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NORMAL CIRCLE BUNDLES OF COMPLEX HYPERSURFACES

BY KENTARO YANO AND SHIGERU ISHIHARA

Dedicated to Professor Hitoshi Hombu on his sixtieth birthday

Introduction. The main purpose of the present paper is to study the so-called
normal circle bundle 32 (F) of a complex hypersurface V, that is, a 2^-dimensional
submanifold in a (2n+2)-dimensional Kahlerian manifold M, whose tangent space
is invariant by the complex structure of M. For a complex hypersurface V of
even-dimensional Euclidean space with natural Kahlerian structure, we make use
of the natural mappings p: 22(F)->F, ψ: ϋ7(V)->S2n+1, a (2^+l)-dimensional unit
sphere and π: S2n+1-*CPn, a complex ^-dimensional projective space, and introduce
a mapping φ: V-*CPn, which may be considered as the Gauss map of F. The
study of the Gauss map of F i n this sense is one of purposes of the present paper.

We first state in § 1 some of important formulas for complex hypersurfaces in
a general Kahlerian manifold and then specialize in § 2 these formulas for complex
hypersurfaces in a Kahlerian manifold of constant holomorphic sectional curvature.
These formulas permit us to prove some of recent results of Ako [1], Smyth [6]
and Takahashi [8].15

§ 3 is devoted to the study of normal circle bundles of complex hypersurfaces
in a Kahlerian manifold and § 4 to the study of Gauss maps of complex hyper-
surfaces in even-dimensional Euclidean spaces.

We study in the last § 5 Einstein complex hypersurfaces in an even-dimen-
sional Euclidean space with natural complex structure.

§ 1. Complex hypersurfaces in a Kahlerian manifold.

Let M be a Kahlerian manifold of 2n+2 dimensions with Kahlerian structure
(G, F), where G is a Riemannian metric tensor and F a tensor field of type (1,1)
such that2 )

(1.1) F2=-I, i.e., FB

AFcB=-δ$,

(1.2) FG

EFB

DGED=GCB,

(1.3) PF=0, i.e.,

Received July 6, 1967.
1) The numbers between brackets refer to References at the end of the paper.
2) The indices A, B,C, D, E run over the range {1, 2, •••, 2n-\-2} and the so-called

Einstein's convention is used with respect to this system of indices,
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/ being the unit tensor of type (1, 1), FB

A and GGB the components of F and G
respectively and V the operator of covariant differentiation with respect to G (Cf.
Yano [9]). The tensor field F is called the complex structure of M If we put

(1.4) FOB=FODGDB,

we easily see that

(1.5) FCB+FBG=0.

Let there be given in M a differentiate submanifold V of class C°° and of
codimension 2. Suppose that V is expressed in each neighborhood Ό of M by
equations3)

xA = xA(ua),

where (xA) are local coordinates of M in U and (ua) local coordinates of V in
U= UΠ V. We have in U 2n local vector fields Bb having components

Bb

A=dbx
A

and spanning the tangent space of V at each point of U, where db denotes the
operator djduh. The submanifold F i s a complex hypersurface when and only when
the complex structure F leaves invariant the tangent space of V at each point of
F. In the sequel, we shall restrict ourselves only to complex hypersurfaces. For

a complex hypersurface F, FBb is a linear combination of Ba in U, that is,

(1.6) FBb=fb

aBa, i.e., FB

ABb

B=fb

aBa

A,

where the functions fb

a are components of a tensor field / of type (1, 1) defined
globally in V. Applying the operator F to both sides of (1. 6) and taking account
of (1,1), we find

(1.7) f2=-l i.e., fb

afcb=-δ*.

The Riemannian metric g induced in V has components of the form

(1.8) gci>=GcBBc

GBb

B

in each neighborhood U of V. Thus we obtain

(1.9) fcefbdQed=Qcb

as a direct consequence of (1.2) and (1. 8). On putting

(1. 10) fcl>=fcβ0eb,

we have

3) The indices a, b, c, d, e,f run over the range {1, 2, •••, 2n} and the so-called Einstein's
convention is also used with respect to this system of indices.
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(1. 11) /cδ+/6c = 0

by virtue of (1. 5).

Since V is a complex hypersurface, the normal plane of V is left invariant by
the complex structure F of M at each point of V. Thus there exist, in each
neighborhood U of V, two local unit vector fields C and D normal to V such that

FC=D, FD=-C, i.e.,
(1.12)

FBΛCB=DA, FB

ΛDB= -CA,

where CA and DA denote the components of C and D respectively, C and D being
necessarily perpendicular to each other.

We have, as is well known, the following equations:

FcBb

A= hcbC
A+kcbD

A,

(1.13) FCC
A= -hc

aBaΛ+ίcDA,

FcD
A=-kc

aBa

A-lcC
A,

which are respectively the equations of Gauss and those of Weingarten for the
complex hypersurface V. The left hand sides of these equations are defined by

FcBb

A=dcBb

A+ {cΛB}Bc

GBb

B- {c\}Ba

A,

FcC
A=dcC

A+ {CAB}BOCCB, FcD
A=dcD

A+ {CAB}BC

GDB

respectively, where {CAB} and {Λ} are Christoffel symbols determined respectively
by GCB and gcδ. The functions hb

a and kb

a appearing in (1.13) are the components
of the so-called second fundamental tensors h and k respectively, where h and k
are local tensor fields of type (1,1) defined in each neighborhood U of V with
respect to the choice of the unit normal vector fields C and D. The functions hcb

and kcb appearing in (1.13) are respectively defined by

(1. 14) hcb=hc

agab, kcb = kc

agab.

We easily see that

(1.15) hGb=hbc, kcb~kbc

hold. The functions U appearing in (1.13) are the components of the so-called
third fundamental tensor /, which is a local covector field defined in each neigh-
borhood U of V with respect to the choice of the unit normal vector fields C
and D.

Differentiating (1. 6) covariantly along V and taking account of (1.12) and (1.13),
we obtain

(1.16) F/=0, i.e., FcΛα-0
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and

(1.17) hcb=kcefb

e, kcb=-hcefb

e,

where the operator V appearing in (1.16) denotes the covariant differentiation with
respect to the induced metric g in F. The equations (1.17) are equivalent to the
conditions

h=-fk, i.e., hc

a=-feakc

e,
(1. 18)

k=fh, i.e., kc

a=fe

ahce,

which imply together with (1.11) and (1.15)

(1.19) hee=0, ke

e=0.

