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ON THE GROUP OF (1, 1) CONFORMAL MAPPINGS
OF AN OPEN RIEMANN SURFACE ONTO ITSELF

By Yosumuisa Kusora

1. The following theorem [4] is well known:

The number of (1,1) conformal mappings of a plane region bounded by p
(c0>p>2) Jordan curves onto itself is finite.

In the present paper we shall consider, instead of a plane region, an open
Riemann surface W and shall give two sufficient conditions that W admits only a
finite number of (1, 1) conformal mappings onto itself: namely,

THEOREM 1. If W is an open Riemann surface which has p (co>p>2) boundary
elements in the sense of Kerékjdrto-Stoilow, then the number of (1, 1) conformal
mappings of W onto itself is finite.

THEOREM 2. If W is an open Riemann surface of genus g (c0o>g>0), then
the number of (1, 1) conformal mappings of W onto itself is finite.

Theorem 1 may be regarded as an extension of the above theorem.

Further we shall consider an open Riemann surface which has precisely two
boundary elements. In this case we shall exclude doubly connected planar surfaces
from our investigation. There is a non-planar Riemann surface which has two
boundary elements and which admits infinitely many (1, 1) conformal mappings
onto itself. However we shall prove the following theorem.

THEOREM 3. If W is an open Riemann surface which has two boundary ele-
ments and which is not planar, then the group of (1, 1) conformal mappings of W
onto itself is finitely generated.

More generally, let 8, and' 8, be two boundary elements of an open Riemann
surface W which has more than one boundary element and denote by A(Bi, B2) the
group of (1,1) conformal mappings ¢ of W onto itself which have the property
that either

(1) ¢(p) tends to By, B. for p tends to Bi, B respectively; or else

(2) ¢(p) tends to B, B: for p tends to Bi, B. respectively.

For such a group we have

THEOREM 4. If W is an open Riemann surface which has more than one
boundary element and which is not a doubly comnected planar surface, than A(B:, B2)
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is finitely gemerated for arbitrary B, and Ps.

Obviously Theorem 3 is a consequence of this theorem.

In the case that A(B,, pz) contains infinitely many members we shall obtain a
detailed information on the structure of A(8i, B2).

In our study the following two theorems play the essential role.

TueoreM A. (Komatu and Mori [5]) Let W, W* be two Riemann surfaces
whose universal covering surfaces are of hyperbolic type, and let {¢}2, be a sequence
of single valued analytic mappings of W into W*. Then, either

(1) there exists a subsequence {p“?}5_. which converges, uniformly in the wider
sense in W (with respect to the uniform topology of W* defined by means of
Poincarés hyperbolic metric), to a limit analytic mapping ¢ of W into W*; or else

(2) for any point p on W the point sequence {p®(p)yz: on W* tends to the
ideal boundary of W* uniformly in the wider sense in W.

The statement (2) means: if K, K* are compact point sets on W, W* respective-
Wy, then ¢(K)NK*=¢ for sufficiently large v.

TureoreM B. (Heins [2]) If W is a Riemann surface, which is not simply
connected and which has the properties that its universal covering surface is of
hyperbolic type and that the fundamental group accociated with W is not cyclic,
then the identity mapping of W onto itself can never be expressed as the limit of a
sequence {p™ Y2 of single valued analytic mappings of W into itself, where ¢ (p)=p
v=12,-).

These two theorems allow us to infer immediately

Lemma 1. If W satisfies the conditions imposed in Theorem B, then any
sequence {02, of (1, 1) conformal mappings of W onto itself whose members are
distinct tends to the ideal boundary of W in the same sense as Theovem A.

