ON CERTAIN CONDITIONS FOR A K-SPACE TO BE ISOMETRIC TO A SPHERE

By Sumio Sawaki and Hitoshi Takagi

1. Introduction.

Theorem A (Yano and Nagano [11]). If M is a complete Einstein space of dimension $n>2$ and $C_{0}(M) \neq I_{0}(M)$, then M is isometric to a sphere, where $C_{0}(M)$ is the largest connected group of conformal transformations of a Riemannian manifold M and $I_{0}(M)$ the largest connected group of isometries of M.

Theorem B (Lichnerowicz [3], Yano and Obata [12]). If a compact Riemannian manifold M with $R=$ const. of dimension $n>2$ admits an infinitesimal conformal transformation v^{2} which is not an isometry: $£ g_{j i}=2 \rho g_{j i}, \rho \neq$ const., and if one of the following conditions is satisfied, then M is isometric to a sphere.
(1) The vector v^{h} is a gradient of a scalar.
(2) $R_{i}{ }^{h} \rho^{2}=k \rho^{h}, k$ being a constant.
(3) $£ R_{j i}=\alpha g_{j i}$, α being a scalar field, where $£$ is the operator of Lie derivation with respect to $v^{2}, g_{j i}$ the fundamental metric tensor, $R_{j i}$ the Ricci tensor of $M, R=g^{j i} R_{j i}$ and ρ^{h} the gradient of the scalar ρ.

These theorems support the following well known conjecture, that is, a compact Riemannian manifold with constant scalar curvature admitting a oneparameter group of conformal transformations which is not that of isometries is isometric to a sphere.

The purpose of the present paper is to obtain certain conditions for a K-space with constant scalar curvature to be isometric to a sphere. First let M be a connected Riemannian manifold of dimension n and ∇_{2} the operator of covariant differentiation with respect to the Levi-Civita connection. Indices run over the range $1,2, \cdots, n$.

If M admits an infinitesimal conformal transformation v^{h}, then we have

$$
\begin{equation*}
£ g_{j i}=\nabla_{j} v_{i}+\nabla_{i} v_{j}=2 \rho g_{j i}, \quad £ g^{j i}=-2 \rho g^{j i} \tag{1.1}
\end{equation*}
$$

for a certain scalar field ρ.
For an infinitesimal conformal transformation v^{h} in M, we have

$$
\begin{equation*}
£ R_{k j i}{ }^{h}=-\delta_{k}^{h} \nabla_{j} \rho_{i}+\delta_{j}^{h} \nabla_{k} \rho_{i}-\nabla_{k} \rho^{h} \cdot g_{j i}+\nabla_{j} \rho^{h} \cdot g_{k v}, \tag{1.2}
\end{equation*}
$$

$$
\begin{gather*}
£ R_{j i}=-(n-2) \nabla_{j} \rho_{i}-\Delta \rho \cdot g_{j i}, \tag{1.3}\\
£ R=-2(n-1) \Delta \rho-2 \rho R, \tag{1.4}
\end{gather*}
$$

Received October 26, 1967.
where $R_{k j i^{h}}{ }^{h}$ is Riemannian curvature tensor and $\Delta \rho=g^{j i} \nabla_{j} \nabla_{i} \rho$.
Thus in M with $R=$ const., we have

$$
\begin{equation*}
\Delta \rho=-\frac{R}{n-1} \rho . \tag{1.5}
\end{equation*}
$$

We also have

$$
\begin{equation*}
£ G_{j i}=-(n-2)\left(\nabla_{j \rho_{i}}-\frac{1}{n} \Delta_{\mu} \cdot g_{j i}\right) \tag{1.6}
\end{equation*}
$$

where $G_{j i}=R_{j i}-(R / n) g_{j i}$.
Hence in M with $R=$ const., we have

$$
\begin{equation*}
£ G_{j i}=-(n-2)\left(\nabla_{j} \rho_{i}+\frac{R}{n(n-1)} \rho g_{j i}\right) . \tag{1.7}
\end{equation*}
$$

In this paper we need the following theorem and integral formula.
Theorem C (Obata [4]). If a complete Riemannian manifold of dimension $n \geqq 2$ admits a nonconstant function ρ such that

$$
\begin{equation*}
\nabla_{j} \nabla_{i} \rho=-c^{2} \rho g_{j i} \tag{1.8}
\end{equation*}
$$

where c is a positive constant, then M is isometric to a sphere of radius $1 / c$ in $(n+1)$ dimensional Euclidean space.

