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ON CERTAIN CONDITIONS FOR A K-SPACE TO BE
ISOMETRIC TO A SPHERE

By Sumio Sawaki AND HiTosHi TAKAGI

1. Introduction.

TaEOREM A (Yano and Nagano [11]). If M is a complete Einstein space of
dimension n>2 and Co(M)xI1(M), then M is isometric to a sphere, where Cy(M)
is the largest commected group of conformal transformations of a Riemannian
manifold M and I(M) the largest connected group of isometries of M.

TraEOREM B (Lichnerowicz [3], Yano and Obata [12]). If a compact Riemannian
manifold M with R=const. of dimension n>2 admits an infinitesimal conformal
transformation v* which is not an isometry: £ 9;;=2pg;, p>const., and if one of
the following conditions is satisfied, then M is isometric to a sphere.

(1) The vector v* is a gradient of a scalar.

(2) Rp*=ko", k being a constant.

B) £Rji=agj, a being a scalar field, where £ is the operator of Lie deriva-
tion with respect to V', g;; the fundamental metric tensor, R;; the Ricci temsor of
M, R=¢g7"R;; and p" the gradient of the scalar p.

These theorems support the following well known conjecture, that is, a
compact Riemannian manifold with constant scalar curvature admitting a one-
parameter group of conformal transformations which is not that of isometries is
isometric to a sphere.

The purpose of the present paper is to obtain certain conditions for a K-space
with constant scalar curvature to be isometric to a sphere. First let M be a
connected Riemannian manifold of dimension » and V, the operator of covariant
differentiation with respect to the Levi-Civita connection. Indices run over the
range 1,2, ---, n.

If M admits an infinitesimal conformal transformation »”*, then we have

1.1) £95:=V jvi+Vw,=209;1, £g7t=—2pg7

for a certain scalar field p.
For an infinitesimal conformal transformation »* in M, we have

1.2) £ Rujit= —Bszpi"i_angPi_Vkph‘gji‘l"Vjph‘gku
(1.3) £ Rji=—n—2W j0i—4p-9;i,
1.4 £ R=—-2n—1)4p—2pR,
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where Ryj;* is Riemannian curvature tensor and dp=¢/ ¥ ;p.
Thus in M with R=const.,, we have

R
(1.5) do=— 2
We also have
. 1
(1. 6) £ (ij::"'(n—z)(Vj,Ui“" -n—Ap'gji>

where anR],—(R/n)gn
Hence in M with R=const., we have

R
a.mn £ Gji:_(n—2)<7jpi+ mpgn)-

In this paper we need the following theorem and integral formula.

TueoreMm C (Obata [4]). If a complete Riemannian manifold of dimension
n=2 admits a nonconstant function p such that

(1. 8) ViVip=—c0gji

where ¢ is a positive constant, then M is isometric to a sphere of radius 1/c in (n-+1)-
dimensional Fuclidean space.

For a vector field »* in a compact orientable Riemannian manifold M of
dimension #=2, we have the following known integral formula which is verified
by a straightforward computation:

S (gﬁV Vot Rt ”T“z thw) ndV
M
1.9
1 ) 2 " 2 .
+ -—S Vi Vil — — Vgt (Vjv,-—l—V@-vj— e stbgjz)dV:O b
2 ) n 7

where dV is the volume element of M.

2. Identities and lemmas in a K-space.

Let M be an n-dimensional almost-Hermitian manifold which admits an almost
complex structure tensor ¢, and a positive definite Riemannian metric tensor g;;
satisfying

@1 @it =—0j,

2. 2) G @ 0= js.
Then from (2.1) and (2.2), we have

2.3) Pji=—"iy

1) See Yano [13].
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where ¢ji=gup;.
An almost-Hermitian manifold is called a K-space if it satisfies