The equations (1.18) imply

(1.20) fh+kf=0, fk+kf=0

by virtue of (1.11) and (1.15). We have moreover the conditions

(1.21) h2=k\ hk+kh=0

and

(1.22) fcefb

dγed=rcb, rcb=γbc

by virtue of (1.18) and (1. 20), where we have put

(1.23) rct>=hc

ehbe.

If we take account of (1.7), (1. 9), (1.16) and (1.19), we see that any complex
hypersurface in a Kάhlerian manifold is a minimal surface and is itself a Kάhlerian
manifold with the induced Kάhlerian structure (g, f) (Cf. Schouten and Yano [7]).

The set of all vectors normal to the complex hypersurface V is called the
normal bundle, which is orientable. Thus, taking two intersecting neighborhoods
U and U of F, we can choose pairs (C, D) and (C, D) of normal vector fields
defined respectively in U and U such that they are related to each other by

(1. 24) C=C cos Θ-D sin θ, D=C sin Θ+D cos θ

in Uπ U, θ being a certain function in Uπ U, where (C, D) and (C, D) satisfy
respectively the condition (1.12). If we denote by h, k and / respectively the
second and the third^ fundamental tensors in U with respect to C and D, then we
easily obtain in Uf] 0

h=h cos θ—k sin θ, k=h sin θ+k cos 0,
(1. 25)
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by virtue of (1.21), (1. 24) and the definitions of h, k and /. Therefore we get

h*=h2, k2=k2, hk=hk, kh=kh, dl=dl

in Uf] U. Consequently, taking account of (1.21) and (1.23), we have

PROPOSITION 1.1. For any complex hypersurface V in a Kdhlerian manifold,
h2, k2, hk, kh and Ω=dl determine global tensor fields of corresponding type in V,
respectively. They satisfy the conditions

h2=k2, hk+kh=0.

The local tensor field γcb defined by (1. 23) determines a global tensor field γ of type
(0, 2) in V.

For a complex hypersurface V in a Kahlerian manifold, we have, as is well
known, the structure equations

(1. 26) fKDCBABd

DBc

GBb

BBaA=Kdcba - (hdahcb - h c a h d b ) - (kdakcb - k c a k d b ) ,

(1. 27) fKDGBABd

DBc

GBb

BCA =Fdhcb-Fchdb-ldkcb+lckdb,

(1. 28) fKDGBABd

DBc

GBb

BDΛ =--Pdkcb-Fckdb-\-ldheb-lchdb,

(1. 29) 'KBOBABPBC0CB DA •-=Vdlc-Vcld-\-hd

ekec-hc

eked,

where 'KBGBA and Kdcba are components of the curvature tensors of the enveloping
manifold M and the complex hypersurface V respectively.

If we transvect the first Bianchi identity

with FGB, then we find

(1. 30) fKDGBAF
GB= - j 'KCBBAFGB,

FGB being defined by

FGB=GGDFD

B,

where (GCD)=(GOBY\

If we take account of (1. 3) and the Ricci formula, we obtain

O=FDFCFB

A-PCPDFBA='KDCEAFB

E-'KΏCB
EFE

A,

from which, transvecting with GGB,

'KD

EFE

A='KBCBAFGB,

or
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(1. 31) fKBEFAz= - ί 'KΌCBAFGB

by virtue of (1. 30), the Ricci tensors rKBEΆnάfKB

E being defined by rKBE=fKCBEG

and fKB

Έ='KBΏGΌE respectively.
On the other hand, we have the formula

(1.32) FDG=Bd

DBGfdc~CDDG+CGDD

along the complex hypersurface V, where fdc=gdhgcafba>
Now transvecting (1. 31) with Bb

BBa

A and taking account of (1. 6) and (1. 32),
we find

\x, OOJ l\BAJ-*b -L->e J a

Substituting (1.26) and

(1. 34)

or, equivalently

(1. 35)

by virtue of

(1. 36)

where we have put

(Smyth [6]).

1 /

2

(1.29) into (1. 33), we obtain

'Kbefae = Kbefa
e + (Vbla-V

PbL-FJb=(/Kbe-Kbe)f

1
2 (c aj j

/Kei=
fKoBBe

σBt

B

§ 2. Complex hypersurfaces in a Kahlerian manifold of constant holomorphic
sectional curvature.

We assume in this section that the enveloping manifold M is a Kahlerian
manifold of constant holomorphic sectional curvature c. Then the components

of the curvature tensor of M have the form

(Cf. Yano [9]). Substituting this expression of 'KDCBA into (1.26)—(1.29), we
respectively obtain

(2.1)
+ {hhb—hcjldl)) + (kdakeb — kcakat),
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(2.2) Fdhcb-Fchdb-ldkcb+lckdb=O,

(2.3) PdkCb-Pckdb-{-ldhcb-lchdb=O,

hek+ f 0(2. 4) Pdlc-PcU+hdkcehckde+

Transvecting (2.1) with gdc and taking account of (1. 23), we obtain

2 gcb~2hc

ehbe

(2.5)
(n+l)c

= o ' g c b ~ ?cΐ)

by virtue of (1.19) and (1. 21), where Kcb are components of the Ricci tensor of V.
Thus we have

PROPOSITION 2.1. For a complex hypersurface V in a Kάhlerian manifold
of non-positive constant holomorphic sectional curvatwe c, the Ricci form of V
satisfies the inequality KcbX

cXb^0 for any values of variables Xa. In this case,
the equality Kcb=0 holds identically if and only if c=0 and V is totally geodesic
(i.e. hb

a=0, kb

a=0).

Taking account of (1.17), we find from (2. 4)

(2. 6) ^(Valc-Vcld)^faa(h*ehCe-~Qa)j,

which reduces to

(2. 7) ~(Fak-Vck) = \ft (~ Oec-

by virtue of (2. 5).
If we transvect (2.2) and (2. 3) with //, we respectively find

(Fdkeb + Idheb) -feXPchdb ~ lckdb) = 0,
(2.8)

(Vdheb-ldkeb)^fe

c(yckdb-\-lchdb)=()

by virtue of (1.17). These two equations imply

(PdAeδ ~ Idkeb) +fdffc%Pfheb - ίfkeb) = 0,

which is equivalent to

(2.9) Pdhcb=ldkcb+fdffc

e(Pfheb-lfkeb).

