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Dedicated to Professor Hitoshi Hombu on his sixtieth birthday

Introduction. The main purpose of the present paper is to study the so-called
normal circle bundle J(V) of a complex hypersurface V, that is, a 2n-dimensional
submanifold in a (2n#-42)-dimensional Kédhlerian manifold M, whose tangent space
is invariant by the complex structure of M. For a complex hypersurface V of
even-dimensional Euclidean space with natural Kihlerian structure, we make use
of the natural mappings p: JUV)—V, ¢: JUV)—S*™* a (2n-+1)-dimensional unit
sphere and 7: S**'—CP™ a complex z-dimensional projective space, and introduce
a mapping ¢: V—CP”", which may be considered as the Gauss map of V. The
study of the Gauss map of V in this sense is one of purposes of the present paper.

We first state in § 1 some of important formulas for complex hypersurfaces in
a general Kdhlerian manifold and then specialize in § 2 these formulas for complex
hypersurfaces in a Kihlerian manifold of constant holomorphic sectional curvature.
These formulas permit us to prove some of recent results of Ako [1], Smyth [6]
and Takahashi [8].0

§ 3 is devoted to the study of normal circle bundles of complex hypersurfaces
in a Kéhlerian manifold and §4 to the study of Gauss maps of complex hyper-
surfaces in even-dimensional Euclidean spaces.

We study in the last §5 Einstein complex hypersurfaces in an even-dimen-
sional Euclidean space with natural complex structure.

§1. Complex hypersurfaces in a Kihlerian manifold.

Let M be a Kihlerian manifold of 2%-+2 dimensions with Kihlerian structure
(G, F'), where G is a Riemannian metric tensor and F' a tensor field of type (1, 1)
such that®

1.1) F:=—] e, FpiF¢8=—04,
(1. 2) FGEFBDGED=GCB,
1.3) VF=0, ie., V¢Fpt=0,
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1) The numbers between brackets refer to References at the end of the paper.

2) The indices A, B,C, D, E run over the range {1,2, ---, 2n+2)} and the so-called
Einstein’s convention is used with respect to this system of indices.
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I being the unit tensor of type (1,1), F4 and Ggp the components of F and G
respectively and F the operator of covariant differentiation with respect to G (Cf.
Yano [9]). The tensor field F is called the complex structure of M. If we put

1. 4) Fes=F¢PGps,
we easily see that
(1.5) Fop4Fpe=0.

Let there be given in M a differentiable submanifold V of class €= and of
codimension 2. Suppose that V is expressed in each neighborhood U of M by
equations®

wh=z4(u’),

Wher_e (x4) are local coordinates of M in U and (#% local coordinates of V in
U=UNV. We have in U 2x local vector fields B, having components

BbA=3be

and spanning the tangent space of V at each point of U, where 9, denotes the
operator 9/0u®. The submanifold Vis a complex hypersurface when and only when
the complex structure F leaves invariant the tangent space of V at each point of
V. In the sequel, we shall restrict ourselves only to complex hypersurfaces. For
a complex hypersurface V, FBs, is a linear combination of B, in U, that is,

1. 6) FBy=fy"Ba, ie., Fp*ByP=f,"Ba*,

where the functions f3* are components of a tensor field f of type (1, 1) defined
globally in V. Applying the operator I to both sides of (1.6) and taking account
of (1,1), we find

€7 fi=—1, ie, frfd=—a.

The Riemannian metric g induced in V has components of the form
(1.8 9ev=GopBl By®
in each neighborhood U of V. Thus we obtain

(.9 S 6 gea=ger

as a direct consequence of (1.2) and (1.8). On putting
(1. 10 Jeo=rcgev,

we have

3) The indices @, b, ¢, d, e, f run over the range {1, 2, ---, 2»)} and the so-called Einstein’s
conventijon 1s also used with respect to this system of indices,
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(1' 11) fcb+fbc=0
by virtue of (1.5).

Since V is a complex hypersurface, the normal plane of V is left invariant by
the complex structure F of M at each point of V. Thus there exist, in each
neighborhood U of V, two local unit vector fields C and D normal to ¥V such that

FC=D, FD=—-C, ie,
1.12)
FpiCB=DA4, FpADB=—(CA,
where C4 and D4 denote the components of C and D respectively, C and D being
necessarily perpendicular to each other.
We have, as is well known, the following equations:

VcBbA= hcbcA”l‘kcbDA»
(1. 13) Vo CA= —h*ByA+1.D4,
VeDA=—k*BA—[.CA4,

which are respectively the equations of Gauss and those of Weingarten for the
complex hypersurface V. The left hand sides of these equations are defined by

VeBy*=0:By*+{c*5} B’ Bs® —{"s} Ba*,
Vo CA=0.C44{c*s} BLCP,  VeDA=03.D4+ {c*5} BLD?

respectively, where {¢4p} and {.%} are Christoffel symbols determined respectively
by Ge¢s and g The functions 4,* and k,* appearing in (1.13) are the components
of the so-called second fundamental tensors h and k respectively, where 2 and k&
are local tensor fields of type (1,1) defined in each neighborhood U of V with
respect to the choice of the unit normal vector fields C and D. The functions /%
and k¢ appearing in (1. 13) are respectively defined by

1.14) hev="Nc"gap, key="FRc"gan.
We easily see that
(1. 15) hcb=hb0y kcb:kbc

hold. The functions /. appearing in (1.13) are the components of the so-called
third fundamental tensor I, which is a local covector field defined in each neigh-
borhood U of V with respect to the choice of the unit normal vector fields C
and D.