For a vector field v^{h} in a compact orientable Riemannian manifold M of dimension $n \geqq 2$, we have the following known integral formula which is verified by a straightforward computation:

$$
\begin{align*}
& \int_{M}\left(g^{j i} \nabla_{j} \nabla_{i} v^{h}+R_{i}{ }^{h} v^{2}+\frac{n-2}{n} \nabla^{h} \nabla_{i} v^{v}\right) v_{h} d V \tag{1.9}\\
+ & \frac{1}{2} \int_{M}\left(\nabla^{\jmath} v^{v}+\nabla^{i} v^{j}-\frac{2}{n} \nabla_{t} v^{t} g^{j i}\right)\left(\nabla_{j} v_{i}+\nabla_{i} v_{j}-\frac{2}{n} \nabla_{s} v^{s} g_{j i}\right) d V=0^{1)}
\end{align*}
$$

where $d V$ is the volume element of M.

2. Identities and lemmas in a K-space.

Let M be an n-dimensional almost-Hermitian manifold which admits an almost complex structure tensor $\varphi_{j}{ }^{2}$ and a positive definite Riemannian metric tensor $g_{j i}$ satisfying

$$
\begin{gather*}
\varphi_{j}{ }^{l} \varphi_{l}{ }^{=}=-\delta_{j}^{i}, \tag{2.1}\\
g_{a b}{ }_{j}{ }_{j} \varphi_{i}{ }^{b}=g_{j i} .
\end{gather*}
$$

Then from (2.1) and (2.2), we have

$$
\begin{equation*}
\varphi_{j i}=-\varphi_{i j} \tag{2.3}
\end{equation*}
$$

1) See Yano [13].
where $\varphi_{j i}=g_{l i} \varphi_{j}{ }^{l}$.
An almost-Hermitian manifold is called a K-space if it satisfies

$$
\begin{equation*}
\nabla_{j} \varphi_{i h}+\nabla_{i} \varphi_{j h}=0 \tag{2.4}
\end{equation*}
$$

from which we have easily

$$
\begin{equation*}
\nabla_{j} \varphi_{i}{ }^{j}=0 \tag{2.5}
\end{equation*}
$$

In a K-space, we know the following identities obtained by Tachibana [10]:

$$
\begin{equation*}
R_{j i}^{*}=R_{i j}^{*} \tag{2.6}
\end{equation*}
$$

$$
\begin{gather*}
R_{j i}-R_{j i}^{*}=\left(\nabla_{j} \varphi_{r s}\right) \nabla_{i} \varphi^{r s} \tag{2.7}\\
R-R^{*}=\mathrm{constant} \geqq 0 \tag{2.8}
\end{gather*}
$$

where $R_{j i}{ }^{*}=(1 / 2) \varphi^{a b} R_{a b s i} \varphi_{j}{ }^{s}, R^{*}=g^{j i} R^{*}{ }_{j i}$,

$$
\begin{equation*}
\nabla^{h} N(v)_{h}=0 \quad \text { for any vector } v^{2} \tag{2.9}
\end{equation*}
$$

where $N(v)_{h}=\varphi_{h}{ }^{s}\left(\nabla_{s} \varphi_{r t}\right) \nabla^{r} v^{t}$.
In a Riemannian manifold, we have

$$
\begin{equation*}
\nabla^{i} R_{j i}=\frac{1}{2} \nabla_{j} R \tag{2.10}
\end{equation*}
$$

and in a K-space

$$
\begin{equation*}
\nabla^{i} R_{j i}^{*}=\frac{1}{2} \nabla_{j} R^{*}{ }^{2)} \tag{2.11}
\end{equation*}
$$

Thus from (2.8), (2.10) and (2.11), we have
(2. 12)

$$
\nabla^{i} R_{j i}=\nabla^{i} R_{j i}^{*}
$$

Putting

$$
T_{j i}=\nabla_{j} \xi_{i}+\nabla_{i} \xi_{j}+\varphi_{j}^{a} \varphi_{i}{ }^{b}\left(\nabla_{a} \xi_{b}+\nabla_{b} \xi_{a}\right)
$$

for any vector ξ^{\imath}, we have the following
Lemma 2.1.3) In a compact K-space M with constant scalar curvature, if $T_{j i}=0$ and η_{i} is a vector field such that $\eta_{i}=\nabla_{i} \eta$ for a certain scalar η, then we have

$$
\begin{equation*}
\int_{M} \xi^{\jmath} \eta^{i} R_{j i} d V=0 \tag{2.13}
\end{equation*}
$$