Taking account of (2.5), we see that the condition PdKcb=0 is equivalent to
Fd(hcehbe)=0, or, to
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(2.10) (Fdhcb)hab+hc

b(Fdhba)=0.

If we assume that FdKcb=^0 holds, substituting (2.9) into (2.10), we find

fΛFdheb-ldkeb)hab+fb

ehcψdhea-Ukea) = 0,

from which, transvecting with —//,

by virtue of (1.18) and (1.20). This equation reduces to

(2.11) (Fdhcb-ldkcb)ha

b=0

because of (1.21) and (2. 9). If we assume conversely that the condition (2.11) is
satisfied, then we get by virtue of (1. 21) the condition (2.10), which is equivalent
to the condition FdKcb=0 by virtue of (2.5).

On the other hand, taking account of (2. 8), we see that the two conditions

(Fdhcb - ldkcb)hab=0 and (Fdkcb+ίdhcb)ka

b=0

are equivalent to each other. Thus we have

LEMMA 2. 1. For a complex hypersurface in a Kάhlerian manifold of constant
holomorphic sectional curveture, the following three conditions (a), (b) and (c) are
equivalent to each other.

(a) {Fdhcb-ldkcb)hb=% (b) (Fdkcb+ldhcb)ka

b=0, (c) FdKcb=0.

We now assume that the condition FdKci)=0 is satisfied. Then, taking account
of (2. 5), we find

(2.12) Fd(hc

ehbe)=0.

When the complex hypersurface V is irreducible as a Riemannian manifold, (2.12)
implies

A being a constant. Thus, V is an Einstein manifold, if V is irreducible and
FdKcb—0. When V is reducible and not locally flat, taking an arbitrary coordinate
neighborhood U of F, we see that there exists an irreducible factor Uλ of U in
the so-called de Rham decomposition of U. Thus U is a Pythagorean product
UiXU2, where UΊ and U2 are two local Kahlerian manifold. Let (u1, -,u2r) and
(u2r+1, •••, u2n) be coordinates defined in Ui and in U2 respectively. Then, we have
at any point of £/4)

(2.13) 0βa=O, Λ , = 0

4) l^α, β, γ^2r and 2r+l^,λ, μ, v gfin.
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as consequences of (1.16) and

(2.14) tte=0

as a consequence of (2.12). Therefore, taking account of (1.15), (1.17) and (1.21),
we have

(2.15) hai=0, kaX=0

by virtue of (2.14). If we put a=a, b=β, c=λ, d=μ in (2.1), we get

(2.16) Kμλβa=-2fμλfβa

by virtue of (2.13). On the other hand, we have Kμλβa=Q because U is a Pytha-
gorean product Ui X U2. This contradicts (2.16). Consequently, V is necessarily
irreducible and hence an Einstein manifold when V is not locally flat. When V
is locally flat, V is obviously an Einstein manifold. Thus we have

LEMMA 2. 2. A complex hypersurface of a Kάhlerian manifold of constant
holomorphic sectional curvature is an Einstein manifold if and only if the condi-
tion FdKcb^O is satisfied.

We assume that the complex hypersurface V is an Einstein manifold. Then
we have PdKcb=0, which implies together with Lemma 2.1 that

(2.17) Pdhcb=Idhb, Pdkcb = — lahcb.

If we substitute (2.17) into the equation obtained by differentiating covariantly
(2.1), then we find

PeKdcba — 0.

Thus we have

LEMMA 2. 3. A complex hypersurface V in a Kdhleήan manifold of constant
holomorphic sectional curvature is locally symmetric, i.e., PeKdcba=0, if V is an
Einstein manifold (Ako [1], Smyth [6]).

Combining Lemmas 2.1, 2.2 and 2. 3, we have

THEOREM 2. 1. For a complex hypersurface V of a Kάhlerian manifold of
constant holomorphic sectional curvature, the following three conditions (a), (b) and
(c) are equivalent to each other.

( a ) V is an Einstein manifold.
(b) The Ricci tensor of V is parallel, i.e., VdKcb—{).
( c ) V is locally symmetric, i.e., VeKdCba=§.

(Takahashi [8]).

Taking account of (1.17), we have from (2. 4)
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(2.17) ~(Fclb-Fblc)=fc
€

which reduces to

(2. 18) -τr(Fclb-Fblc)= —

2 2
by virtue of (2. 5), where dim V=2n.

We now assume that the complex hypersurface V is an Einstein manifold
with scalar curvature K> i.e., that

τr K

Kcb-—gcb.

Substituting this into (2.5), we get

(2. 19) hc

ehbe=Agcb, A =

Thus, substituting (2.19) into (2.17), we obtain

/O OΛ\ /Γ7 I Γ7 I \ Dye* Γ>

We have from (2.19)

PROPOSITION 2. 2. L0£ F be a complex hypersurface in a Kdhlerian manifold
of constant holomorphic sectional curvature c. If V is an Einstein manifold, then
the scalar curvature K of V satisfies the inequality K^n{n+l)cy where dim V=2n.
In this case, the equality K=n(n-\-l)c holds when and only when V is totally geodesic.

§ 3. Normal circle bundles.

We shall first recall the definition of almost contact structure for the later
use. Let, in a differentiable manifold of odd dimension 2n+l, there be given a tensor
field /, a vector field f and a covector field η such that5)

where fih, ξh and rji are respectively the components of /, f and η. _ The set
(/> ζy y) is called an almost contact structure. When the tensor field S of type
(1, 2) having components of the form

5) The indices h, i, j , k run over the range {1, 2, •••, 2^+1} and the so-called Einstein's
convention is also used with respect to this system of indices.
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constructed from /, ξ and η, vanishes identically, the almost contact structure
(/> f> v) ί s s a i d t 0 be normal (Cf. Sasaki [3], Sasaki and Hatakeyama [4]). Let
there be given moreover a Riemannian metric g with components ξμ such that

fjkfίh9kh = 0/* - M*> yji = tof Λ.

