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ON THE GROUP OF (1, 1) CONFORMAL MAPPINGS
OF AN OPEN RIEMANN SURFACE ONTO ITSELF

BY YOSHIHISA KUBOTA

1. The following theorem [4] is well known:

The number of (1,1) conformal mappings of a plane region bounded by p
for dan curves onto itself is finite.

In the present paper we shall consider, instead of a plane region, an open
Riemann surface W and shall give two sufficient conditions that W admits only a
finite number of (1,1) conformal mappings onto itself: namely,

THEOREM 1. // W is an open Riemann surface which has p (oo>^>2) boundary
elements in the sense of Kerekjάrtό-Stoilow, then the number of (1, 1) conformal
mappings of W onto itself is finite.

THEOREM 2. // W is an open Riemann surface of genus g (oo>g>0), then
the number of (1, 1) conformal mappings of W onto itself is finite.

Theorem 1 may be regarded as an extension of the above theorem.
Further we shall consider an open Riemann surface which has precisely two

boundary elements. In this case we shall exclude doubly connected planar surfaces
from our investigation. There is a non-planar Riemann surface which has two
boundary elements and which admits infinitely many (1, 1) conformal mappings
onto itself. However we shall prove the following theorem.

THEOREM 3. / / W is an open Riemann surface which has two boundary ele-
ments and which is not planar, then the group of (1, 1) conformal mappings of W
onto itself is finitely generated.

More generally, let βλ and- β2 be two boundary elements of an open Riemann
surface W which has more than one boundary element and denote by A(βu β2) the
group of (1,1) conformal mappings φ of W onto itself which have the property
that either

(1) φ(p) tends to βlf β2 for p tends to βι, β2 respectively; or else
(2) φ(p) tends to β2, βλ for p tends to βu β2 respectively.

For such a group we have

THEOREM 4. / / W is an open Riemann surface which has more than one
boundary element and which is not a doubly connected planar surface, than A(βu /32)
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is finitely generated for arbitrary βι and β2.

Obviously Theorem 3 is a consequence of this theorem.
In the case that Λ(βlf β2) contains infinitely many members we shall obtain a

detailed information on the structure of A(βlf /32).
In our study the following two theorems play the essential role.

THEOREM A. (Komatu and Mori [5]) Let W, W* be two Riemann surfaces
whose universal covering surfaces are of hyperbolic type, and let {φ^}^ be a sequence
of single valued analytic mappings of W into W*. Then, either

(1) there exists a subsequence {φίvβ}™=1 which converges, uniformly in the wider
sense in W {with respect to the uniform topology of W* defined by means of
Poincare's hyperbolic metric), to a limit analytic mapping φ of W into W*; or else

(2) for any point p on W the point sequence {φCΌ(p)}T=i on W* tends to the
ideal boundary of W* uniformly in the wider sense in W.

The statement (2) means: if K, K* are compact point sets on W, W* respective-
ly, then φii0(K)ΓiK*=φ for sufficiently large v.

THEOREM B. (Heins [2]) // W is a Riemann surface, which is not simply
connected and which has the properties that its universal covering surface is of
hyperbolic type and that the fundamental group accociated with W is not cyclic,
then the identity mapping of W onto itself can never be expressed as the limit of a
sequence {̂ (y)}̂ Li of single valued analytic mappings of W into itself, where φ^(p)^p
(»=1,2,.~).

These two theorems allow us to infer immediately

LEMMA 1. If W satisfies the conditions imposed in Theorem B, then any
sequence {φ^}^Lι of (1,1) conformal mappings of W onto itself whose members are
distinct tends to the ideal boundary of W in the same sense as Theorem A.

