(7, p) is the largest for p=1, and then if we apply the Lemma 7.2
to the integral (7.5) with b=f(r, 1), we have the Lemma 7. 3.

12. Now we want to determine the values of the solutions W.(s) of (6.6) in
the neighborhood of s=0. This is essential to solve the connection problems, that
is to understand an asymptotic behavior of an outer solution at the turning point
itself. For v=0, we have already stated at the last of §6 that the value at s=0
of the asymptotic solution Q(S)W‘”(E) of (6.7) whose existence was proved in Pro-
position 6.1 can be obtained by the method of convergent matching. Then we
consider here the equation (7. 1).

Let Wy(s) be a fundamental solution of the homogeneous equation (6. 7) in the
neighborhood of s=0, and assume that the solutions W.(s) (u<v) of (6.6) are
determined in the neighborhood af s=0, then the solution W,(s) can be written as

(7. 15) Wi(s)= So Wi(s) We(e) " H(t)de+ Wi(s)C

where H(z) is an entire function whose asymtotic behavior in some neighborhood

of s=oco is known. The problem is to determine the constant matrix C=(c;).
The values of the matrix W,(s) in the neighborhood of s=oo are determined

by taking some special integrals of the integrand of (7. 15) as stated in the Lemma

7.2, and then corresponding to those, the matrix C must be determined as follow.
Case 1. 7,k=1,2, .-, m(j=xk).

1 0 1 1
Cikx=— S th(v)drz+ Smhs(ﬂ)dv =- S 0{/1(77) —I()dn+ S cm{h(n) — Ia()—ha() ).
Case 2. j=1,2,--,m, k=m+1, -, n.

cjk:S ntsdilexp down}h (g~ 0y,

0
o
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The definite integrals which define c;; are clearly exist from the natures of the
integrand and the choice of the paths of integrations. For other cases of j, & we
can determine cj; by the same method as above.

Here we summarize the results of §6 and §7 in the following proposition.

ProposITION 7.1. The differential equation (6.4) has a fundamental system
of formal solutions in power sevies of o such that if |s|=s, for some positive
constant S,

(7. 16) W 3 Wis)o if 5| =50,
v=0

where W,(s) are holomorphic in the domain |s|=s,, and if |s|>s, and arg se€S,

(7. 17) W~Q(s){ é‘) W:*(s)[sep]”}ms) ( _ gt +1).

n—m

Here the sector S is defined in the Lemma 7.2, lhe matrix () is in (6. 8), the
matrix F(s) is of the form

sU
Fo=| (o= 22222,
(exp d0m.+lsa)sd1m+1 n—m

iexp dons®)sn

and the matrices W*(s) are bounded and have asymptotic expansions such that
(7.18) W*(s)= 31 W,u(log s)s=/ @=m,
2=0

where W,,(log s) are polynomials of log s of degree at most v.

§8. Existence theorem of inner solution.

13. In the older treatments of a turning point problem, the existence domain
of an inner solution is limited only in the neighborhood of the origin and then the
existence domains of an outer and an inner solution do not overlap for small ¢
which makes it impossible to calculate a connection matrix between the inner and
the outer solutions. The consideration of an asymptotic nature of the inner solution
at s=oco is due originally to Wasow [11].

Corresponding to the formal solution of the Proposition 7.1 we have a following
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existence theorem.

THEOREM 8. 1. Let r be any positive integer. Then there exists an actual
solution W(s, p) of (6.4) and a domain D, of s, p-plane defined by

8.1 D;: argseS, 0<p=p., [s°0l=cs

(02 and cs are some constants independent of p) such that for s and p in D, it
holds that

W(s, p)"‘Z—-:,Wv(S)p”=Er+1(s, p)™t  for [s|=s,,

@8.2)
W (s, 0)—£(s) Z:E]W*(S)[Sep]"F ()=5A)Eria(s, p)ls°p)F (s)  for |s|>so,

where Er.(s, p) is bounded.

Proof. This is almost the same as that of, for example, the Theorem 5.1 in
Nishimoto [5], and then is omitted.