Differentiating (1. 6) covariantly along V and taking account of (1.12) and (1. 13),
we obtain

(1. 16) PF=0, ie., Vefi*=0
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and
(]- 17) hcb=kcefbe; kcb: "/lcefbey

where the operator F appearing in (1.16) denotes the covariant differentiation with
respect to the induced metric ¢ in V. The equations (1.17) are equivalent to the
conditions

h=—fk, ie., h'=—f kS
(1. 18)

k=fh, ie., k=f"hsS,
which imply together with (1.11) and (1.15)
(1. 19) he'=0, k=0.
The equations (1. 18) imply
(1. 20) fh+hf=0, fk+kf=0

by virtue of (1.11) and (1.15). We have moreover the conditions

(1. 21) hP=k?, hk+kh=0
and
(1. 22) T % ea=7er, Ted=Tbe

by virtue of (1.18) and (1.20), where we have put
(1. 23) ch:‘hcehbe-

If we take account of (1.7), (1.9), (1.16) and (1.19), we see that any complex
hypersurface in a Kdhlerian manifold is a minimal surface and is itself a Kahlevian
manifold with the induced Kdhlerian structure (g, f) (Cf. Schouten and Yano [7]).

The set of all vectors normal to the complex hypersurface V is called the
novmal bundle, which is orientable. Thus, taking two intersecting neighborhoods
U and U of V, we can choose pairs (C, D) and (C, D) of normal vector fields
defined respectively in U and U such that they are related to each other by

(1. 24) C=Ccos@—Dsind, D=C sinf+D cosb

in UnU, 6 being a certain function in UNU, where (C, D) and (C, D) satisfy
respectively the condition (1.12). If we denote by #, 2 and [ respectively the
second and the third fundamental tensors in U with respect to C and D, then we
easily obtain in UnU

h=hcos 6—ksin 0, k=hsin 6+k cos 0,

(1. 25) ]
[=I—do
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by virtue of (1.21), (1.24) and the definitions of %, £ and /. Therefore we get
R*=h?,  k*=k:,  hk=hk, kh=kh, di=dl
in UnT. Consequently, taking account of (1.21) and (1.23), we have

ProrosiTiON 1. 1. For any complex hypersurface V in a Kdahlevian manifold,
h?, k% hk, kh and Q=dl determine global tensor fields of corvesponding type in V,
respectively. They satisfy the conditions

=k,  hk+kh=0.

The local tensor field vy, defined by (1.23) detevmines a global tensor field y of type
0,2) in V.

For a complex hypersurface ¥V in a Kihlerian manifold, we have, as is well
known, the structure equations

(1. 26) ' KpeBaBaP B° By BoA= Kacva—Raahics—heahas) — (Baaker—Reakav),
(1.27) ' KpopaBaP Bl By C4 =V shoo—V chav—lakes+lokay,
(1. 28) 'KpopaBa? Bl By DA =V gkop—V ckap+Lakter—Lehan,
(1. 29) 'KpepaBaP Bl C? D4 =V glo—V ola~+ha'koc—Nokea,

where 'Kpepa and Ky, are components of the curvature tensors of the enveloping
manifold M and the complex hypersurface ¥ respectively.
If we transvect the first Bianchi identity

"Kpepa+'Kespat' Kepca=0
with FYB, then we find

(1. 30) "KpopaF0B=— —;‘/KCBDAF s,

FYB heing defined by
FOB—GODF B,

where (G?)=(Gep)™.
If we take account of (1.3) and the Ricci formula, we obtain

O=VDV0FBA_VCVDFBA= /KDCEAFBE_,KDCBEFEA;
from which, transvecting with G953,
'KpPFpt="KpopiF'¢P,

or
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1
(1. 31) 'KppF 4 f= 0] 'KpopaF 8

by virtue of (1.30), the Ricci tensors 'Kpr and 'Kz? being defined by 'Kpr='K¢pr’
and 'Kg¥='KppGPE respectively.
On the other hand, we have the formula

1. 32) FD0=RB,PBLCfe¥—CPDCHCCDP
along the complex hypersurface V, where f%=g%®gf},.

Now transvecting (1.31) with B,#B,* and taking account of (1.6) and (1. 32),
we find

(1.33)  'KpaByPBeifa’= %‘,KDCBABdDBcoBbBBaAf % —'KpepaDPCOByP BoA.

Substituting (1. 26) and (1.29) into (1.33), we obtain

(1 34) ’Kbefa,e:Kbefae+(7bla_7alb):
or, equivalently
(1. 35) Vila—V aly=(Koe— Kbe) [’

by virtue of
(1. 36) Koo fo*= é Kacva S,
where we have put

'Key='"K¢pB.C By
(Smyth [6]).

§2. Complex hypersurfaces in a Kiahlerian manifold of constant holomorphic
sectional curvature.

We assume in this section that the enveloping manifold M is a Kihlerian
manifold of constant holomorphic sectional curvature ¢. Then the components
"Kpepa of the curvature tensor of M have the form

,KDCBA: % [(GDAGCB_GCAGDB)+(FDAFCB—‘FCAFDB)HZFDCF‘BA]

(Cf. Yano [9]). Substituting this expression of 'Kpepa into (1.26)~(1.29), we
respectively obtain

Kacva= 'ch [(9aageco—Gea9as) +(FaaSev—F caSfav) —2 S ac S vl

@1
+ (hdakcb - hcahdb) + (kdakcb - kcakdb)y
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2.2) V aher—V hay—lakey+lkar=0,
2.3) V akos—V ckay~+1laheo—I:har=0,
@. 4) P ale—V b oo Rt 5 F =0,

Transvecting (2.1) with ¢% and taking account of (1.23), we obtain

(n+1)c
2

1
(n-; Y ‘gcb_zrcb

K= Geo— 2k Pse

2.5)

by virtue of (1.19) and (1.21), where K., are components of the Ricci tensor of V.
Thus we have

ProprosiTION 2. 1. For a complex hypersurface V in a Kihlerian manifold
of non-positive constant holomorphic sectional curvature c, the Ricci form of V
satisfies the inequality KpX°X°=0 for amy values of vaviables X*. In this case,
the equality Kop=0 holds identically if and only if ¢=0 and V is totally geodesic
(i.e. =0, k*=0).

Taking account of (1.17), we find from (2. 4)
1 ol 7 e c
(2. 6) A VeV =fo (h heem g)
which reduces to
1 1
(2 7) "?:‘(lec_Vcld) = —z‘fde (% gec'—Kec>

by virtue of (2.5).
If we transvect (2.2) and (2.3) with f,°, we respectively find
V akov+laher) —f oV chas—lokan) =0,
@9 7 aher—lLaker) + 1oV ckeay+Lohar)=0
by virtue of (1.17). These two equations imply
V ahev—laker)+Fa [V shey—Lrker) =0,
which is equivalent to

2.9) Viho=lsker+1af W thes—Isker).