2. 4) Vjoin+Vipin=0
from which we have easily
2.5) V j0i7=0.
In a K-space, we know the following identities obtained by Tachibana [10]:
(2. 6) Rj*=Rys*,
@7 Rji—Rji*= jors)V 10",
2. 8) R— R*=constant=0
where R;*=(1/2)p*Ravsi,’, R¥*=g¢7*R*;,
2.9 VN (@),=0 for any vector v*

where N®)n=01°(Vsps)V V"
In a Riemannian manifold, we have

(2. 10) ViR = —;—VjR

and in a K-space

@ 11) PiR, = % 7R
Thus from (2.8), (2.10) and (2.11), we have

(2.12) ViR ;i=ViR ;.
Putting

T5=V iV i i+ 020V ofo+VoEa)
for any vector &, we have the following

Lemma 2. 1.2 In a compact K-space M with constant scalar curvature, if
T;:=0 and 7 is a vector field such that =V for a certain scalar 7, then we
have

@.13) S e Ryud V=0,
M
LemMA 2. 2.2 In a compact K-space M, we have
1 .
(2. 14) SM[Z TﬂTﬂ+sf{V@(Vja-+Vis»+¢,“¢ibw(msb+ma>}]dv=0.

2) See Sawaki [5].
3) See Takamatsu [8], p. 76.
4) See Takamatsu [8], p. 77.
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LemMA 2.3. In a compact K-space M with constant scalar curvature, a con-
formal Killing vector v* can be decomposed as

(2. 15) v=p*+y
where V,p*=0 and 7=V for a certain scalar function 7, and
(2.16) 0[5 T+ 2R R = = (R— Ry [47=0

M
where

Tii=V 064V pi+ 00"V a po+Vs o).
Proof. According to the theory of harmonic integrals, we have (2.15). Next

we consider (2.14) in which &=p? that is,

1 " )
@17 [ G T b PO Bt T b+ o, T Tt T} [aV=0.

By (2.15) and (1.1), we have
DV iV p )=V joi+Viv;— 20 jn:)
=PV 209520 7:)
=200 =V ym0),
or by Ricci’s identity,
DIV 10+ V. p5)=20(0;—V Vi — Ry*s)
=20 (op? =DV *9:)—2R;s p'n'.

(2.18)

Similarly
0,20V W o po 4V pa) =00V iV a0+ V 00— 2V o)

=20 0"9ar— 20 0’V V amp
=20~ ;0" iV 90—V oV 1a)
=2p;+¢;"¢" Riva"ns
=2p;+2R*,"7s

from which we have

(2.19) D020V WV o po+Vopa) =2V (0p?)+2R,s*p'7’".

By (2.18) and (2.19), (2.17) turns to

SME T,-iTﬂ'—Z(R,s—R}"s)pms:ld V=0

or by (2.15)

@. 20) SME TﬁTﬁ+2(RJS—R;§)771773—2(RJ3—R;<s>vfy8]d =0.
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Taking account of (2.8), (2.12) and p=(1/n)Vy*, we have
|, Ru=Rayoav=={ (Ro—RE)PP07 -5V
M M

M

1

2. 21)
—— =\ ®=ROFpav
nJu

=lS (R—R*ypigid V.
n Ju

Thus, from (2.20) and (2. 21), we obtain (2. 16).

LemMmA 2. 4. If a K-space with R=const. of dimension n admits a conformal
Killing vector v™ £9;,=209;, then we have

—R*) =
n—lR R)p 0.

(2. 22) (

3. Extended contravariant almost analytic vectors.

In an almost complex manifold M, v* is called an extended contravariant almost
analytic vector if it satisfies
(3. 1) £ ng"'-I-]ngT n”vl:O

where N,;* is the Nijenhuis tensor, that is, Ny*=¢, (050" —0:ps")— @i’ (0sr* — ") and
A a scalar function [7]. This extended contravariant almost analytic vector is
characterized as a cross-section of the tangent bundle 7°(M) with a suitable almost
complex structure [9].
In a K-space, since N;;*=4¢,Vp*, we have
Utgz?j"lelr- 4goj‘gof(l73;oti)v‘ = 41)‘7;90;".

Hence, when 1=—1/4, (3.1) turns to

1 .1,
£ o= o Nutt' =0T =0, Vv + oV 0" — 9, Nou'!