Lemma 2. 2.4) In a compact K-space M, we have

$$
\begin{equation*}
\int_{M}\left[\frac{1}{4} T_{j i} T^{j i}+\xi^{\jmath}\left\{\nabla^{i}\left(\nabla_{j} \xi_{i}+\nabla_{i} \xi_{j}\right)+\varphi_{j}^{a} \varphi_{i}^{b} \nabla^{i}\left(\nabla_{a} \xi_{b}+\nabla_{b} \xi_{a}\right)\right\}\right] d V=0 \tag{2.14}
\end{equation*}
$$

2) See Sawaki [5].
3) See Takamatsu [8], p. 76.
4) See Takamatsu [8], p. 77.

Lemma 2. 3. In a compact K-space M with constant scalar curvature, a conformal Killing vector v^{2} can be decomposed as

$$
\begin{equation*}
v^{2}=p^{2}+\eta^{2} \tag{2.15}
\end{equation*}
$$

where $\nabla_{\imath} p^{2}=0$ and $\eta^{2}=\nabla^{i} \eta$ for a certain scalar function η, and

$$
\begin{equation*}
\int_{M}\left[\frac{1}{4} T_{j i} T^{j i}+2\left(R_{j i}-R_{j i}^{*}\right) \eta^{\jmath} \eta^{2}-\frac{2}{n}\left(R-R^{*}\right) \eta_{i} \eta^{2}\right] d V=0 \tag{2.16}
\end{equation*}
$$

where

$$
T_{j i}=\nabla_{\jmath} p_{i}+\nabla_{\imath} p_{j}+\varphi_{j}^{a} \varphi_{i}^{b}\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right)
$$

Proof. According to the theory of harmonic integrals, we have (2.15). Next we consider (2.14) in which $\xi^{\imath}=p^{2}$, that is,

$$
\begin{equation*}
\int_{M}\left[\frac{1}{4} T_{j i} T^{j i}+p^{\jmath}\left\{\nabla^{i}\left(\nabla_{\jmath} p_{i}+\nabla_{\imath} p_{j}\right)+\varphi_{\jmath}^{a} \varphi_{i}{ }^{b} \nabla^{i}\left(\nabla_{a} p_{b}+\nabla_{u} p_{a}\right)\right\}\right] d V=0 \tag{2.17}
\end{equation*}
$$

By (2.15) and (1.1), we have

$$
\begin{aligned}
p^{j} \nabla^{i}\left(\nabla_{\jmath} p_{i}+\nabla_{\imath} p_{j}\right) & =p^{j} \nabla^{i}\left(\nabla_{j} v_{i}+\nabla_{i} v_{j}-2 \nabla_{j} \eta_{i}\right) \\
& =p^{j} \nabla^{i}\left(2 \rho g_{j i}-2 \nabla_{j} \eta_{i}\right) \\
& =2 p^{j}\left(\rho_{j}-\nabla^{i} \nabla_{j} \eta_{i}\right),
\end{aligned}
$$

or by Ricci's identity,

$$
\begin{align*}
p^{j} \nabla^{i}\left(\nabla_{\jmath} p_{i}+\nabla_{\imath} p_{j}\right) & =2 p^{j}\left(\rho_{j}-\nabla_{j} \nabla^{i} \eta_{i}-R_{j}{ }^{s} \eta_{s}\right) \tag{2.18}\\
& =2 \nabla_{j}\left(\rho p^{\jmath}-p^{j} \nabla^{i} \eta_{i}\right)-2 R_{j s} p^{\jmath} \eta^{s} .
\end{align*}
$$

Similarly

$$
\begin{aligned}
\varphi_{j}{ }^{a} \varphi_{i}{ }^{b} \nabla^{i}\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right) & =\varphi_{j}{ }^{a} \varphi_{i}{ }^{b} \nabla^{i}\left(\nabla_{a} v_{b}+\nabla_{b} v_{a}-2 \nabla_{a} \eta_{b}\right) \\
& =2 \varphi_{j}{ }^{a} \varphi_{i}{ }^{b} \rho^{\imath} g_{a b}-2 \varphi_{j}{ }^{a} \varphi_{i}{ }^{b} \nabla^{i} \nabla_{a} \eta_{b} \\
& =2 \rho_{j}-\varphi_{j}{ }^{a} \varphi^{i b}\left(\nabla_{i} \nabla_{b} \eta_{a}-\nabla_{b} \nabla_{i} \eta_{a}\right) \\
& =2 \rho_{j}+\varphi_{j}^{a} \varphi^{i b} R_{i b a}{ }^{s} \eta_{s} \\
& =2 \rho_{j}+2 R^{*}{ }_{j}^{s} \eta_{s}
\end{aligned}
$$

