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ON CIRCULAR AND RADIAL SLIT DISC MAPPINGS

BY NOBUYUKI SUITA

§ 1. Introduction.

1. This paper contains ameliorations of some results of Marden and Rodin [7].
Recently Marden and Rodin [7] discussed a circular-radial slit mapping in connection
with problems of extremal lengths. For instance they divide boundary components
of a plane domain Ω into three sets, α, β and γ, where a is a component and a U β
is closed in the Stoϊlow compactification of Ω. They proved that if the a is not so
small, a circular-radial slit disc mapping of Ω can be constructed and that the image
of Ω under it is bounded by a circle with center at the origin having possible radial
incisions, circular slits with possible radial incisions and radial slits under an as-
sumption of ^-isolation.

The aims of the present paper are at first to deal with such a mapping without
the condition of ^-isolation, in the second place to construct a radial-circular slit
disc mapping in case where a\Jγ is closed, which was treated by them as a dual
problem [7] and at last to define a circular and radial slit disc mapping in more
general partitions.

We shall also discuss extremal properties of these mappings. Such extremal
properties were discussed by Marden and Rodin in connection with the logarithmic
area [7]. Our version is more classical. These properties are related to extremal
problems treated by Rengel [12] for domains of finite connectivity. One of them
was discussed by Reich and Warschawski [11] for circular slit mappings of arbitrary
domains and recently by Oikawa [9] for radial slit mappings. The other was due
to Grotzsch [6] for radial slit mappings with a restriction which was removed by
the author [16].

§ 2. Preliminaries.

2. Let Ω be an open plane domain and let Ω be its Stoϊlow ctification
[3]. A boundary component σ is defined by a defining sequence {Δn} n that the
relative boundary of Δn is a single Jordan curve, Jnz>Jw+ι and Γ[Δn=φ. Each
member of the defining sequence {Δn} forms a neighborhood of σ.

The topological representation of {Δn] is given by Π Cl(Δn) which is denoted by
the same letter σ, where Cl(*) means the closure taken in the Riemann sphere.

Let T(z) be a topological mapping of Ω. T(z) can be extended topologically
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onto its compactification Ω. The image of σ defined by [Δn] is given by T(σ) defined
by {T(Δn}}.

Let C be a closed set of boundary components of σ. Since C is covered by a
finite number of members of defining sequences of elements of C, we can construct
a defining sequence of C, denoted by {Dn}, such that Dn consists of a finite number
of domain whose relative boundaries are single analytic Jordan curves, Dni)Dn+ι,
andnCl(Ai)— C. Ω—Dn is a domain, denoted by Ωn. {Ωn} exhausts Ω which is
called an exhaustion of Ω towards C.

3. We shall use the method of extremal metrics. Let Γ be a family of curves
c running within Ω whose restriction on Ω consists of at most a countable number
of locally rectifiable curves in Ω. Let p be a measurable metric on Ω which will
be used instead of p\dz for short. We mean by P(Γ) the admissible class of metrics
such that the Lebesgue-Stieltjes integral of p along the restriction of c on Ω is
defined and satisfies.

The module of Γ, denoted by mod/7, is defined by

inf \\p\\&= inf (( p*dxdy.

The extremal length λ(Γ) is its reciprocal.
Let // be the space of /2 metrics on Ω. We denote by P*(Γ) the closure of

P(Γ)ΠH which is called the /2-admissible class of Γ. Then modP^co, if and only
if P*(Γ)=φ. Unless P*(Γ)=ψ, there exists a unique metric pQ in //, called the
extremal metric, satisfying that modΓ=| l ι ° l l 2 [13] and that

(1) U p — / 0 o | | 2 ^ l l / 0 | | 2 — \\po\\2

for every ,oeP*(Γ) [16].
A curve family with vanishing module is called an exceptional family. The

union of a countable number of exceptional families is exceptional [5]. We say
that a proposition holds for almost all (a. a.) c e Γ, if it is false only for an exceptional
subfamily of Γ. The /2-admissible class P*(Γ) is equivalent to the class of satisfying

Ί^l^l for a.a. czΓ
Jc

[5, 17].
The following lemma will be used frequently.

LEMMA 1. Let (Γn}n=ι be an increasing sequence of curve families. Put Γo
= U Γn. Then mod Γn tends to mod Γ0. Furthermore the sequence of the extremal
metrics pn tends to the extremal metric pQ of Γ0 strongly so long as
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The proof of the first half is found in [17] and the convergence of pn is obvious
from its proof. Ziemer [19] proved this result for the module of families of complete
measures.

4. Let Φ(z) be a quasiconformal mapping of Ω whose maximal dilatation is K.
A curve c in Ω is mapped onto a curve on the Stoϊlow compactification of Φ(Ω)
which is denoted by Φ(c). The collection of the image curves of Γ is written by
Φ(Γ). Then we have

(2 ) -=r mod Γ^mod Φ(Γ)^K mod Γ.
A

For the proof the readers are referred to [1],
We shall use quasiconformal mappings to modify the conformal structure of Ω

and to evaluate modules. We shall need the following lemma later on.