Proof. Assume that there exists a subsequence {¢p®”}7.; which converges to a
limit analytic mapping of W into itself in the same sense as Theorem A. Suppose
that the limit mapping is not reduced to a single point, then it is a (1, 1) conformal
mapping of W onto itself by the aid of Hurwitz’s theorem. Theorem B is contra-
dicted. Suppose that the limit mapping is reduced to a single point, then for each
cycle ¢ on W which is not homologous to zero ¢®#(c) is homologous to zero if j is
sufficiently large. This contradicts that ¢®? is a (1, 1) conformal mapping of W
onto itself. Thus we obtain this lemma by applying Theorem A.

There is a theorem of Klein and Poincaré which is a consequence of Theorem
B: namely, that under the hypotheses of Theorem B the group of (1,1) conformal
mappings of W onto itself is properly discontinuous. Now we have by virtue of
Lemma 1 that under the same hypotheses the group of (1, 1) conformal mappings
of W onto itself is countable. Indeed, cover W by a family {4.}5;-1 of parametric
disks. We cnumerate the (1, 1) conformal mappings of W onto itsell by counting
those mappings ¢ for which ¢(po)€d,, n=1,2,-- with p, a point of 4,. Each ¢
will be counted at least one. But there are only a finite number of such ¢ for
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each # by applying Lemma 1. Then altogether there are at most denumerably
many .

RemMARK. The hypotheses of Theorem B implies to exclude the following seven
surfaces: (1) a sphere, (2) a once-punctured sphere, (3) a twice-punctured sphere,
(4) a torus, (5) a disk, (6) a once-punctured disk, (7) an annulus.

2. Proof of Theorem 1. Let W be an open Riemann surface which has p
(c0o>p>2) boundary elements and let By, B, -+, Bp be its boundary elements. We
denote by G; (:=1,2, -+, p) a non-compact subregion of W whose relative boundary
¢, consists of a Jordan closed curve and which has the properties that g; is a
boundary element of G; and that G;NG,=¢ for distinct 7,7 (1=¢,7=p). Each ¢, is
not homologous to zero and any two distinct c,, ¢, are not homologous to each other.
We set R=W—U?.1G;. Assume that there exist infinitely many distinct (1, 1)
conformal mappings of W onto itself, {p*’}2.. Since R is a campact and connected
set on W, applying Lemma 1 there exist integers v and i such that G;De™(R).
Thus all ¢®(c;) are contained in G;. Since each ¢®(c;) is a dividing cycle which
is not homologous to zero, ¢(c,) is homologous to ¢,. Hence, for instance, ¢ (c1)
is homologous to ¢ (c;) because both are homologous to ¢,. By the aid of the fact
that ¢® is a (1, 1) conformal mapping of W onto itself we have that ¢; is homolo-
gous to ¢;. It is a contradiction.

3. Proof of Theorem 2. Since W is an open Riemann surface of genus ¢
(c0>¢>0), there exists a relatively compact subregion £ of W such that each
component of W—@2 is planar and there exists a non-dividing cycle ¢. Assume
that there exist infinitely many distinct (1, 1) conformal mappings of W onto itself,
{o®}2:. Applying Lemma 1 there exists an integer v such that ga‘")(c)n.éz(,b.
Consequently ¢®(c) is contained in a component of W—9. It contradicts that 0 (c)
is a non-dividing cycle.

4. Proof of Theorem 4. In order to prove Theorem 4 we shall prove several
lemmas. We begin with introducing some notations.

Let W be an open Riemann surface and let 8 be a boundary element of .
We denote by W, a non-compact subregion of W which has the property that j is
a boundary element of W, and whose relative boundary oW, consists of at most
an enumerably infinite number of analytic curves clustering nowhere in W. Let
{Gr}n=1 be a defining sequence of g whose relative boundary oG, consists of an
analytic Jordan closed curve. Further let {Q:)7=: be an exhaustion of W whose
relative boundary 62, consists of analytic Jordan closed curves and whose closure
2, is compact, and which has the property that 2,C Q. for all k.