from which we have

$$
\begin{equation*}
p^{\jmath} \varphi_{j}^{a} \varphi_{i}{ }^{b} \nabla^{i}\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right)=2 \nabla_{j}\left(\rho p^{j}\right)+2 R_{\jmath s}^{*} p^{\jmath} \eta^{s} \tag{2.19}
\end{equation*}
$$

By (2.18) and (2.19), (2.17) turns to

$$
\int_{M}\left[\frac{1}{4} T_{j i} T^{j i}-2\left(R_{j s}-R_{j s}^{*}\right) p^{\jmath} \eta^{s}\right] d V=0
$$

or by (2.15)

$$
\begin{equation*}
\int_{M}\left[\frac{1}{4} T_{j i} T^{j i}+2\left(R_{\jmath s}-R_{j s}^{*}\right) \eta^{\jmath} \eta^{s}-2\left(R_{\jmath s}-R_{j s}^{*}\right) v^{\jmath} \eta^{s}\right] d V=0 \tag{2.20}
\end{equation*}
$$

Taking account of (2.8), (2.12) and $\rho=(1 / n) \nabla_{i} \eta^{2}$, we have

$$
\begin{align*}
\int_{M}\left(R_{j s}-R_{j s}^{*}\right) v^{j} \eta^{s} d V & =-\int_{M}\left(R_{\jmath s}-R_{j s}^{*}\right) \nabla^{s} v^{\jmath} \cdot \eta d V \\
& =-\frac{1}{2} \int_{M}\left(R_{j s}-R_{j s}^{*}\right)\left(\nabla^{s} v^{j}+\nabla^{s} v^{s}\right) \eta d V \\
& =-\frac{1}{n} \int_{M}\left(R-R^{*}\right) \eta \nabla_{i} \eta^{2} d V \tag{2.21}\\
& =\frac{1}{n} \int_{M}\left(R-R^{*}\right) \eta_{i} \eta^{i} d V
\end{align*}
$$

Thus, from (2.20) and (2.21), we obtain (2.16).
Lemma 2. 4.5) If a K-space with $R=$ const. of dimension n admits a conformal Killing vector v^{h} : $£ g_{j i}=2 \rho g_{j i}$, then we have

$$
\begin{equation*}
\left(\frac{1}{n-1} R-R^{*}\right) \rho=0 \tag{2.22}
\end{equation*}
$$

3. Extended contravariant almost analytic vectors.

In an almost complex manifold M, v^{2} is called an extended contravariant almost analytic vector if it satisfies

$$
\begin{equation*}
£ \varphi_{j}{ }^{2}+\lambda \varphi_{j}{ }^{r} N_{r l}{ }^{\imath} v^{l}=0 \tag{3.1}
\end{equation*}
$$

where $N_{r l}{ }^{2}$ is the Nijenhuis tensor, that is, $N_{r l}{ }^{2}=\varphi_{r}{ }^{s}\left(\partial_{s} \varphi_{l}{ }^{2}-\partial_{l} \varphi_{s}{ }^{i}\right)-\varphi_{l}{ }^{s}\left(\partial_{s} \varphi_{r}{ }^{2}-\partial_{r} \varphi_{s}{ }^{i}\right)$ and λ a scalar function [7]. This extended contravariant almost analytic vector is characterized as a cross-section of the tangent bundle $T(M)$ with a suitable almost complex structure [9].

