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ON CERTAIN CONDITIONS FOR A /ίΓ-SPACE TO BE
ISOMETRIC TO A SPHERE

BY SUMIO SAWAKI AND HITOSHI TAKAGI

1. Introduction.

THEOREM A (Yano and Nagano [11]). If M is a complete Einstein space of
dimension n>2 and C0(Λf)^F/0(M), then M is isometric to a sphere, where C0(Af)
is the largest connected group of conformal transformations of a Riemannian
manifold M and 70(M) the largest connected group of isometries of M.

THEOREM B (Lichnerowicz [3], Yano and Obata [12]). If a compact Riemannian
manifold M with R= const, of dimension n>2 admits an infinitesimal conformal
transformation v% which is not an isometry: <£ Qji=2pgji, p^ const, and if one of
the following conditions is satisfied, then M is isometric to a sphere.

(1) The vector vh is a gradient of a scalar.
(2) Rihp'i=kph, k being a constant.
(3) £Rji=agji, a. being a scalar field, where £ is the operator of Lie deriva-

tion with respect to vl, g^ the fundamental metric tensor, Rji the Ricci tensor of
M, R=gjίRβ and ph the gradient of the scalar p.

These theorems support the following well known conjecture, that is, a
compact Riemannian manifold with constant scalar curvature admitting a one-
parameter group of conformal transformations which is not that of isometries is
isometric to a sphere.

The purpose of the present paper is to obtain certain conditions for a 7£"-space
with constant scalar curvature to be isometric to a sphere. First let M be a
connected Riemannian manifold of dimension n and Γ^ the operator of covariant
differentiation with respect to the Levi-Civita connection. Indices run over the
range 1,2, --,n.

If M admits an infinitesimal conformal transformation vh, then we have

(1. 1) £gji=^jVi+7ivJ=2pgjit £gjί=-2pg^

for a certain scalar field p.
For an infinitesimal conformal transformation vh in M, we have

(1. 2) £ Rwh=

(1. 3) £ Rjt= -(n-2Wjpi-Λp'Qji,

(1. 4) £ R= -2(n-V)Δp-2pR,
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where Rkji

h is Riemannian curvature tensor and Δp=g*Ψ/φ.
Thus in M with R= const., we have

(1.5) ΔP=—£Γ<>

We also have

(1. 6)

where Gji=Rji—(R/ri)gji.
Hence in M with R= const, we have

(1. 7)

In this paper we need the following theorem and integral formula.

THEOREM C (Obata [4]). // a complete Riemannian manifold of dimension
n^2 admits a nonconstant function p such that

(1.8) P/i/0=-c2flfoi

where c is a positive constant, then M is isometric to a sphere of radius l/c in («+!)-
dimensional Euclidean space.

For a vector field vh in a compact orientable Riemannian manifold M of
dimension n^2, we have the following known integral formula which is verified
by a straightforward computation:

~ ( (
Δ JM\

(1.9)
/ 2 \ / 2
f F^+FV FtflV*) [PjVί+PίVj

n ] \ n

where dV is the volume element of M.

2. Identities and lemmas in a HΓ-space.

Let M be an ^-dimensional almost-Hermitian manifold which admits an almost
complex structure tensor φf1 and a positive definite Riemannian metric tensor gjt

satisfying

/o -1 \ ._ ι,Λ i %i\έj L) ψj ψι — — O j j

ff\ f)\ Q, Λ
\Δ Δ) Qcib^P ΐ (Pi ——• g a*

Then from (2.1) and (2. 2), we have
/Q Q\

w ^/ '̂i:== — ̂ i.;

1) See Yano [13].
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where ψji=guψjl.
An almost-Hermitian manifold is called a K-space if it satisfies

(2. 4) Pjφth+Piφjh=0

from which we have easily

(2. 5) PjφtJ=Q.

In a /Γ-space, we know the following identities obtained by Tachibana [10]:

(2. 6) J?y<*=Λ<y*

(2. 7) Rji-Rji

(2. 8) ^-7?*

where #yί*=(l/2)^αδ,^/, R*=g'tR*Ji9

(2. 9) PhN(v)h=Q for any vector 0*

where N(v)h=φh

9(P9φrtW
r^

In a Riemannian manifold, we have

(2.10) P<Rji=^PjR

and in a /f-space

(2.11) F*Λj,*=4-F^*.a>
z

Thus from (2. 8), (2. 10) and (2. 11), we have

(2. 12) PiRJi=PiRji*.