Proof. Assume that there exists a subsequence {φGβ}™=1 which converges to a
limit analytic mapping of W into itself in the same sense as Theorem A. Suppose
that the limit mapping is not reduced to a single point, then it is a (1, 1) conformal
mapping of W onto itself by the aid of Hurwitz's theorem. Theorem B is contra-
dicted. Suppose that the limit mapping is reduced to a single point, then for each
cycle c on W which is not homologous to zero φCvJ\c) is homologous to zero if j is
sufficiently large. This contradicts that φW is a (1, 1) conformal mapping of W
onto itself. Thus we obtain this lemma by applying Theorem A.

There is a theorem of Klein and Poincare which is a consequence of Theorem
B: namely, that under the hypotheses of Theorem B the group of (1, 1) conformal
mappings of W onto itself is properly discontinuous. Now we have by virtue of
Lemma 1 that under the same hypotheses the group of (1, 1) conformal mappings
of W onto itself is countable. Indeed, cover W by a family {Δn}n=ι of parametric
disks. We enumerate the (1, 1) conformal mappings of W onto itself by counting
those mappings φ for which ω(po)£/!n, n=l, 2, ••• with p0 a point of Δo. Each φ
will be counted at least one. But there are only a finite number of such φ for
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each n by applying Lemma 1. Then altogether there are at most denumerably
many φ.

REMARK. The hypotheses of Theorem B implies to exclude the following seven
surfaces: (1) a sphere, (2) a once-punctured sphere, (3) a twice-punctured sphere,
(4) a torus, (5) a disk, (6) a once-punctured disk, (7) an annulus.

2. Proof of Theorem 1. Let W be an open Riemann surface which has p
(oo>^>2) boundary elements and let βL, β2, •••, βp be its boundary elements. We
denote by G* (f=l, 2, •••,/>) a non-compact subregion of W whose relative boundary
d consists of a Jordan closed curve and which has the properties that βι is a
boundary element of d and that GiΓ\Gj=φ for distinct ij (l^i,j^p). Each c% is
not homologous to zero and any two distinct cl} c3 are not homologous to each other.
We set R=W—ΌΪ=iGi. Assume that there exist infinitely many distinct (1,1)
conformal mappings of W onto itself, {φσ)}Z=i. Since R is a campact and connected
set on W, applying Lemma 1 there exist integers v and i such that GiΌφiv\R).
Thus all φ^icj) are contained in Gt. Since each φcn(Cj) is a dividing cycle which
is not homologous to zero, φ^icj) is homologous to c%. Hence, for instance, φcn(ci)
is homologous to 9?ciofe>) because both are homologous to c%. By the aid of the fact
that <p(t° is a (1,1) conformal mapping of W onto itself we have that cλ is homolo-
gous to c2. It is a contradiction.

3. Proof of Theorem 2. Since W is an open Riemann surface of genus g
(oo>g>0), there exists a relatively compact subregion Ω of W such that each
component of W—Ω is planar and there exists a non-dividing cycle c. Assume
that there exist infinitely many distinct (1,1) conformal mappings of W onto itself,
V°fei . Applying Lemma 1 there exists an integer v such that φ:Ό(c)f]Ω=φ.
Consequently ψ^ic) is contained in a component of W—Ω. It contradicts that ψin{c)
is a non-dividing cycle.

4. Proof of Theorem 4. In order to prove Theorem 4 we shall prove several
lemmas. We begin with introducing some notations.

Let W be an open Riemann surface and let β be a boundary element of W.
We denote by Wβ a non-compact subregion of W which has the property that β is
a boundary element of Wβ and whose relative boundary dWβ consists of at most
an enumerably infinite number of analytic curves clustering nowhere in W. Let
{Gn}n=i be a defining sequence of β whose relative boundary dGn consists of an
analytic Jordan closed curve. Further let {Ωk}%=1 be an exhaustion of W whose
relative boundary dΩk consists of analytic Jordan closed curves and whose closure
Ωk is compact, and which has the property that Ωkc:Ωk+1 for all k.