3.2) )

=—0, V0", 9" =0
or
@3.3) V 0;— @%@ ov5=0,

when 1=0, (3.1) is the equation defining usual contravariant almost analytic
vector. For an extended contravariant almost analytic vector, we have the
following

5) See Sawaki [6].
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LemmMA 3. 1.2 In a K-space, if v* is an extended contravarviant almost analytic
vector for A=—1/4, then we have

3.4 Vv, v+ R, *v"=0.
Recently Takamatsu [9] proved the following

Lemma 3. 2. In a compact K-space with R=const., if v* is an extended con-
travariant almost analytic vector for a constant A such that —3J/4=21=0, then v* is
decomposed into the form

(3.9) v=p'+7

where p* is a Killing vector and n=V%) for a certain scalar function 7).

4. Theorems.

THEOREM 4. 1. If a complete proper K-space M with R=const. of dimension
n>2 admits an infinitesimal nonhomothetic conformal transformation v*: £g;=209;i,
0x0 and

“4.1) £G4;=0,
then M is isometric to a sphere.
Proof. By Lemma 2.4 and the assumption of the theorem, we have

1

_R*—
—-R—R*=0

from which it follows

4. 2) (n—2)R=(n—1)(R—R*).
From (1.7), by (4.1), we have

R
Vipit =1y 095:=0.

On the other hand, from (2.8) and (4.2), we have R—R*>0, that is, R>0.
Because if R—R*=0, then from (2.7), we have V;p,s=0 and therefore M becomes a
Kihlerian manifold [13].

Consequently, by Theorem C, M is isometric to a sphere.

RemARK 4.1. Since £Rj;;=ag; implies £G;;=0 and we consider a complete
space, in a proper K-space, Theorem 4.1 generalizes Theorem A and B (3).

THEOREM 4. 2. If a compact K-space M with R=const. of dimension n>2
such that

4.3) Ry—R¥=Fkgj: (k=const.),

admits an infinitesimal nonhomothetic conformal transformation v: £9;=209;i,

6) See Sawaki and Takamatsu [7].
7) Cf. Theorem A, In an Einstein space £G;;=0.
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0x0, then M is isometric to a sphere.

Proof. v* is decomposed into the form (2.15) and from (4.3), we see easily
k=(1/n)(R—R*).
Hence (2.16) becomes

S %TﬂTf‘dV=0
M
from which it follows T;;=0. Consequently, by Lemma 2.1, we have
@, 4) S PR d V=0,
M
To prove that p* is a Killing vector, we put

Up=Vipi+Vip;
and operate F'¢ to p/Uj;, then we have, by p;=v;—;,

@5 PP U=+ Ul 7T kT,
For the last term, from (2.18), we have
DV 1 pi -V py)=2F (op? —pV i) —2p' 7 R .
Thus integrating (4.5) and using (4.4), we have
S —;—UjiUﬁdVEO
M

from which it follows U;;=0, i.e., p* is a Killing vector.
Consequently y,=v;—p; is a gradient conformal Killing vector such that
o=1/n)Vip;x0 and therefore, by Theorem B(1l), M is isometric to a sphere.

REMARK 4. 2. A K-space of constant curvature satisfies the condition (4. 3).
The same remark applies to Theorem 4.3 and Theorem 4. 4.
THEOREM 4. 3. If a compact K-space M of dimension n>2 such that

1
4. 6) —nTl—Rji—Rfi

admits a gradient extended contravarviant almost analytic vector 7* for i=—1/4:
4.7 Vini—oi iV amp=0, V=0,
then M is isometric to a sphere.
Proof. Operating I’ to Vm;=F; and using Ricci’s identity, we have
Vv =V 3V m;
=V in;+R:’ns
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and substituting this equation into (3.4) in which =7, we have

(4. 8) Vil p,=—(R+R¥ ;.
Again from (3.4) in which »*=%*, we have
4.9 7y =—R*M) .

