ON CIRCULAR AND RADIAL SLIT DISC MAPPINGS

By Nobuyuki Suita

§ 1. Introduction.

1. This paper contains ameliorations of some results of Marden and Rodin [7]. Recently Marden and Rodin [7] discussed a circular-radial slit mapping in connection with problems of extremal lengths. For instance they divide boundary components of a plane domain Ω into three sets, α, β and γ, where α is a component and $\alpha \cup \beta$ is closed in the Stoilow compactification of Ω. They proved that if the α is not so small, a circular-radial slit disc mapping of Ω can be constructed and that the image of Ω under it is bounded by a circle with center at the origin having possible radial incisions, circular slits with possible radial incisions and radial slits under an assumption of β-isolation.

The aims of the present paper are at first to deal with such a mapping without the condition of β-isolation, in the second place to construct a radial-circular slit disc mapping in case where $\alpha \cup \gamma$ is closed, which was treated by them as a dual problem [7] and at last to define a circular and radial slit disc mapping in more general partitions.

We shall also discuss extremal properties of these mappings. Such extremal properties were discussed by Marden and Rodin in connection with the logarithmic area [7]. Our version is more classical. These properties are related to extremal problems treated by Rengel [12] for domains of finite connectivity. One of them was discussed by Reich and Warschawski [11] for circular slit mappings of arbitrary domains and recently by Oikawa [9] for radial slit mappings. The other was due to Grötzsch [6] for radial slit mappings with a restriction which was removed by the author [16].

§ 2. Preliminaries.

2. Let Ω be an open plane domain and let $\hat{\Omega}$ be its Stoillow ctification [3]. A boundary component σ is defined by a defining sequence $\left\{\Delta_{n}\right\} \quad n$ that the relative boundary of Δ_{n} is a single Jordan curve, $\Delta_{n} \supset \bar{\Delta}_{n+1}$ and $\cap \Delta_{n}=\phi$. Each member of the defining sequence $\left\{\Delta_{n}\right\}$ forms a neighborhood of σ.

The topological representation of $\left\{\Delta_{n}\right\}$ is given by $\cap \mathrm{Cl}\left(\Delta_{n}\right)$ which is denoted by the same letter σ, where $\mathrm{Cl}(*)$ means the closure taken in the Riemann sphere.

Let $T(z)$ be a topological mapping of $\Omega . \quad T(z)$ can be extended topologically
onto its compactification $\hat{\Omega}$. The image of σ defined by $\left\{U_{n}\right\}$ is given by $T(\sigma)$ defined by $\left\{T\left(\Delta_{n}\right)\right\}$.

Let C be a closed set of boundary components of σ. Since C is covered by a finite number of members of defining sequences of elements of C, we can construct a defining sequence of C, denoted by $\left\{D_{n}\right\}$, such that D_{n} consists of a finite number of domain whose relative boundaries are single analytic Jordan curves, $D_{n} \supset \bar{D}_{n+1}$, and $\cap \mathrm{Cl}\left(D_{n}\right)=C . \quad \Omega-\bar{D}_{n}$ is a domain, denoted by $\Omega_{n} .\left\{\Omega_{n}\right\}$ exhausts Ω which is called an exhaustion of Ω towards C.
3. We shall use the method of extremal metrics. Let Γ be a family of curves c running within $\hat{\Omega}$ whose restriction on Ω consists of at most a countable number of locally rectifiable curves in Ω. Let ρ be a measurable metric on Ω which will be used instead of $\rho|d z|$ for short. We mean by $P(\Gamma)$ the admissible class of metrics such that the Lebesgue-Stieltjes integral of ρ along the restriction of c on Ω is defined and satisfies.

$$
\int_{c} \rho|d z| \geqq 1
$$

The module of Γ, denoted by $\bmod \Gamma$, is defined by

$$
\inf _{\rho \in P(\Gamma)}\|\rho\|_{\Omega}^{2}=\inf _{\rho \in P(\Gamma)} \iint_{\Omega} \rho^{2} d x d y
$$

The extremal length $\lambda(\Gamma)$ is its reciprocal.
Let $I I$ be the space of l_{2} metrics on Ω. We denote by $P^{*}(\Gamma)$ the closure of $P(\Gamma) \cap H$ which is called the l_{2}-admissible class of Γ. Then $\bmod \Gamma=\infty$, if and only if $P^{*}(\Gamma)=\phi$. Unless $P^{*}(\Gamma)=\phi$, there exists a unique metric ρ_{0} in H, called the extremal metric, satisfying that $\bmod \Gamma=\|\rho\|^{2}[13]$ and that

$$
\begin{equation*}
\left\|\rho-\rho_{0}\right\|^{2} \leqq\|\rho\|^{2}-\left\|\rho_{0}\right\|^{2} \tag{1}
\end{equation*}
$$

for every $\rho \in P^{*}(\Gamma)$ [16].
A curve family with vanishing module is called an exceptional family. The union of a countable number of exceptional families is exceptional [5]. We say that a proposition holds for almost all (a. a.) $c \in \Gamma$, if it is false only for an exceptional subfamily of Γ. The l_{2}-admissible class $P^{*}(\Gamma)$ is equivalent to the class of satisfying

$$
\int_{c} \rho|d z| \geqq 1 \quad \text { for a. a. } c \in \Gamma
$$

[5, 17].
The following lemma will be used frequently.
Lemma 1. Let $\left\{\Gamma_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of curve families. Put Γ_{n} $=\cup \Gamma_{n}$. Then $\bmod \Gamma_{n}$ tends to $\bmod \Gamma_{0}$. Furthermore the sequence of the extremal metrics ρ_{n} tends to the extremal metric ρ_{0} of Γ_{0} strongly so long as $P^{*}\left(\Gamma_{0}\right) \neq \phi$.

The proof of the first half is found in [17] and the convergence of ρ_{n} is obvious from its proof. Ziemer [19] proved this result for the module of families of complete measures.
4. Let $\Phi(z)$ be a quasiconformal mapping of Ω whose maximal dilatation is K. A curve c in $\hat{\Omega}$ is mapped onto a curve on the Stoilow compactification of $\Phi(\Omega)$ which is denoted by $\Phi(c)$. The collection of the image curves of Γ is written by $\Phi\left(\Gamma^{\prime}\right)$. Then we have

$$
\begin{equation*}
\frac{1}{K} \bmod \Gamma \leqq \bmod \Phi(\Gamma) \leqq K \bmod \Gamma \tag{2}
\end{equation*}
$$

For the proof the readers are referred to [1].
We shall use quasiconformal mappings to modify the conformal structure of Ω and to evaluate modules. We shall need the following lemma later on.

Lemma 2. Let Δ and Δ^{\prime} be subdomains of Ω whose relative boundaries consist of a finite number of analytic closed curves such that $\Delta \supset \bar{\Delta}^{\prime}$ and $\Delta-\bar{\Delta}^{\prime}$ is relatively compact. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of univalent functions defined on subdomains Ω_{n} of Ω such that $\Omega_{n} \subset \Omega_{n+1}$ and $\cup \Omega_{n}=\Omega$. Suppose that f_{n} tends to a univalent function f_{0} uniformly on any compact subset of Ω. Then, for a given $\varepsilon>0$, we can construct a $(1+\varepsilon)$-quasiconformal mapping of a subdomain $\Omega^{\varepsilon}=(\Omega-\bar{\Delta}) \cup \Omega_{n}$, denoted by $\Phi^{\varepsilon}(z)$, such that $\Phi^{e}(z)=f_{0}(z)$ in $\Omega-\bar{\Delta}$ and $\Phi^{\varepsilon}(z)=f_{n}(z)$ in $\Delta^{\prime} \cap \Omega_{n}$ for a sufflciently large n.

Proof. Let $D_{j}(j=1,2, \cdots, l)$ be the components of $\Delta-\bar{\Delta}^{\prime}$. Let C_{\jmath} be the subset of boundary comsonents of D_{j} contained in the relative boundary of Δ and let C_{j}^{*} be those contained in the relative boundary of Δ^{\prime}. Denoting by $\omega_{j}(z)$ the harmonic measure of C_{j}^{*} in D_{\jmath}, we put

$$
\Phi^{\varepsilon}(z)=\left\{\begin{array}{l}
f_{0}(z) \\
\left(1-\omega_{j}(z)\right) f_{0}(z)+\omega_{j}(z) f_{n}(z) \\
f_{n}(z)
\end{array} \quad \text { in } \bar{\Delta}^{\prime} \cap \Omega_{n},\right.
$$

for so large n that the Ω^{e}, defined by $(\Omega-\bar{\Delta}) \cup \Omega_{n}$, becomes a domain and that

$$
\frac{\Phi^{\varepsilon}\left(z_{1}\right)-\Phi^{\varepsilon}\left(z_{2}\right)}{z_{1}-z_{2}} \neq 0 \quad\left(z_{1}, z_{2} \in D_{\jmath}, z_{1} \neq z_{2}\right) .
$$

Then Φ^{e} is univalent in Ω^{e}. A simple calculation verifies the statement about the dilatation of \mathscr{D}^{e} for sufficiently large n, which is a desired quasiconformal mapping [1]. Another topological proof of the univalency can be given as in [15].

§3. Circular-radial slit mapping.