Consider the harmonic function ωn,k in (Wβ—Gn)ΓiΩk which has the boundary
values 1 on dGn and 0 on dWβΠΩk and whose normal derivative vanishes on
dΩkΓϊ(Wβ—Gn). The sequence {o)n%k} converges to a harmonic function ωβ uniformly
on every compact subset of Wβ:

ωβ=ϊimlimωn,k and \\dωβ\\wβ
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ωβ is independent of the particular {Gn}^=ι and {Ωk}k=1, and ωβ has the following
properties:

(1) supwβ3P(θβ(P)=l if ojβ is not reduced to the constant zero,
(2) let Wβ, Wβ be two admitted non-compact subregions of W associated with

β, then ^ = 0 is equivalent to WJEO, where ωβyωβ are the above harmonic functions
associated with Wβ, W'β respectively.

We call ωβ the harmonic measure of β.
Let gn,k(P,q) be the function which is harmonic in (Wβ—Gn)ΠΩk except for

the singularity — log |z | at a point qe(Wβ—Gn)ΓlΩk, =0 on (3WβΠΩk)UdGn and
whose normal derivative vanishes on dΩkC[(Wβ—Gn). Then limn^oolim^oo £»,*(/>,q)
exists and the limit function g(p, q) is harmonic in Wβ except for the singularity
—log 1̂1 at q, =0 on dWβ and has the symmetry property: g(p,q)=g(q,p).

In the case that the relative boundary of Wβ is compact for a given continuous
function / o n dWβ we can construct the harmonic function in Wβ denoted by Hc

f

as follows. Let u%,k be the harmonic function in (Wβ—Gn)ΓiΩk which has the
boundary values / o n dWβ and a constant c on dGn and whose normal derivative
vanishes on dΩkΓ\(Wβ—Gn)> Here we assume that Ωλ contains dWβ without loss of
generality. The sequence {u%tk} converges to a harmonic function Hc

f uniformly
on every compact subset of Wβ: H}=limn^0Olimk.,0Ouc

ntk. If the harmonic measure
of β vanishes, Hj has the following properties:

(1) Hj=H} for every c,
(2) mm f^Hjgmax/ on Wβ,

dwβ δwβ

where γ is an analytic Jordan closed curve on Wβ separating β from dWβ.
In the case that the harmonic measure of β vanishes we denote by HJβ the

above function associated with Wβ. Then we can verify easily that g(p, q)=Hg$,q>(p)
on Gn provided that Gn does not contain q.

LEMMA 2. // the harmonic measure of β vanishes, there exists a positive
harmonic function v in Wβ which has the following properties'.

(1) v=0 on 3Wβ,
(2) v=\imlimvntk9

n—*oo k-*oo

where vn,k denotes the harmonic function in (Wβ—Gn)Γ\Ωk which has the boundary
values v on (dWβϊ\Ωk)\jdGn and whose normal derivative vanishes on dΩkΠ(Wβ—Gn).

Proof. Since g(p,q)=H§&tQ)(p) on Gn provided that Gn does not contain q, we
have that

g(p, q)^min g(r, q) on Gn, q$Gn,
dGn

and so that

lim g(p, q)^min g(r, q)>0, q$Gn.
V~*β 3Gn

Hence we can select a sequence {qj}™=i tending to β such that {g(p, qj)}J=i converges
to a positive harmonic function v in Wβ: v{p)=\ιmJ^oog{p,qj).
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It is evident that υ has the property (1). There remains to be shown that v
has the property (2). Let gn,k(P,q) be the harmonic function in (Wβ—Gn)Γ\Ωk

which has the boundary values g(r, q) on (d Wβ Π Ωk) U dGn and whose normal deriva-
tive vanishes on dΩkΓ\(Wβ—Gn). lim***,&»,*(/>, q) exists and is harmonic in Wβ—Gn.
Since for m>n

\9n.k(P, 4j)—gm,k(P, Qj)\ ̂ m a x \g(p, qj) — gm,k(P, qj)\ on ( W β - G n ) Π Ωk
dGdGn

provided that Gn contains qJ} we have that

ΰ(P,qj)=timΰn,k(P,<lj) on Wβ—Gn for

Hence by the inequality

WP)-vnΛ(P)\^

we obtain that

and that hence

\v(P)—g(P> qj)\ + w

υ=\imvn^k

v=lim limi

[p,qj)-ΰn,kt

on

on Wβ-

]n,k o n

Â qά)\ -fmax \g(p, qj)—v(p)\
dGn

(Wβ-Gn)ΠΩk

~Gn

Wβ.