In a K-space, since $N_{j i}{ }^{h}=4 \varphi_{j}{ }^{s} \nabla_{s} \varphi_{i}{ }^{h}$, we have

$$
v^{t} \varphi_{j}{ }^{l} N_{l t^{2}}=4 \varphi_{j}{ }^{l} \varphi_{l}{ }^{s}\left(\nabla_{s} \varphi_{t}{ }^{i}\right) v^{t}=4 v^{t} \nabla_{t} \varphi_{j}{ }^{l} .
$$

Hence, when $\lambda=-1 / 4$, (3.1) turns to

$$
\begin{equation*}
£ \varphi_{j}{ }^{2}-\frac{1}{4} \varphi_{j}{ }^{r} N_{r l}{ }^{2} v^{l}=v^{r} \nabla_{r} \varphi_{j}{ }^{2}-\varphi_{j}{ }^{r} \nabla_{r} v^{r}+\varphi_{r}{ }^{2} \nabla_{j} v^{r}-\frac{1}{4} \varphi_{j}{ }^{r} N_{r l}{ }^{l} v^{l} \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla_{j} v_{i}-\varphi_{j}{ }^{a} \varphi_{i}{ }^{b} \nabla_{a} v_{b}=0, \tag{3.3}
\end{equation*}
$$

when $\lambda=0$, (3.1) is the equation defining usual contravariant almost analytic vector. For an extended contravariant almost analytic vector, we have the following

[^0]Lemma 3.1. ${ }^{6}$) In a K-space, if v^{2} is an extended contravariant almost analytic vector for $\lambda=-1 / 4$, then we have

$$
\begin{equation*}
\nabla^{r} \nabla_{r} v_{i}+R_{\imath r}{ }^{*} v^{r}=0 . \tag{3.4}
\end{equation*}
$$

Recently Takamatsu [9] proved the following
Lemma 3. 2. In a compact K-space with $R=$ const., if v^{2} is an extended contravariant almost analytic vector for a constant λ such that $-3 / 4 \leqq \lambda \leqq 0$, then v^{2} is decomposed into the form

$$
\begin{equation*}
v^{2}=p^{2}+\eta^{2} \tag{3.5}
\end{equation*}
$$

where p^{2} is a Killing vector and $\eta^{2}=\nabla^{i} \eta$ for a certain scalar function η.

4. Theorems.

Theorem 4.1.7) If a complete proper K-space M with $R=$ const. of dimension $n>2$ admits an infinitesimal nonhomothetic conformal transformation v^{2} : £ $g_{j i}=2 \rho g_{j i}$, $\rho \neq 0$ and

$$
\begin{equation*}
£ G_{j i}=0, \tag{4.1}
\end{equation*}
$$

then M is isometric to a sphere.
Proof. By Lemma 2.4 and the assumption of the theorem, we have

$$
\frac{1}{n-1} R-R^{*}=0
$$

from which it follows

$$
\begin{equation*}
(n-2) R=(n-1)\left(R-R^{*}\right) \tag{4.2}
\end{equation*}
$$

From (1.7), by (4.1), we have

$$
\nabla_{j} \rho_{i}+\frac{R}{n(n-1)} \rho g_{j i}=0
$$

On the other hand, from (2.8) and (4.2), we have $R-R^{*}>0$, that is, $R>0$. Because if $R-R^{*}=0$, then from (2.7), we have $\nabla_{j} \varphi_{r s}=0$ and therefore M becomes a Kählerian manifold [13].

Consequently, by Theorem C, M is isometric to a sphere.
Remark 4.1. Since $£ R_{j i}=\alpha g_{j i}$ implies $£ G_{j i}=0$ and we consider a complete space, in a proper K-space, Theorem 4.1 generalizes Theorem A and B (3).

Theorem 4.2. If a compact K-space M with $R=$ const. of dimension $n>2$ such that

$$
\begin{equation*}
R_{j i}-R_{j i}^{*}=k g_{j i} \quad(k=\text { const. }), \tag{4.3}
\end{equation*}
$$

admits an infinitesimal nonhomothetic conformal transformation $v^{2}: £ g_{j i}=2 \rho g_{j i}$,
6) See Sawakı and Takamatsu [7].
7) Cf. Theorem A. In an Einstein space $£ G_{j i}=0$.
$\rho \neq 0$, then M is isometric to a sphere.
Proof. v^{2} is decomposed into the form (2.15) and from (4.3), we see easily $k=(1 / n)\left(R-R^{*}\right)$.