5. We may assume that Ω is a finite domain. Let α be its outer boundary.

Let (α, A, B) denote a partition of $\partial \Omega$ into three sets. Suppose $\alpha \cup A$ is closed. Let $\left\{\Omega_{n}\right\}$ be an exhaustion of towards $\alpha \cup A$. Let α_{n} denote the outer boundary of Ω_{n} and let A_{n} be the subset of its relative boundary other than α_{n}. Put $B_{n}=B \cap \hat{\Omega}_{n}$. Since B_{n} is closed, we take an exhaustion $\left\{\Omega_{n j}\right\}$ of Ω_{n} towards B_{n}. Let $B_{n j}$ be the relative boundary of $\Omega_{n \jmath}$ in Ω_{n}, and let $\alpha_{n \jmath}$ and $A_{n \jmath}$ be $\alpha_{n} \cap \hat{\Omega}_{n \jmath}$ and $A_{n} \cap \hat{\Omega}_{n \jmath}$ respectively. Let a be a point of Ω. We agree that every member of its exhaustion contains the point a. There exists a circular-radial slit disc mapping such that
i) $f_{n j}(a)=0, \quad f^{\prime}{ }_{n j}(a)=1$,
ii) $f_{n}\left(\alpha_{n j}\right)$ is a circle $\left|f_{n j}\right|=R_{n j}$,
iii) $f_{n j}\left(A_{n j}\right)$ consists of a finite set of circular slits and
iv) $f_{n j}\left(B_{n j}\right)$ consists of a finite set of radial slits.

The construction of $f_{n \jmath}$ is now classical and the readers are referred to [7].
6. The function f_{n} induces two extremal metrics of the following module problems. Let $\Gamma_{n j}^{q}$ be the family of curves separating the set $\left|f_{n j}\right|=q$ from $\alpha_{n j}$ within $\hat{\Omega}_{n j}-A_{n j}$ and let $X_{n j}^{q}$ be the family of curves joining them within $\hat{\Omega}_{n j}-B_{n j}$. Then the metrics $\rho_{n j}=\left|f^{\prime}{ }_{n j} /\left(2 \pi f_{n j}\right)\right|$ and $\mu_{n j}=\left|f^{\prime}{ }_{n j} /\left(\left(\log R_{n j} / q\right) f_{n j}\right)\right|$ are the extremal metrics for $\Gamma_{n j}^{q}$ and $X_{n j}^{q}$ respectively and we get

$$
\bmod \Gamma_{n_{j}}^{q}=\frac{1}{2 \pi} \log \frac{R_{n j}}{q}
$$

and

$$
\bmod X_{n j}^{q}=\frac{2 \pi}{\log R_{n j} / q} .
$$

The quantity $R_{n_{j}}$ is represented in terms of modules. Let $\Gamma_{n j}(q)$ be the family of curves sparating a small circle $|z-a|=q$ from $\alpha_{n j}$ within $\hat{\Omega}_{n j}-A_{n \jmath}$ and let $X_{n j}(q)$ be the joining curve family of them within $\hat{\Omega}_{n j}-B_{n j}$. Then we have

$$
\begin{aligned}
\log R_{n j} & =\lim _{q \rightarrow 0}\left(2 \pi \bmod \Gamma_{n j}(q)+\log q\right) \\
& =\lim _{q \rightarrow 0}\left(2 \pi \lambda\left(X_{n j}(q)\right)+\log q\right),
\end{aligned}
$$

both of which are the limits of monotone increasing sequences. This relation is easily verified from well-known inequalities of extremal lengths as in [2] and [14]. In general the above quantities can be defined for a general domain and an arbitrary partition of $\partial \Omega$ into α, A and B similarly. These two limits may well differ. If these coincide, we denote it by $R(\alpha, A, B)$ and call it the extremal radius of α at a with respect to the partition (α, A, B).
7. We first let j tend to infinity. The function $f_{n j}$ converges to a univalent function $f_{n}(z)$ in such a way that $\left\|f^{\prime}{ }_{n}\left|f_{n}-f^{\prime}{ }_{n j}\right| f_{n_{j}}\right\|_{\mathscr{Q}_{n}}^{2} \rightarrow 0$ [7]. It is also verified from the inequality (1). In fact, let M_{q} be the maximum modulus of $f_{n k}$ on the curve $\left|f_{n j}\right|=q$ for $k>j$. Then any curve of $\Gamma_{n_{k}}^{M}$ contains a curve of $\Gamma_{n}{ }_{j}^{q}$ as a subset.

Put $\rho_{n j}=\left|f^{\prime}{ }_{n j}\right|\left(2 \pi f_{n j}\right) \mid$ which is defined to be zero outside of $\Omega_{n j}$. Let $\Omega_{n_{k}}^{M q}$ denote the set $M_{q}<\left|f_{n k}\right|<R_{n k}$. We have by (1)

$$
\left\|\rho_{n j}-\rho_{n k}\right\|_{a_{n k}{ }^{2} q} \leqq \frac{1}{2 \pi}\left(\log \frac{R_{n j}}{q}-\log \frac{R_{n k}}{M_{q}}\right)
$$

and letting $q \rightarrow 0$ we get

$$
\begin{equation*}
\|\left|\frac{f^{\prime}{ }_{n \jmath}}{f_{n \jmath}}\right|-\left|\frac{f^{\prime}{ }_{n k}}{f_{n k}}\right|_{a_{n \jmath}}^{2} \leqq 2 \pi \log \frac{R_{n \jmath}}{R_{n k}} . \tag{3}
\end{equation*}
$$

From the inequality the convergence of $f_{n j}$ is easily verified [18].
The image of Ω_{n} under f_{n} is as follows:
i) $f_{n}\left(\alpha_{n}\right)$ is the circle $\left|f_{n}\right|=R_{n}$, where $R_{n}=R\left(\alpha_{n}, A_{n}, B_{n}\right)$,
ii) $f_{n}\left(A_{n}\right)$ consists of a finite set of circular slits and
iii) $f_{n}\left(B_{n}\right)$ is a minimal set of radial slits.
i) and ii) is obvious, since α_{n} and A_{n} are isolated. For the representation of R_{n}, see the next section no. 8. The property iii) is easily verified by the localization of minimality [10, 15].
8. The f_{n} again induces two extremal metrics for Γ_{n}^{q} and X_{n}^{q}, where Γ_{n}^{q} is the family of curves separating α_{n} from the set $\left|f_{n}\right|=q$ within $\hat{\Omega}_{n}-A_{n}$ and X_{n}^{q} is that of curves joining them within $\hat{\Omega}_{n}-B_{n}$ for sufficiently small q. Put $\rho_{n}=\left|f_{n}^{\prime}\right|\left(2 \pi f_{n}\right) \mid$. Then from Schwarz's inequality we have

$$
\|\rho\|_{a_{n}^{q}}^{2} \geqq \frac{1}{2 \pi} \log \frac{R_{n}}{q}, \quad \rho \in P\left(\Gamma_{n}^{q}\right)
$$

which implies the extremality of ρ_{n}, since $\rho_{n} \in P^{*}\left(\Gamma_{n}^{q}\right)$.
Next, we set $\mu_{n}=\left|f_{n}^{\prime}\right|\left(f_{n} \log R_{n} / q\right) \mid$. Considering the maximum and minimum moduli of $f_{n j}$ on the curve $\left|f_{n}\right|=q$, we can conclude from Lemma 1 that $\bmod X_{n}^{q}=$ $2 \pi / \log \left(R_{n} / q\right)$ and μ_{n} is extremal.
9. Since the family Γ_{n} of curves separating α_{n} from the point a within $\hat{\Omega}_{n}-A_{n}$ is increasing, so is R_{n} (cf. no. 6). Suppose $R_{0}=\lim R_{n}<\infty$. Then letting $n \rightarrow \infty$, we obtain a univalent function $f_{0}(z)$ such that $\left\|f_{n}{ }^{\prime}\left|f_{n}-f_{0}{ }^{\prime}\right| f_{0}\right\|_{2_{n}}^{2} \rightarrow 0$ [7]. This is a direct result from an inequality similar to (3)

$$
\left|\left\|\frac { f _ { m } ^ { \prime } } { f _ { m } } \left|-\left|\frac{f_{n}^{\prime}}{f_{n}}\right| \|_{\Omega_{n}}^{2} \leqq 2 \pi \log \frac{R_{m}}{R_{n}}, \quad \text { for } \quad m>n\right.\right.\right.
$$

since $R_{n} \leqq R_{0}$. We now state
Theorem 1. Under the assumption that $R_{0}<\infty$, the function f_{0} constructed above possesses the following properties:
i) $f_{0}(\alpha)$ is the circle $\left|f_{0}\right|=R_{0}$ with possible radial incisions of angular measure zero emanating from it.
ii) $f_{0}(\sigma), \sigma \in A$, is a circular slit (possibly a point) with possible radial incisions of angular measure zero,
iii) $f_{0}(B)$ is a minimal set of radial slits,
vi) the total area of the image of the boundary of Ω under f_{0} vanishes,
v) the metric $\rho_{0}=\left|f_{0}{ }^{\prime}\right|\left(2 \pi f_{0}\right) \mid$ is extremal for the curve family Γ_{0}^{q} of curves separating α from the set $\left|f_{0}\right|=q$ within $\hat{\Omega}-A$ for sufficiently small q and $\bmod I_{\%}^{\prime}$ $=(2 \pi)^{-1} \log R_{0} / q$, and
vi) the metric $\mu_{0}=\left|f_{0}{ }^{\prime}\right|\left(f_{0} \log R_{0} / q\right) \mid$ is extremal for the family X_{0}^{q} of curves joining them within $\hat{\Omega}-B$ and $\bmod X_{0}^{q}=2 \pi / \log R_{0} / q$.