§9. Matching matrix.

14. If we rewrite the domain D, in terms of z,e-plane, it becomes
D;: arg z€S, 0<e=e,, | x| = chet/a—t/ (mmiDie,

Then the domain D, defined in Theorem 4.1 and the above domain D, are over-
lapped for all sufficiently small parameter . From this fact we want to identify
two solutions at some suitable point belonging to both domains D, and D., and for
such a point we choose the most symmetrically located point x, such that

(9. 1) xvzv(n—m)p(n—n)—l/ze, s”=77(n—m)p—1/2c
and then
x;/(n—'m) — ”‘0(6—1)/6’ t’] ___77— (n—m+Q)p(n-m+(1)/B’
. 2)
S;l/(n_m)—:Y]_lpl/a, s’elp_:ﬂe(n—-m)pl/z,

where 0=2e¢(n—m) and 7 is a parameter such that argz* ™eS.

Since the value of s, becomes infinite when p—0 for any fixed 5, we use the
asymptotic representation of the inner solution for |s|>s, in D,. The outer solution
Yi(x,e) of the differential equation has from (3. 1), Lemma 3. 2 and Theorem 5. 1
an asymptotic representation in D; of the form
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—

xm
xm"f O
©. 3) Yz, )= “ . PNACT
O x‘l/(n—m)
L ' 'xQ(n-—m—l)/(n—m)
~
 am O
O (exp dom 1 [tz m+ ’
L (exp donft)ztin

where W,(x) are polynomials of logx of degree at most v whose coefficients are
holomorphic in z¥™ ™, in particular Wy(0) is nonsingular. And the inner solution
Yu(s, p) in D, and [s|>s, can be written from Theorem 8.1 such that

-

r(‘on—ms)m
-(pn—ms) O o
9.4 Yis, 0= 1 W) sl
O (pn—ms)Q/(n—m) »=0
L K (pn—ms)tI(n—m—l)/(n—m) J
sh
som O

(exp dom415%)shm+1

.(exp dons®)shn
where W#(s) are bounded for |s|>s, and have asymptotic expansions in power series
of s7V™m whose coefficients are polynomials of logs, in particular W¥(s) is
nonsingular and from Lemma 3. 2 and (6. 17) we have
9. 5) Wo(0)=W¥(0).

Now let the connection matrix C(p) between Yi(x,e) and Ya(s, p) be such that

(9' 6) Yl(xy 6): Y2(sr P)C(P)z
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and let

Vi(z, )= 3 Wia)t",
v=0

Yus, p)= ;)Wﬂs)[sep]”.
If we substitute (9. 1) for x and s in (9. 6), then we have from (9. 3) and (9. 4)

9.7 Clp)=F(s,)7'Ya(s;, 0V 1y, F (,, 1,).

Now from the asymptotic natures of Yi(x,#) and Y(s, p), we have following
lemmas.

LemmMma 9. 1.
Yz, o)= ;})T’f"’(w)p””’ (0—0),
YO, p)= Wu(0),

PO, )= 74 (log 70"t
@

where the summation with respect to p consists of a finite number of terms for
which p=—y (modd) and Y (2) are polynomials of z.

Lemma 9. 2.
Yals, p'= ZE, Y9, 007 (0-0),
700, 0)=W0),
Y, 0)=2 Y5 (log 7™ )1,

where the summation with respect to p is taken over a finite number of integers p
such that p=—v(modd) and Y$)(z) are polynomials of z.

LemMA 9. 3. From above two lemmas we have

Ya(s, 0V 1(2y, )= Z(}) AN (y, p)p*"? (p—0),
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Ay, o=1I (unit matrix),
A, p)=I AP, p)7",

where AY(y, p) are polynomiols of log np®="° and lognp~%. The summation with
respect to p is over a finite number of integers for which p=—y (mod ).