Then the set (/, f, 77, g) is called an almost contact metric structure. If we put

we have

When the condition

(3. 1) fji2

is satisfied, the almost contact metric structure (/, f, rj, g) is called a contact struc-
ture (Cf. Hatakeyama [2], Sasaki [3], Sasaki and Hatakeyama [4]).

In the next step, we shall recall the definition of fibred spaces in the sense of
[10] and [11] and some of their properties. Let V and V be differentiate mani-
folds of dimensions m and m+1 respectively, and, suppose that there exists a
differentiable mapping p: V—+V, which is onto and of the maximum rank every-
where. We assume moreover that there are given in V a vector field f and a
covector field η such that ή(ξ)=l and f is tangent to the fibre everywhere in V,
where, for each point P of V, the inverse image Fp^p^ζ?) of P is called the fibre
over P and assumed to be connected. Then we call the set (V, V, p\ ξ, η) a fibred
space (Cf. [10]). If there is given moreover a Riemannian metric g in V such
that XξS=0, X% being the operator of Lie derivation with respect to £, f is a unit
vector field with respect to g and η(X)=g(ζ, X) for any vector field X in V, then
we call the set (V, F, p; ζ, η, g) a fibred space with invariant metric g (Cf. [11]).
We can easily prove the following Lemma 3.1 by virtue of the discussions developed
in [10] and [11]:

LEMMA 3.1. We suppose that, for a fibred space (Ϋ, V, p\ ζ, η, g) with in-
variant metric g, the base space V admits a Kάhlerian structure (g,f), where g is
the projection of g in the sence of [10] and [11]. Then the set (/, f, η, g) is an
almost contact metric structure in Ϋ, where f is the horizontal lift of f in the
sense of [10] and [11]. If f and η satisfy the condition corresponding to (3.1),
then the almost contact metric structure (/, f, η, g) is a contact structure which is
normal.

Let V be a complex hypersurface in a Kahlerian manifold M of 2n+2 dimen-
sions. The set of all unit normal vectors of V is called the normal circle bundle
of V and is denoted by cJl(V). The 32(V) has a circle bundle structure
p: ϋ2(V)-*V, i.e., p: 7l(V)~-*V is a principal fibre bundle whose structure group is a
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compact Lie group S1 of 1 dimension. For any coordinate neighborhood U of V
endowed with local coordinates (ua)f the open set p~x{U) is a product UxS1, that
is, any element N of p~\U) is expressed as N—C cos Θ+D sin θ, C and D being
normal unit vector fields in U satisfying (1.12). Thus N has components of the
form

NA=CA cos Θ+DA sin θ,

where CA and DA are the components of C and D respectively, CA and DA being
functions depending on ua. Therefore (ua, θ) are regarded as local coordinates in
each coordinate neighborhood Wiap-'iV)) of m(V). If we put qa=ua, q2n+1=θ,
then we have local coordinates (qh) in W. Taking another coordinate neighborhood
W of fΐl(V), we have in Wf] W the transformation of coordinates

a{ua) being a certain function, where {'qh) = (fua, f0) are coordinates defined in Wf

just as above. The Jacobian matrix of the above transformation of coordinates is
given by

(3.2) Ί F Γ H

dub

If we introduce in W a local vector field ξ having components

0̂>-
(3.3) (ζh)

with respect to (qh), then | determines a global vector field, denoted also by ξ, in
tίliV) because of (3.2). The vector field thus defined is non-zero and tangent to
the fibre everywhere. If we introduce in if a local covector field η having com-
ponents

(3. 4) 0?*)=0?δ, ?2»+i)=(/&, 1), i.e., τj=-hdub+dθ

with respect to (qh), then η determines a global covector field, denoted also by η,
in 37 (F) because of (3.2), where 4 are the components of the third fundamental
tensor / appearing in (1.13). Thus we easily have

(3. 5) V{ξ) = ηit = l

and X-ξΎj—0, where Xj denotes the Lie derivation with respect to ξ. Therefore
the set (f, η) defines in Ul (F) a structure of a fibred space in the sense of [10]
with respect to the projection p: 37(F)—>F.
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We now define in W 2n local vector fields eb and In local covector fields ea

having respectively components of the form

(3.6) (Λ) = ( 6 \ &a)=(fiS, 0)

with respect to coordinates (qh). Then {ea, rj) is the coframe dual to the frame
{£&,!}. We have now

(3.7) dp(eb)=Bb, dp(ξ)=0

directly from the definition of the projection p: JΪ(V)—>V, where {Bb} is the
natural frame of coordinates (ua) defined in each neighborhood U of F.6 )

Let T and S be two tensor fields of type (1, 1) and of type (0, 2) in V respec-
tively. Taking account of (3. 6), we see that the horizontal lifts TL of T and SL

of S have in W respectively the components of the form

(3.8) (Γ,Λ)=(Γ 6

α& 6^β

τb

a

-τb%

Scb

0

0

0

0

0
(3.9)

with respect to (qh), where Tb

a and Scb are respectively the components of T and
S with respect to (ua) defined in U (Cf. [10], [11]).

If we put

(3.10) f=fL, g=gL+y(g)y,

(/> ΰ) being the Kahlerian structure induced in V, then we see by means of (3.6),
(3.8) and (3. 9) that / and g have respectively in W components of the form

fba 0\ /Qcb + lch U
) [

-tfle

with respect to (qh). If we put

/ fba 0\ / Qct+lch 4\

(3.11) (/,*) = ( , % t ) = [
V-//4 0/ V /> 1 /

we obtain

(U 0
(3.12) ( / y ) ι

\ 0 0

by virtue of (3.11). We have now

6) For a differentiable mapping ψ, we denote by dψ the differential mapping of ψ.
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f(dp(eb))=fb

aBa=dp(feb),

i.e.,

(3.13) fodp=dpof

as a consequence of (3.6), (3.7) and (3.11).
We have the following equations:

(3.14) [ J ~ * Vlf [ _^ '

as consequences of (3. 3), (3. 4) and (3.11). That is to say, (/, f, η) is an almost
contact structure in 32 (F). Moreover, we obtain from (3.3), (3.4) and (3.11) the
equations

(3. 15) fjkfih9kh=gjz-VjVi, Vj^Qjiξ*,

which show that (/, f, η, g) is an almost contact metric structure in 37 (F). Sum-
ming up, we have

PROPOSITION 3. 1. Let V be a complex hypersurface in a Kάhlerian manifold.
Then the normal circle bundle 3l(V) of V admits an almost contact metric struc-
ture (/, I, rj, g), where / , ξ, rj and g are defined by (3. 3), (3. 4) and (3.11) respec-
tively.