The properties i) and ii) are discussed by Marden and Rodin [7] under an additional assumption " β-isolation." They showed that $f_{0}(\sigma), \sigma \in B$, is a radial slit. Here a minimal set is a quasiminimal set in [15]. The property iv) is a common property of canonical slit mappings stated in [15]. The module problems were discussed by them [7]. A special module problem for the family of collections of curves was dealt with by Andreian-Casacu [4].
10. Before proving Theorem 1, we prepare the following

Lemma 3. Let ρ_{n} be a sequence of metrics such that $\left\|\rho_{n}\right\|^{2} \rightarrow 0$. Let Γ be a family of curves on which ρ_{n} is defined and measurable. Then we have

$$
\lim _{n \rightarrow \infty} \int_{c} \rho_{n}|d z|=0 \quad \text { for a. a. } c \in \Gamma .
$$

This is due to Fuglede [5] (cf. [7]).
11. The proof of Theorem 1. The property iii) is a direct result of the localization of minimality [15] which is also proved by a characterization due to Oikawa [10].

We first show the property ii). The proof of i) is its analogue. Let σ be an element of A. We can select a defining sequence of σ, denoted by $\left\{\Delta_{n}\right\}$, from the components of $\Omega-\bar{\Omega}_{n}$, where $\left\{\Omega_{n}\right\}$ is an exhaustion of Ω towards $\alpha \cup A$ to define f_{0} as before. Let σ_{n} be the relative boundary of Δ_{n}. The image of σ_{n} under f_{n} is a circular slit with radius r_{n}. Selecting a subsequence, we may assume that $\lim r_{n}=r_{0}$, since r_{n} is bounded by R_{0}. Put $u_{0}=\log \left|f_{0}\right|, u_{n}=\log \left|f_{n}\right|$ in $\Delta_{1} \cap \Omega_{n}$, and extend u_{n} on $\Delta_{1}-\bar{\Omega}_{n}$ by the constants taken by it on each component of the relative boundary of $\Delta_{1}-\bar{\Omega}_{n}$. Let $X(\sigma)$ be the family of curves joining σ and σ_{1} within $\hat{\Delta}_{1}-B$. The function u_{n} is continuous on $c \in X(\sigma)$. We set $\rho_{n}=\left|\operatorname{grad}\left(u_{0}-u_{n}\right)\right|$. Then the convergence of $f_{n}^{\prime} \mid f_{n}$ in no. 9 and Lemma 3 shows that

$$
\lim _{n \rightarrow \infty} \int_{c} d\left(u_{0}-u_{n}\right)=0, \quad \text { for a. a. } c \in X(\sigma) .
$$

Using the uniform convergence of u_{n} on σ_{1}, we have

$$
\begin{equation*}
\int_{c} d u_{0}=\log r_{0}-u_{0}\left(z_{c}\right) \quad \text { for a.a. } c \in X(\sigma), \tag{4}
\end{equation*}
$$

where z_{c} is the initial point of c on σ_{1}.
Next we evaluate the module of the curve family, denoted by A, consisting of the curves on which (4) is false. From the construction of f_{0} in nos. 7 and 9 we can select a subsequence $\left\{f_{n j(n)}\right\}$ from the sequence $\left\{f_{n j}\right\}$ such that $\| f_{0}{ }^{\prime} \mid f_{0}-f^{\prime}{ }_{n j(n)}$ $\left|f_{n j(n)}\right|^{2} \Omega_{n j}(n) \rightarrow 0$. Let Ω_{0} be a relatively compact open set $\left|f_{0}\right|<q$ and let D_{k} be $\Omega_{k}-\bar{\Omega}_{k-1}(k \geqq 1)$ which consists of a finite number of domains, say $D_{k l}\left(l=1,2, \cdots, N_{k}\right)$. Let ε be a given positive number. Then using Lemma 2, we can construct a subdomain $D_{k l}^{\varepsilon}$ of each $D_{k l}$, given by $D_{k l} \cap \Omega_{n j(n)}$, and its ($1+\varepsilon$)-quasiconformal mapping $\Phi_{k l}^{k}(z)$ such that $\Phi_{k l}^{k}=f_{0}$ in $D_{k l}-\bar{\Delta}_{k l}$ and $\Phi_{k l}^{k}=f_{n j(n)}$ in $\Delta_{k l}^{\prime} \cap \Omega_{n j(n)}$, where $\Delta_{k l}$ and $\Delta_{k l}^{\prime}$ are suitably chosen ends of $D_{k l}$ containing its ideal boundary components which correspond to Δ and Δ^{\prime} in Lemma 2 respectively. Set $\Omega^{c}=\cup_{k l} D_{k l}^{\varepsilon} \cup \Omega_{0}$ and put

$$
\Phi^{e}= \begin{cases}\Phi_{k l}^{s} & \text { in } D_{k l}^{s}, \\ f_{0} & \text { in } \Omega_{0}\end{cases}
$$

Then Ω^{c} has at most a countable number of relative boundary components whose images under ϕ^{ε} are radial slits. Furthermore the image of $\tau \in A \cup \alpha$ under ϕ° coincides with $f_{0}(\tau)$.

In the image domain $\Phi^{e}\left(\Lambda_{1} \cap \Omega^{e}\right)$ a ray $\arg w=$ const emanating from $\Phi^{c}\left(\sigma_{1}\right)$ $\left(=f_{0}\left(\sigma_{1}\right)\right)$ contains the image of a curve joining σ_{1} and σ within $\hat{\Delta}_{1}-B$, if it intersects $D^{s}(\sigma)$ and if it is disjoint from the radial slits which is the image of the relative boundary of Ω^{ε}. Let W be the doubly connected domain bounded by $f_{0}\left(\sigma_{1}\right)$ and $f_{0}(\sigma)$. Since $f_{0}\left(\sigma_{1}\right)$ encloses $f_{0}(\sigma)$, a ray $\arg w=$ const contains two radial segments joining $f_{0}\left(\sigma_{1}\right)$ and $f_{0}(\sigma)$ within W. The set of the arguments of these segments makes two intervals $[a, b]$, where a and b are the minimum and maximum values of the arguments of the rays. One is the set of segments on which $|w|$ increase from $f_{0}\left(\sigma_{1}\right)$ to $f_{0}(\sigma)$. and on the other set the contrary holds. The subset E of the arguments of the segments along which the relation

$$
\lim \log |w|=\log r_{0}
$$

does not hold is a set of F_{σ}, where r_{0} is the quantity in (4). Thus the set Ξ^{e} of the arguments of the rays in the domain $\Phi^{e}\left(\Lambda_{1}\right)$ mentioned above is a measurable subset of Ξ with the same measure. Let $l^{c}(\theta)$ denote the logarithmic length of the curve on the ray in the $\Phi^{e}\left(\Delta_{1} \cap \Omega^{e}\right)$ for $\theta \in \Xi^{e}$ and let $l(\theta)$ be the length of the segment for $0 \in \Xi$ which satisfies $l(\theta) \geqq l^{\varepsilon}(\theta)$. Let ρ be an admissible metric for the image curve on the ray with argument $\theta \in \Xi^{\varepsilon}$. From the Schwarz inequality we have

$$
\int_{\arg w=\theta^{2}} \rho^{2} r d r \geqq \frac{1}{l^{c}(\theta)}, \quad \theta \in \Xi^{c}
$$

and since the inverse image of the curve for $0 \in \Xi^{c}$ belongs to A

$$
\bmod \Lambda \geqq \frac{1}{1+\varepsilon} \int_{s^{\varepsilon}} \frac{d \theta}{l^{\varepsilon}(\theta)}
$$

Letting $\varepsilon \rightarrow 0$, we get

$$
\begin{equation*}
\bmod \Lambda \geqq \int_{s} \frac{d \theta}{l(\theta)} \tag{5}
\end{equation*}
$$

The above inequality was first obtained by Strebel for the radial slit mapping [14].

From (5) we conclude that the subset of $f_{0}(\sigma)$ not lying on the circle $\left|f_{0}\right|=r_{0}$ is possibly a set of radial incisions of angular measure zero.
12. Continued. We now prove the properties iv), v) and vi). As is seen in no. 8, $\rho_{n}=\left|f_{n}^{\prime} /\left(2 \pi f_{n}\right)\right|$ is extremal for the dividing curve family Γ_{n}^{q}. Then selecting a subsequence of $\left\{f_{n}\right\}$, if necessary, we can construct such a sequence $\left\{q_{n}\right\}$ with limit q that $\left\{\Gamma_{n}^{q_{n}}\right\}$ is increasing and that $\cup \Gamma_{n}^{q_{n}}=\Gamma_{0}^{q}$, since f_{n} converges to f_{0} uniformly on a neighborhood of the set $\left|f_{0}\right|=q$ for a sufficiently small q. Thus Lemma 1 shows that $\bmod \Gamma_{0}^{q}=(2 \pi)^{-1} \log R_{0} / q$ and $\rho_{0}=\left|f_{0}^{\prime}\right|\left(2 \pi f_{0}\right) \mid$ is extremal.