Consider the harmonic function w, ; in (W;—G.) N2 which has the boundary
values 1 on 9G, and 0 on dW;N2:; and whose normal derivative vanishes on
82 N(W,—G»). The sequence {w,:} converges to a harmonic function w, uniformly
on every compact subset of Wi

(z),q=lim lim WD % and ”dwﬁ”Wﬁ 231_2’01 %Lrg ”dwﬂvk”(Wﬁ—En)ﬂQk'

n— k—oo
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wg is independent of the particular {G.}5-: and {4}, and o, has the following
properties:

(1) supwgsp ws(p)=1 if o, is not reduced to the constant zero,

(2) let Wi Wi be two admitted non-compact subregions of W associated with
B, then w,=0 is equivalent to w;=0, where w;, w} are the above harmonic functions
associated with W,, W} respectively.

We call w; the harmonic measure of §.

Let g..x(p, @) be the function which is harmonic in (W,—Gn)NQ2: except for
the singularity —log|z| at a point ge(W;—G.)N2, =0 on (@W,N2%) UG, and
whose normal derivative vanishes on 82xN(W,—G,). Then limpoew liMiow gu.x(2, @)
exists and the limit function g(p, ¢) is harmonic in W, except for the singularity
—log |z| at ¢, =0 on dW; and has the symmetry property: 9(p, 9)=9(q, p).

In the case that the relative boundary of W, is compact for a given continuous
function f on dW; we can construct the harmonic function in W, denoted by H%
as follows. Let #%; be the harmonic function in (W;—G.)N2; which has the
boundary values f on 6W; and a constant ¢ on 6G, and whose normal derivative
vanishes on 82, N(W;—G,). Here we assume that 2, contains W, without loss of
generality. The sequence {u%.:} converges to a harmonic function H% uniformly
on every compact subset of W Hji=liMp e liMp.e 25, ¢ 1f the harmonic measure
of B vanishes, H} has the following properties:

(1) Hj=H} for every c,

(2) minf=Hj{=maxf on W,

awg aWp

0H; ds=0

&) S e

where 7 is an analytic Jordan closed curve on W; separating g from oW,.

In the case that the harmonic measure of 8 vanishes we denote by H%s the
above function associated with W, Then we can verify easily that g(p, ¢)=H§z ., (0)
on G, provided that G, does not contain q.

LemmA 2. If the harmonic measure of p vanishes, there exists a positive
harmonic function v in W, which has the following properties:

1) v=0 on W,

2) v=limlim v, g,

n—oo k—oo

where v, denotes the harmonic function in (We—Gn) N2 which has the boundary
values v on (W N Qi) UG, and whose normal derivative vanishes on 02y N(W;—Go).

Proof. Since g(p, )=H§z »(p) on G, provided that G, does not contain g, we
have that

g(p, q)é%in g(r,q) on Ga,  q4¢Gy,
and so that

limg(p, @=min g(r, 9)>0, g4¢Ghn.

p—B Gy

Hence we can select a sequence {g;}5-: tending to 8 such that {¢(p, ¢;)}-1 converges
to a positive harmonic function » in Wi o(p)=1lim,.., 9(», g;).
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It is evident that » has the property (1). There remains to be shown that »
has the property (2). Let §n.x(p,q) be the harmonic function in (W;—Gn) N2
which has the boundary values ¢(7, ¢) on (0W;N2x)U 3G, and whose normal deriva-
tive vanishes on 02¢ N(Ws—Gn). 1imy .. §a,x(p, @) exists and is harmonic in W,—G,.
Since for m>n

|Gn. 6(D5 @5)—Gm.x(D, @) ér;laax 9D, a)—gmil B, gl on (Ws—Ga) N2

provided that G, contains ¢,, we have that

9(b, 4)=1im §nx($,q))  on Wi—Gn  for q;€G,.