LEMMA 2. Let Δ and Δf be subdomains of Ω whose relative boundaries consist
of a finite number of analytic closed curves such that ΔnΔ' and Δ—Δf is relatively
compact. Let {fn}n=ι be a sequence of univalent functions defined on subdomains
Ωn of Ω such that Ωnc:Ωn+ι and (jΩn=Ω. Suppose that fn tends to a univalent
function /0 uniformly on any compact subset of Ω. Then, for a given ε>0, we can
construct a (L-\-ε)-quasiconformal mapping of a subdomain Ωε=(Ω—Δ}\jΩn, denoted
by Φε(z\ such that Φε(z)=fQ(z) in Ω—Δ and Φ\z)=fn(z) in Λ'Γ\Ωn for a sufficiently
large n.

Proof. Let D3 (/=!, 2, •••, /) be the components of Δ—Δ'. Let C3 be the subset
of boundary comsonents of Dj contained in the relative boundary of Δ and let Cf
be those contained in the relative boundary of Δr. Denoting by o)j(z) the harmonic
measure of Cf in Dj, we put

/o(*) in Ω-Δ,

j(z)fn(z) in Dj,

/„(*) in Δ'ΠΩn

for so large n that the Ω\ defined by (Ω—Δ)\jΩn, becomes a domain and that

Then Φε is univalent in Ωε. A simple calculation verifies the statement about the
dilatation of Φε for sufficiently large n, which is a desired quasiconformal mapping
[1]. Another topological proof of the univalency can be given as in [15].

§3. Circular-radial slit mapping.

5. We may assume that Ω is a finite domain. Let α be its outer boundary.
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Let (a, A, B) denote a partition of dΩ into three sets. Suppose a U A is closed.
Let {Ωn} be an exhaustion of towards a\jA. Let an denote the outer boundary of
Ωn and let An be the subset of its relative boundary other than an. Put Bn=Bf}Ωn.
Since Bn is closed, we take an exhaustion {Ωnj} of Ωn towards Bn. Let Bnj be the
relative boundary of Ωnj in Ωn, and let anj and Anj be anΓ\Ωnj and AnΓ}Ωnj res-
pectively. Let a be a point of Ω. We agree that every member of its exhaustion
contains the point a. There exists a circular-radial slit disc mapping such that

i) /»Λ«)=0, fnj(a)=l9

ϋ) /n(α«y) is a circle |/«/|=#nj,
iii) fnj(Anj) consists of a finite set of circular slits and
iv) fnj(Bnj) consists of a finite set of radial slits.

The construction of fnj is now classical and the readers are referred to [7].

6. The function fnj induces two extremal metrics of the following module
problems. Let Γ\3 be the family of curves separating the set \fnj\=q from anj

within Ωnj—Anj and let XI 3 be the family of curves joining them within Ωnj —Bnj

Then the metrics pnj=\fnjl(2πfnj)\ and μnj = \f'nj/((log Rnj/q)fnj)\ are the extremal
metrics for Γ^3 and X%j respectively and we get

-
ΔTC

and

mod Xn—
log Rnj/q '

The quantity Rnj is represented in terms of modules. Let Γnj(q) be the family
of curves sparating a small circle \z— a\=q from anj within Ωnj—Anj and let Xnj(q)
be the joining curve family of them within Ωnj—Bnj Then we have

log Rnj=lim (2π mod Γnj(q)+log q)

both of which are the limits of monotone increasing sequences. This relation is easily
verified from well-known inequalities of extremal lengths as in [2] and [14]. In
general the above quantities can be defined for a general domain and an arbitrary
partition of dΩ into a, A and B similarly. These two limits may well differ. If
these coincide, we denote it by R(a, A, B) and call it the extremal radius of α at
a with respect to the partition (a, A, B).

7. We first let j tend to infinity. The function fnj converges to a univalent
function /W0) in such a way that || /'«//»— f'njlfnj\\onj-+Q [7]. It is also verified
from the inequality (1). In fact, let Mq be the maximum modulus of fnk on the
curve \fnj\=q for &>/. Then any curve of Γjfβ contains a curve of Γ$ as a subset,
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Put pnj = \f'njl(2>πfnj)\ which is defined to be zero outside of Ωnj.
the set Mq<\fnk\<Rnk. We have by (1)

Let

131

denote

and letting q—>0 we get

(3)
fn,

ftJ nk

fnk

From the inequality the convergence of fnj is easily verified [18].
The image of Ωn under fn is as follows:

i) fn(an) is the circle \fn\=Rnj where Rn=R(an, Any Bn\
ii) fn(Λn) consists of a finite set of circular slits and

iii) fn(Bn) is a minimal set of radial slits.
i) and ii) is obvious, since an and An are isolated. For the representation of Rn,

see the next section no. 8. The property iii) is easily verified by the localization of
minimality [10, 15].

8. The fn again induces two extremal metrics for Γi and X%, where Γ% is the
family of curves separating an from the set \fn\=Q within Ωn— An and X$ is that of
curves joining them within Ωn—Bn for sufficiently small q. Put io7i=|/?//(2τr//i)|.
Then from Schwarz's inequality we have

which implies the extremality of pn, since |
Next, we set μw ==!/»'/(/* log #n/#) I Considering the maximum and minimum

moduli of fnj on the curve \fn\=q, we can conclude from Lemma 1 that modX%=
2π/log(Rn/q) and μn is extremal.