The property iv) is obvious from the equality $\left\|\rho_{0}\right\|^{2}=(2 \pi)^{-1} \log \left(R_{0} / q\right)$.
Finally the metric $\mu_{0}=\left|f_{0}{ }^{\prime} /\left(f_{0} \log R_{0} / q\right)\right|$ is l_{2}-admissible and hence we have $\bmod X_{0}^{q} \leqq 2 \pi / \log \left(R_{0} / q\right)$. We apply the inequality (5) to X_{0}^{q} and have

$$
\begin{equation*}
\bmod X_{0}^{q} \geqq \int_{0}^{2 \pi} \frac{d \theta}{l(\theta)} \tag{6}
\end{equation*}
$$

Since $l(\theta) \leqq \log \left(R_{0} / q\right)$, we get $\bmod X_{0}^{q} \geqq 2 \pi / \log \left(R_{0} / q\right)$ which implies vi). This inequality was obtained by Strebel [14] in case where $A=\phi$.

From (6) we also see that $f_{0}(\alpha)$ is the circle $\left|f_{0}\right|=R_{0}$ with possible radial incisions of angular measure zero.

Remark. We conclude that $R_{0}=R(\alpha, A, B)$ from v) and vi).
We call the function f_{0} an (extremal) circular-radial slit disc mapping of Ω with respect to the partition (α, A, B). Here the closedness of $\alpha \cup A$ and finiteness of R_{0} are assumed.

§ 4. Extremal Properties.

13. We discuss some extremal properties of the circular-radial slit disc mapping which characterize itself. Marden and Rodin dealt with extremal properties intimately related to the extremal length [7]. We shall show these extremal properties as extensions of classical theorems.

Let Ω be a finite domain and let α, A and B be a partition of $\partial \Omega$ such that α is its outer boundary and $\alpha \cup A$ is closed. We denote by $\mathfrak{F}(\alpha, A, B)$ the family of univalent functions satisfying
i) $f(a)=0, \quad f^{\prime}(a)=1, \quad a \in \Omega$,
ii) $f(\alpha)$ is the outer boundary of $f(\Omega)$ and
iii) $\left|\int_{c} d \arg f\right| \geqq 2 \pi$ for a. a. $c \in \Gamma(q)$,
where $\Gamma(q)$ is the family of curves separating α from a compact disc $|z-a| \leqq q$ within $\hat{\Omega}-A$. Put

$$
M(f)=\sup _{z \in \Omega}|f(z)| .
$$

Then we have
Theorem 2. Suppose $R(\alpha, A, B)<\infty$. Then the circular-radial slit disc mapping f_{0} is the unique function minmizing the quantity $M(f)$ within $\mathfrak{\lessgtr}(\alpha, A, B)$.

Proof. We first show that $f_{0} \in \mathscr{F}(\alpha, A, B)$. In fact, as is seen in no. 11 we have $\left\|f_{n m(n)}\left|f_{n m(n)}-f_{0}^{\prime}\right| f_{0}\right\|_{2_{n m(n)}}^{2} \rightarrow 0$ for a subsequence $\left\{f_{n m(n)}\right\}$ of $\left\{f_{n m}\right\}$. Applying Lemma 3 to the metric

$$
\rho_{n}= \begin{cases}\frac{1}{2 \pi}|\operatorname{grad} \log | \frac{f_{n m(n)}}{f_{0}} & \text { in } \Omega_{n m(n)}, \\ \frac{1}{2 \pi}|\operatorname{grad} \log | f_{0}| | & \text { in } \Omega-\Omega_{n m(n)},\end{cases}
$$

we get

$$
\int_{c} d \arg f_{0}-\int_{c n a_{n m}(n)} d \arg f_{n m(n)} \rightarrow 0
$$

for a. a. $c \in \Gamma(q)$. Thus we have

$$
\left|\int_{c} d \arg f_{0}\right| \geqq 2 \pi \quad \text { for a. a. } c \in \Gamma(q) .
$$

Next we remark that the condition iii) is independent of the choice of neighborhoods. Indeed, for $q^{\prime}<q$, we take an $r>q$ such that $q^{\prime} \leqq|z-a| \leqq r$ is contained in Ω. Then

$$
\Phi(z)= \begin{cases}r\left|\frac{z}{r}\right|^{\frac{\log q^{\prime}-\log r}{\log q-\log r}} e^{2 \mathrm{arg} z} & \text { in } q<|z| \leqq r \\ z & \text { in } \Omega^{r}\end{cases}
$$

is a quasiconformal mapping of Ω^{q} onto $\Omega^{q^{\prime}}$. Φ maps $\Gamma(q)$ onto $\Gamma\left(q^{\prime}\right)$ and a curve satisfying the inequality in iii) corresponds to a curve with the same property since the condition

$$
\left|\int_{f(c)} d \arg w\right| \geqq 2 \pi
$$

is due to the behavior of the curve near the boundary of Ω. Thus from (2) we conclude the independence.

Put $\rho_{0}=\left|f_{0}^{\prime} /\left(2 \pi f_{0}\right)\right|$ and $\rho=\left|f^{\prime} /(2 \pi f)\right|$ for $f \in \mathfrak{F}(\alpha, A, B)$. From Theorem 1 and (1) we have

$$
\left\|\frac { f ^ { \prime } } { f } \left|-\left|\frac{f_{0}{ }^{\prime}}{f_{0}}\right| \|^{2} \leqq 2 \pi \log \frac{M(f)}{R_{0}}\right.\right.
$$

Thus we have the assertion.
This extremal property can be deduced from Marden and Rodin [7].
14. From Theorem 2 in case where $A=\phi$, we obtain a characterization of the minimality of radial slits which will be needed the next corollary.

Corollary 1. Let E be a compact set contained in an annulus $G: q<|z|<Q$. Then E is a minimal set of radial slils if and only if

$$
\begin{equation*}
\int_{c} d \arg z \geqq 2 \pi \tag{7}
\end{equation*}
$$

for a.a.c of the family of curves separating the circle $|z|=Q$ from $|z|=q$ withun the compactification of $G-E$.

Proof. Let ρ be an admissible metric for the above separating curve family. Then the Schwarz inequality shows $\|\rho\|^{2} \geqq(2 \pi)^{-1} \log (Q / q)$. From (7) $\rho_{0}=|2 \pi z|^{-1}$ is l_{2}-admissible and $\left\|\rho_{0}\right\|^{2} \geqq(2 \pi)^{-1} \log (Q / q)$. Hence ρ_{0} is extremal and we see that the radial slit disc mapping of the disc $|z|<Q$ less E is the function z, which implies the minimality of E from Theorem 1 .

Conversely if E is minimal, $G-E$ is a minimal radial slit annulus [15]. Let $\left\{G_{n}\right\}$ be its exhaustion towards E. Then we have $\left\|1 / z-g_{n}{ }^{\prime} / g_{n}\right\|_{G_{n}}^{2} \rightarrow 0$, where g_{n} is the radial slit annulus mapping of G_{n} with the normalizations $g_{n}(Q)=Q$ and preserving the outer boundary. Put

$$
\rho_{n}= \begin{cases}\left.\frac{1}{2 \pi}|\operatorname{grad} \log | \frac{y_{n}}{z} \right\rvert\, & \text { in } G_{n} \\ |2 \pi z|^{-1} & \text { in } G-G_{n}\end{cases}
$$

Applying Lemma 3 to ρ_{n}, we have

$$
\int_{c} d \arg z-\int_{c \cap G_{n}} d \arg g_{n} \rightarrow 0, \quad \text { for } \quad \text { a. a. } c
$$

which implies (7).

We call a univalent function f a radial slit mapping (with respect to B) if $f(B)$ is a minimal set of radial slits. We get

Corollary 2. f_{0} is the unique function minimizing $M(f)$ among the radial slit mappings f satisfying i) and ii).

This extremal property was found by Oikawa [9] in case where $A=\phi$. The case where $B=\phi$ is classical [11, 12].

Proof. It is sufficient to prove that the condition iii) is equivalent to the minimality of $f(B)$. Suppose iii). In the image plane, we take a compact subset E of $f(B)$. Then we can take a disc $|w| \leqq q \subset f(\Omega)$ and an analytic closed curve κ which separates the image of $\alpha \cup A$ under f from the disc and E in $f(\Omega)$. Let W be the domain whose boundary consists of the circle $|w|=q$, and the subset of boundary components of $f(B)$ contained in the interior of κ, say E^{\prime}, which is closed and contains E. Then we have (7) for a.a. c of the family of curves separating κ from the circle $|w|=q$ within W. Let G be an annulus $q<|w|<Q$ less E^{\prime} containing W. Then similarly as in the proof of Theorem 2 we can construct a quasiconformal mapping Φ of W onto G such that $\Phi(w)=w$ in a neighborhood of E^{\prime} (cf. [16] pp. 224-225). Then we have the validity of (7) for G, which implies the minimality of E^{\prime} and hence of E from Corollary 1.