Let γ be the tensor field of type (0, 2) defined by (1. 23) in the complex hyper-
surface V and γL the horizontal lift of γ. If we put

f=rL+vΘv>

we see by means of (3.9) that f has components of the form

(3.16)

with respect to coordinates (qh) defined in each neighborhood W of 37(F). Thus
we have

(3.17) / / . "

because of (3. 3), (3. 4), (3.11) and (3.16). On putting

(3. 18) δji=fjkr**>

we obtain

(3.19) ( , ) ,
0 0

Therefore we have
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PROPOSITION 3. 2. Let V be a complex hypersurface in a Kάhleήan manifold.
Then the normal circle bundle 32(V) of V admits an almost contact metric struc-
ture (/, f, yj, f) if f is non-singular everywhere in V, where /, ξ, η and f are
respectively defined by (3.3), (3.4), (3.11) and (3.16).

Taking account of (3.4), we find drj = (1/2) (ddlc-dcld)dudΛduc. That is, Ω=dη
has components

l~^Jc-Fcld) 0
(3.20) (Ωji)=\ Δ

\ 0 0,

with respect to (qh). If we assume that the enveloping manifold M is locally flat,
then we obtain

by means of (3.19), (3. 20) and (2. 6) with vanishing c. Therefore we have

PROPOSITION 3. 3. Let V be a complex hypersurface in a locally flat Kάhlerian
manifold. Then the normal circle bundle fJ2(V) of V admits a contact structure
(/> f, v> 7)> f> <?> V a n d ϊ bein£ respectively defined by (3. 3), (3. 4), (3.11) and (3.16),
if γ is non-singular everywhere in V.

We suppose now that the enveloping manifold M is an Einstein manifold with
curvature scalar 'K. If, moreover, the complex hypersurface V is an Einstein
manifold with curvature scalar K, then we have from (1. 34)

(3. 21) Vdlc-Vcld=Bfdc, B= 1 ( - ^ h — )>
4 \ n+1 n )

where dim V=2n. Therefore we find

<3 22) „
because of (3.19). When fKI(n+l)*Kln, we put

(3.23) ' / = e / , / f = | S | - 1 / a | , 'y^B

ε being defined by ε=sgni?. We then see that ('f, 'ζ, ;η, fg) is a contact structure.
On the other hand, if we denote by ff and fg the projections of 'f and fg in the
sense of [10] and [11] respectively, then (/gr, '/) defines a Kahlerian structure in V.
Therefore, according to Lemma 3.1L ('/, fξ, /rj, fg) is a normal contact structure in
Jl(V), because the projection Ω of Ω has components of the form

by virtue of (3.22), 'fc

a and fgba being the components of '/ and rg respectively.
Conversely, we assume that, for the complex hypersurface V of a Kahler-Einstein
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manifold M with curvature scalar 'K, the almost contact metric structure ('/, 'f, fγj, fg)
defined in 32 (F) by (3.23) with a certain non-zero constant B is normal. In such
a case, we say that (/, f, fj, g) is essentially a normal contact structure. If this is the
case, we obtain Fclb—Fblc^Bfcb. On the other hand, substituting 'Kcb=(!KI2(n-\-l))gCb
into (1. 34), we get

(3. 24) Fclb-Fblc= ^

which implies together with Fclb—Fblc=Bfcb that the complex hypersurface F is an
Einstein manifold. Therefore we have

PROPOSITION 3. 4. Let V be a complex hypersurface in a Kάhler-Einstein mani-
fold M with curvature scalar rK. Then the almost contact metric structure (/, f, 5, g)
defined in 32 (F) by (3.3), (3.4) and (3.11) is essentially a normal contact structure ,
if and only if the complex hypersurface V is an Einstein manifold with curvature
scalar K such that K*r(nl(n+1)) fK, where dim V=2n.

Taking account of (2. 5), we have the following Proposition 3. 5 as a corollary
to Proposition 3.4.

PROPOSITION 3. 5. Let V be a complex hypersurface in a Kάhlerian manifold
of constant holomorphic sectional curvature c. Then the set (/, f, 37, f) defined in
32(F) by (3.3), (3.4), (3.11) and (3.16) is essentially a normal contact structure, if
and only if the complex hypersurface V is an Einstein manifold with curvature scalar
K such that K^n(n-\-l)c, where dim V=2n.

The 1-form rj defined in 32 (F) by (3.4) is a connection form in the principal
fibre bundle 32 (F) and the curvature form of η is by definition the two form Ω
in F such that *p{Ω)=drj, where *p is the mapping dual to dp. The curvature
form Ω has in each neighborhood U of V components of the form £?=(l/2) (Fclb—Fblc)
duc/\dub by means of (3.20). The cohomology class [Ω] determined by Ω is the
characteristic class of the circle bundle 32 (F). As is well known, [Ω] is an integral
cocycle when F is compact. If, for a compact F, the cohomology class [Φ] de-
termined by the fundamental form $=(l/2)/ c δ du°Λdub is an integral cocycle, V
is called a Hodge manifold. Then, taking account of (3.21), we have

(3.25) Ω=BΦ, B=^rl-^-~\
n+1 n /

and hence

PROPOSITION 3. 6. Let V be a compact complex hypersurface in a Kάhler-
Einstein manifold M with curvature scale rK. Then V is a Hodge manifold if V
is an Einstein manifold with curvature scalar K such that K*?(n/(n+T)) /K, where
dim F = 2 ^ .