Putting

for any vector ξl, we have the following

LEMMA 2. 1.3) /^ a compact K-space M with constant scalar curvature, if
Tji=0 and ηι is a vector field such that ηί=Ϋiη for a certain scalar η, then we
have

(2.13)
JM

LEMMA 2. 2.4) In a compact K-space M, we have

(2. 14)

2) See Sawaki [5].
3) See Takamatsu [8], p. 76.
4) See Takamatsu [8], p. 77.
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LEMMA 2. 3. In a compact K- space M with constant scalar curvature, a con-
formal Killing vector vl can be decomposed as

(2. 15) v

%=p%+η*

where Vip1—^ and ητ=Fίη for a certain scalar function η, and

(2. 16)

where

Proof. According to the theory of harmonic integrals, we have (2. 15). Next
we consider (2. 14) in which £*=/>*, that is,

(2. 17) J J-ί Γ,iΓ'«+^{P*(PJA+Fι/v)+^

By (2. 15) and (1. 1), we have

or by Ricci's identity,

(2. 18)

Similarly

from which we have

(2.19)

By (2. 18) and (2. 19), (2. 17) turns to

or by (2. 15)

(2. 20)
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Taking account of (2.8), (2.12) and p=(llri)Ptf, we have

(2. 21)

n

Thus, from (2. 20) and (2. 21), we obtain (2. 16).

LEMMA 2. 4.5) If a K- space with R= const, of dimension n admits a conformal
Killing vector vh: £0ji=2pgji, then we have

(2. 22)

3. Extended contravariant almost analytic vectors.

In an almost complex manifold M, vl is called an extended contravariant almost
analytic vector if it satisfies

(3. 1) £ φf+λφj

rNn^ = Q

where Nrΐ is the Nijenhuis tensor, that is, Nrι
l'=φrs(dsφιt'—dιφs'

ί)—φιs(dsφrτ—drφs

ί) and
λ a scalar function [7]. This extended contravariant almost analytic vector is
characterized as a cross-section of the tangent bundle T(M) with a suitable almost
complex structure [9].

In a TΓ-space, since Nji

h=4:φjΨsφi?l, we have

Hence, when Λ=— 1/4, (3.1) turns to

£ ψf- -^<PjrNrllVl = VrPr<f>j*-<pjrl7rVl + <prll7jVr- -£<f>/NrilVl

(3.2)
= - φjrPrV* + φr

iPjVr = 0

or

(3. 3) PjVi-φjaφiΨaVι> = Qt

when ^=0, (3. 1) is the equation defining usual contravariant almost analytic
vector. For an extended contravariant almost analytic vector, we have the
following

5) See Sawaki [6].
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LEMMA 3. 1.6) In a K-space, if vl is an extended contravariant almost analytic
vector for λ =—1/4, then we have

(3. 4) PrFrflί+#trV=0.

Recently Takamatsu [9] proved the following

LEMMA 3. 2. In a compact K- space with R= const., if vτ is an extended con-
travariant almost analytic vector for a constant λ such that — 3/4^/^0, then υ% is
decomposed into the form

(3. 5) vz=pl+γ

where p% is a Killing vector and Ύf=Viη for a certain scalar function η.

4. Theorems.

THEOREM 4. 1.7) If a complete proper K-space M with R= const, of dimension
n>2 admits an infinitesimal nonhomothetic conformal transformation vl:

and

(4. 1) £Gy,=0,

then M is isometric to a sphere.

Proof. By Lemma 2. 4 and the assumption of the theorem, we have

n—I

from which it follows

(4. 2) (n-2)R=(n-l) (R-R*).

From (1. 7), by (4. 1), we have

On the other hand, from (2.8) and (4.2), we have R-R*>0, that is, R>0.
Because if R— R*=Q, then from (2. 7), we have F^rs=0 and therefore M becomes a
Kahlerian manifold [13].

Consequently, by Theorem C, M is isometric to a sphere.

REMARK 4. 1. Since £Rji=agji implies £Gji=Q and we consider a complete
space, in a proper K- space, Theorem 4. 1 generalizes Theorem A and B (3).

THEOREM 4. 2. If a compact K-space M with R= const, of dimension n>2
such that

(4. 3) Rjt - R% = kg a (k - const.),

admits an infinitesimal nonhomothetic conformal transformation v\

6) See Sawaki and Takamatsu [7].
7) Cf. Theorem A, In an Einstein space
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p^Qf then M is isometric to a sphere.

Proof. v% is decomposed into the form (2.15) and from (4.3), we see easily
k=(l/n)(R-R*).