Taking account of (2.5), we see that the condition V;K,,=0 is equivalent to
V s(hhye)=0, or, to
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2. 10) V ahev)ha®+ 1PV ahisa)=0.
If we assume that V;K.;=0 holds, substituting (2.9) into (2.10), we find
W shev—Laken)ha® + 6PV ahea—lakea) =0,
from which, transvecting with —f,
(P ahpo—1aks)ha® — RV ahoa—Lakea) =0
by virtue of (1.18) and (1.20). This equation reduces to
2.11) (V ahes—lakep)ha®=0

because of (1.21) and (2.9). If we assume conversely that the condition (2.11) is
satisfied, then we get by virtue of (1.21) the condition (2.10), which is equivalent
to the condition V¢K.»=0 by virtue of (2.5).

On the other hand, taking account of (2.8), we see that the two conditions

 aheo—Lakeo)ha® =0 and W skey+1ghen)ka?=0
are equivalent to each other. Thus we have

LemMA 2.1. For a complex hypersurface in a Kdhlerian manifold of constant
holomorphic sectional curveture, the following lhree conditions (a), (b) and (c) are
equivalent to each other:

@ (Vaho—laka)ha®=0,  (b) (Vikootlaha)ka®=0,  (¢) VaKep=0.

We now assume that the condition V' K.,=0 is satisfied. Then, taking account
of (2.5), we find

(2.12) V a(hehoe)=0.

When the complex hypersurface V is irreducible as a Riemannian manifold, (2.12)
implies

hhoe=Ager,

A being a constant. Thus, V is an Einstein manifold, if V is irreducible and
ViKp=0. When V is reducible and not locally flat, taking an arbitrary coordinate
neighborhood U of V, we see that there exists an irreducible factor U; of U in
the so-called de Rham decomposition of U. Thus U is a Pythagorean product
U, X U, where U, and U, are two local Kihlerian manifold. Let (#!, ---, %*) and
(u?*1, ---, u*™) be coordinates defined in U, and in U, respectively. Then, we have
at any point of U?®

(2.13) Gz =0, far=0

4) 1=<a, B, y=27 and 2r+1=2, p, v<2n,
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as consequences of (1.16) and
2. 14) hothie=0

as a consequence of (2.12). Therefore, taking account of (1.15), (1.17) and (1.21),
we have

(2. 15) ha/z:O, kaz=0
by virtue of (2.14). If we put a=q, b=p, c=1, d=p in (2.1), we get
(2.16) Kopipe=—2Fp1f5a

by virtue of (2.13). On the other hand, we have K,;;.=0 because U is a Pytha-
gorean product U;Xx U, This contradicts (2.16). Consequently, V' is necessarily
irreducible and hence an Einstein manifold when V is not locally flat. When V
is locally flat, V is obviously an Einstein manifold. Thus we have

LEMMA 2. 2. A complex hypersurface of a Kahlerian manifold of constant
holomorphic sectional curvature is an Einstein manifold if and only if the condi-
tion V Kp=0 is satisfied.

We assume that the complex hypersurface V is an Einstein manifold. Then
we have V;K.,,=0, which implies together with Lemma 2.1 that

.17 Vihao=laker,  Vakev=—1altco.

If we substitute (2.17) into the equation obtained by differentiating covariantly
(2.1), then we find

Vechba, =0.

Thus we have

LemmAa 2.3. A complex hypersurface V in a Kdhlevian manifold of constant
holomorphic sectional curvature is locally symmetric, i.e., VeKaewa=0, if V is an
Einstein manifold (Ako [1], Smyth [6]).

Combining Lemmas 2.1, 2.2 and 2.3, we have

THEOREM 2. 1. For a complex hypersurface V of a Kéihlerian manifold of
constant holomorvphic sectional curvature, the following three conditions (@), (b) and
(c) are equivalent to each other:

(a) V is an Einstein manifold.

(b) The Ricci tensor of V is parallel, i.c., Vi Kp—0.

(¢) Vs locally symmetric, i.e., VeKaea=0.

(Takahashi [8]).

Taking account of (1.17), we have from (2.4)
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@.17) 5 Oei=Tl) =1 (hhoy = 0,
which reduces to

1 1
@.18) FOeh—Tiy= 51 (%5 do—Ko)

by virtue of (2.5), where dim V=2xn.
We now assume that the complex hypersurface V' is an Einstein manifold
with scalar curvature K, i.e., that

K
K= -2‘; Gcb-
Substituting this into (2.5), we get
@. 19) hetho=Age, A= ﬂ%ﬁ”—_lﬁ =0.
Thus, substituting (2.19) into (2.17), we obtain

1 e K
2. 20) 5 Ceh—Tud)=Bfa,  B=- .
We have from (2.19)

ProposiTION 2.2. Let V be a complex hypersuvface in a Kdhlerian manifold
of constant holomorphic sectional cuvvature c. If V 1s an Einstein manifold, then
the scalar curvature K of V satisfies the inequality K=n(n-+1)c, where dim V=2n.
In this case, the equality K=n(n+1)c holds when and only when V is totally geodesic.

§3. Normal circle bundles.