When the characteristic class [Ω] is zero, i.e., when we have Ω=dφ, ψ being a
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global 1-form in F, the structure group of 32 (F) is reducible to a discrete group.
In such a case, 32 (F) is said to be locally trivial. On the other hand, 32 (F) is
said to be locally parallelizable, when Ω~0. A field N of unit normal vectors to
F, global or local, is said to be parallel in 32 (F) if, for any tangent vector field
X of F, VXN is perpendicular to the normal plane at each point. It is easily
verified that 32(F) is locally parallelizable if and only if there exists in each
neighborhood U of V a field of unit normal vectors which is parallel in 32(F).

Let F be a compact complex hypersurface of constant curvature scalar A" in a
Kahler-Einstein manifold M with curvature scalar 'K. Then, substituting fKch

=CKI2(n+l))gcb in (1. 34), we obtain

(3. 26) Fc/δ-Fδ/c= 2 ( ^ 1 } U-Kcefb

e.

On the other hand, the tensor field Kcefb
e is harmonic in the Kahlerian mani-

fold F if and only if F is of constant curvature scalar (Cf. Yano [9]). Therefore,
in our case, Ω is a hormonic form in F by virtue of (3. 26). Thus we have Ω=dφ,
φ being a global 1-form in F, if and only if Ω=0 (Cf. Yano [9]). Consequently,
according to (3.26), we have

PROPOSITION 3. 7. For a compact complex hypersurface V of constant curva-
ture scalar in a Kahler-Einstein manifold M, the following three conditions (a), (b)
and (c) are equivalent to each other:

(a) 37 (F) is locally trivial.
(b) 32 (F) is locally parallelizable.
(c) F i s an Einstein manifold with curvature scalar Ksuch that K=(n/(n-}-'iy) rK,

where fK is the curvature scalar of M and dim V=2n.

When F admits a global field of unit normal vectors, 37 (F) is locally trivial.
Thus, as a corollary to Proposition 3.7, we have

PROPOSITION 3. 8. Let V be a compact complex hypersurface of constant cur-
vature scalar in a Kahler-Einstein manifold M with curvature scalar rK. Then, if
V admits a global field of unit normal vectors, V is necessarily an Einstein mani-

fold with curvature scalar K such that K=(n/(n+l)) fK, where dim V=2n. If this
is the case, V admits a global field of unit normal vectors which is parallel in
m(V).

Let F be a complex hypersurface, which is not necessarily compact, in an
Kahler-Einstein manifold M. Then, if 32(F) is locally parallelizable, we find

>κ

by virtue of (3.26) and conversely. Thus we have

PROPOSITION 3. 9. Let V be a complex hypersurface, which is not necessarily
compact, in a Kahler-Einstein manifold M. Then ,72 (F) is locally parallelizable if
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and only if V is an Einstein manifold with curvature scalar K=(n/(n+l)) 'K, 'K
being the curvature scalar of M, where dim V=2n.

We now assume that the enveloping manifold M is of constant holomorphic
sectional curvature c. Then, according to (2.7), 37(F) is locally parallelizable if
and only if

τr n

which implies

(3.27) K=n%

where K denotes the scalar curvature of V. On the other hand, in the present
case, the scalar curvature fK of M is given by

(3.28) K'=(n+l)(n+2)c.

Thus, taking account of (3.27) and (3.28), we have c=0 if K=(n/(n+l)) rK.
Therefore, taking account of Propositions 3.7, 3. 8, 3. 9 and (2. 6), we have

PROPOSITION 3. 10. In a Kάhlerian manifold of non-zero constant holomorphic
sectional curvature, there exists no complex hypersurface V satisfying one of the
following two conditions (a) and (b):

(a) V is compact and of constant curvature scalar. U2(V) is locally trivial.
(b) 32(V) is locally parallelizable.

In a locally flat Kάhlerian manifold, a complex hypersurface V is totally geodesic
if V satisfies one of the conditions (a) and (b) mentioned above.

§4. The Gauss map.

Let E2n+2 be a Euclidean space of even dimension 2^+2 with the natural
Kahlerian structure (G, F), where G and F have respectively the following com-
ponents:

0 In+

In + 1 0

with respect to certain rectangular coordinates (xA), where Im denotes the mxm
unit matrix. Denote by S2n+1 the unit sphere in E2n+2 defined by the equation

A 2-dimensional plane defined in E2n+2 by

x*=σAΛ+τFB

ΛAB

is called a holomorphic plane, AA being constant and σ, τ real parameters. The
intersection of S2n+1 and a holomorphic plane is called a holomorphic great circle.
The set of all holomorphic great circles forms, as is well known, a fibring of
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S2n+1, which determines the natural bundle structure π: S2n+1-^CPn over the complex
protective space CPn. That is, each fibre of the bundle structure π: S2n+1-+CPn is
a holomorphic great circle.

Let there be given a complex hypersurface V in E2n+2 and denote by U2(V)
the normal circle bundle of V. Let N be an element of 37(V). If we transport
N parallelly to the origin, we get a unit vector N' at the origine and hence in
S2n+1 a point ψ(N) which is the terminal point of N'. In such a way, we can
define a mapping ψ: m(V)—S2n+1. For a point P of V, the fibre p"\V) of m(V)
over P is mapped onto a holomorphic great circle of S2n+1, that is, φ(p~λ(?)) is a
holomorphic great circle. Therefore, if we put φ(P)=π(ψ(p~1(P))), we can define a
mapping φ: V-*CPn, which is called the Gauss map of the complex hypersurface
V in E2n+2.

Φ

V > CPn

ψ

We have here

(4. 1) <pop=π°ψ.

Thus the Gauss map ψ is regular if and only if the mapping ψ is so also.
We shall obtain a local expression of the mapping ψ: Jl(V)-*S2n+1. Let U be

a coordinate neighborhood of V and (ua) coordinates defined in U. Then, as has
been done in § 3, local coordinates (ua, θ) are introduced in each neighborhood
W (cp-\U)) of 3?(F). We denote by {ei} = {eb,ξ} the natural frame of local
coordinates (qh)=(ua, θ) defined in W, where £2n+i=f.