Hence (2.16) becomes

$$
\int_{M} \frac{1}{4} T_{j i} T^{j i} d V=0
$$

from which it follows $T_{j i}=0$. Consequently, by Lemma 2.1, we have

$$
\begin{equation*}
\int_{M} p^{\eta} \eta^{i} R_{j i} d V=0 . \tag{4.4}
\end{equation*}
$$

To prove that p^{2} is a Killing vector, we put

$$
U_{j i}=\nabla_{j} p_{i}+\nabla_{i} p_{j}
$$

and operate ∇^{i} to $p^{j} U_{j i}$, then we have, by $p_{i}=v_{i}-\eta_{i}$,

$$
\begin{equation*}
\nabla^{i}\left(p^{j} U_{j i}\right)=\frac{1}{2} U_{j i} U^{j i}+p^{j \nabla^{i}\left(\nabla_{j} p_{i}+\nabla_{i} p_{j}\right) . . ~ . ~} \tag{4.5}
\end{equation*}
$$

For the last term, from (2.18), we have

$$
p^{i} \nabla^{i}\left(\nabla_{\jmath} p_{i}+\nabla_{\imath} p_{j}\right)=2 \nabla_{j}\left(\rho p^{j}-p^{j} \nabla^{i} \eta_{i}\right)-2 p^{\jmath} \eta^{i} R_{j i} .
$$

Thus integrating (4.5) and using (4.4), we have

$$
\int_{M} \frac{1}{2} U_{j i} U^{j i} d V=0
$$

from which it follows $U_{j i}=0$, i.e., p^{2} is a Killing vector.
Consequently $\eta_{i}=v_{i}-p_{i}$ is a gradient conformal Killing vector such that $\rho=(1 / n) \nabla^{i} \eta_{i} \neq 0$ and therefore, by Theorem $\mathrm{B}(1), M$ is isometric to a sphere.

Remark 4. 2. A K-space of constant curvature satisfies the condition (4.3).
The same remark applies to Theorem 4.3 and Theorem 4.4.
Theorem 4. 3. If a compact K-space M of dimension $n>2$ such that

$$
\begin{equation*}
\frac{1}{n-1} R_{j i}=R_{j i}^{*} \tag{4.6}
\end{equation*}
$$

admits a gradient extended contravariant almost analytic vector η^{2} for $\lambda=-1 / 4$:

$$
\begin{equation*}
\nabla_{j} \eta_{i}-\varphi_{j}{ }^{a} \varphi_{i}{ }^{b} \nabla_{a} \eta_{b}=0, \quad \nabla_{i} \eta^{2} \neq 0, \tag{4.7}
\end{equation*}
$$

then M is isometric to a sphere.
Proof. Operating ∇^{\jmath} to $\nabla_{j} \eta_{i}=\nabla_{i} \eta_{j}$ and using Ricci's identity, we have

$$
\begin{aligned}
\nabla^{j} \nabla_{j} \eta_{i} & =\nabla^{j} \nabla_{i} \eta_{j} \\
& =\nabla_{i} \nabla^{j} \eta_{j}+R_{i}^{s} \eta_{s}
\end{aligned}
$$

and substituting this equation into (3.4) in which $v^{2}=\eta^{2}$, we have

$$
\begin{equation*}
\nabla_{i} \nabla^{r} \eta_{r}=-\left(R_{r}^{r}+R_{2}^{* r}\right) \eta_{r} . \tag{4.8}
\end{equation*}
$$

Again from (3.4) in which $v^{2}=\eta^{2}$, we have

$$
\begin{equation*}
\nabla^{r} \nabla_{r} \eta^{2}=-R_{r}^{*} r^{2} \eta^{r} \tag{4.9}
\end{equation*}
$$

Substituting (4.8) and (4.9) into (1.9) in which $v^{2}=\eta^{2}$, we have

$$
\begin{aligned}
& \int_{M}\left[\left(R_{r}{ }^{2}-R_{r}^{* i}\right) \eta^{r} \eta_{i}-\frac{n-2}{n}\left(R_{r}{ }^{2}+R_{r}^{* i}\right) \eta^{r} \eta_{i}\right] d V \\
&+2 \int_{M}\left(\nabla^{j} \eta^{2}-\frac{1}{n} \nabla_{t} \eta^{t} \cdot g^{j i}\right)\left(\nabla_{j} \eta_{i}-\frac{1}{n} \nabla_{i} \eta^{t} \cdot g_{j i}\right) d V=0
\end{aligned}
$$

or

$$
\begin{align*}
& \frac{2(n-1)}{n} \int_{M}\left(\frac{1}{n-1} R_{j i}-R_{j i}^{*}\right) \eta^{j} \eta^{2} d V \tag{4.10}\\
& \quad+2 \int_{M}\left(\nabla^{j} \eta^{2}-\frac{1}{n} \nabla_{i} \eta^{t} g^{j i}\right)\left(\nabla_{j} \eta_{i}-\frac{1}{n} \nabla_{l} \eta^{t} g_{j i}\right) d V=0
\end{align*}
$$

from which we find $\nabla^{3} \eta^{2}=(1 / n) \nabla_{t} \eta^{t} g_{j i}$, that is, η^{2} is a gradient conformal Killing vector.