We shall first recall the definition of almost contact structure for the later
use. Let, in a differentiable manifold of odd dimension 271, there be given a tensor
field f, a vector field £ and a covector field 7 such that®

f]hf-ijz_ag'l_éh?]ir fihé_t:()r
Fin=0, 7:i&=1,

where fi# & and 7; are respectively the components of f, & and 7. The set
(f, & %) is called an almost contact structure. When the tensor field S of type
(1, 2) having components of the form

Siit=F }ouf it — Fionf b — @, F i —0s F o) F (0 57:—0i77 )€™,

5) The indices %, i, j, k run over the range {1, 2, -+, 2241} and the so-called Einstein’s
convention 1s also used with respect to this system of 1ndices.
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ansfructed from f, & and 7, vanishes identically, the almost contact structure
(f, & 7) is said to be normal (Cf. Sasaki [3], Sasaki and Hatakeyama [4]). Let
there be given moreover a Riemannian metric § with components §;; such that

fjkfihgkn*—“!?ji—ﬁﬂ—/iy 7e=0un "

Then the set (f, &, 7, §) is called an almost contact metric structure. If we put

Fu=7 i n
we have

FiitFay=0.
When the condition
3.1 fi= %(aﬂ_]i_aiﬁj)

is satisfied, the almost contact metric structure (£, &, 7, §) is called a contact struc-
ture (Cf. Hatakeyama [2], Sasaki [3], Sasaki and Hatakeyama [4]).

In the next step, we shall recall the definition of fibred spaces in the sense of
[10] and [11] and some of their properties. Let ¥ and 7 be differentiable mani-
folds of dimensions # and #m+41 respectively, and, suppose that there exists a
differentiable mapping p: V—V, which is onto and of the maximum rank every-
where. We assume moreover that there are given in V a vector field & and a
covector field 7 such that 7(§)=1 and & is tangent to the fibre everywhere in ¥,
where, for each point P of V, the inverse image Fr=p"'(P) of P is called the fibre
over P and assumed to be connected. Then we call the set (7, V, ; &, %) a fibred
space (Cf. [10]). If there is given moreover a Riemannian metric § in V such
that £z§=0, ¢ being the operator of Lie derivation with respect to E, & is a unit
vector field with respect to § and 77(X Y=g(E, X ) for any vector field X in V, then
we call the set (V, V, p; & 4, §) a fibved space with invariant metric § (Cf. [11]).
We can easily prove the following Lemma 3. 1 by virtue of the discussions developed

in [10] and [11]:

LEmMMA 3.1. We suppose that, for a fibred space (V, V,p; & 7, 0) with in-
variant metric §, the base space V admits a Kdhlerian structuve (g, f), where g is
the projection of § in the sence of [10] and [11] Then the set (f, &, 7, 0) is an
almost contact metric structuve in V, where F is the hovizontal lift of f in the
sense of [10] and [111. If F and 7 satisfy the condition corresponding to (3.1),
then the almost contact metric structuve (f, €, 7, G) is a contact structure which is
normal.

Let V be a complex hypersurface in a Kihlerian manifold M of 2#+2 dimen-
sions. The set of all unit normal vectors of V' is called the normal circle bundle
of V and is denoted by (V). The (V) has a circle bundle structure
P JV)—V, ie., p: JUV)—V is a principal fibre bundle whose structure group is a

’
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compact Lie group S*' of 1 dimension. For any coordinate neighborhood U of V
endowed with local coordinates (%), the open set p~*(U) is a product UXxS!, that
is, any element N of p~*(U) is expressed as N=Ccos 0+D sin 0, C and D bheing
normal unit vector fields in U satisfying (1.12). Thus N has components of the
form

N4=C4 cos §-+D4 sin 0,

where C4 and D4 are the components of C and D respectively, C4 and D4 being
functions depending on #®. Therefore (#% 0) are regarded as local coordinates in
each coordinate neighborhood W(cp=(V)) of (V). If we put g*=u", =0,
then we have local coordinates (g*) in W. Taking another coordinate neighborhood
W’ of 31(V), we have in Wn W’ the transformation of coordinates

=), 0=0+a(u?),

a(u®) being a certain function, where (‘g")=("u% ’0) are coordinates defined in w!
just as above. The Jacobian matrix of the above transformation of coordinates is
given by

2,0
0 ub 0
a/q-h ou
3.2) ( 7 ):
q 0’0
oub 1

If we introduce in W a local vector field & having components

G 0
3.3 (E’”)=(_ >=< >
gantl 1

with respect to (%), then & determines a global vector field, denoted also by &, in
J1(V) because of (3.2). The vector field thus defined is non-zero and tangent to
the fibre everywhere. If we introduce in ¥ a local covector field 7 having com-
ponents

@49 )=, Tans1)=Ws, 1), 1e., 7=bdu’+do

with respect to (g*), then 7 determines a global covector field, denoted also by 7,
in 91(V) because of (3.2), where /, are the components of the third fundamental
tensor / appearing in (1.13). Thus we easily have

3.9 7(E)=7'=1

and _L£:7=0, where _7 denotes the Lie derivation with respect to £. Therefore
the set (&, ) defines in J1(V) a structure of a fibred space in the sense of [10]
with respect to the projection p: J1(V)—7V.



NORMAL CIRCLE BUNDLES 41

We now define in W 2x local vector fields & and 2% local covector fields &*
having respectively components of the form

3
3.6) (é”b)=< p ) @)=z, 0)
—

with respect to coordinates (g*). Then {&% %} is the coframe dual {o the frame
{é&, €}. We have now

3.7 dp(éy)= By, ap(§)=0

directly from the definition of the projection p: J1(V)—V, where {B,} is the
natural frame of coordinates (#*) defined in each neighborhood U of V.®

Let T and S be two tensor fields of type (1, 1) and of type (0,2) in V respec-
tively. Taking account of (3.6), we see that the horizontal lifts 72 of 7 and SZ
of S have in W respectively the components of the form

T 0
3.8) (Tih)=<Tbaéibéha>=( )
- Tbelg 0
Scb O
3.9 (Si)=(Ser@;°€:%) = ( >
0 0

with respect to (g*), where T* and Si are respectively the components of 7" and
S with respect to (#*) defined in U (Cf. [10], [11]).
If we put

(3. 10) r=rt, i=¢"+7®7,

(f, g) being the Kihlerian structure induced in 7V, _t_hen we see by means of (3.6),
(3.8) and (3.9) that / and § have respectively in W components of the form