If the harmonic measure of β vanishes, v is unbounded. Indeed, if v were
bounded: v^M on Wβf then vn,k^Mωn,k on (Tί̂ —Gw)Πί2jfc and therefore

Further \\dv\\wβ=00' Suppose that | | ^ | | ^ < o ° . We construct the harmonic function
vn,k in (Gi—Gn) ΓiΩk which has the boundary values v on 3Gn and 0 on 0G1 and whose
normal derivative vanishes on dΩkΠ(G1—Gn). Then the sequence {vn,k\ converges to
a harmonic function v uniformly on every compact subset of d : #=limw^oo limA;->oo vntk

and H^IIGJ is finite, and moreover ||Jz)||ί?1=limw_>oolimft^oo||̂ w,A;||(ί?1-Gri)nβfc By the
inequality

11 dϋn, k 11 (LG-L-GrOnΩji' \\ dωn, k \ \ iG^GrO^k^ I (dVn, k, dύ)n, ^CG^G^oΩ^

dvn,k j
—^—ds

JdGi on

where ωnΛ denotes the harmonic function in (Gi—GW)Π£A; which has the boundary
values 1 on 3Gn and 0 on dGi and whose normal derivative vanishes on dΩkf](Gi—Gn),
we obtain that

dv

because limw_>0olim*^*,(| dωn,k\\CGl^n^Ωk^0 and that hence ΐ;=0. Consequently v=v—ϋ
is bounded on Gx and therefore v is bounded on Wβ. We conclude that v is identi-



112 YOSHIHISA KUBOTA

cally equal to zero as before.
From now on we assume that W is an open Riemann surface which has more

than one boundary element and which is not a doubly connected planar surface.
Further we assume that A(βu β2) contains infinitely many distinct members.

LEMMA 3. There exists a member φ of A(β1} β2) such that ψn is not the identity
mapping for any integer n(^0), where {φn}n=-oo denotes the sequence of iterates of
<p\ <pi=φ, φn=φoφn_1 for positive integers n, and φ-ι denotes the inverse mapping of
φ, φn=φ-.1oφn+1 for negative integers n.

Proof. Let γ be a Jordan closed curve dividing W into two parts Wi, W2 such
that βi is a boundary element of W% (z=l,.2). We denote by {φcn}?=i a sequence of
distinct members of A(βu β2). By Lemma 1 we can assume without loss of gener-
ality that φ^iγ) are contained in Wi for all v. This implies that either φiv^(Wi)^Wi
or else ψiv\W2)^Wι. If φa\Wi)ξ^Wi, <pa> is a desired mapping. In the case that
φaKW2)^Wi we take a relatively compact subregion K of Wi—φa\W2) whose
relative boundary contains γ and φa:>(γ). Applying Lemma 1 there exists a mapping
<̂ (ι° such that φ^(K)ΠK=ώ. Since φ^(γ) is contained in WΊ and separates βi from
β2, φiv\K) must be contained in <pCΌ(W2). Hence φc^°φa\γ) is contained in ψiι\W2).
This implies that either ^(υ)°^α)(Wi)§=^cl)(W2) or else ψiv')oφ{ l:>{W2)^ψiι^{W2). In
the former case we have that ^(1°°^α)(Wi)§=Wi and hence φ^°φcυ is a desired
mapping. In the latter case φ^ is a desired mapping.