9. Since the family Γn of curves separating an from the point a within Ωn— Λn

is increasing, so is Rn (cf. no. 6). Suppose ^0=lim Rn<oo. Then letting n— >oo,
we obtain a univalent function f0(z) such that \\fn/fn—fo'/fo\\on-^Q [7]. This is
a direct result from an inequality similar to (3)

Jm

fn'

fn
for

since Rn=Rv We now state

THEOREM 1. Under the assumption that J?0<
OT, the function /0 constructed

above possesses the following properties'.
i) /o(α) ί5 ί/ίβ c/fc/^ |/o| = Jf?o with possible radial incisions of angular measure

zero emanating from it.
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ii) /o(tf), σ€A, is a circular slit (possibly a point} with possible radial incisions
of angular measure zero,

iii) fo(B) is a minimal set of radial slits,
vi) the total area of the image of the boundary of Ω under /0 vanishes,
v) the metric pQ=\fo//(2πfQ)\ is extremal for the curve family Γl of curves

separating a from the set |/o| = # within Ω—A for sufficiently small q and mod/I

^π)-1 log #o/tf, and
vi) the metric ^o=|/o'/(/olog #0/0) I is exttemal for the family Xq

Q of curves
joining them within Ω—B and mod X%=2π/log R0/q.

The properties i) and ii) are discussed by Marden and Rodin [7] under an ad-
ditional assumption " /3-isolation." They showed that fQ(σ\σ£B, is a radial slit.
Here a minimal set is a quasiminimal set in [15]. The property iv) is a common
property of canonical slit mappings stated in [15]. The module problems were
discussed by them [7]. A special module problem for the family of collections of
curves was dealt with by Andreian-Casacu [4].

10. Before proving Theorem 1, we prepare the following

LEMMA 3. Let pn be a sequence of metrics such that ||/o7t||2—>0. Let Γ be a
family of curves on which pn is defined and measurable. Then we have

l imi pn\dz\=Q for a.a. csΓ.
n-*°o Jc

This is due to Fuglede [5] (cf. [7]).

11. The proof of Theorem 1. The property iii) is a direct result of the locali-
zation of minimality [15] which is also proved by a characterization due to Oikawa

[10].
We first show the property ii). The proof of i) is its analogue. Let σ be an

element of A. We can select a defining sequence of σ, denoted by {Jn}, from the
components of Ω—Ωn, where {Ωn} is an exhaustion of Ω towards a\jA to define /0

as before. Let σn be the relative boundary of Δn. The image of σn under fn is a
circular slit with radius rn Selecting a subsequence, we may assume that lim/r^fo,
since rn is bounded by R0. Put ^0=log |/o|, #»=log |/w| in ΔιΓ(Ωn, and extend un

on Ji—Ωn by the constants taken by it on each component of the relative boundary
of Λ—Ω n. Let X(σ) be the family of curves joining σ and 01 within ^l—B. The
function un is continuous on cςX(σ). We set ^^Igrad (u0—un)\. Then the con-
vergence of fn'lfn in no. 9 and Lemma 3 shows that

lim\ d(uQ—Un)=0, for a. a. ceX(σ).
ri->oojc

Using the uniform convergence of un on σl9 we have
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( 4 ) \ du0=logro—Uo(zc) for a.a. c$X(σ\
J c

where zc is the initial point of c on σi.
Next we evaluate the module of the curve family, denoted by /I, consisting of

the curves on which (4) is false. From the construction of /0 in nos. 7 and 9 we
can select a subsequence {/W<7W from the sequence {fnj} such that ||/o'//o— f'njw
lfnj(n)\\2ΩnJ(.n)-^0 Let ΩQ be a relatively compact open set \fo\<q and let Dk be
Ωk—Ωk-i (&^1) which consists of a finite number of domains, say Dkι (1=1, 2, •••, Nk).
Let ε be a given positive number. Then using Lemma 2, we can construct a sub-
domain Όli of each Dkι, given by DkιnΩnj w, and its (l+e)-quasiconformal mapping
Φ'kί(z) such that Φk=/o in Dkι—Δkι and Φkι=fnjw in J^n^oo, where JΛZ and 4^
are suitably chosen ends of Dkt containing its ideal boundary components which
correspond to Δ and Δr in Lemma 2 respectively. Set Ωε=[JkιDkιD Ω0 and put

ί Φ kl in D'kl,
Φε=\

[ /o in Ω0.

Then ί/ has at most a countable number of relative boundary components whose
images under Φε are radial slits. Furthermore the image of τ£Λ\Ja under Φc

coincides with /0(τ).
In the image domain Φ ε (z/ιΠ£ ε ) a ray arg w—const emanating from Φc(</ι)