- I P 0 gcb+lclb lc
(3.11) <fih)=< ) @-»:( )
—f bele 0 lb 1
with respect to (g%). If we put
.]? ]1,=f_ jkgku
we obtain
- f ch 0
(3.12) <fji)=( )
0 0

by virtue of (3.11). We have now

6) For a differentiable mapping ¢, we denote by d¢ the differential mapping of ¢.
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F(@p(@)=1+*Bu=dp(f &),
ie.,
(3.13) Sedp=dp-f

as a consequence of (3.6), (3.7) and (3.11).
We have the following equations:

Fifo=—d1+Ery,  FE1=0,
7 71=0, 7:&'=1

as consequences of (3.3), (3.4) and (3.11). That is to say, (f, £, 7) is an almost
contact structure in J2(V). Moreover, we obtain from (3.3), (3.4) and (3.11) the

equations

(3.15) FiAFtGn=0—7:75  7,=05%,

which show that (f, &, 7, §) is an almost contact metric structure in J2(V). Sum-
ming up, we have

3.14)

ProrosiTioN 3. 1. Let V be a complex hypersurface in a Kéahlevian manifold.
Then tfze normal circle byndle JUV) of V admits an almost contact metric stvuc-
ture (f, &, 7%, Q), where f,&, 7 and § are defined by (3.3), (3.4) and (3.11) respec-
tively.

Let 7 be the tensor field of type (0,2) defined by (1.23) in the complex hyper-
surface ¥ and 7% the horizontal lift of 7. If we put

T=r"+707,
we see by means of (3.9) that 7 has components of the form
ch’l‘lclb lb
(3. 16) (7ji)=< >
A 1

with respect to coordinates (7%) defined in each neighborhood W of J2(V). Thus
we have

(3.17) it n=Fn—T7  T,=Fnf
because of (3.3), (3.4), (3.11) and (3.16). On putting
8. 18) Bji= [ }*Frs,
we obtain
_ Iren 0
3.19) @ (")

Therefore we have
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ProrosiTiON 3.2. Let V be a complex hypersurface in a Kdhlerian manifold.
Then the normal circle bundle J1(V) of V admits an almost contact metric Struc-
ture (f, &, 7,7 if 7 is non-singular everywhere in V, where f,E& 7 and 7 are
respectively defined by (3.3), (3.4), (3.11) and (3.16).

Taking account of (3.4), we find d7=(1/2) Pule—dcla)du? Ndu’. That is, Q=d7
has components

s wdea 0
(3. 20) R5)=

0 0
with respect to (§%). If we assume that the enveloping manifold M 1s locally flat,
then we obtain
B5i=0;
by means of (3.19), (3.20) and (2.6) with vanishing ¢. Therefore we have
ProrosiTiON 3.3. Let Vbe a complex hypersurface in a locally flat Kdhlevian
manifold. Then the normal circle bundle J1(V) of V admits a contact structure

(f, & 7, 7)., f, & 7 and 7 being respectively defined by (3.3), (3.4), (3.11) and (3.16),
if 7 is non-singular everywhere in V.

We suppose now that the enveloping manifold M is an Einstein manifold with
curvature scalar ‘K. If, moreover, the complex hypersurface V is an Einstein
manifold with curvature scalar K, then we have from (1.34)

1/'K K
(3. 21) Pabi—Vde=Bfi,  B= (it =)
where dim V=2x. Therefore we find
- (Bfa 0 1/'K K
522 (Qj"):( 0 0)’ BZT( nil _n_)
because of (3.19). When 'K/(n+1)xK/n, we put
(3.23) 'f=ef, 'E=|B|I7?, '5=BY*j,  'g=|Blq,

¢ being defined by e=sgn B. We then see that ('f, '€, /7, ’d) is a contact structure.
On the other hand, if we denote by ’f and ’g the projections of /f and ‘¢ in the
sense of [10] and [11] respectively, then (‘g, ’f) defines a Kihlerian structure in V.
Therefore, according to Lemma 3.1, ('f, ’€, /7, /§) is a normal contact structure in
91(V), because the projection 2 of £ has components of the form

Leo="1""gva

by virtue of (3.22), ’f,* and ’gy, being the components of ’/ and ‘g respectively.
Conversely, we assume that, for the complex hypersurface V of a Kihler-Einstein
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manifold M with curvature scalar ‘K, the almost contact metric structure (' £, ’&, ’7, ’§)
defined in 72(V) by (3.23) with a certain non-zero constant B is normal. In such
a case, we say that (f, &, 7, §) is essentially a normal contact structure. If this is the
case, we obtain Vely—Vpl.=Bfe. On the other hand, substituting K=K /2(n+1))ge
into (1. 34), we get

'K ,
(3. 24) Vily—Vole= m)—fcb_Kcefb f

which implies together with Vel,—Vle=Bfe that the complex hypersurface V' is an
Einstein manifold. Therefore we have

PrROPOSITION 3. 4. Let V be a complex hypersurface in a Kahler-Einstein mani-
fold M with curvature scalay 'K. Then the almost contact metric structure (f, &, 7, q)
defined in J1(V) by (3.3), (8.4) and (3.11) is essentially a normal contact structure,
if and only if the complex hypersurface V is an Einstein manifold with curvature
scalar K such that Kxn|(n+1)) 'K, where dim V=2n.

Taking account of (2.5), we have the following Proposition 3.5 as a corollary
to Proposition 3. 4.

ProprosiTiON 3.5. Let V be a complex hypersurface in a Kdahlerian wmanifold
of constant holomorphic sectional curvature c. Then the set (f,E,7, 7) defined in
JUV) by (3.3), (3.4), (3.11) and (3.16) is essentially a novmal contact structuve, if
and only if the complex hypersurface V is an Einstein manifold with curvatuve scalar
K such that Kxn(n+1)c, where dim V=2n.