Hence by the inequality
(D)= on KD =10(D) — 0P, 47)] +10(D, 42)— Tn. 12> gl + 02X |95, 25)— (D)
on (W—Gn)N 2k
we obtain that

v=limv,, on W,—G,

k—oo
and that hence

p=Ilimlimo,x on W,
n—o0 k—oo
If the harmonic measure of 5 vanishes, v is unbounded. Indeed, if v were
bounded: v=M on W;, then v, x=Maw, r on (W—Gr) N2, and therefore
0=<v=Ilim lim v,, =M lim lim w,,;=0.

n—00 k—oco n—co k—oo
Further [|dv||w,=oco. Suppose that ||dv|[w,<co. We construct the harmonic function
U, in (G1—G,) N 2%, which has the boundary values » on 4G, and 0 on 3G, and whose
normal derivative vanishes on 92, N(G:—G,). Then the sequence {#,,x} converges to
a harmonic function # uniformly on every compact subset of Gi: #=1liMp e liMgoe Tn, &
and ||dd|le, is finite, and moreover ||d|le,=1iMpoo liMioe || dDa, il -apone, By the
inequality

| dOn, )l a1 nop | don k|| @,-8 00, =1 A0, 1y AOn, 1) @16y 028

0V, 1 ‘__S 0l ‘
Saan on ds|= G Om ds

where w, ; denotes the harmonic function in (G;—G,)N @2 which has the boundz_n‘y
values 1 on G, and 0 on 6G, and whose normal derivative vanishes on 02; N (G:—G,),
we obtain that
oD
—ds=0
SBGI a”

because 1iMp.e iMoo [| d0n, 1l @y -gp a0, =0 and that hence #=0. Consequently v=v—2
is bounded on G, and therefore » is bounded on W, We conclude that v is identi-
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cally equal to zero as before.

From now on we assume that W is an open Riemann surface which has more
than one boundary element and which is not a doubly connected planar surface.
Further we assume that A(fi, B) contains infinitely many distinct members.

LEMMA 3. There exists a member ¢ of A(By, B2) such that ¢, is not the identity
mapping for any integer n(x0), where {¢u)5-_. denotes the sequence of iterates of
O P1=0, En=0op,_1 for positive integers n, and ¢_1 denotes the inverse mapping of
O, On=0Q_1°0n.1 fOr negative integers .

Proof. Let y be a Jordan closed curve dividing W into two parts Wi, W, such
that g; is a boundary element of W, (i=1,2). We denote by {¢®}2; a sequence of
distinct members of A(Bi, f:). By Lemma 1 we can assume without loss of gener-
ality that ¢®(y) are contained in W; for all v. This implies that either ¢ (W& Wh
or else N (Wo)E Wi If oD(W)EW,, ¢ is a desired mapping. In the case that
oD (W)W, we take a relatively compact subregion K of W;—e™®(W,) whose
relative boundary contains y and ¢”(y7). Applying Lemma 1 there exists a mapping
0 such that go(”)(f? yNK =¢. Since ¢™(y) is contained in W; and separates f;, from
B2, > (K) must be contained in ¢ (W;). Hence ¢ ¢ (7) is contained in ¢ (Wa).
This implies that either ¢ op™®(W)SEe™(Ws) or else ¢ opD(Wy)Se™(We). In
the former case we have that ¢®@.p™ (W)W, and hence ¢ oo™ is a desired
mapping. In the latter case ¢ is a desired mapping.

This mapping has the properties that limy.. o»($)=p: and that lim, ... ¢_.(p)=pfe.
Then we have

LEMMA 4. The harmonic measure of B; vanishes (i=1, 2).