This mapping has the properties that limn->coφn(P)=βi and that \\mn^ooφ_n(p)=β2.
Then we have

LEMMA 4. The harmonic measure of βi vanishes (i=l, 2).

Proof. Let Ro be a closed annulus separating βi from β2 with Jordan boundary
on W and we denote by Wz ( ί=l, 2) the component of W—Ro such that βi is a
boundary element of Wi. We set Rn=ψn(Ro). We can assume that RmΠRn=Φ for
distinct integers m, n. We denote by Fn the family of arcs in Rn which join the
opposite contours of Rn and denote by λ(Fn) the extremal length of Fn. We have
that λ(Fn)=λ(F0)>0. Further we denote by 3f« (*'=!>2) the family of arcs in Wτ

with the initial point on dR0 and extending to βif and denote by λffit) the extremal
length of ^ . Then we have that ί S i ) > Σ L i W ) f° r a 1 1 positive integers n and
that λ(t$2)>Σΐ=iλ(F-k) for all positive integers n. This implies that Λ(g;)=oo
(ί=l,2). On the other hand we have that Λ(%i) = \\da)βi\\^i where ωβi denotes the
harmonic measure of βi associated with W% [7]. Hence we obtain that ωβ.=0.

Let γ be an analytic Jordan closed curve dividing W into two parts Wu W2

such that βi is a boundary element of W% (i=l,2). We orient γ positively with
respect to Wi. By Lemma 2 and Lemma 4 there exists a positive harmonic func-
tion v in Wi (f=l, 2) which has the properties imposed in Lemma 2. We denote
by {G(^}n=i a defining sequence of βi (z=l, 2). Since min9G(i) i Γ f ^ F 7 ^ m a x 9 G « ) ^"7*
on G?} and \\dHJJ1'\\wι<oo) we can prove the following lemma by applying the
same method as in the proof of Theorem 13.1 and Lemma 11.1 in Heins' paper [3].
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LEMMA 5. HJ* possesses a limit at βi and

where v denotes a positive harmonic function in WΊ (or Wz) which has the properties
imposed in Lemma 2 and

[ ^-ds^l {or -1) .
n

Accordingly we obtain the following lemma by applying the same method as
in the proof of Theorem 11. 2 in Heins' paper [3].

LEMMA 6. There is only one positive harmonic function v in Wi (or W2) which
has the properties imposed in Lemma 2 and

Since ||dfl||τrt=oo as stated above, we obtain the following lemma by applying
the same method as in the proof of Theorem 12.1 in Heins' paper [3].

LEMMA 7. v has limit oo at βi (i—1,2).

Now we can prove the following lemma by the aid of above those lemmas.

LEMMA 8. There exists a harmonic function h0 in W satisfying the following
conditions:

(1)
p-*βi p-+βι

(2) for all analytic Jordan closed curves c separating βλ from β2,

C dho

)c dn

where c are oriented positively with respect to the component of W—c which has βi
as its boundary element.

(3) Λo^lim^oolimfc^oo^.fc, where hn,k denotes the harmonic function in
(W—Gn^—Gn^ΓiΩjc which has the boundary values ho on SG^UdG™ and whose
normal derivative vanishes on dΩkΓϊiW—G^—G™).

The imposed conditions determine ho up to an additive constant.

Proof. Let γ be an analytic Jordan closed curve dividing W into two parts
Wu W2 such that βi is a boundary element of W% (z=l, 2) and let v0 be a positive
harmonic function in W2 which has the properties imposed in Lemma 2 and