(=/o(<7ι)) contains the image of a curve joining <7ι and σ within Ai — B, if it intersects
Φε(σ) and if it is disjoint from the radial slits which is the image of the relative
boundary of Ωε. Let W be the doubly connected domain bounded by /0(σι) and fo(σ).
Since /o(#ι) encloses /0(σ), a ray arg w;=const contains two radial segments joining
/oOi) and /O(<T) within W. The set of the arguments of these segments makes two
intervals [a, b], where a and b are the minimum and maximum values of the argu-
ments of the rays. One is the set of segments on which \w\ increase from /O(<TI)
to /oCσ), and on the other set the contrary holds. The subset Ξ of the arguments
of the segments along which the relation

lim log \w\=log r0

does not hold is a set of Fβ, where r0 is the quantity in (4). Thus the set Ξε of
the arguments of the rays in the domain Φε(Jι) mentioned above is a measurable
subset of Ξ with the same measure. Let /ε(#) denote the logarithmic length of the
curve on the ray in the Φε (Δι Π Ωε) for θ € Ξε and let /(#) be the length of the segment
for OzΞ which satisfies ί(θ)^Γ(θ). Let p be an admissible metric for the image
curve on the ray with argument θ€Ξε. From the Schwarz inequality we have

Jarg w=0

and since the inverse image of the curve for OzΞε belongs to A
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Letting ε— »0, we get

The above inequality was first obtained by Strebel for the radial slit mapping

[14].
From (5) we conclude that the subset of f0(σ) not lying on the circle |/0|=r0 is

possibly a set of radial incisions of angular measure zero.

12. Continued. We now prove the properties iv), v) and vi). As is seen in
no. 8, ρn=\fnl(2πfn)\ is extremal for the dividing curve family Γ^. Then selecting
a subsequence of {/TO}, if necessary, we can construct such a sequence {qn} with
limit q that [Γln] is increasing and that \jΓ%n=Γ%, since fn converges to/0 uniformly
on a neighborhood of the set \fo\=q for a sufficiently small q. Thus Lemma 1
shows that modΓ?=(2τr)~1 \ogRo/q and p0=\fo'/(2πfo)\ is extremal.

The property iv) is obvious from the equality |||θo||2=(2π)~1 log(Ro/q).
Finally the metric μo=\fo'/(folog R0/q)\ is /2-admissible and hence we have

mod X^2π/log(Rolq). We apply the inequality (5) to X? and have

(6) * V Λ^ l dθ

Since l(θ)^log(R0/q), we get moάX^2π/log(Ro/q) which implies vi). This in-
equality was obtained by Strebel [14] in case where A=φ.

From (6) we also see that f0(ά) is the circle \fQ\=RQ with possible radial
incisions of angular measure zero.

REMARK. We conclude that Ro=R (a, A, B) from v) and vi).

We call the function /0 an (extremal) circular-radial slit disc mapping of Ω with
respect to the partition (a, A, B). Here the closedness of a U A and finiteness of R0

are assumed.

§4. Extremal Properties.

13. We discuss some extremal properties of the circular-radial slit disc mapp-
ing which characterize itself. Harden and Rodin dealt with extremal properties in-
timately related to the extremal length [7]. We shall show these extremal properties
as extensions of classical theorems.

Let Ω be a finite domain and let α, A and B be a partition of dΩ such that a
is its outer boundary and a U A is closed. We denote by g (a, A, B) the family of
univalent functions satisfying
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ii) f(ά) is the outer boundary of f(Ω) and

iϋ) \ dargf
Jc

^2τr for a. a. csΓ(q),

where Γ(q) is the family of curves separating a from a compact disc \z—a\^q
within Ω—A. Put

M(/)=sup|/(*)|.
Z€Ω

Then we have

THEOREM 2. Suppose R(a, A, #)<oo. Then the circular-radial slit disc mapp-
ing /o is the unique function minmizing the quantity M(f) within §(<*, A, B).

Proof. We first show that /0 e 3?(αr, Λ, 5). In fact, as is seen in no. 11 we have
||/nmcn///nroo» — /o'//ol l^mc^O for a subsequence {/nm(n>} of {Λm}. Applying Lemma
3 to the metric

2π

1

grad log
/o

i g r a d l o g l / o l l

n

n l — Ωnm<_n )

we get

for a. a. c € Γ(^). Thus we have

for a. a. ceΓ(q).

Next we remark that the condition iii) is independent of the choice of neigh-
borhoods. Indeed, for q'<q, we take an r>q such that q'^\z—a\^r is contained
in Ω. Then

log α' — log r
log ς — log r

n

in ί7

is a quasiconformal mapping of £?g onto Ωq>. Φ maps /^(^) onto Γ(qr) and a curve
satisfying the inequality in iii) corresponds to a curve with the same property since
the condition
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/Cc)
dargw

is due to the behavior of the curve near the boundary of Ω. Thus from (2) we
conclude the independence.

Put /o0=l/o//(2π/o)| and p=\f'/(2πf)\ for /€§(«, A, B). From Theorem 1 and
(1) we have

IL
/o

M(f)

Thus we have the assertion.

This extremal property can be deduced from Marden and Rodin [7].

14. From Theorem 2 in case where A=φ, we obtain a characterization of the
minimality of radial slits which will be needed the next corollary.

COROLLARY 1. Let E be a compact set contained in an annulus G:q<\z\<Q.
Then E is a minimal set of radial slils if and only if

(7)

for a.a.c of the family of curves separating the circle \z\-Q from \z\-q witlnn
the compactification of G—E.

Proof. Let p be an admissible metric for the above separating curve family.
Then the Schwarz inequality shows \\p\\2^(2πΓ1 log (Q/q). From (7) p0=\2πz -1 is
4-admissible and || ioo||2=(2τr)~1 log (Q/q). Hence p0 is extremal and we see that the
radial slit disc mapping of the disc \z <Q less E is the function zy which implies
the minimality of E from Theorem 1.