Proof. Let R, be a closed annulus separating $: from f. with Jordan boundary
on W and we denote by W, (:=1,2) the component of W—R, such that g; is a
boundary element of W,. We set R,=¢.(R,). We can assume that R, NR,=¢ for
distinct integers m,n. We denote by F, the family of arcs in R, which join the
opposite contours of R, and denote by A(F,) the extremal length of F,. We have
that A(F,)=A(F,)>0. Further we denote by $: (i=1,2) the family of arcs in W,
with the initial point on 6R, and extending to f;, and denote by A(F:) the extremal
length of ;.. Then we have that A(F.)> 271 A(Fx) for all positive integers » and
that AF2)> Y71 A(F_x) for all positive integers #z. This implies that A(F:)=o0
(6=1,2). On the other hand we have that A(§:)=||dw,||%, where ws, denotes the
harmonic measure of g; associated with W, [7]. Hence we obtain that wg=0.

Let 7y be an analytic Jordan closed curve dividing W into two parts Wi, W
such that 8; is a boundary element of W, (i=1,2). We orient ; positively with
respect to W,. By Lemma 2 and Lemma 4 there exists a positive harmonic {unc-
tion v in W, (;=1,2) which has the properties imposed in Lemma 2. We denote
by {G®}z-: a defining sequence of f; (i=1,2). Since min,ew HY*=HY*=maXsem H*
on G and ||dH"*|lw,<co, we can prove the following lemma by applying the
same method as in the proof of Theorem 13.1 and Lemma 11.1 in Heins’ paper [3].
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Lemma 5. HY%¢ possesses a limit at p; and
ov
lim Hs =S g
171—>ﬁi 7 (p) T d on N

where v denotes a positive harmonic function in Wy (or Ws) which has the properties
imposed in Lemma 2 and

ov
Sr%ds—l (or —1).

Accordingly we obtain the following lemma by applying the same method as
in the proof of Theorem 11.2 in Heins’ paper [3].

LEMMA 6. There is only one positive harmonic function v in W, (or Wa) which
has the properties imposed in Lemma 2 and

ov
ST%ds—l (or —1).

Since ||dv||lw,=oo as stated above, we obtain the following lemma by applying
the same method as in the proof of Theorem 12.1 in Heins’ paper [3].

LemmA 7. v has limit oo at p; (i=1,2).
Now we can prove the following lemma by the aid of above those lemmas.

LEMMA 8. There exists a harmonic function hy in W satisfying the following
conditions:

@ lim f(p)=+o0,  lim In(p)=—oo,
pp1 P2
2) for all analytic Jordan closed curves c separating P from (s,
oho ,
Scbén_ ds —1,

where ¢ are oriented positively with respect to the component of W—c which has p.
as its boundary element.

) ho=limy 0 liMyoe lin.x, where hyx denotes the harmonic function in
(W—GPL—GP)N 2 which has the boundary values hy on 9GPUIGL and whose
normal devivative vanishes on 82, N (W—GL—GP).

The imposed conditions determine hy up to an additive constant.

Proof. Let 7 be an analytic Jordan closed curve dividing W into two parts
Wi, W such that f; is a boundary element of W, (=1, 2) and let », be a positive
harmonic function in W, which has the properties imposed in Lemma 2 and

avo .
ST 2 ds=~1,

We orient 7 positively with respect to W,. By Lemma 7 we have that

lim vo(p) = +-00.
p—p2
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For each positive number » we denote by W3¥ the region {p|op)<riU W:.. We
note that the set {p|vy(p)<r} is connected. Let pi, p» (02>p1) be two sufficiently
small positive numbers such that the niveau curve {p|v.(p)=px} is an analytic Jordan
closed curve (£=1,2). By Lemma 2 there exists a positive harmonic function v,
in W}¥ which has the properties imposed in Lemma 2 and

-
ST " ds=1.