Next suppose $f(B)$ is minimal. Let $\left\{\Omega_{n}\right\}$ be an exhaustion of Ω towards $\alpha \cup A$. Let α_{n} be the outer boundary of Ω_{n} and let A_{n} be the relative boundary of Ω_{n} other than α_{n}. Put $B_{n}=\hat{\Omega}_{n} \cap B$. Denoting by $\Gamma_{n}(q)$ the family of curves separating the circle $|z-a|=q$ and α_{n} in $\Omega_{n}-A_{n}$, we have (7) for $\Gamma_{n}(q)$ from Corollary 1, since $f\left(B_{n}\right)$ is a compact minimal set of radial slits and $\Gamma_{n}(q)$ is a subfamily of the corresponding family of a large annulus less $f\left(B_{n}\right) . \quad \Gamma_{0}(q)=\cup \Gamma_{n}(q)$ and a countable union of exceptional families is also exceptional. So we get (7) for $\Gamma_{0}(q)$.
15. We now deal with another extremal problem. Let \mathfrak{F} be the family of univalent functions f in Ω satisfying i) and ii). Let X be the family of curves joining α and a within $\hat{\Omega}-B$.

Then the limit

$$
\lim _{t \rightarrow 1}\left|\int_{c_{t}} d f\right|=M_{c}(f)
$$

exists for a. a. $c \in X$, where c_{t} is a subarc of c with its representation $z(s),(0 \leqq s \leqq t$, $z(0)=a$) and tending to α as $t \rightarrow 1$ [8]. Here the module of the above exceptional family is measured by the set of subarcs starting from a simply connected compact neighborhood of a whose exceptionality does not depend on the choice of neighborhood [16]. We define by $m^{*}(f)$ the least upper bound of m satisfying $M_{c}(f) \geqq m$ for a.a. $c \in X$. Then we state

Theorem 3. Under the same assumption in Theorem 2, the circular-radial slit disc mapping f_{0} is the unique function maximizing the quantity $m^{*}(f)$ within the
family \mathfrak{F}.
The Proof is analogous to that of Theorem 4 in [16] and omitted.

§ 5. Radial-circular slit mapping.

16. Throughout this section we assume that Ω is a finite domain containing a, α is its outer boundary and $\alpha \cup B$ is closed. Let $\left\{\Omega_{n}\right\}$ be an exhaustion of Ω towards α and let α_{n} be the outer boundary of Ω_{n}. Put $A_{n}=A \cap \hat{\Omega}_{n}$ and $B_{n}=B \cap \hat{\Omega}_{n}$. We take an exhaustion of Ω_{n} towards B_{n}, denoted by $\left\{\Omega_{n j}\right\}$. Let $\alpha_{n j}$ denote the outer boundary of $\Omega_{n \jmath}$ and let $B_{n \jmath}$ be the set of its relative boundary components other than $\alpha_{n \jmath}$. Put $A_{n j}=A_{n} \cap \hat{\Omega}_{n \jmath}$. Since $\alpha_{n j} \cup A_{n \jmath}$ is closed in $\hat{\Omega}_{n \jmath}$, there exists the circular-radial slit disc mapping $f_{n j}$. The image $f_{n j}\left(\alpha_{n j}\right)$ is a circle $\left|f_{n j}\right|=R_{n \jmath}$, where $R_{n \jmath}=R\left(\alpha_{n \jmath}, A_{n \jmath}, B_{n j}\right), f_{n \jmath}\left(B_{n j}\right)$ is a finite set of radial slits and $f_{n \jmath}\left(A_{n j}\right)$ is a minimal set of circular slits. The incisions do not appear because $B_{n j}$ is a finite set. Set $\rho_{n_{j}}=\left|f_{n_{j}}{ }^{\prime} /\left(2 \pi f_{n j}\right)\right|$. Since $\rho_{n \jmath}$ is extremal for the family $\Gamma_{n j}^{q}$ of curves separating $\alpha_{n j}$ from the set $\left|f_{n j}\right|=q$ within $\hat{\Omega}_{n j}-A_{n j}$ and $\rho_{n k} \in P^{*}\left(\Gamma_{n j}^{q}\right)$ for $k<j$, we have from (1)

$$
\begin{equation*}
\left\|\left|\frac{f_{n k}{ }^{\prime}}{f_{n k}}\right|-\left\lvert\, \frac{f_{n j}{ }^{\prime}}{f_{n \jmath}}\right.\right\| \|_{a_{n \jmath}}^{2} \leqq 2 \pi \log \frac{R_{n k}}{R_{n \jmath}} \tag{8}
\end{equation*}
$$

letting $q \rightarrow 0$. The sequence $R_{n \jmath}$ is monotone decreasing which tends to a limit R_{n}. From (8) there exists a univalent function g_{n} such that

$$
\begin{equation*}
\left\|\frac{g_{n}{ }^{\prime}}{g_{n}}-\frac{f_{n_{j}^{\prime}}}{f_{n_{j}}}\right\|_{a_{n j}}^{2} \rightarrow 0 \quad \text { as } \quad j \rightarrow \infty . \tag{9}
\end{equation*}
$$

17. We prepare

Lemma 4. The function g_{n} possesses the following properties:
i) $g_{n}\left(\alpha_{n}\right)$ is the circle $\left|g_{n}\right|=R_{n}$,
ii) $g_{n}\left(A_{n}\right)$ is a minimal set of circular slits,
iii) $g_{n}(\sigma), \sigma \in B_{n}$, is a radial slit (possibly a point) with possible circular incisions emanating from it,
iv) the area of $g_{n}\left(\partial \Omega_{n}\right)$ is equal to zero,
v) the metric $\rho_{n}=\left|g_{n}{ }^{\prime}\right|\left(2 \pi g_{n}\right) \mid$ is extremal for the family Γ_{n}^{q} of curves separating α_{n} from the set $\left|g_{n}\right|=q$ within $\hat{\Omega}_{n}-A_{n}$ for sufficiently small q and $\bmod \Gamma_{n}^{q}=(2 \pi)^{-1}$ $\log R_{n} / q$ and
vi) the metric $\mu_{n}=\left|g_{n}{ }^{\prime} /\left(g_{n} \log \left(R_{n} / q\right)\right)\right|$ is extremal for the family X_{n}^{q} of curves joining them within $\hat{\Omega}_{n}-B_{n}$ and $\bmod X_{n}^{q}=2 \pi / \log \left(R_{n} / q\right)$.

Proof. i) is obvious, since α_{n} is isolated. ii) is the property of minimal sets which is shown in no. 8. In order to prove iii) we return to the definition of f_{n}. Let $\left\{\Omega_{n j}^{k}\right\}$ be an exhaustion of $\Omega_{n j}$ towards $\alpha_{n j} \cup A_{n j}$. Let $\alpha_{n j}^{k}$ be the outer boundary
of $\Omega_{n j}^{k}$ and let $A_{n,}^{k}$ be the subset of the relative boundary of $\Omega_{n j}^{k}$ in $\Omega_{n j}$ other than $\alpha_{n j}^{k}$. Put $B_{n j}^{k}=B_{n j} \cap \hat{\Omega}_{n}^{k}$. Let $f_{n j}^{k}$ be the circular-radial slit disc mapping with respect to ($\alpha_{n}^{k}, A_{n j}^{k}, B_{n j}^{k}$). Then we can select a subsequence $\left\{f_{n j}^{k(j)}\right\}$ of $\left\{f_{n j}^{k}\right\}$ such that $\left\|f_{n_{j}}^{k(j)} \mid f_{n j}^{k(j)}-g_{n}{ }^{\prime} / g_{n}\right\|_{Q_{n j}^{k(j)} \rightarrow 0}$ as $j \rightarrow \infty$. Thus the same proof as in iii) of Theorem 1 is applicable. The details are omitted.

The properties v) and vi) is proved similarly as in no. 12 and iv) follows from v).

Remark. From the properties v) and vi) we see that

$$
R_{n}=R\left(\alpha_{n}, A_{n}, B_{n}\right) .
$$

18. We have $\left|\left|g_{n}{ }^{\prime}\right| g_{n}\right|-\left.\left|g_{m}{ }^{\prime}\right| g_{m}| |\right|_{2_{m}} ^{2} \leqq 2 \pi \log R_{n} / R_{m}(n>m)$ as before. R_{n} is increasing and we put $R_{0}=\lim R_{n}$. Suppose the sequence R_{n} is bounded. Then there exists a univalent function g_{0} such that

$$
\begin{equation*}
\left\|\frac{g_{n}^{\prime}}{g_{n}}-\frac{g_{0}^{\prime}}{g_{0}}\right\|_{a_{n}}^{2} \rightarrow 0 \tag{10}
\end{equation*}
$$

Now we state
Theorem 4. Under the assumption that $R_{0}<\infty$, the function g_{0} has the following properties.
i) $g_{0}(\alpha)$ is the circle $\left|g_{0}\right|=R_{0}$ with possible radial incisions emanating from it,
ii) $g_{0}(A)$ is a minimal set of circular slits,
iii) $g_{0}(\sigma), \sigma \in B$, is a radial slit (possibly a point) with possible circular incisions emanating from it,
iv) the area of $g_{0}(\partial \Omega)$ vanishes,
v) $\rho_{0}=\left|g_{0}^{\prime}\right|\left(2 \pi g_{0}\right) \mid$ is extremal for the Γ_{0}^{q} of curves separating α from the set $\left|g_{0}\right|=q$ within $\hat{\Omega}-A$ and $\bmod \Gamma_{0}^{q}=(2 \pi)^{-1} \log \left(R_{0} / q\right)$ and
vi) $\mu_{0}=\left|g_{0}{ }^{\prime} /\left(g_{0} \log \left(R_{0} / q\right)\right)\right|$ is extremal for the family X_{0}^{q} joining them within $\hat{\Omega}-B$ and $\bmod X_{0}^{q}=2 \pi / \log \left(R_{0} / q\right)$.