The restriction of the mapping ψ to W is expressed by equations

(4.2) xA=xA(ua,θ),

where xA(ua, θ)=CΛco§θ+DAsmΘ. Thus, on putting qa=ua, q2n+1=0, we can
regard (qh)=(ua>θ) as coordinates defined in W. Thus, differentiating (4.2), we
have 2n-{-l local vector fields Bb and Bθ in W=ψ(W). They are tangent to S2n+1

and have respectively components of the form

•ff) 1

(4.3)

= γ A

by virtue of (1.13), where we have put

(4. 4) YA = -CA cos Θ+DA sin θ.



48 KENTARO YANO AND SHIGERU ISHIHARA

These 2n-{-l local tangent vector fields Bb and Be form the natural frame of co-
ordinates (qh)=(ua, 0) defined in W, when the mapping ψ is regular. On putting

(4.5) dψ{eb)=h, dφ{ξ)=ξ,

we find

(4.6) eb=Bb-lbBθ, ξ=B0

as consequences of (3. 3) and (3. 6).
The mapping ψ is regular if and only if the vector fields Bb and Bo are

linearly independent. Thus, according to (4. 3), ψ is regular if and only if

i.e.

(4.

, if

7)

and only if

-(hb

a cos OΛ-K sin 0)

0

\hb

a cos θ+kb

a sin θ\

h

1

since the vector fields Ba

A and YA are linearly independent. On the other hand,
taking account of (1.18), we obtain

hb

a cos θ+kb

a sin θ=hb

c(δ? cos θ+fc

a sin 0).

Therefore the condition (4. 7) is equivalent to the condition

(4.8) I

because of |<5? cos θ+fc

a sin θ\^0. Taking account of (2.5) with vanishing c, we
see that the condition (4. 8) is equivalent to the condition

Thus we have

PROPOSITION 4. 1. For a complex hyper surf ace V of E2n+2, the Gauss map
ψ\ V—>CPn is regular, or equiυalently, the mapping ψ: 37(V)-*S2n+1 is regular, if and
only if |/?δα|^0, or, if and only if | iζ;δ |^0, where Kcb are the components of the
Ricci tensor of V.

The metric tensor f induced naturally in S2n+1 has in W the components of
the form

GCBI°IB

with respect to coordinates (qh)=(ua, 0). Thus, according to (4.3) and (4.4), we
obtain
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(4 9) ( Ύcb~\*'cvb "c \

),

h 1/In the next step, assuming that the mapping ψ is regular, we shall obtain the
contact metric structure (/, f, fjt f) induced naturally in S2n+1 (Cf. Sasaki and
Hatakeyama [5]). Applying the operator F to (4. 3), we get

( 4 1 0 ) B

A ~ B Z A "

by means of (1.6) and (1.17), fb

a being the functions defining the components of
the complex structure / induced in V with respect to coordinates (ua), where we
have put

(4.11) XA= -FB

AYB=CA COS Θ+DA sin 0,

which is normal to S2n+1 everywhere. Taking the tangential parts in (4.10), we
find in S2n+1 a tensor field / of type (1,1) with components

/ fba 0
(4.12) (/<*)=(

with respect to the frame {Bι} = {Ba, B&}. Thus we have

which imply

(4.13) fodψ=dψof

by virtue of (3.11) and (4.6). If we put

(4.14) 7j=7}°dψ,

we see that rj has components of the form

(fy)=(jfbj ^2n+i) = (/δ, 1), i.e., dη=lbduh-\-d0

with respect to coordinates (qh)=(ua, θ). Summing up (4.5), (4.13) and (4.14), we
have

(4.15) dψof=fodψ,

Taking account of (1. 7), (1.21), (1.22), (4. 9), (4.12) and (4.14), we find

(4.16)
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which show that (/, f, 9j, γ) is the almost contact metric structure induced naturally
in S2n+1. On the other hand, taking account of (4.14), we find d^=d(ηodφ)=*ψ(dη\
which implies

dij= — (V dlc-V cld)dud Aduc

(4. 17)
= (fde

by virtue of (3.19) and (3. 20), *^ denoting the mapping dual to dψ. Thus, if we
put

we obtain

(4. 18) dr)=fjidqi/\dqi

as a consequence of (4.12) and (4.17). Consequently, taking account of (4.14) and
(4.18), we see that (/, f, rj, f) is the contact structure induced naturally in S2n+1,
which is normal (Cf. Sasaki and Hatakeyama [4]). Thus we have

PROPOSITION 4. 2. Let V be a complex hyper surf ace in E2n+2 and suppose that
the mapping ψ: ϋ2(V)-+S2n+1 is regular. Then (/, f, η, f) is a normal contact struc-
ture in 3ϊ(V), I, 7j, f and f being respectively defined by (3. 3), (3. 4) and (3.11), and
these tensor fields are respectively given by

where (/, ξ, η, γ) is the natural contact structure in S2n+1.

We shall obtain a local expression of the natural projection π: S2nV1-^CPn. We
assume that the mapping φ: 32(V)->S2n+1 is regular. Let W be a coordinate neigh-
borhood in S2n+1 contained in p~\U)> U being a coordinate neighborhood of V.
Then, as was shown above, coordinates (qh):=(ua,θ) are introduced in W. Taking
an arbitrary point P of W, we can assign (ua) to the point π(P), (ua, 0) being
coordinates of P, since holomorphic great circle in W are defined by equations
ua=const. Thus (ua) are regarded as coordinates defined in W=π(ffi). For the
local vector fields £& and ξ defined by (4. 5), we find

(4. 18) dπ(ξ)=0.

If we put

(4.19) dπ(Sb)=h,

then {&b} forms the natural frame of coordinates (ua) above defined in W.
Taking account of the definition of the Gauss map ψ: V-*CPn, we have φ°p

=π°φ and hence d<podp=dπ°dφ. Thus, taking account of (4. 5) and (4.19), we get

)=dπ ° dφ(eύ)=
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Thus we obtain

(4.20)

since dp(eb)=Bb because of (3.7).
We have easily Xtf=0, Xtf=0 and i)(ξ) = l. Therefore (f, >?, f) defines in S2n+1

a structure of a fibred space with invariant metric f in the sense of [11] with
respect to the projection π\ S2n+1-*CPn. Since we easily have J?f/=0, / is an
invariant tensor field in S2n+1. Thus the projections f of f and 7 of f have in W
respectively components of the form

fcb

(4. 21)

with respect to (ua) defined in W, as consequences of (4. 9) and (4.12), where eh
and eha are given respectively by

which are respectively the components of eι> and ea with respect to {ua, 0) defined
in W, 8b being defined by (4.6) and {ea,τj} the coframe dual to the frame {h,ξ}
(Cf. [11]). The pair (f,/) thus introduced, as was proved in [10], defines in CPn

the natural Kahlerian structure of constant holomorphic sectional curvature 1.
It is easily verified that

(4.22) dπof=fodπ

by means of (4.12), (4.18), (4.19) and (4. 21). Therefore, taking account of (4.15),
we get

which implies

(4.23) dφof=fodφ

because of (3.13). Thus we have from (4.23)

PROPOSITION 4. 3. When one of the three conditions

(a) \ha\*0y (b) \Kcb\^0, (c) |

is satisfied, the Gauss map φ: V—*CPn is regular and φ is an analytic mapping.