C dvo Ί i
\ -r—ds=— 1.
j r on

We orient γ positively with respect to Wi. By Lemma 7 we have that
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For each positive number r we denote by Wf the region {p\vo(p)<r}U Wι. We
note that the set {p\vo(p)<r} is connected. Let pi, p2 (p2>p0 be two sufficiently
small positive numbers such that the niveau curve {p \ vo(p)=pk} is an analytic Jordan
closed curve (&=1,2). By Lemma 2 there exists a positive harmonic function υr

in Wf which has the properties imposed in Lemma 2 and

ds=l.
) γ dn

We introduce hr denned in W? as vr—mmdW*Ptvr and show that the family {hr} is
normal. Consider the harmonic function

r—ρ2

This function vanishes on dWf and a point of dW%. Let Vr be the harmonic
function in (Wf— Wf)ΠΩk which has the boundary values Vr on (dWΐΠΩk)UdW*
and whose normal derivative vanishes on dΩkr\{Wf— W%). Here we assume that
Ωi'DdW^. Then we have that Fr^Γim^ooFr on Wf—W% [6]. Since V1} takes its
minimum on (Wf— Wf)ΓϊΩk at a point of dW^UidWff)Ωk), Vr does not take its
minimum on Wΐ—W% at any inner point of W?—W%. Hence we have that
min9τr; iF r<0 and therefore we obtain an inequality

min hrin hr< ( —mine; r)———.
*Pi \ dw*p3 / f—p2

Next let V* be the harmonic function in (W?—Wf2)(~}fh which has the boundary
values Vr on (dWfίΊΩ^ϋdW^ and whose normal derivative vanishes on 5ft

Γ)(W?— Wf). Here we assume that Ωι^>dW%. Again, we have Fr=lim^oo Vr on

W¥-W%. Since F£=0 on dWff)Ωk and F ? ^ 0 on dW* we obtain that F^>0 on

and that hence

Therefore we obtain that

hw'Pί on

for all k. Consequently we have that

dVrί dn

and so that

\ —— ds^ - m m ^ r \
hw*Pi dn \ dw* J r—p2 hw*Pi

dn

Since

-ds.
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— — d s = — \ -r—ds=l,
dn hw*Pt dn

by those two inequalities we obtain that

0<minΛ r</o2—jθi.
dWP1

Hence by use of Harnack's principle we see that {hr} is normal and that hence
there exists a sequence {rj}?=i increasing to oo such that {hrj}7=i converges to a
harmonic function h0 uniformly on every compact subset of W.

There remains to be shown that h0 so obtained meets the conditions of the
lemma. Since

^ -ds=l
)c dn

for sufficiently large r, we have that

ds=l.

Since vo<maxdG(v υ0 on W2—Gcn\ the set {p\vo(p)>rj} is contained in Gg} for
sufficiently large j . By use of the maximum and minimum principle we have an
inequality

h0—^rf
I 8<ή*> I

, max

on (W-G?-G?)nΩk,

where υ%$ denotes the harmonic function in (Wΐ3—G^)V\Ωk which has the bounda-
ry values vTj on (dW?jΓlΩk)\jdG£ and whose normal derivative vanishes on

Since vrj=\imk^v^ on W?j-G%>,

lim hn,k— hrj ^ max ] max
3WpΛ

, max Vrj ™£Vri\\
on W—Gff—G™. Further since ho^=\ιm3^hrp we obtain that

i: on W— G$P—(5$,2),

and so that

on W.

Now we can verify easily that ho—H^ and —(ho—H^oή have the properties imposed
in Lemma 2. Consequently, by Lemma 5 and Lemma 7 we have that
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lim ho(p) = — lim ho(p) = + o o .

Let h'o be another harmonic function in W satisfying the conditions in the lemma.
Then by Lemma 6 we have that

o % o % on W%(j=l,2).

This implies that ho—hί is harmonic on W and takes its maximum on W at a
point of γ. We conclude that hQ—hί is reduced to a constant by use of the maximum
principle.