We introduce A, defined in Wi as v,—min,w}, v, and show that the family (A} is
normal. Consider the harmonic function

Ve=h,— (— min v,) Y2

awp, ¥— P2
This function vanishes on dW3 and a point of dWj. Let V¥ be the harmonic
function in (W¥—W$)N 2, which has the boundary values V, on @W}¥NQ2y)UIW
and whose normal derivative vanishes on 0Q; N(W¥—W7). Here we assume that
2,00W¥. Then we have tllat Ve=liMg, VE on WF—W7¥ [6]. Since V% takes its
minimum on (W¥—W*)N2, at a point of dW*U @ W¥N ), Ve does not take its
minimum on W¥— W% at any inner point of W¥—W}¥. Hence we have that
minywy, V-<0 and therefore we obtain an inequality
min A, < <—min vr>w.
aw, awp, ¥— 2
Next let V’;’ be the harmonic function in (W¥— V-[_/,*,j)ﬂQ,c which has the boundary
values V, on @WFnNQ2y)UoW} and whose normal derivative vanishes on 62
N(W¥— V[_/?,i). Here we assume that £,20W¥. Again, we have V,=lims.« V% on
W—W%. Since VE=0 on aW¥nQ; and VE=0 on W% we obtain that V>0 on
(W¥— W;‘j)ﬂQk and that hence

Tk

S IVE 450,

aWrn 2y on

Therefore we obtain that

%
S vy ds>0
aw’, on

for all k.. Consequently we have that

S Vr 150
aws,

on -
and so that
S Oh ds= (— min vr> S @Lds.
awp, On awp, r—pz Jow;, On

Since
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S e ds=——g o gs=1,
IWp, on W p, on

by those two inequalities we obtain that
O<m1n Hr<,02—“01‘
Wy,

Hence by use of Harnack’s principle we see that {A,} is normal and that hence
there exists a sequence {r;}5.. increasing to oo such that {ﬁrj}‘;‘;l converges to a
harmonic function /%, uniformly on every compact subset of W.

There remains to be shown that %4, so obtained meets the conditions of the
lemma. Since

S Oh ds=1

. on

for sufficiently large 7, we have that

S _Ziho ds=1.
c on

Since v,<max;e» vo on Wa—G®, the set {p|vs(p)>7;} is contained in GP for
sufficiently large j. By use of the maximum and minimum principle we have an
inequality

|Fonx— by =

+

7y

fn, v —05R+min v,
BW;:

vpf—minv, —h
3W;’

=max { max
sap

}

ho—v,]+grvlvip v,.|, max

ho—vy £+ min v, |
3@%’) OWp’

()] : r
+|vnk —min v, —h,,
BW","

on (W—GP—GP)N 2,
where o7 denotes the harmonic function in (W¥—G%) N2, which has the bounda-
ry values v,, on (GW¥(NQ2)UIGY and whose normal derivative vanishes on
2N (W —GP).

Since v,,=1iM... v on Wi—GP,

im fin, 1 — iy,

k—co

ho—vrj—l—min Vs,
awo,

, max

ho—vy,+minv,;
2¢® 3
n

aWp,

=max {max
ag$P

on W—GP—GP. Further since %o=lim,.., /-, we obtain that
ho=1im 7, on W—GP—-G2,
k—o0
and so that

ho=lim lim %, & on W.

n—o0 k—oo

Now we can verify easily that #,—H}* and —(k,—H}*) have the properties imposed
in Lemma 2. Consequently, by Lemma 5 and Lemma 7 we have that
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lim Zo(p)=—1im A¢(p)=+co.

p—p1 P2
Let %] be another harmonic function in W satisfying the conditions in the lemma.
Then by Lemma 6 we have that

ho—HKi=h$—H,v,‘gi on W, (i=1,2).

This implies that 4,—#%; is harmonic on W and takes its maximum on W at a
point of 7. We conclude that /,—%4{ is reduced to a constant by use of the maximum
principle.

Lemma 9. If ¢ is a member of A(Py, P2), then either hoop=ho+2, or else
hoop=—ho+2,, where 2, is a constant. Further

(1)  there exists an inlegey n such that ¢n is the identity mapping if and only
Z:f either ]Zo°§0=ho or }lo°§0=—ho+2¢,

(2) o¢n is not the identity mapping for any integer n(x0) if and only if
ho°§0=ho+2¢, ZpﬂFO-

Proof. The former part of the lemma is an obvious consequence of Lemma 8.