Conversely if E is minimal, G—E is a minimal radial slit annulus [15]. Let
{Gn} be its exhaustion towards E. Then we have \\l/z—gn'/gn\\Gn-*Q, where gn is
the radial slit annulus mapping of Gn with the normalizations gn(Q)=Q and preserv-
ing the outer boundary. Put

-- grad lo:
<ώTΓ

~\ 1 — 1
uTΐZ \

g i — in Gn,^ ί

in G—Gn.

Applying Lemma 3 to pn, we have

\ dzrgz— \ Jarggw-
Jc JcnG^

for a. a. cy

which implies (7).
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We call a univalent function / a radial slit mapping (with respect to B) if f(B)
is a minimal set of radial slits. We get

COROLLARY 2. /0 is the unique function minimizing M(f) among the radial
slit mappings f satisfying i) and ii).

This extremal property was found by Oikawa [9] in case where A=φ. The
case where B=φ is classical [11, 12].

Proof. It is sufficient to prove that the condition iii) is equivalent to the
minimality of f(B). Suppose iii). In the image plane, we take a compact subset
E of f(B). Then we can take a disc \w\^qcf(Ω) and an analytic closed curve K
which separates the image of α U A under / from the disc and E in f(Ω). Let W
be the domain whose boundary consists of the circle \w\=q, and the subset of
boundary components of f(B) contained in the interior of K, say W', which is closed
and contains E. Then we have (7) for a. a. c of the family of curves separating
K from the circle \w\=q within W. Let G be an annulus q<\w\<Q less Ef con-
taining W. Then similarly as in the proof of Theorem 2 we can construct a
quasiconformal mapping Φ of W onto G such that Φ(w)=w in a neighborhood of
E' (cf. [16] pp. 224-225). Then we have the validity of (7) for G, which implies
the minimality of E' and hence of E from Corollary 1.

Next suppose f(B) is minimal. Let {Ωn} be an exhaustion of Ω towards a\jA.
Let an be the outer boundary of Ωn and let An be the relative boundary of Ωn

other than an. Put Bn=QnnB. Denoting by Γn(q) the family of curves separating
the circle \z—a\=q and an in Ωn—An, we have (7) for Γn(q) from Corollary 1, since
f(Bn) is a compact minimal set of radial slits and Γn(q) is a subfamily of the cor-
responding family of a large annulus less f(Bn). ΓΌ(q)=\JΓn(q) and a countable
union of exceptional families is also exceptional. So we get (7) for Γ0(q).

15. We now deal with another extremal problem. Let §f be the family of
univalent functions / in Ω satisfying i) and ii). Let X be the family of curves
joining a and a within Ω—B.

Then the limit

lim df =Mc(/)

exists for a. a. c^X, where ct is a subarc of c with its representation 2(5), (Q^s^t,
2(0)=<z) and tending to a as ί-»l [8]. Here the module of the above exceptional
family is measured by the set of subarcs starting from a simply connected compact
neighborhood of a whose exceptionality does not depend on the choice of neighbor-
hood [16]. We define by m*(f) the least upper bound of m satisfying Mc(f)^m
for a. a. c e X. Then we state

THEOREM 3. Under the same assumption in Theorem 2, the circular-radial slit
disc mapping /0 is the unique function maximizing the quantity m*(f) within the
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family ££.

The Proof is analogous to that of Theorem 4 in [16] and omitted.

§5. Radial-circular slit mapping.

16. Throughout this section we assume that Ω is a finite domain containing a,
a is its outer boundary and a U B is closed. Let {Ωn} be an exhaustion of Ω towards
a and let an be the outer boundary of Ωn. Put An=AnΩn and Bn=BnΩn. We
take an exhaustion of Ωn towards Bn, denoted by {Ωnj }. Let anj denote the outer
boundary of Ωn] and let Bnj be the set of its relative boundary components other
than anj. Put Anj=AnΓ[Ωnj. Since anj\jAnj is closed in Ωnj, there exists the
circular-radial slit disc mapping fnj. The image fnj(anj) is a circle \fnj\ = Rnj, where
Rnj=R(anj, Anj, Bnj\ fnj (Bnj) is a finite set of radial slits anάfnj (Anj) is a minimal
set of circular slits. The incisions do not appear because Bnj is a finite set. Set
pnj=\fn/l(2πfnj)\. Since pnj is extremal for the family Γ\3 of curves separating
anj from the set \fnj\=q within Ωnj—Anj and pnkSP*(Γlj) for &</, we have from

(1)

(8) ' /n*' ^2ττ log
/nt I

letting #—»0. The sequence Rnj is monotone decreasing which tends to a limit Rn.
From (8) there exists a univalent function 0n such that

(9) n ' f 'yn J n] ^
»0 as j—>oo.