The 1-form 7 defined in J2(V) by (3.4) is a connection form in the principal
fibre bundle J2(V) and the curvature form of % is by definition the two form 2
in V such that *p(2)=d5, where *p is the mapping dual to dp. The curvature
form 2 has in each neighborhood U of V components of the form 2=(1/2) (Fcly—V3l,)
du* Ndu® by means of (3.20). The cohomology class [£2] determined by £ is the
characteristic class of the circle bundle J7(V). As is well known, [£] is an integral
cocycle when V is compact. If, for a compact V, the cohomology class [@] de-
termined by the fundamental form @=(1/2)f.» du’Ndu® is an integral cocycle, 7
is called a Hodge manifold. Then, taking account of (3.21), we have

4
3. 25) 0=Bo, B== <L _K )

and hence

PROPOSITION 3.6. Let V be a compact complex hypersurface in « Kihler-
Einstein manifold M with curvature scale 'K. Then V is a Hodge manifold if V
is an Einstein manifold with curvature scalay K such that Kxm/(n--1)) 'K, where

dim V=2n.

When the characteristic class [£] is zero, ie., when we have 2=d¢, ¢ being a
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global 1-form in V, the structure group of J2(1V) is reducible to a discrete group.
In such a case, 91(V) is said to be locally trivial. On the other hand, J1(V) is
said to be locally parallelizable, when £2=0. A field N of unit normal vectors to
V, global or local, is said to be parailel in JI(V) if, for any tangent vector field
X of V, PxN is perpendicular to the normal plane at each point. It is easily
verified that J7(V) is locally parallelizable if and only if there exists in each
neighborhood U of V a field of unit normal vectors which is parallel in J2(V).

Let V be a compact complex hypersurface of constant curvature scalar K in a
Kishler-Einstein manifold M with curvature scalar ‘K. Then, substituting 'K
=(K/2(n+1))ge in (1.34), we obtain

'K Kofe
(3 26) Velo—Vyle= chb_ ce 2"

On the other hand, the tensor field K. f»® is harmonic in the Kihlerian mani-
fold V if and only if V is of constant curvature scalar (Cf. Yano [9]). Therefore,
in our case, £ is a hormonic form in V by virtue of (3.26). Thus we have 2=dg,
¢ being a global 1-form in V, if and only if 2=0 (Cf. Yano [9]). Consequently,
according to (3.26), we have

ProprosiTiON 3. 7. For a compact complex hypersurface V of constant curva-
ture scalar in a Kdhler-Einstein manifold M, the following three conditions (a), (b)
and (c) are equivalent to each other:

@) JU(V) is locally trivial.

b)) JUV) is locally parallelizable.

(¢) Visan Einstein manifold with curvature scalar K such that K=n/(n+1)) 'K,

wherve 'K is the curvature scalar of M and dim V=2n.

When V admits a global field of unit normal vectors, J2(V') is locally trivial.
Thus, as a corollary to Proposition 3.7, we have

ProrosiTiON 3.8. Let V be a compact complex hypersurface of constant cur-
vature scalar in a Kdhler-Einstein manifold M with curvature scalay 'K. Then, if
V admits a global field of unit normal vectors, V is necessarily an Einstein mani-
fold with curvature scalar K such that K=n|/(n+1)) 'K, where dim V=2n. If this
is the case, V admits a global field of wunit normal vectors which is parvallel in
JIV).

Let V be a complex hypersurface, which is not necessarily compact, in an
Kihler-Einstein manifold M. Then, if J2(V) is locally parallelizable, we find
'K
K= Z(T-i—ngw
by virtue of (3.26) and conversely. Thus we have

ProrosiTiON 3.9. Let V be a complex hypersurface, which is not mnecessarily
compact, in a Kéihler-Einstein manifold M. Then JU(V) is locally parallelizable if
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and only if V is an Einstein manifold with curvature scalar K=mn|/(n+1)) 'K,'K
being the curvature scalav of M, where dim V=2n.

We now assume that the enveloping manifold M is of constant holomorphic
sectional curvature ¢. Then, according to (2.7), (V) is locally parallelizable if
and only if

n
Keop= ? CYcv,

which implies
3. 27) K=mn?c,

where K denotes the scalar curvature of 7. On the other hand, in the present
case, the scalar curvature 'K of M is given by

(3. 28) K'=(n+1)(n+2)c.

Thus, taking account of (3.27) and (3.28), we have ¢=0 if K=#/(n+1)) ‘K.
Therefore, taking account of Propositions 3.7, 3.8, 3.9 and (2.6), we have

ProrosiTioN 3.10. In a Kdhlerian manifold of non-zevo constant holomorphic
sectional curvaturve, therve exists no complex hypersurface V satisfying one of the
following two conditions (a) and (b):

(a) V is compact and of constant curvature scalar. JI(V) is locally trivial.

(b) JUV) is locally parallelizable.

In a locally flat Kahlerian manifold, a complex hypersurface V s totally geodesic
if 'V satisfies one of the conditions () and (b) mentioned above.

§4. The Gauss map.

Let E?"*% be a Euclidean space of even dimension 2x-2 with the natural
Kihlerian structure (G, F), where G and F have respectively the following com-
ponents:

0 L
(Gep)=Ianss, (Fpt)= ( >
—Ini1 0

with respect to certain rectangular coordinates (x4), where I, denotes the mXxm
unit matrix. Denote by S2**! the unit sphere in E?"*? defined by the equation

(xl)z-l—(.%‘z)z-l—"-+(x2"+2)2=].
A 2-dimensional plane defined in E*"*% by
zi=0A4+FptAP

is called a holomorphic plane, A4 being constant and o, ¢ real parameters. The
intersection of S2"*! and a holomorphic plane is called a %Zolomorphic great circle.
The set of all holomorphic great circles forms, as is well known, a fibring of
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S##+1 which determines the natural bundle structure =: S**'—CP™ over the complex
projective space CP™. That is, each fibre of the bundle structure =: S2**'—CP” is
a holomorphic great circle.

Let there be given a complex hypersurface V in E**? and denote by (V)
the normal circle bundle of V. Let N be an element of J(V). If we transport
N parallelly to the origin, we get a unit vector N’ at the origine and hence in
S+l 3 point ¢(N) which is the terminal point of N’. In such a way, we can
define a mapping ¢: JI(V)—S**. For a point P of V, the fibre p~3(V) of JU(V)
over P is mapped onto a holomorphic great circle of S***!, that is, ¢(p~*(P)) is a
holomorphic great circle. Therefore, if we put oP)==(¢(p~*(P))), we can define a
mapping ¢: V—CP", which is called the Gauss map of the complex hypersurface
V in E2nt2,

¢
TUV) —> Sentl
ol
vV — CPr
¢

We have here
4.1 pep=moq.