Most of the proof of the theorem is analogous to that of Theorem 1. We shall prove the properties i), iii) and vi).

Proof. To prove iii), similarly as in the proof of iii) of Lemma 4 we select a subsequence $\left\{f_{n j(n)}^{k(n)}\right\}$ of $\left\{f_{n j}^{k}\right\}$ such that

$$
\left\|\frac{g_{0}^{\prime}}{g_{0}}-\frac{f_{n(n)}^{k(n)}}{f_{n j(n)}^{k(n)}}\right\|_{\Omega_{n j(n)}^{k(n)}}^{2} \rightarrow 0
$$

Using this sequence to establish a similar inequality to (5), we can prove iii) analogously as in the proof of ii) of Theorem 1.

Next we show vi). The metric $\mu_{0}=\left|g_{0}^{\prime} /\left(g_{0} \log \left(R_{0} / q\right)\right)\right|$ is l_{2}-admissible for X_{0}^{q} and we have $\bmod X_{0}^{a} \leqq 2 \pi / \log \left(R_{0} / q\right)$. It is a direct result from the fact that

$$
\left\|\frac{g_{0}^{\prime}}{g_{0} \log \left(R_{0} / q\right)}-\frac{g_{n}^{\prime}}{g_{n} \log \left(R_{n} / M_{q}\left(g_{n}\right)\right)}\right\|_{\Omega_{q^{M q}}\left(g_{n}\right)}^{2} \rightarrow 0
$$

where $M_{q}\left(g_{n}\right)$ is the maximum modulus of g_{n} on the set $\left|g_{0}\right|=q$, tending to q. In order to prove Strebel's inequality we take a subsequence $\left\{f_{n j(n)}\right\}$ of $\left\{f_{n j}\right\}$ such that

$$
\left\|\frac{g_{0}^{\prime}}{g_{0}}-\frac{f^{\prime}{ }_{n j(n)}}{f_{n j(n)}}\right\|_{\Omega_{n j}(n)}^{2} \rightarrow 0
$$

Let Ω_{0} be a relatively compact set $\left|g_{0}\right|<q$, put $\Delta_{k}=\Omega_{k}-\bar{\Omega}_{k-1}$ and $\Delta_{0}=\Omega_{0}$. Then applying Lemma 2 to Δ_{k} and the sequence $\left\{f_{n j(n)}\right\}$ we can construct a subdomain Ω^{e} of Ω whose relative boundary consists of a countable number of closed analytic curves enclosing all the boundary components of B and its $(1+\varepsilon)$-quasiconformal mapping $\Phi^{e}(z)$ such that $\Phi^{e}(\alpha)$ is equal to $g_{0}(\alpha)$. Since the radial slits of $\Phi^{e}\left(\Omega^{e}\right)$ is countable we get Strebel's inequality (6). Thus we have $\bmod X_{0}^{q} \geqq 2 \pi / \log \left(R_{0} / q\right)$ which implies vi). The property i) follows from (6) because $l(0)=\log R_{0} / q$ except for a set of angular measure zero.

Remark. In this case, R_{0} is equal to $R(\alpha, A, B)$.
19. We call the function g_{0} a radial-circular slit disc mapping of Ω. We can show the same extremal properties of g_{0} as f_{0} stated in Theorems 2 and 3.

§6. Circular and radial slit mapping.

20. Let (α, A, B) be an arbitrary partition of $\partial \Omega$, where Ω and α are as before. Let Λ_{1} be a subset of A such that $\alpha \cup A_{1}$ is closed. Put $\partial \Omega-\alpha \cup \Lambda_{1}=B^{1}$. If $R\left(\alpha, A_{1}, B^{1}\right)<\infty$, from Theorem 1 there exists the circular-radial slit disc mapping of Ω, denoted by $f_{A_{1}}(z)$. Let $\Gamma\left(A_{1}\right)$ be the family of curves separating α from the point a within $\hat{\Omega}-\Lambda_{1}$ and let $X\left(B^{1}\right)$ be that joining them within $\Omega-B^{1}$. If $A_{1} \subset A_{2}$, $\Gamma\left(A_{1}\right) \supset \Gamma\left(A_{2}\right)$ and $X\left(B^{1}\right) \subset X\left(B^{2}\right)$. Thus we have $R\left(\alpha, A_{1}, B^{1}\right) \geqq R\left(\alpha, A_{2}, B^{2}\right)$.

Put

$$
\bar{R}(A)=\inf _{A_{1} \subset A} R\left(\alpha, A_{1}, B^{1}\right)
$$

for every compact $\alpha \cup A_{1}$. Let $\left\{A_{n}\right\}$ be a minimal sequence satisfying that $\Lambda_{n} \subset A$, $\alpha \cup A_{n}$ is compact and $\lim R\left(\alpha, A_{n}, B^{n}\right)=\bar{R}(A)$. Then we have

Lemma 5. Let $f_{A_{n}}(z)$ be the circular-radial slit disc mapping of Ω with respect to the partition $\left(\alpha, A_{n}, B^{n}\right)$. Then the sequence $f_{A_{n}}(z)$ tends to a univalent function $f_{A}(z)$ such that

$$
\left\|\frac{f_{A_{n}}^{\prime}}{f_{A_{n}}}-\frac{f_{A}^{\prime}}{f_{A}}\right\|_{\Omega}^{2} \rightarrow 0
$$

The function $f_{A}(z)$ is independent of the choice of minimal sequences.

Proof. Taking a new sequence $\left\{\cup_{j=1}^{n} A_{j}\right\}$, we may assume thảt A_{n} is increasing. Then from the monotonity of $\Gamma\left(A_{n}\right)$ the same reason as the proof of (3) shows

$$
\begin{equation*}
\left\|\frac{f^{\prime} A_{m}}{f_{A_{m}}}|-| \frac{f^{\prime}{ }_{A_{n}}}{f_{A_{n}}}\right\|^{2} \|_{\Omega}^{2} \leqq 2 \pi \log \frac{R\left(\alpha, A_{m}, B^{m}\right)}{R\left(\alpha, A_{n}, B^{n}\right)} \tag{11}
\end{equation*}
$$

for $n>m$ which implies the existence of f_{A} such that $\left\|f_{A_{n}}^{\prime} \mid f_{A_{n}}-f^{\prime}{ }_{A} / f_{A}\right\|^{2} \rightarrow 0$.
The independence of f_{A} follows from (11).
21. Next we take a subset B_{1} of B such that $\alpha \cup B_{1}$ is compact. Let $\Gamma\left(A^{1}\right)$ and $X\left(B_{1}\right)$ be the families defined as before. Considering the family $\Gamma\left(A_{1}\right)$, we see that $R\left(\alpha, A^{1}, B_{1}\right)$ is increasing with respect to B_{1}. Put

$$
\underline{R}(B)=\sup _{B_{1} \subset B} R\left(\alpha, A^{1}, B_{1}\right)
$$

for B_{1} such that $\alpha \cup B_{1}$ is compact. Let $\left\{B_{n}\right\}$ be a maximal sequence such that $\lim R\left(\alpha, A^{n}, B_{n}\right)=\underline{R}(B)$. Then we have

Lemma 6. Suppose $\underline{R}(B)<\infty$. Let $g_{B_{n}}(z)$ be the radial-circular slit disc mapping of Ω with respect to the partition $\left(\alpha, A^{n}, B_{n}\right)$. Then there exists a univalent function $g_{B}(z)$ such that

$$
\left\|\frac{g_{B}^{\prime}}{g_{B}}-\frac{g^{\prime} B_{n}}{g_{B_{n}}}\right\|_{\Omega}^{2} \rightarrow 0
$$

The function g_{B} is independent of the choice of maximal sequenres.
The proof is similar to Lemma 5, which may be omitted.
22. We now state

Theorem 5. Suppose $\bar{R}(A)=\underline{R}(B)<\infty$. Then the function f_{A} defined in Lemma 5 coincides with the function g_{B} in Lemma 6.