Suppose that Zeo=4h, Assume that ¢n is not the identity mapping for any
integer m(0). Let y be a Jordan closed curve separating f; from B, and let (D),
be an exhaustion of Wsuch that G (i=1,2) is a component of W—@,. Applying
Lemma 1 there exists an integer 7 such that ¢u(r)NZ,=¢. Since ¢n(y) separates
B: from Bs, ¢m(y) must be contained in GPUGY. Thus we can select a sequence
{omu (D=1 tending to By or . for a point pey. For such a sequence

%Lm hoopm(p)=-+co  or ,%erl ho0 oy ()= —o0.

On the other hand /Zoepn(p)="ro(p) for all integers m. This is a contradiction.
Suppose that Ayep=—"ro+2,. Since Aop.=/o, We conclude that there exists an
integer # such that ¢, is the identity mapping, as before.
Suppose that Zep=rho+2,, 2,%0. Evidently ¢, is not the identity mapping for
any integer n(=0) because of the equation

}lo°§0n=ho+7l2¢.

Finally we prove a lemma which completes the proof of Theorem 4. We
denote by A!Bi, B2) the class of members ¢ of A(Bi, fz) such that Zgep=rh, by
A¥B, B2) the class of members ¢ of A(Bi, B2) such that Aeep=rho+2,, 2,50, and by
A¥By, B2) the class of members ¢ of A(By, B2) such that /gep=—/ho+2,. For these
classes we conclude

Lemma 10. (1) AYBy, B2) is a finite group.

(2) There exists a member & of A*(By, B2) Such that each member of A*(pi, B2)
is expressed as the composition of a member of AP, p=) and an itevate of ¢. & is
determined uniquely up to a member of AY(Bi, P2)-

3) Let gZ be an arbitrary member of A*By, B2). Then each member of AP, P2)
is expressed as the proper composition of a member of A By, B2), § and an iterate

of @.
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Proof. (1) Assume that A'(Bi, B.) contains infinitely many members. Then
applying the same method as in the proof of Lemma 3, there exists a member ¢
of AYBi, B2) such that {p.(p)}s-:1 tends to B; or B.. On the other hand /%o, (p)=7Ao(p).
It is a contradiction.

(2) First we show that Zo=infascs, s, 4, iS positive and there exists a member
@ of A%, B2) such that Az=2.

If 2, were zero, then there exists a sequence {p™}2; of distinct members of
A%By, B2) satisfying the condition that the sequence {l,m}: converges to zero.
Hence we see that

im /oo (p)=1im {e( )+ 202} =ho(D)-

On the other hand we may assume that {p™(p)}2: tends to B, or B, for v—co and
80 that lim,,.Zee@p®(p)=—40c0 or lim,..Aywep®(p)=—oco. It is a contradiction.
Suppose that 2,24, for all members ¢ of A%, B2), then we are led to a contradic-
tion by the same reasoning as before. Thus we obtain that there exists a member
@ of A%, Bz) such that Az =2,.

Let ¢ be an arbitrary member of A%, B:) and suppose that 2,3%n4, for any
integer #. There exists an integer m such that 0<A,—mA,<2,. This implies that
0oB_n€A%(By, f2) and that A.p_,,=2d.—mA<A. It is a contradiction. Hence 2,=n,
for an integer #». Thus we conclude that ¢¢_, is a2 member of A(B;, Bo).

(3) Let ¢ be an arbitrary member of A%, f2) and let ¢ be another arbitrary
member of A%, B2). Then we see that googZ_l is a member of A'(Bi, B:) or A%, B2)
because of the equation

hoopody _1=ho-+2A,+ ;.

This lemma infers that A(Bi, B2) is finitely generated and we have proved
Theorem 4.
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