Thus the Gauss map ¢ is regular if and only if the mapping ¢ is so also.

We shall obtain a local expression of the mapping ¢: JI(V)—S**. Let U be
a coordinate neighborhood of V and (#*) coordinates defined in U. Then, as has
been done in §3, local coordinates (% 6) are introduced in each neighborhood
W (cp(U)) of (V). We denote by {&}=1{é&, &} the natural frame of local
coordinates (§*)=(u?, 6) defined in W, where &y, =E.

The restriction of the mapping ¢ to W is expressed by equations

4. 2) xd=x4u®, 0),

where z4(u® 0)=C4cos 0+D4sind. Thus, on putting §*=u° ¢g""'=0, we can
regard (¢*)=(u" 6) as coordinates defined in w. Thus, differentiating (4.2), we
have 2n-+1 local vector fields ﬁb and B, in Wzglz(W). They are tangent to S#°'!
and have respectively components of the form

~ A(24%

Byi= 23%9%;0) = —(/* cos 0+ky* sin 0) BoA+1,Y 4,
) i )

R A ﬂ =Y4

Bo aﬁ Y

by virtue of (1.13), where we have put

4. 4) Y4=—C4 cos 0+D4 sin 0.
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These 2x+1 local tangent vector fields By and B, form the natural frame of co-
ordinates (§*)=(u? 0) defined in W, when the mapping ¢ is regular. On putting

(4. 5) dg(@) =2,  dpd)=¢,
we find
(4. 6) €~b=§b—lb§a, ézgo

as consequences of (3.3) and (3. 6). N N
The mapping ¢ is regular if and only if the vector fields B, and B, are
linearly independent. Thus, according to (4.3), ¢ is regular if and only if

—(hp® cos 0-+Fky* sin 0) Iy
=0,
0 1
ie., if and only if
4.7 |Ax* cos 04k sin 0|0,

since the vector fields B,4 and Y4 are linearly independent. On the other hand,
taking account of (1.18), we obtain

hp® cos 0+ ky® sin 0="N°(02 cos 041 sin 0).
Therefore the condition (4.7) is equivalent to the condition
4. 8) [4:%] %0

because of [0¢ cos 8+f.* sin #]x0. Taking account of (2.5) with vanishing ¢, we
see that the condition (4.8) is equivalent to the condition

[ Keo| 0.

Thus we have

ProrosiTiON 4.1. For a complex hypersurface V of E**2, the Gauss map
¢ V—CP™ is regular, or equivalently, the mapping ¢: JI(V)—S*™* is vegular, if and
only if |m®| =0, or, if and only if |Ko|*x0, wheve Ko ave the components of the
Ricci tensor of V.

The metric tensor # induced naturally in S**! has in W the components of
the form

(~ <GOB§00§ B GosBoE? )
Tii)= -~ -~
G¢ECBy® GpECE®

with respect to coordinates (§*)=(u% 0). Thus, according to (4.3) and (4.4), we
obtain
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Jeb + lclb lc

4.9 (Tw):(
by 1

> ’ Jeb= hcehbe~

In the next step, assuming that the mapping ¢ is regular, we shall obtain the
contact metric structure (F, &, 7, 7) induced naturally in S**** (Cf. Sasaki and

Hatakeyama [5]). Applying the operator F to (4.3), we get
FpiBy =12 Bot—(£111) Bt — 1, X4,
(4. 10) ~
FpiB,B=—X4

by means of (1.6) and (1.17), /»* being the functions defining the components of
the complex structure f induced in V with respect to coordinates (#%), where we
have put

4.11) X4=—FptY®=C4 cos 0D sin 0,

which is normal to S?**' everywhere. Taking the tangential parts in (4.10), we
find in S**! a tensor field 7 of type (1,1) with components

biX 0)
—Jle 0
with respect to the frame {§3}={§a, ]§o}. Thus we have

4.12) <ﬁh>=(

FBy=rBu—filBs,  FE=0,
which imply

(4.13) fedp=dgof
by virtue of (3.11) and (4.6). If we put
(4.14) f=7ed¢,

we see that 7 has components of the form
(ﬁz)z(ﬁb, 772n+1)=(lb, 1), ie., dﬁ=lbdub—|—d0

with respect to coordinates (§*)=(«% 6). Summing up (4.5), (4.13) and (4.14), we
have

(4. 15) dpef=Fedp,  dp@=E  Fodp=7.
Taking account of (1.7), (1.21), (1.22), 4.9), (4.12) and (4.14), we find
Fifir=—o1+5,En, Firé1=0,
(4. 16) 7 =0, Fifr=1,

F i+ F i Fen=F1i—7 s, 7,=F k"
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which show that (F, &, 7, 7) is the almost contact metric structure induced naturally
in S***'. On the other hand, taking account of (4.14), we find dj=d(Gdg)=*¢(d7),
which implies

dij= —;— 7 abe—V la)du N\ du’

“4.17)
= (fdefec)dud/\ du’

by virtue of (3.19) and (3.20), *¢ denoting the mapping dual to d¢. Thus, if we
put

Fi=F
we obtain
(4.18) dj=f 5dg? NdG

as a consequence of (ﬁl' }2) and (4.17). Consequently, taking account of (4.14) and
(4.18), we see that (f,§&,#,7) is the contact structure induced naturally in S**!,
which is normal (Cf. Sasaki and Hatakeyama [4]). Thus we have

PROPOSITION 4. 2. Let V be a complex hypersurface in E***% and suppose that
the mapping ¢: JI(V)—=S** is vegular. Then ( 7,87, 7) is a movmal contact Struc-
ture in V), &7, f and 7 being rvespectively defined by (3.3), (3.4) and (3.11), and
these tensor fields ave respectively given by

F=dgtofedp,  E=dg~E),  g=geds,  F=FF,
where (f, €, 7,7) is the natural contact structure in S*"*',