In Jnj

17. We prepare

LEMMA 4. 7%0 function gn possesses the following properties'.

i) gn(an) is the circle \gn\=Rn,
ii) gn(An) is a minimal set of circular slits,

iii) gn(σ)t σζBn, is a radial slit (possibly a point) with possible circular incisions
emanating from it,

iv) the area of gn(dΩn) is equal to zero,
v) the metric pn= |{7»'/(2τrsrw)| is extremal for the family Γ% of curves separat-

ing an from the set \gn\=q within Ωn—An for sufficiently small q and mod Γ% =(2π)~l

log Rn/q and
vi) the metric μn=\gn/(gnlog(Rnlq))\ is extremal for the family X% of curves

joining them within Ωn—Bn and moάX^=2π/log(Rn/q\

Proof, i) is obvious, since an is isolated, ii) is the property of minimal sets
which is shown in no. 8. In order to prove iii) we return to the definition of fnj.
Let {Ωlj} be an exhaustion of Ωnj towards anj\jAnj. Let a\3 be the outer boundary
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of Ω\3 and let A%3 be the subset of the relative boundary of Ω%3 in Ωnj other than
a%j. Put B%j=BnjΓ\Ω%j. Let f%3 be the circular-radial slit disc mapping with respect
to (a%, A%j, B%j). Then we can select a subsequence {fffi} of {f%j} such that
II/S^V/?/'— 07//0nlU*tf>— »0 as /- »oo. Thus the same proof as in iii) of Theorem 1

is applicable. The details are omitted.
The properties v) and vi) is proved similarly as in no. 12 and iv) follows from

v).

REMARK. From the properties v) and vi) we see that

Rn = R(an, An, Bn).

18. We have \\\gnΊgn\-\gmΊθm\\\lm^2πlog Rn/Rm(n>m) as before. Rn is in-
creasing and we put Ro=limRn. Suppose the sequence Rn is bounded. Then there
exists a univalent function g0 such that

(10) -0.

Now we state

THEOREM 4. Under the assumption that R0<.oo, the function g0 has the fol-
lowing properties.

i) 0o(#) is the circle \go\=Ro with possible radial incisions emanating from it,
ii) go(A) is a minimal set of circular slits,

iii) 0o(tf), σ€B, is a radial slit (possibly a point) with possible circular incisions
emanating from it,

iv) the area of g0(dΩ) vanishes,
v) J0o = |0o7(2τt0o)| is extremal for the Γ% of curves separating a from the set

|0o|=tf within Ω—A and mod Γ?=(2ττ)~1 log (Ro/q) and
vi) μo=|0o7(0ologCRo/#))| is extremal for the family X$ joining them within

Ω-B and moάXq

0=2π/log(R0/q).

Most of the proof of the theorem is analogous to that of Theorem 1. We shall
prove the properties i), iii) and vi).

Proof. To prove iii), similarly as in the proof of iii) of Lemma 4 we select a
subsequence {/{$&)} of {/Jy} such that

fnjW) SQ

n /**(TO
00 Jnjcn.

Using this sequence to establish a similar inequality to (5), we can prove iii) analo-
gously as in the proof of ii) of Theorem 1.

Next we show vi). The metric //0=|0o7(0o log (#<>/#))I is /2-admissible for X? and
we have mod X^2π/\og(R0/q). It is a direct result from the fact that
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g0 log gn log (Rn/Mq(gn»
-o,

where Mq(gn} is the maximum modulus of gn on the set \gQ\=q, tending to q. In
order to prove StrebeΓs inequality we take a subsequence {/n/c?o} of (fnj] such that

f '

Qo f n j ζ n )
—0.

Let β0 be a relatively compact set \g*\<q, put ^k=Ωk—ΩJc_1 and Jo = β0. Then
applying Lemma 2 to Λ and the sequence {/wyoo} we can construct a subdomain
Ω* of β whose relative boundary consists of a countable number of closed analytic
curves enclosing all the boundary components of B and its (l+ε)-quasiconformal
mapping Φ\z) such that Φ\a) is equal to g0(ά). Since the radial slits of Φε(Ωε) is countable
we get StrebeΓs inequality (6). Thus we have moάX^2πl\og(R0lq) which implies
vi). The property i) follows from (6) because l(0)=log R0/q except for a set of
angular measure zero.

REMARK. In this case, RQ is equal to R(a, A, B).

19. We call the function g0 a radial-circular slit disc mapping of Ω. We can
show the same extremal properties of g0 as /0 stated in Theorems 2 and 3.

§ 6. Circular and radial slit mapping.

20. Let (α, A, B) be an arbitrary partition of 3Ω, where Ω and a are as before.
Let Aι be a subset of A such that a\jAι is closed. Put 3Ω—a\jΛι = B1. If
R(a, Ai, B1)<oo, from Theorem 1 there exists the circular-radial slit disc mapping
of Ω, denoted by /^(z). Let Γ(Aι) be the family of curves separating a from the
point a within Ω—Ai and let X(B1) be that joining them within Ω—B1. If
Γ(Aι)DΓ(ΛO and X(B1)cX(B2). Thus we have R(a, Alf Bl)^R(a, A2, B2).

Put

R(A)= inf R(a, Al9 B1)

for every compact αU^i. Let {An} be a minimal sequence satisfying that
al) An is compact and lim R(a, An, B

n)=R(A). Then we have

LEMMA 5. Let fAn(z) be the circular-radial slit disc mapping of Ω with respect
to the partition (a, An, B

n\ Then the sequence fAn(z) tends to a univalent function
fλ(z) such that

fΆn fΆ
-0.