Proof. We give a proof only for Lemma 9.1, and for others it is almost
obvious. If we replaced x and ¢ by z, and ¢, in the asymptotic expansion of ¥i(z,e¢),
we have formally a series

] ©o
Vi(w,, &)~ Z Z Wf,") (log 7710(5—1)/5)77F—-(n—m—Q)"p((n—m+fl)V+(5—1)/‘)/5

v=0 p=0

where W,‘,”’(z) are polynonials of z. If we rearrange this series formally by col-
lecting all the terms of same power of p, we have

(9 8) )71(1'0) 5)'\’ ZE)?Y)(% P)Pr/a,
where
YO o= % WPy (z=log o),

(n—m+Qw+(—1p=r
in particular we have
YOy, p)= Ws(0).

We remark here that for every 7, Y{(y, p) contains only a finite number of terms
We(2)p* for which A=—7 (mod 5). Next let us examine the asymptotic property of
(9.8). From Theorem 5.1 and the properties of W,(x) we can write for every
positive integer 7,

)71(‘7’”’ &— gyf")(% P)r/ﬁ = Z ; VVv(xv)l‘; +

v>r/(n—m+q vSr/(n—m+q)

Wf,”)(z)vlll‘;= o(p"™'%).

p>{r=(n—m+q)w}/(3-1)
This proves our lemma.

We denote the each element of the connection matrix C(p) by cjx(p). Then
from (9.7) and Lemma 9. 3 c;x(p) can be written as
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Cjk(P) Ev(n—m) (ak—a])p(n—m) (ay+(3—-1agl/s lg) 0373(77’ p)pv/a
(7, k=1,2, -+, m),
Cjk(P)E {exp —d«ﬁ#}n‘""’” (ag—aip) p(n—m)[d1j+(5—l)ak)/§ g C%@’ p)p"ls

(G=m+1, -, n, k=1, ..., m),
9.9

Cjk(P)g{eXp doksqa}ﬁ(n_M) (g—ajp p(n—m)(aj-l =1 d1xl/é i’c‘(ﬁg(v, p)pv/a
(j:]-’ ) k:m'l_]-) B %),

() ZeXD (dox—dag)S3 7 B0 =M1 OB 32 06, )

(jy k:m+17 ) n)’
where c$2(n, p) are of the same forms as the elements of 4%, and then we have

THEOREM 9. 1. Let S be a sector of central angle less than (n—m)rx/(n—m-+q)
which was defined in Proposition 6.1, and let Yi(x,¢) and Y.(s, p) be fundamental
systems of outer solutions and inner solutions which arve defined in D, and' D,
respectively under the assumptions (2.3), (2.5) and (3.15). Then the connection
matrix C(p) between them has a form

C(p)E{ 3G’ }e (n=0),

y=ro
where C, are diagonal constant matrices, in particular Co=1I (unit matrix) and

a1

0

am

0

dl7n+1

" din

Proof. Since the elements c;i(p) do not depend on 7, so must be the right
hand terms of relations (9.9). Let j or £ or both 7 and £ be larger than m. Then
the representations of c;x(p) for jx% carry the exponential factors which imply that
ci(p) must be identically zero, otherwise c;x(0) must depend on 3 For c¢,;(p)
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(j=m+1, .-+, m), it does not depend on y if and only if all of the coeflicients ¢$)(», o)

are constants, but from the structures of them it is possible if and only if v=0
(mod ). Then we have

c;4(p)=p" ™ hs Z}o i’ (j=m+1, -, n).

For the case of j,k=1,2,--,m, since (m—m)(a;—ar) (j,k=1,2,m,i=k) is not an
integer the same reasons as stated as above insure us that the statements of the
theorem are satisfied and this completes our proof of the theorem.

ReMARk 2. If the assumption (3.15) is not satisfied, that is, if we have
(n—m)(a;—ar)=integer for some 3, k& (j, k=1, -, m,j>k) our theory is also true
without any essential changes. In this case it may occur in the Theorem 9.1 that
some elements c;x(p) of the connection matrix C(p) are not always identically zero
for 7,k=1,2,---,m,jxk. We need a little more careful constructions of the inner
and outer formal solutions and comparison of the coefficients of them than that of
§3, §6 and §9 to obtain the exact informations about c;i(p) in this case.
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