Hence (2.16) becomes

JM 4 Jl

from which it follows jΓ/ί=0. Consequently, by Lemma 2.1, we have

(4. 4) \ pirfRjidV=Q.
JM

To prove that p% is a Killing vector, we put

and operate V1 to pjUjt, then we have, by pi=Vi~-ηίy

1 τr ,-
(4. 5)

For the last term, from (2. 18), we have

pWψjPi+PΛ^ZP

Thus integrating (4. 5) and using (4. 4), we have

{ ± UJtU*dV=0
JM A

from which it follows ί//ί=0, i.e., pl is a Killing vector.
Consequently ηi=Vi—pi is a gradient conformal Killing vector such that

p=(l/n)Γί^i^ and therefore, by Theorem B(l), M is isometric to a sphere.

REMARK 4. 2. A /£~»space of constant curvature satisfies the condition (4. 3).

The same remark applies to Theorem 4. 3 and Theorem 4. 4.

THEOREM 4. 3. If a compact K-space M of dimension n>2 such that

(4. 6) -±-R}i=R%

admits a gradient extended contravariant almost analytic vector rf for λ=— 1/4:

(4. 7) Γ^-^V^»=0, F^'dpO,

then M is isometric to a sphere.

Proof. Operating Ψ3 to F^i=F^ and using Ricci's identity, we have
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and substituting this equation into (3.4) in which vz=η\ we have

(4.8) PtP
rηr=-&r+RΓ)qr.

Again from (3.4) in which v*=η\ we have

(4.9) FTr^=-#*ry.

Substituting (4.8) and (4.9) into (1.9) in which v*=τf, we have

or

n
(4.10)

from which we find f7j ηl=(l/ri)l7trfgjί, that is, 37* is a gradient conformal Killing
vector.

On the other hand, operating V3 to (4. 6) and making use of (2.10), (2.11) and
(2.12), we have

n-l

that is, R is constant.
Consequently, by Theorem B(l), M is isometric to a sphere.

THEOREM 4. 4. Let M be a compact K-space of dimension n>2 such that

I

n—1 3%

If M admits an extended contraυariant almost analytic vector vl for Λ=—1/4 and
F^^O, then M is isometric to a sphere.

Proof. As we have seen in the proof of Theorem 4.3, R is constant and
hence by Lemma 3. 2, v* is decomposed into the form

where p% is a Killing vector and ^=Ffy
Consequently we have

(4.11) F
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In §3, we have seen that (3.1) for λ= — 1/4 can be written as

(4. 12) PjVk-φjaφkΨaVl> = 0.

Interchanging j and k in (4. 12) and adding thus obtained to (4. 12), we have

f>* + PkVj - φfφkψrVi + PiVr) = 0.

Substituting (4.11) into this equation, we have

which shows that if is a gradient extended contravariant almost analytic vector
for Λ=-l/4.

Moreover, by the assumption of the theorem, we have PiVl=Pirj'l^Q and con-
sequently by Theorem 4. 3, M is isometric to a sphere.

REMARK 4. 3. In Theorem 4.4, when M (dim. n>2) admits an extended con-
travariant almost analytic vector vl for λ=— 1/4, that is,

(4.13) £p/-jp/^ιH*=0,

M is isometric to a sphere.
Consequently, as is well known, M which is an almost complex manifold must

be S6.
Conversely, in the following way we can see the fact that S6 admits a vector

field V1 satisfying (4. 13).
Let S6 be the sphere in 7-dimensional Euclidean space E1 defined by

(4. 14) XA=XA(xh\ ΣXAXA=r2 (r=const. >0)

where A=l,2, — ,6 and A=l, 2, •••,?.
It is well known that on this sphere S6 there exists a non-integrable almost

complex structure [1] and that it is a TΓ-space with the natural Riemannian metric
induced from E7 [2].

If we denote its almost complex structure tensor by ψf and its metric tensor
by Qji, then we have

(4.15)

(4. 16) Qji=φj

a'ψil)gab

where Bi

A=dXA/dxt. Let hjt be the second fundamental tensor, then we have

(4. 17) PjB^^hjjC*

where CA are components of the unit normal to the sphere.
On the other hand, operating Fl to (4. 14), we have

(4. 18)
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and again operating V 3 to (4. 18), we have

(4. 19) ΣXAPjBiA=-ΣBjABi

A=-gJ i.

Since (4. 18) shows that XA is normal to S6 and CA is the unit normal to S6 we have

XA
(4.20) CA= — .

Substituting (4. 17) into (4. 19), by (4. 14) and (4. 20), we have

(4.21) rhji=-gji.

Thus by (4 20) and (4. 21), (4. 17) becomes

XA

(4.23) r yj5^=_A_ f l f y i β

Then if we put Vi=Pτf where

f=a1X
1-\ ----- \-a7X

7, ai, ~-,a7 being constants,

by (4. 23), we have

i1 + - + a^j BS
(4. 24)

Consequently, from (4. 16) and (4. 24), we have

PjVi-φjaφi*PaVb=0,

that is, by (3. 2),
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