LEMMA 9. / / φ is a member of A(βu β2), then either h0

oφ=h0

Jϊ-J(φ or else
fo0oφ=—ho-\-?.φ, where λψ is a constant. Further

(1) there exists an integer n such that φn is the identity mapping if and only
if either ho°φ=h0 or ho°φ——ho+λφf

(2) ψn is not the identity mapping for any integer n(^0) if and only if

Proof The former part of the lemma is an obvious consequence of Lemma 8.
Suppose that ho°φ=ho. Assume that φm is not the identity mapping for any

integer m(^0). Let γ be a Jordan closed curve separating βλ from β2 and let {Ωn}n=i
be an exhaustion of W such that G^ (z*=l, 2) is a component of W—Ωn. Applying
Lemma 1 there exists an integer m such that φm(.γ)ΠΩn=φ. Since φm(γ) separates
βi from β2, ψm(γ) must be contained in G^UGSP. Thus we can select a sequence

{ψmk{p)}k=i tending to βi or β2 for a point pGγ. For such a sequence

lim/£o°^mλO) = +°o or limh0

oφmjc(p) = — oo.
ί ^oo k->oo

On the other hand hooφm(P)=h0(p) for all integers m. This is a contradiction.
Suppose that ho°<p=—ho+λφ. Since ho°φ2=hOi we conclude that there exists an

integer n such that φn is the identity mapping, as before.
Suppose that h^ψ=hQ+λφj λψ^0. Evidently ψn is not the identity mapping for

any integer n(^0) because of the equation

Finally we prove a lemma which completes the proof of Theorem 4. We
denote by A\βι, β2) the class of members φ of A(βi, β2) such that ho°φ=:ho, by
A2(βuβ2) the class of members φ of A(βif β2) such that ho°φ=ho+λψf λψ^0, and by
A*(βlfβ2) the class of members φ of A(βi, β2) such that hv°φ=~hQ-\-λφ. For these
classes we conclude

LEMMA 10. (1) A1(β1, β2) is a finite group.
(2) There exists a member φ of A2(βu β2) such that each member of A2{βλ, β2)

is expressed as the composition of a member of Ax{βι, β2) and an iterate of ψ. φ is
determined uniquely up to a member of A1(βι, β2).

(3) Let φ be an arbitrary member of A*(βu β2). Then each member of A3(β1} β2)
is expressed as the proper composition of a member of A\β\> /32), φ and an iterate
of ψ.
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Proof. (1) Assume that A\βi, β2) contains infinitely many members. Then
applying the same method as in the proof of Lemma 3, there exists a member φ
of A\βlf β2) such that {φn(P)}n=i tends to βλ or β2. On the other hand h°φn(P)=h0{p).
It is a contradiction.

(2) First we show that 20=mίA^cβ1,β2^φ2φ is positive and there exists a member
ψ of A\βuβ2) such that λ$=λ0.

If λ0 were zero, then there exists a sequence {φ^}T=i of distinct members of
A2(βh β2) satisfying the condition that the sequence {̂ ω}Γ=i converges to zero.
Hence we see that

lim h0oφ^(p)=li
v—*oo v—*

On the other hand we may assume that {φcv\p)}?=i tends to βx or β2 for y-*oo and
so that limv_»oo^o°^(10(/>)=:=+00 or \imv.+ooh0°φ

cv:>(p)=— oo. It is a contradiction.
Suppose that λφ^λ0 for all members φ of A2(βi, β2), then we are led to a contradic-
tion by the same reasoning as before. Thus we obtain that there exists a member
φ of A\βι,β2) such that λ?=λ0.

Let φ be an arbitrary member of A2(βlf β2) and suppose that λΦ^nλ0 for any
integer n. There exists an integer m such that 0<λφ—mλ0<λ0. This implies that
φoφ_mQA\βlt β2) and that λφrφ_m=^u>—mλ0<λ0. It is a contradiction. Hence λφ=nλ0

for an integer n. Thus we conclude that φ°φ-n is a member of ^LKβi, β2).
(3) Let 0 be an arbitrary member of Az(β1} β2) and let φ be another arbitrary

member of A\βu β2). Then we see that φoφ^ is a member of AKβi, 2̂) or ^42(^i, /S2)
because of the equation

This lemma infers that A(βlf β2) is finitely generated and we have proved
Theorem 4.
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