The function f/\(z) is independent of the choice of minimal sequences.
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Proof. Taking a new sequence {U n

3=ιAj}, we may assume that An is increasing.
Then from the monotonity of Γ(An) the same reason as the proof of (3) shows

I -ff I -ff I 12 ~P(fV A Ώm\(ll\ \ J Am I 7 An I i ^0 τ_ K(a, Am, & )
i —^ .w& . w

! j A n I i f l -fl-W /U, £>

for ^>m which implies the existence of fA such that \\fΆJfAn—/^//^ll2^^-
The independence of /4 follows from (11).

21. Next we take a subset £ι of 5 such that a\jBι is compact. Let Γ(Al)
and X(^ι) be the families defined as before. Considering the family Γ(A\\ we see
that R(a, A1, Bi) is increasing with respect to Bi. Put

R(B)=sup R(a, A1, Bi)
BiCB

for Bi such that a\JBi is compact. Let {Bn} be a maximal sequence such that
lim R(a, An, Bn)=R(B\ Then we have

LEMMA 6. Suppose R(B)<,oo. Let QBn(z) be the radial-circular slit disc mapp-
ing of Ω with respect to the partition (a, An, Bn) Then there exists a univalent
function gB(z) such that

Q'B

QB Ω

The function Qn is independent of the choice of maximal sequences.

The proof is similar to Lemma 5, which may be omitted.

22. We now state

THEOREM 5. Suppose R(A)=R(B)<oo. Then the function fΛ defined in Lemma
5 coincides with the function QE in Lemma 6.

Put R(A)=R(a, A, B) and fA=φA,B Then the function φA,B possesses the fol-
lowing properties'.

i) <PA,B(OC) is the circle \φA,B\=R(a, A, B) with possible radial incisions emana-
ting from it,

ϋ) <PA,B(G\ σ^A, is a circular slit (possibly a point) with possible radial incisions
emanating from it,

iϋ) <PA,B(G\ σzB, is a radial slit (possibly a point) with possible circular incisions
emanating from it,

iv) the area of ψA,B(dΏ) vanishes,
v) the metric po=\φΆ,B/(2πφA,B)\ is extremal for the family Γq(A) of curves

separating a from the set \ΨA,B\=C[ within Q—A for sufficiently small q and mod
Γq(A) = (2πΓ1 log R(a, A, B)/q and

vi) the metric μo=\φΆ,B/(φA,nlog(R(a, A, B)lq))\ is extremal for the family X.q(B)
of curves joining them within d — B and modXQ(B)=^2π/log(R(a, A, B)lq\
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Proof. Let {An} be a minimal sequence in Lemma 5 and let {Bn} be a maximal
sequence in Lemma 6. Then we get similarly as in (11)

fr
J An

QBr)

R(a, An, Bn)
R(a, An, Bn)

since Γ(An)^Γ(An\ which implies the coincidence of fA and gB

Next we show the properties v) and vi). Taking a subsequence of {/4n}, if
necessary, we can construct such a sequence {qn} with limit q that {Γqn(An)} is
decreasing and Γqn(An)^Γq(A). Here Γqn(An) is the family of curves separating a
from the set \fAn\=qn within Ω—An. Let {qn} be a sequence with the same limit
such that (Γqn(An)} is increasing and Γq*(An)cΓq(A), where Γq»(An) is the similar
curve family for An and gBn. Then we have Γ\Γq»(An)=>Γq(A)D (jΓQn(An).

From Lemma 1 the metric po=\φAtBl(2πφA,B)\ is extremal for \jΓqn(An). On
the other hand, p0eP*(nΓqn(An)) from the strong convergence of pn=\fAJ(2πfAn)\.
Thus po is extremal for Γ}Γqn(An) and so is for Γq(A). The module is calculated
from the convergence of pn. The extremality of μQ is proved analogously.

The property iv) follows from e.g. the fact the mod Γq(A)=(2π)~1 log (R(a, A, B)/q).

23. Continued. Finally we prove i), ii) and iii). In order to show the property
ii), we may assume that σeAi of {An}, where {An} is an increasing sequence such
that /An tends to fA. Let {Ωm} be an exhaustion of Ω towards σ such that Q\ 3 a
and let σm be the relative boundary of Ωm. Put un=log \fAn\ and z/0=log \fA\. Let
X(σ, Bn) denote the family of curves joining σ± and σ within 0 — Bn. Then as in
the proof of Theorem 1, we have for a constant rn(σ)

dun=logrn(σ)—Un(Zc) for a. a. ceX(σ, Bn),
c

where zc is the initial point of c on σλ. Since || grad(^n—^o)||2-»0, there exists an
rQ(σ) such that