On the other hand, operating ∇^{3} to (4.6) and making use of (2.10), (2.11) and (2.12), we have

$$
\frac{2-n}{n-1} \nabla_{j} R=0
$$

that is, R is constant.
Consequently, by Theorem $\mathrm{B}(1), M$ is isometric to a sphere.
Theorem 4.4. Let M be a compact K-space of dimension $n>2$ such that

$$
\frac{1}{n-1} R_{j i}=R_{j i}^{*}
$$

If M admits an extended contravariant almost analytic vector v^{\imath} for $\lambda=-1 / 4$ and $\nabla_{i} v^{2} \neq 0$, then M is isometric to a sphere.

Proof. As we have seen in the proof of Theorem 4.3, R is constant and hence by Lemma 3.2, v^{2} is decomposed into the form

$$
v^{2}=p^{i}+\eta^{2}
$$

where p^{2} is a Killing vector and $\eta^{2}=\nabla^{i} \eta$.
Consequently we have

$$
\begin{equation*}
\nabla^{\imath} v^{2}+\nabla^{i} v^{\jmath}=2 \nabla^{\jmath} \eta^{2} . \tag{4.11}
\end{equation*}
$$

In $\S 3$, we have seen that (3.1) for $\lambda=-1 / 4$ can be written as

$$
\begin{equation*}
\nabla_{j} v_{k}-\varphi_{j}{ }^{a} \varphi_{k}{ }^{b} \nabla_{a} v_{b}=0 . \tag{4.12}
\end{equation*}
$$

Interchanging j and k in (4.12) and adding thus obtained to (4.12), we have

$$
\nabla_{j} v_{k}+\nabla_{k} v_{j}-\varphi_{j}{ }^{r} \varphi_{k}{ }^{i}\left(\nabla_{r} v_{i}+\nabla_{i} v_{r}\right)=0 .
$$

Substituting (4.11) into this equation, we have

$$
\nabla_{j} \eta_{k}-\varphi_{j}{ }^{a} \varphi_{k}{ }^{b} \nabla_{a} \eta_{b}=0
$$

which shows that η^{2} is a gradient extended contravariant almost analytic vector for $\lambda=-1 / 4$.

Moreover, by the assumption of the theorem, we have $\nabla_{i} v^{2}=\nabla_{i} \eta^{2} \neq 0$ and consequently by Theorem 4.3, M is isometric to a sphere.

Remark 4.3. In Theorem 4.4, when M (dim. $n>2$) admits an extended contravariant almost analytic vector v^{\imath} for $\lambda=-1 / 4$, that is,

$$
\begin{equation*}
£ \varphi_{j}{ }^{2}-\frac{1}{4} \varphi_{j}{ }^{r} N_{r l}{ }^{2} v^{l}=0, \tag{4.13}
\end{equation*}
$$

M is isometric to a sphere.
Consequently, as is well known, M which is an almost complex manifold must be S^{6}.

Conversely, in the following way we can see the fact that S^{6} admits a vector field v^{2} satisfying (4.13).

Let S^{6} be the sphere in 7 -dimensional Euclidean space E^{7} defined by

$$
\begin{equation*}
X^{A}=X^{A}\left(x^{h}\right), \quad \sum X^{4} X^{A}=r^{2} \quad(r=\text { const. }>0) \tag{4.14}
\end{equation*}
$$

where $h=1,2, \cdots, 6$ and $A=1,2, \cdots, 7$.
It is well known that on this sphere S^{6} there exists a non-integrable almost complex structure [1] and that it is a K-space with the natural Riemannian metric induced from E^{7} [2].