Put $\bar{R}(A)=R(\alpha, A, B)$ and $f_{A}=\varphi_{A, B}$. Then the function $\varphi_{A, B}$ possesses the following properties:
i) $\varphi_{A, B}(\alpha)$ is the circle $\left|\varphi_{A, B}\right|=R(\alpha, A, B)$ with possible radial incisions emanating from it,
ii) $\varphi_{A, B}(\sigma), \sigma \in A$, is a circular slit (possibly a point) with possible radial incisions emanating from it,
iii) $\varphi_{A, B}(\sigma), \sigma \in B$, is a radial slit (possibly a point) with possible circular incisions emanating from it,
iv) the area of $\varphi_{A, B}(\partial \Omega)$ vanishes,
v) the metric $\rho_{0}=\left|\varphi_{A, B}^{\prime}\right|\left(2 \pi \varphi_{A, B}\right) \mid$ is extremal for the family $\Gamma^{q}(A)$ of curves separating α from the set $\left|\varphi_{A, B}\right|=q$ within $\hat{\theta}-A$ for sufficiently small q and \bmod $\Gamma^{q}(A)=(2 \pi)^{-1} \log R(\alpha, A, B) / q$ and
vi) the metric $\mu_{0}=\left|\varphi_{A, B}^{\prime}\right|\left(\varphi_{A, B} \log (R(\alpha, A, B) / q)\right) \mid$ is extremal for the family $X^{q}(B)$ of curves joining them within $\hat{?}-B$ and $\bmod X^{q}(B)=2 \pi / \log (R(\alpha, A, B) / q)$.

Proof. Let $\left\{A_{n}\right\}$ be a minimal sequence in Lemma 5 and let $\left\{B_{n}\right\}$ be a maximal sequence in Lemma 6. Then we get similarly as in (11)

$$
\left\|\left|\frac{f_{A n}^{\prime}}{f_{A_{n}}}\right|-\left\lvert\, \frac{g_{B_{n}}^{\prime}}{g_{B_{n}}}\right.\right\| \|_{\Omega}^{2} \leqq 2 \pi \log \frac{R\left(\alpha, A_{n}, B^{n}\right)}{R\left(\alpha, A^{n}, B_{n}\right)}
$$

since $\Gamma\left(A_{n}\right) \supset \Gamma\left(A^{n}\right)$, which implies the coincidence of f_{A} and g_{B}.
Next we show the properties v) and vi). Taking a subsequence of $\left\{f_{A_{n}}\right\}$, if necessary, we can construct such a sequence $\left\{q_{n}\right\}$ with limit q that $\left\{\Gamma^{q_{n}}\left(A_{n}\right)\right\}$ is decreasing and $\Gamma^{q_{n}}\left(A_{n}\right) \supset \Gamma^{q}(A)$. Here $\Gamma^{q_{n}}\left(A_{n}\right)$ is the family of curves separating α from the set $\left|f_{A_{n}}\right|=q_{n}$ within $\Omega-A_{n}$. Let $\left\{q^{n}\right\}$ be a sequence with the same limit such that $\left\{\Gamma^{q_{n}}\left(A_{n}\right)\right\}$ is increasing and $\Gamma^{q_{n}}\left(A^{n}\right) \subset \Gamma^{q}(A)$, where $\Gamma^{q_{n}}\left(A^{n}\right)$ is the similar curve family for A^{n} and $g_{B_{n}}$. Then we have $\cap \Gamma^{q_{n}}\left(A_{n}\right) \supset \Gamma^{q}(A) \supset \cup \Gamma^{q_{n}}\left(A^{n}\right)$.

From Lemma 1 the metric $\rho_{0}=\left|\varphi_{A, B}^{\prime}\right|\left(2 \pi \varphi_{A, B}\right) \mid$ is extremal for $\cup \Gamma^{q_{n}}\left(A^{n}\right)$. On the other hand, $\rho_{0} \in P^{*}\left(\cap \Gamma^{q_{n}}\left(A_{n}\right)\right)$ from the strong convergence of $\rho_{n}=\left|f_{A_{n}}^{\prime}\right|\left(2 \pi f_{A_{n}}\right) \mid$. Thus ρ_{0} is extremal for $\cap \Gamma^{q_{n}}\left(A_{n}\right)$ and so is for $\Gamma^{q}(A)$. The module is calculated from the convergence of ρ_{n}. The extremality of μ_{0} is proved analogously.

The property iv) follows from e.g. the fact the $\bmod \Gamma^{q}(A)=(2 \pi)^{-1} \log (R(\alpha, A, B) / q)$.
23. Continued. Finally we prove i), ii) and iii). In order to show the property ii), we may assume that $\sigma \in A_{1}$ of $\left\{A_{n}\right\}$, where $\left\{A_{n}\right\}$ is an increasing sequence such that $f_{A_{n}}$ tends to f_{A}. Let $\left\{\Omega_{m}\right\}$ be an exhaustion of Ω towards σ such that $\Omega_{1} \ni a$ and let σ_{m} be the relative boundary of Ω_{m}. Put $u_{n}=\log \left|f_{A_{n}}\right|$ and $u_{0}=\log \left|f_{A}\right|$. Let $X\left(\sigma, B^{n}\right)$ denote the family of curves joining σ_{1} and σ within $\hat{\Omega}-B^{n}$. Then as in the proof of Theorem 1, we have for a constant $r_{n}(\sigma)$

$$
\int_{c} d u_{n}=\log r_{n}(\sigma)-u_{n}\left(z_{c}\right) \quad \text { for a. a. } c \in X\left(\sigma, B^{n}\right),
$$

where z_{c} is the initial point of c on σ_{1}. Since $\left\|\operatorname{grad}\left(u_{n}-u_{0}\right)\right\|^{2} \rightarrow 0$, there exists an $r_{0}(\sigma)$ such that

$$
\begin{equation*}
\int_{c} d u_{0}=\log r_{0}(\sigma)-u_{0}\left(z_{c}\right) \quad \text { for a. a. } c \in \cup X\left(\sigma, B^{n}\right) \tag{12}
\end{equation*}
$$

This is easily seen from Lemma 3 and the uniform convergence of u_{n} on σ_{1}.
Set $\Delta_{m}=\Omega_{m}-\bar{\Omega}_{m-1}\left(m \geqq 1, \Omega_{0}=\phi\right)$. Considering the sequence $\left\{f_{A_{n}}\right\}$ in each Δ_{m}, from Lemma 2 we can construct a ($1+\varepsilon_{1}$)-quasiconformal mapping $\Phi^{\varepsilon_{1}}(z)$ of Ω such that $D^{\varepsilon_{1}}=f_{A_{n}(m)}$ in a subdomain Δ_{m}^{\prime} of Δ_{m} whose complement with respect to Δ_{m} is relatively compact in $\Omega, \Phi^{\varepsilon_{1}}=f_{A}$ in a neighborhood of the relative boundary of Δ_{m} and $f_{A}(\sigma)=\Phi^{\varepsilon_{1}}(\sigma)$. Let $\tilde{B}^{n(m)}$ denote $B^{n(m)} \cap \Delta_{m}$ which is open in $\partial \Omega$. Put $B^{\varepsilon_{1}}$
 $\tau \in A_{n(m)} \cap \hat{\Delta}_{m}$ and $\Phi^{\varepsilon_{1}}(\alpha)=f_{A_{n(1)}}(\alpha)$. Furthermore we show that $\Phi^{\varepsilon_{1}\left(B^{\varepsilon_{1}}\right)}$ is a minimal set of radial slits. In fact, any compact subset of $\mathscr{\Phi}^{\varepsilon_{1}}\left(B^{\boldsymbol{c}_{1}}\right)$ is covered by a finite number of mutually disjoint open sets $\Phi^{s_{1}\left(\widetilde{B}^{n(m)}\right)}$'s. The intersection of the subset with each member of the covering is a compact minimal set and hence the union of these intersections is also minimal [15], which implies the minimality of $\Phi^{c_{1}}\left(B^{\varepsilon_{1}}\right)$.