(12) \ rf«o=logr0(<7)—«o(*c) for a. a. ce \jX(σ, Bn).
Jc

This is easily seen from Lemma 3 and the uniform convergence of un on σ\.
Set Δm=Ωm—Ωm_ι (m^l, Ω0=φ). Considering the sequence {fAlϊ} in each Jm,

from Lemma 2 we can construct a (H-ει)-quasiconformal mapping Φ^(z) of Ω such
that Φει=fAncmy in a subdomain Δf

m of Δm whose complement with respect to Δm is
relatively compact in Ω, Φ£l=fA in a neighborhood of the relative boundary of Δm

and fA(σ)=Φει(σ). Let Bn^ denote Bn^Γ\Δm which is open in dΩ. Put B^
= Um^w ( m ) and Aει=dΩ-a-B\ Then B'1 is open. We see that Φβl(r)=/4n(TO)(r),
τ€^n ( T O )n^m and Φβl(α)=/4nα)(α). Furthermore we show that Φ*l(Bει) is a minimal
set of radial slits. In fact, any compact subset of Φει(J5eι) is covered by a finite
number of mutually disjoint open sets Φχ£n(m)ys. The intersection of the subset
with each member of the covering is a compact minimal set and hence the union
of these intersections is also minimal [15], which implies the minimality of Φει(B£l).
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Put W=ΦBl(Ω). Consider an exhaustion of W towards Φ£l(aU AeJ, denoted by
{Wk} and set Vk=Wk—Wk-ι (k^l, Wo=φ\ Each Vk consists of a finite number of
domains, say VkJ (/=!, 2, ••-, Nk). The set Φ'^B'ήnΫtj, denoted by BkJ, is a com-
pact minimal set of radial slits and we put DkJ=(Bkj)

c, where the complement is
taken in the extended ^-plane. Then, for an exhaustion φ£/}Γ=1 of DkJ, the radial
slit mapping hl

k3 with the normalizations that hl

kj(w)=w-\— near the point at in-
finity and that /4/0)=0 tends to the function w uniformly on any compact subset
(e.g. [15]). Again using Lemma 2 we can construct a subdomain W'2 of W and
its (1-f ε2)-quasiconformal mapping with the following properties: the relative boundary
of W'2 consists of at most a countable number of analytic curves enclosing the
elements of Φ\Beι) only, its image under Φ'2 is a set of radial slits and Φ£2°ΦXr)
= Φ'l(τ) for ΦXτ)€ΪF ε 2Γ!ΦXtfU Aj). Let Ω* be the inverse image of Sunder Φ\
We denote by Λ*(σ) the subfamily of U nX(σ, Bn) consisting of the curves contained
in Q* less its relative boundary along which (12) is false. Clearly Φε2oφeι is a
(l+ει)(l+ε2)-quasiconformal mapping. Then each radial ray joining the images of
of σ and σι under Φβ2°φει within φ**(ffi**) less the image of the relative boundary of
Ω* contain an image curve of \jX(σ, B). Since the number of relative boundary
components of ΦXT7*2) is at most countable, the inequality (5) is applicable to
Φει°ΦXΛ*(tf)) and ii) follows. The proof of i) is similar, because we can establish
StrebeΓs inequality (6). The proof of iii) is analogous under use of {gBn}. We
complete the proof of Theorem 5.

24. We call the function <pAlB in Theorem 5 a circular and radicfl, slit disc
mapping of Ω with respect to the partition (α, A, B). The same extremal properties
stated in Theorems 2 and 3 are valid for this function.

We can see from these theorems that both the circular-radial and radial-circular
slit mappings are indeed circular and radial slit disc mappings. It follows from the
following.

THEOREM 6. If A or B is closed in dΩ—a, the quantities R(A) and R(B)
coincide with R(a, A, B). Here R(a, A, B) is the extremal radius in Theorems 1 and
4, if it is finite and R(a, A, B)=oo otherwise.

Proof. Suppose, at first, that all A is compact. Then clearly R(A)=R(a, A, B).
To show that R(B)=R(a, A, B\ consider an exhaustion {Ωn} of Ω towards a\jA.
Put Bn=QnΓ\B and An=dΩ—a—Bn Then we have under the same notations in
no. 20 Γ(A)= \JΓ(AΛ). By Lemma 1, we have R(a, A", Bn)-+R(a, A, B), which
implies R(B)=R(a, A, B\ since a\jBn is compact.

Next, if a\jB is compact, R(B)=R(a, A, B). When R(a, A, B)=oo, we get
R(A)=oo from the monotonity of module. In case R(a, A, .Z?)<oo, considering an
exhaustion {Ωm} of Ω towards α, set Vm=Ωm-Ωm_1 (m^l, Ω0=φ\ Aw=ΫmΓ(A.
Let {Vmn} denote an exhaustion of Vm towards dVm—Am) and let Aff* be the open
and closed set ΫmnΓiA^m\ We set Amn=Ay»\J(A-A<m>) and Bmn^dΩ-a-Amn

which is closed. We have A=(JnAmn and X(B)=\JnX(Bmn) as above. Putting
m=I, from Lemma 1 and (1) we have ^QB/QB—QBιnlQBln\\2—>0. Thus there exists
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an HI such that

R(a, Alnv Blnι}<R(a, A, B)+-~~.

For the partition (a, Amv Bίnι), applying the same argument to F2, we have an
open subset A2n2 of Λίnι such that QmΓiA2n2 is compact for m^2 and that

R(a, A2n2, Bzn2}<R(a, Amv &»1)+-^-

and so on. Summing up these inequalities, we have

(a, A, B)+ε.

We now prove that Ae=ΠkAknk is a closed subset of A in 3Ω— a and that
R(a, Aknky Bknk)^R(a, Aε, B

ε) as k^>oo, where (α, A, Bε) is determined by A*, which
implies the assertion. In fact ί?mnA is compact for all m, whence α U A is com-
pact. The convergence of the extremal radii follows from the fact that Γ(A)
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