If we denote its almost complex structure tensor by $\varphi_{j}{ }^{2}$ and its metric tensor by $g_{j i}$, then we have

$$
\begin{align*}
& g_{j i}=\sum B_{j}{ }^{A} B_{i}{ }^{A}, \tag{4.15}\\
& g_{j i}=\varphi_{j}{ }^{a} \varphi_{i}{ }^{b} g_{a b} \tag{4.16}
\end{align*}
$$

where $B_{i}{ }^{4}=\partial X^{4} / \partial x^{2}$. Let $h_{j i}$ be the second fundamental tensor, then we have

$$
\begin{equation*}
\nabla_{j} B_{i}{ }^{A}=h_{j i} C^{A} \tag{4.17}
\end{equation*}
$$

where C^{A} are components of the unit normal to the sphere.
On the other hand, operating Γ_{\imath} to (4.14), we have

$$
\begin{equation*}
\Sigma X^{4} B_{i}{ }^{4}=0 \tag{4.18}
\end{equation*}
$$

and again operating ∇_{J} to (4.18), we have

$$
\begin{equation*}
\Sigma X^{4} V_{j} B_{i}{ }^{A}=-\Sigma B_{j}{ }^{A} B_{i}{ }^{A}=-g_{j i} . \tag{4.19}
\end{equation*}
$$

Since (4.18) shows that X^{A} is normal to S^{6} and C^{A} is the unit normal to S^{6} we have

$$
\begin{equation*}
C^{A}=\frac{X^{A}}{r} . \tag{4.20}
\end{equation*}
$$

Substituting (4.17) into (4.19), by (4.14) and (4.20), we have

$$
\begin{equation*}
r h_{j i}=-g_{j i} . \tag{4.21}
\end{equation*}
$$

Thus by (4.20) and (4.21), (4.17) becomes

$$
\begin{equation*}
\nabla_{j} B_{i}^{A}=-\frac{X^{A}}{r^{2}} g_{j i} \tag{4.23}
\end{equation*}
$$

Then if we put $v_{i}=\nabla_{2} f$ where

$$
f=a_{1} X^{1}+\cdots+a_{7} X^{7}, \quad a_{1}, \cdots, a_{7} \quad \text { being constants, }
$$

by (4.23), we have

$$
\begin{align*}
\nabla_{j} v_{i} & =a_{1} \nabla_{j} B_{i}{ }^{1}+\cdots+a_{7} \nabla_{j} B_{i}{ }^{7} \tag{4.24}\\
& =-\frac{f}{r^{2}} g_{j i} .
\end{align*}
$$

Consequently, from (4.16) and (4.24), we have

$$
\nabla_{j} v_{i}-\varphi_{j}{ }^{a} \varphi_{i}{ }^{b} \nabla_{a} v_{b}=0,
$$

that is, by (3.2),

$$
£ \varphi_{j}{ }^{2}-\frac{1}{4} \varphi_{j}{ }^{r} N_{r l}{ }^{2} v^{l}=0 .
$$

Bibliography

[1] Frölicher, A., Zur Differentialgeometrie der komplexen Strukturen. Math. Ann. 129 (1955), 50-95.
[2] Fukami, T., and S. Ishihara, Almost Hermitian structure in S^{6}. Tôhoku Math. J. 7 (1955), 151-156.
[3] Lichnerowicz, A., Sur les transformations conformes d’une variété riemannienne compacte. C.R. Paris 259 (1964), 697-700.
[4] Obata, M., Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14 (1962), 333-340.
[5] Sawaki, S., On the Matsushima's theorem in a compact Einstein K-space. Tôhoku Math. J. 13 (1961), 455-465.
[6] S^waki, S., On infintesimal transformations of almost-Kählerian space and K space. Kōdaı Math. Sem. Rep. 16 (1964), 105-115.
[7] Sawaki, S., and K. Takamatsu, On extended almost analytic vectors and tensors in almost complex manıfolds. Sci. Rep. Niigata Univ. 4 (1967), 17-29.
[8] Takamatsu, K., On a decomposition of an almost-analytic vector in a K-space with constant scalar curvature, Tôhoku Math. J. 16 (1964), 72-80.
[9] Takamatsu, K., On a decomposition of an extended contravariant almost analytic vector in a compact K-space with constant scalar curvature. Kōdaı Math. Sem. Rep. 20 (1968), 186-197.
[10] Tachibana, S., On almost-analytic vectors in compact certain almost-Hermitian manifolds. Tôhoku Math. J. 11 (1959), 351-363.
[11] Yano, K., and T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations. Ann. of Math. 69 (1959), 451-461.
[12] Yano, K., and M. Obata, Sur les groupe de transformations conformes d'une varıété de Riemann dont le scalaıre de courbure est constant. C.R. Paris $\mathbf{2 6 0}$ (1965), 2698-7000.
[13] Yano, K., The theory of Lie derivatives and its applications. Amsterdam, 1957.
Niigata University.

[^0]: 5) See Sawaki [6].