We shall obtain a local expression of the natural projection zx: S**"'—CP"* We
assume that the mapping ¢: J21(V)—S?"*! is regular. Let W be a coordinate neigh-
borhood in S2**' contained in p~(U), U being a coordinate neighborhood of V.
Then, as was shown above, coordinates (§*)=(u% ¢) are introduced in w. Taking
an arbitrary point P of W, we can assign (#%) to the point =(P), (% 0) being
coordinates of P, since holomorphic great circle in W are defined by equations
u®=const. Thus (#*) are regarded as coordinates defined in sz(W). For the
local vector fields &, and & defined by (4.5), we find

(4. 18) dn(&)=0.
If we put
4. 19) dr(er)=2y,

then {g,} forms the natural frame of coordinates (#*) above defined in W.
Taking account of the definition of the Gauss map ¢: V—CP™ we have ¢op
=no¢p and hence dpedp=dr-d¢p. Thus, taking account of (4.5) and (4.19), we get

dpodp(@y) =drod(@y)=dr(8s)=7y.
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Thus we obtain

since dp(é,)= B, because of (3.7).

We have easily £:7=0, L7=0 and 7(§)=1. Therefore (¢, 7, 7) defines in S***?
a structure of a fibred space with invariant metric # in the sense of [11] with
respect to the projection m: S?**'—CP". Since we easily have _£:f=0, f is an
invariant tensor field in S2**', Thus the projections 7 of 7 and 7 of 7 have in W
respectively components of the form

4. 21)

%3
=
S

with respect to (#%) defined in W, as consequences of (4.9) and (4.12), where
and &,° are given respectively by

(éib>=( ’ > @:9=(8, 0)
__lb

which are respectively the components of &, and &* with respect to (% 0) defined
in W, &5 being defined by (4.6) and {2% 7} the coframe dual to the frame {&,, &}
(Cf. [11]). The pair (7, F) thus introduced, as was proved in [10], defines in CP»
the natural Kihlerian structure of constant holomorphic sectional curvature 1.
It is easily verified that

. 22) drof=Fodn

by means of (4.12), (4.18), (4.19) and (4.21). Therefore, taking account of (4.15),
we get

(dpedp)ef =(dnodg)e f
=dro [ edp=To(drod)=F *(dp-dp)
which implies
(4. 23) dpof=Fodg
because of (3.13). Thus we have from (4.23)
ProposITION 4. 3. When one of the three conditions
@  1/*=0, (b)  [Ke| =0, © lresl =0
is satisfied, the Gauss map ¢: V—CP" is vegular and ¢ is an analytic mapping.

When the Gauss map ¢ is not regular, we can prove the fact that, if the rank
of ¢ is constant, the image ¢(V) is an analytic submanifold of CP” and the map-
ping ¢ V—o(V) is analytic, ie., dpof=Fedp, T being the complex structure in-
duced in ¢(V) from the natural complex structure of CP".
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Denote by |k| and |g| the determinants |K,;| and |g.| respectively, where K.,
and g¢.» are respectively the components of the Ricci tensor and the induced metric
gof V. Let 4 be a compact domain of the complex hypersurface V in E2"+2,
Then, taking account of (2.5) with vanishing ¢ and (4.21), we easily see that, if
the Gauss map is a homemorphism in 4, the volume Ci of the image ¢(4) of 4 is

given by the formula
=2ng ILIP
v 4\/ Io] dv

dv denoting the volume element of V, where dim V=2xu.

Taking account of (4.21), we see that the Riemannian metric y defined in V
by (1.23) is the one induced from 7 by the Gauss map ¢: V—CP", if ¢ is regular.
If we suppose that the Gauss map ¢ is regular and is a conformal mapping, then
we obtain by definition

Tev= Ages,
which implies
Ko=—2A9:

as a consequence of (2.5) with vanishing ¢. That is, the complex hypersurface
is necessarily an Einstein space. Conversely, if ¥ is an Einstein space, then the
Gauss map ¢ is a conformal mapping. Therefore, a complex hypersurface in a
Euclidean space E*'* is an FEinstein space if and only if the Gauss map ¢ is a
conformal mapping.

§5. Einstein complex hypersurface in a Euclidean space.

Let V be a complex hypersurface in an Euclidean space E?"'? and suppose
that V is an Einstein space. Then the relation

(5. 1) ch=Agcb (AEO)

holds and the Gauss map ¢: V—CP"™ is a conformal mapping, if ¢ is regular.
However, any conformal mapping between two Ki#hlerian manifolds is necessarily
homothetic if the mapping is analytic. Thus the Gauss map ¢ is homothetic
because ¢ is analytic. Therefore the function A appearing in (5.1) is necessarily
constant.

When A is zero in (5.1), we find 7,=0, which implies %,*=0 because of
reo="nhse. Thus, in this case, the given hypersurface V is totally geodesic.

When A is not zero in (5.1), the Gauss map ¢ is regular and homothetic.
Therefore we see that the curvature tensor Kuu® of the metric g induced in V°
coincides with the tensor Ky;® induced from the curvature tensor of 7 by ¢,
where 7 is the natural Kihlerian metric of CP". However, 7 is of constant holo-
morphic sectional curvature 1. Therefore the induced metric ¢ is necessarily an
Einstein metric with positive curvature scalar. This fact contradicts Proposition
2.1. Consequently, the constant A should be zero. Thus we have
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THEOREM 5. 1. Lel V be a complex hypersurface in a locally flat Kdihlerian
space. If 'V is an Einstein manifold, then V is totally geodesic (Cf. Smyth [6]
for complete complex hypersurfaces V).

Combining Proposition 3.4 and Theorem 5.1, we have

ProposiTiON 5. 1. In a locally flat Kdhlevian manifold, there exisls no com-
Dlex hypersurface V such that the almost contact metric structure (f,&,7,d) defined
in the normal circle bundle J1(V') is essentially a normal contact structure.

Taking account of Theorem 2.1, we see that Theorem 5.1 is established
for complex hypersurfaces, locally symmetric or with parallel Ricci tensor.
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