Substituting (4.8) and (4.9) into (1.9) in which v*=x*, we have

SM[(Rruwam— 22 (Rr’+R;”)v’m]dV

+2S (V"Y]"’— le‘-gﬁ) (ij— lVﬂf’Qﬁ)dV:O
M n n

or

2An—1 1 .
( n : SM( n—1 Rji_Rﬁ>77]”zdv

(4. 10) ) )
+2S <an’~— 1 Vm‘gﬁ> (17 e Tt ﬂ> dV=0
M n n

from which we find Fipr=1/n)V g, that is, »* is a gradient conformal Killing
vector.

On the other hand, operating /'’ to (4.6) and making use of (2.10), (2.11) and
(2.12), we have

2—n
n—1

VJ'R=O

that is, R is constant.
Consequently, by Theorem B(1), M is isometric to a sphere.

THEOREM 4. 4. Let M be a compact K-space of dimension n>2 such that

1

T Ro=Rie

If M admits an extended contravariant almost analytic vector v* for A=—1/4 and
Viwv'x0, then M is isometric to a sphere.

Proof. As we have seen in the proof of Theorem 4.3, R is constant and
hence by Lemma 3.2, v* is decomposed into the form

vz=pi+vz

where p* is a Killing vector and 7*=F?,.
Consequently we have

4. 11) Pope4-Pips =2 sy,
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In §3, we have seen that (3.1) for A==—1/4 can be written as
(4.12) V 05— 020V 05 =0.
Interchanging j and % in (4.12) and adding thus obtained to (4.12), we have
V i +Viv;— i o'V r0;+V0,)=0.
Substituting (4.11) into this equation, we have
V im— 5% 0"V app=0

which shows that 7* is a gradient extended contravariant almost analytic vector

for 1=—1/4.
Moreover, by the assumption of the theorem, we have F;*=F;;*~0 and con-

sequently by Theorem 4.3, M is isometric to a sphere.

ReEMARK 4.3. In Theorem 4.4, when M (dim. »>2) admits an extended con-
travariant almost analytic vector »* for 1=—1/4, that is,

1
(4. 13) Loit— q ;" Ny'=0,

M is isometric to a sphere.
Consequently, as is well known, M which is an almost complex manifold must

be S¢.
Conversely, in the following way we can see the fact that S°® admits a vector

field v* satisfying (4.13).
Let S® be the sphere in 7-dimensional Euclidean space E7 defined by

(4. 14) XA=X4(2"), 2 X4X4=¢* (r=const. >0)

where £=1,2,---,6 and A=1,2,---,7.
It is well known that on this sphere S® there exists a non-integrable almost
complex structure [1] and that it is a K-space with the natural Riemannian metric

induced from E7 [2].
If we denote its almost complex structure tensor by ¢;* and its metric tensor

by gj, then we have

4. 15) gji= X Bi*Bi4,

4.16) 95i=¢;"¢:"Gav

where B;4A=0X4/dz*. Let h; be the second fundamental tensor, then we have
4.17) V ;B =h;,CA

where C4 are components of the unit normal to the sphere.
On the other hand, operating I, to (4.14), we have

(4.18) S XABA=(
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and again operating 7, to (4.18), we have

(4. 19)

ZXAVqu;A= — ZBjABiA= —ji.

Since (4. 18) shows that X4 is normal to S® and C# is the unit normal to S® we have

(4. 20)

X4
_7_

Cc4

Substituting (4.17) into (4.19), by (4.14) and (4. 20), we have

(4. 21)

7hji=—gji.

Thus by (4.20) and (4. 21), (4.17) becomes

(4. 23)

X4

PiBA=— =

g ji.

Then if we put »;=F,f where

f=a: X+ +a X", ai, -+, a; being constants,

by (4.23), we have

(4. 24)

VjUiZdIVjBil+"'+aquBi7

= ,,_zgﬁ"

Consequently, from (4.16) and (4.24), we have

v Vi— %a%bV a=0,

that is, by (3.2),

[1]
[2]
(31
[4]
[5]
[6]

1
£¢5'— g ¢ N'v'=0.
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