Put $W=\Phi^{\varepsilon_{1}}(\Omega)$. Consider an exhaustion of W towards $\left.\Phi^{\varepsilon_{1}(\alpha \cup} A_{\varepsilon_{1}}\right)$, denoted by $\left\{W_{k}\right\}$ and set $V_{k}=W_{k}-\bar{W}_{k-1}\left(k \geqq 1, W_{0}=\phi\right)$. Each V_{k} consists of a finite number of domains, say $V_{k j}\left(j=1,2, \cdots, N_{k}\right)$. The set $\Phi^{\varepsilon_{1}}\left(B^{\epsilon_{1}}\right) \cap \hat{V}_{k j}$, denoted by $B_{k j}$, is a compact minimal set of radial slits and we put $D_{k j}=\left(B_{k j}\right)^{c}$, where the complement is taken in the extended w-plane. Then, for an exhaustion $\left\{D_{k j\} l l=1}^{L} \notinfty D_{k j}\right.$, the radial slit mapping $h_{k j}^{l}$ with the normalizations that $h_{k j}^{l}(w)=w+\cdots$ near the point at infinity and that $h_{k j}^{l}(0)=0$ tends to the function w uniformly on any compact subset (e.g. [15]). Again using Lemma 2 we can construct a subdomain $W^{\varepsilon_{2}}$ of W and its $\left(1+\varepsilon_{2}\right)$-quasiconformal mapping with the following properties: the relative boundary of $W^{\epsilon_{2}}$ consists of at most a countable number of analytic curves enclosing the elements of $\Phi^{t_{1}}\left(B^{c_{1}}\right)$ only, its image under $\Phi^{\varepsilon_{2}}$ is a set of radial slits and $\Phi^{t_{2}}{ }_{\circ} \Phi^{t_{1}}(\tau)$ $=\Phi^{\epsilon_{1}}(\tau)$ for $\Phi^{\varepsilon_{1}}(\tau) \in \hat{V}^{\varepsilon_{2}} \cap \Phi^{\varepsilon_{1}}\left(\alpha \cup A_{\varepsilon_{1}}\right)$. Let Ω^{*} be the inverse image of $W^{\epsilon_{2}}$ under $\Phi^{\epsilon_{1}}$. We denote by $\Lambda^{*}(\sigma)$ the subfamily of $\mathrm{U}_{n} X\left(\sigma, B_{n}\right)$ consisting of the curves contained in $\hat{?}^{*}$ less its relative boundary along which (12) is false. Clearly $\mathscr{D}^{\varepsilon_{0}} 0^{\varepsilon_{1}}$ is a $\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{2}\right)$-quasiconformal mapping. Then each radial ray joining the images of of σ and σ_{1} under $\Phi^{\varepsilon_{0}} \Phi^{\varepsilon_{1}}$ within $\Phi^{\varepsilon_{2}}\left(\hat{W}^{\varepsilon_{2}}\right)$ less the image of the relative boundary of Ω^{*} contain an image curve of $\cup X(\sigma, B)$. Since the number of relative boundary components of $\Phi^{\varepsilon_{2}}\left(W^{\epsilon_{2}}\right)$ is at most countable, the inequality (5) is applicable to $\Phi^{\varepsilon_{1} \circ} \Phi^{\varepsilon_{2}}\left(\Lambda^{*}(\sigma)\right)$ and ii) follows. The proof of i) is similar, because we can establish Strebel's inequality (6). The proof of iii) is analogous under use of $\left\{g_{B_{n}}\right\}$. We complete the proof of Theorem 5.
24. We call the function $\varphi_{A, B}$ in Theorem 5 a circular and radial slit disc mapping of Ω with respect to the partition (α, A, B). The same extremal properties stated in Theorems 2 and 3 are valid for this function.

We can see from these theorems that both the circular-radial and radial-circular slit mappings are indeed circular and radial slit disc mappings. It follows from the following.

Theorem 6. If A or B is closed in $\partial \Omega-\alpha$, the quantities $\bar{R}(A)$ and $\underline{R}(B)$ coincide with $R(\alpha, A, B)$. Here $R(\alpha, A, B)$ is the extremal radius in Theorems 1 and 4 , if it is finite and $R(\alpha, A, B)=\infty$ otherwise.

Proof. Suppose, at first, that $\alpha \cup A$ is compact. Then clearly $\bar{R}(A)=\underline{R}(\alpha, A, B)$. To show that $\underline{R}(B)=R(\alpha, A, B)$, consider an exhaustion $\left\{\Omega_{n}\right\}$ of Ω towards $\alpha \cup A$. Put $B_{n}=\hat{\varrho}_{n} \cap B$ and $A^{n}=\partial \Omega-\alpha-B_{n}$. Then we have under the same notations in no. $20 \Gamma(A)=\cup \Gamma\left(A^{n}\right)$. By Lemma 1 , we have $R\left(\alpha, A^{n}, B_{n}\right) \rightarrow R(\alpha, A, B)$, which implies $\underline{R}(B)=R(\alpha, A, B)$, since $\alpha \cup B_{n}$ is compact.

Next, if $\alpha \cup B$ is compact, $\underline{R}(B)=R(\alpha, A, B)$. When $R(\alpha, A, B)=\infty$, we get $\bar{R}(A)=\infty$ from the monotonity of module. In case $R(\alpha, A, B)<\infty$, considering an exhaustion $\left\{\Omega_{m}\right\}$ of Ω towards α, set $V_{m}=\Omega_{m}-\bar{\Omega}_{m-1}\left(m \geqq 1, \Omega_{0}=\phi\right), A^{(m)}=\hat{V}_{m} \cap A$. Let $\left\{V_{m n}\right\}$ denote an exhaustion of V_{m} towards $\partial V_{m}-A^{(m)}$ and let $A_{n}^{(m)}$ be the open and closed set $\hat{V}_{m n} \cap A^{(m)}$. We set $A_{m n}=A_{n}^{(m)} \cup\left(A-A^{(m)}\right)$ and $B_{m n}=\partial \Omega-\alpha-A_{m n}$ which is closed. We have $A=\cup_{n} A_{m n}$ and $X(B)=\cup_{n} X\left(B_{m n}\right)$ as above. Putting $m=1$, from Lemma 1 and (1) we have $\left\|g_{B}^{\prime} / g_{B}-g_{B_{1 n}}^{\prime} / g_{B_{1 n}}\right\|^{2} \rightarrow 0$. Thus there exists
an n_{1} such that

$$
R\left(\alpha, A_{1 n_{1}}, B_{1 n_{1}}\right)<R(\alpha, A, B)+\frac{\varepsilon}{2} .
$$

For the partition ($\alpha, A_{1 n_{1}}, B_{1 n_{1}}$), applying the same argument to V_{2}, we have an open subset $A_{2 n_{2}}$ of $A_{1 n_{1}}$ such that $\hat{?}_{m} \cap A_{2 n_{2}}$ is compact for $m \leqq 2$ and that

$$
R\left(\alpha, A_{2 n_{2}}, B_{2 n_{2}}\right)<R\left(\alpha, A_{1 n_{1}}, B_{1 n_{1}}\right)+\frac{\varepsilon}{2^{2}}
$$

and so on. Summing up these inequalities, we have

$$
R\left(\alpha, A_{k n_{k}}, B_{k n_{k}}\right)<R(\alpha, A, B)+\varepsilon .
$$

We now prove that $A_{\mathrm{c}}=\cap_{k} A_{k n_{k}}$ is a closed subset of A in $\partial \Omega-\alpha$ and that $R\left(\alpha, A_{k n_{k}}, B_{k n_{k}}\right) \rightarrow R\left(\alpha, A_{\varepsilon}, B^{c}\right)$ as $k \rightarrow \infty$, where $\left(\alpha, A_{c}, B^{c}\right)$ is determined by A_{ε}, which implies the assertion. In fact $\hat{\Omega}_{m} \cap A_{\varepsilon}$ is compact for all m, whence $\alpha \cup A_{\varepsilon}$ is compact. The convergence of the extremal radii follows from the fact that $\Gamma\left(A_{\varepsilon}\right)$ $=U_{k} \Gamma\left(A_{k m_{k}}\right)$.

References

[1] Ahlfors, L. V., Lectures on quasiconformal mappings. Van Norstrand (1966).
[2] Ahlfors, L. V., and A. Beurling, Conformal invarıants and function-theoretic nullsets. Acta Math. 83 (1950), 101-129.
[3] Ahlfors, L. V., and L. Sario, Riemann surfaces. Prınceton Univ. Press (1960).
[4] Andreian-Casacu, C., Überlagerungseigenschaften Riemannscher Flächen. Rev Math. Pures Appl. 6 (1961), 685-702.
[5] Fuglede, B., Extremal length and functional completion. Acta Math. 98 (1957), 171-219.
[6] Grötzscı, H., Über Extremalprobleme bei schlichter konformer Abbildıng Schlichter Bereıche. Ber. Verh. Säch. Acad. Wiss. Leıpzıg 84 (1932), 3-14.
[7] Marden, A., and B. Rodin, Extremal and conjugate extremal distance on open Riemann surfaces with applications to circular-radial slit mappings. Acta Math. 115 (1966), 237-269.
[8] Ohtsuka, M., Dirıchlet problem, extremal length and prıme ends. Lecture Notes, Washington Unıv. St. Louis (1962-1963).
[9] Oikawa, K., Remarks to conformal mappings onto radially slit disks. Scı. Papers Coll. Gen. Ed. Univ. Tokyo 15 (1965), 99-109.
[10] -, Minımal slit regıons and linear operator methods. Kōdaı Math. Sem. Rep. 17 (1965), 187-190.
[11] Reich, E., and S. E. Warschawski, On canonical conformal maps of regions of arbitrary connectivity. Pacıfic J. Math. 10 (1960), 955-985.
[12] Rengel, E., Existenzbeweise für schlichte Abbildungen mehrfach zusammenhängen der Bereıche auf gewisse Normalbereıche. J.ber. Deutsch Math.-Vereın. 45 (1935), 83-87.
[13] Strebel, K., A remark on the extremal distance of two boundary components.

Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 842-844.
[14] , Die extremale Distanz zweıer Enden eıner Riemannschen Fläche. Ann. Acad. Sc1. Fenn. 179 (1955), 21 pp.
[15] Surra, N., Minımal slit domaıns and mınımal sets. Kōdaı Math. Sem. Rep. 17 (1965), 166-186.
[16] . On radial slit disc mappıngs. Kōdaı Math. Sem. Rep. 18 (1966), 219228.
[17] _ On a contınuity lemma of extremal length and its applications to conformal mappıng. Kōdaı Math. Sem. Rep. 19 (1967), 129-137.
[18] On slit rectangle mappıngs and contınuıty of extremal length. Kōdaı Math. Sem. Rep. 19 (1967), 425-438.
[19] Ziemer, W., Extremal length and conformal capacity. Trans. Amer. Math. Soc. 126 (1967), 460-473.

Department of Mathematics,
Tokyo Institute of Technology.