When the Gauss map φ is not regular, we can prove the fact that, if the rank
of φ is constant, the image φ(V) is an analytic submanifold of CPn and the map-
ping φ: V->φ(V) is analytic, i.e., dφof=7°dφ, f being the complex structure in-
duced in <p(V) from the natural complex structure of CPn.
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Denote by \k\ and \g\ the determinants |iζ.δ| and |gcδ| respectively, where Kch

and gCb are respectively the components of the Ricci tensor and the induced metric
g of V. Let Δ be a compact domain of the complex hypersurface V in E2n+2.
Then, taking account of (2. 5) with vanishing c and (4.21), we easily see that, if
the Gauss map is a homemorphism in Δ, the volume cy of the image <p(Δ) of z/ is
given by the formula

Jz; denoting the volume element of V, where dim V=2n.
Taking account of (4.21), we see that the Riemannian metric γ defined in V

by (1.23) is the one induced from f by the Gauss map φ: V—*CPn, if ψ is regular.
If we suppose that the Gauss map φ is regular and is a conformal mapping, then
we obtain by definition

which implies

KCb= —2AgCb

as a consequence of (2. 5) with vanishing c. That is, the complex hypersurface V
is necessarily an Einstein space. Conversely, if V is an Einstein space, then the
Gauss map ψ is a conformal mapping. Therefore, a complex hypersurface in a
Euclidean space E2n+2 is an Einstein space if and only if the Gauss map φ is a
conformal mapping,

§ 5. Einstein complex hypersurface in a Euclidean space.

Let V be a complex hypersurface in an Euclidean space E2n{2 and suppose
that V is an Einstein space. Then the relation

(5.1) rcb=Agcb 04^0)

holds and the Gauss map φ: V-*CPn is a conformal mapping, if φ is regular.
However, any conformal mapping between two Kahlerian manifolds is necessarily
homothetic if the mapping is analytic. Thus the Gauss map φ is homothetic
because φ is analytic. Therefore the function A appearing in (5.1) is necessarily
constant.

When A is zero in (5.1), we find γCb=O, which implies ha=0 because of
Tcb=hc

ehbe> Thus, in this case, the given hypersurface V is totally geodesic.
When A is not zero in (5.1), the Gauss map ψ is regular and homothetic.

Therefore we see that the curvature tensor KdCb
a of the metric gch induced in V

coincides with the tensor KdCb
a induced from the curvature tensor of f by φ,

where f is the natural Kahlerian metric of CPn. However, f is of constant holo-
morphic sectional curvature 1. Therefore the induced metric g is necessarily an
Einstein metric with positive curvature scalar. This fact contradicts Proposition
2.1. Consequently, the constant A should be zero. Thus we have
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THEOREM 5. 1. Let V be a complex hyper surf ace in a locally flat Kάhlerian

space. If V is an Einstein manifold, then V is totally geodesic (Cf. Smyth [6]
for complete complex hypersurfaces V).

Combining Proposition 3. 4 and Theorem 5.1, we have

PROPOSITION 5. 1. In a locally flat Kάhlerian manifold, there exists no com-

plex hypersurface V such that the almost contact metric structure (/, f, η, g) defined

in the normal circle bundle 32(V) is essentially a normal contact structure.

Taking account of Theorem 2.1, we see that Theorem 5.1 is established

for complex hypersurfaces, locally symmetric or with parallel Ricci tensor.

REFERENCES

[ 1 ] Aκo, M., Submamfolds in Fubinian manifolds. Kδdai Math. Sem. Rep. 19 (1967),
103-128.

[ 2 ] HATAKEYAMA, Y., On the existence of Riemannian metrics associated with a 2-
form of rank 2r. Tόhoku Math. J. 14 (1962), 162-166.

[ 3 ] SASAKI, S., On differentiate manifolds with certain structures which are closely
related to almost contact structure I. Tόhoku Math. J. 12 (1960), 459-476.

[ 4 ] SASAKI, S., AND Y. HATAKEYAMA, On differentiate manifolds with certain struc-
tures which are closely related to almost contact structure II. Tδhoku Math.
J. 13 (1961), 281-294.

[ 5 ] SASAKI, S., AND Y. HATAKEYAMA, On differentiate manifolds with contact metric
structures. J. Math. Soc. Japan 14 (1962), 249-271.

[ 6 ] SMYTH, S., Differential geometry of complex hypersurfaces. Ann. of Math. 85
(1967), 246-266.

[7] SCHOUTEN, J. A., AND K. YANO, On invariant subspace in the almost complex
X2n. Ind. Math. 17 (1955), 261-269.

f 8 ] TAKAHASHI, T., Hypersurface with parallel Ricci tensor in a space of constant
holomorphic sectional curvature. J. Math. Soc. Japan 19 (1967), 199-204.

[ 9 ] YANO, K., Differential geometry on complex and almost complex spaces. Per-
gamon Press (1965).

[10] YANO, K., AND S. ISHIHARA, Differential geometry of fibred spaces. Kδdai Math.
Sem. Rep. 19 (1967), 257-288.

[11] YANO, K., AND S. ISHIHARA, Fibred spaces with invariant Riemannian metric.
Kδdai Math. Sem. Rep. 19 (1967), 317-360.

DEPARTMENT OF MATHEMATICS,

TOKYO INSTITUTE OF TECHNOLOGY.




