ON ALMOST CONTACT STRUCTURES

By Koichi Ogiue

Introduction.

Let Γ be a pseudogroup of differentiable transformations of a manifold V and let M be a differentiable manifold. A Γ -atlas on M is a collection of local diffeomorphisms $\{\lambda_i; U_i\}$ of M into V which satisfies $\bigcup U_i = M$ and $\lambda_i \circ \lambda_j^{-1} \in \Gamma$ for all i and j such that $U_i \cap U_j \neq \phi$.

Two Γ -atlases are said to be equivalent if their union is a Γ -atlas. An equivalence class of Γ -atlases is called a Γ -structure on M.

By an *almost* Γ -structure on a manifold M we mean, roughly speaking, a structure on M which is identified with a Γ -structure up to a certain order of contact at each point. It is a G-structure of a certain order.

Let Γ be a pseudogroup of contact transformations. Then a Γ -structure is a contact structure and an almost Γ -structure is an almost contact structure. An almost contact structure is a G-structure of order 1.

Sasaki defined in [3] a (ϕ, ξ, η) -structure. The structure is closely related to an almost contact structure, but, precisely speaking, it is not an almost contact structure

The relation between a (ϕ, ξ, η) -structure and an almost contact structure is similar to that between an almost complex structure and an almost homogeneous contact structure [2]. In fact, a (ϕ, ξ, η) -structure is a G-structure of order 1 and the Lie algebra of the structure group is the linear Lie algebra

$$\left\{ \left(\begin{array}{c|c} 0 & 0 & \cdots & 0 \\ \hline 0 & & & \\ \vdots & & A \end{array} \right) \middle| A \in \mathfrak{gl}(n, \mathbb{C}) \right\}.$$

An almost contact structure is, however, a G-structure of order 1 and the Lie algebra of the structure group is the linear Lie algebra

$$\left\{ \left(\begin{array}{c|c} 0 & 0 \cdots 0 \\ \hline * \\ \vdots & A \end{array} \right) + \left(\begin{array}{ccc} 2\lambda & 0 \\ & \lambda \\ & \ddots \\ 0 & & \lambda \end{array} \right) \middle| A \in \mathfrak{Sp}(n), \ \lambda \in \mathbb{R} \right\},$$

Received June 19, 1967.

where

$$\mathfrak{Sp}(n) = \left\{ A \in \mathfrak{gl}(2n, \mathbb{R}) \mid {}^t A J + J A = 0 \quad \text{for } J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \right\}.$$

Let \mathcal{L} be the sheaf of germs of Γ -vector fields on V, infinitesimal automorphisms of a Γ -structure, and $\mathcal{L}(0)$ the stalk of \mathcal{L} at the distinguished point 0 of V. Then $\mathcal{L}(0)$ is a filtered Lie algebra. As to the most of classical examples, $\mathcal{L}(0)$'s are flat filtered Lie algebras, that is, they are isomorphic with graded Lie algebras. But the filtered Lie algebra associated with a contact structure is infinite and non-flat.

§ 1. Preliminaries.

Let M be a differentiable manifold of dimension 2n+1 and F(M) the bundle of linear frames of M. Then F(M) is a principal fibre bundle over M with structure group $GL(2n+1,\mathbb{R})$.

Let G be a subgroup of $GL(2n+1, \mathbb{R})$. A G-structure on M is a reduction of F(M) to the group G.

Let $P_G(M)$ be a G-structure on M and let U be a coordinate neighborhood in M with a local coordinate system x^0, x^1, \dots, x^{2n} . We denote by X_n the vector field $\partial/\partial x^n$, $\alpha=0,1,\dots,2n$, defined in U. Every linear frame at a point x of U can be uniquely expressed by

$$(\sum X_0^{\alpha}(X_{\alpha})_x, \cdots, \sum X_{2n}^{\alpha}(X_{\alpha})_x)^{1)}$$

where (X^{α}_{β}) is a non-singular matrix. We take $(x^{\alpha}, X^{\alpha}_{\beta})$ as a local coordinate system in $\pi^{-1}(U) \subset P_G(M)$, where π denotes the projection $P_G(M) \to M$. Let (Y^{α}_{β}) be the inverse matrix of (X^{α}_{β}) so that $\sum X^{\alpha}_{\gamma} Y^{\gamma}_{\beta} = \sum Y^{\alpha}_{\gamma} X^{\gamma}_{\beta} = \delta^{\alpha}_{\beta}$. Let e_0, e_1, \dots, e_{2n} be the natural basis for \mathbb{R}^{2n+1} . Let u be a point of $P_G(M)$ with coordinates $(x^{\alpha}, X^{\alpha}_{\beta})$ so that u maps e_{α} into $\sum X^{\alpha}_{\beta}(X_{\beta})_x$, where $x = \pi(u)$.

If $X \in T_x(M)$ and if

$$X = \sum \xi^{\alpha}(X_{\alpha})_x$$

then

$$u^{-1}(X) = \sum Y_{\beta}^{\alpha} \xi^{\beta} e_{\alpha}$$
.

This implies that the components of a vector X with respect to a frame u is given by

$$(\sum Y^{0}_{\beta}\xi^{\beta}, \cdots, \sum Y^{2n}_{\beta}\xi^{\beta}).$$

Let g be the Lie algebra of G. The cohomology class c in Hom $(\mathbb{R}^{2n+1} \wedge \mathbb{R}^{2n+1})$,

¹⁾ To simplify notation we adopt the convention that all repeated indices under a summation sign are summed.

 $R^{2^{n+1}}/\partial \operatorname{Hom}(R^{2^{n+1}},\mathfrak{g})$ determined by the torsion form of a local G-connection is called the *first order structure tensor* of the G-structure $P_G(M)$.

§ 2. Contact structures and almost contact structures.

Let y^0, y^1, \dots, y^{2n} be the natural coordinate system of \mathbb{R}^{2n+1} . Let

$$\alpha = dy^{0} - \frac{1}{2} \sum (y^{i+n} dy^{i} - y^{i} dy^{i+n}).^{2\gamma}$$

Let \mathcal{L} be the sheaf of germs of all vector fields X on \mathbb{R}^{2n+1} which satisfy

$$L_X \alpha = \lambda \alpha$$
,

where λ is a function depending on X. Let $\mathcal{L}(0)$ be the stalk of \mathcal{L} at the origin 0. Then $\mathcal{L}(0)$ is a non-flat filtered Lie algebra of infinite dimensions. The linear isotropy algebra \mathfrak{g} of $\mathcal{L}(0)$ is the linear Lie algebra

$$\left\{ \left(\begin{array}{c|c} 0 & 0 \cdots 0 \\ \hline * & \\ \vdots & A \end{array} \right) + \left(\begin{array}{ccc} 2\lambda & & 0 \\ & \ddots & \\ & & \ddots \\ 0 & & \lambda \end{array} \right) \middle| A \in \mathfrak{Sp}(n), \ \lambda \in \mathbf{R} \right\}.$$

Proposition 2.1. g is involutive.

Proof. Let e_0, e_1, \dots, e_{2n} be the natural basis for \mathbb{R}^{2n+1} . Let

$$d_k = \dim \{t \in \mathfrak{q} \mid [t, e_0] = \cdots = [t, e_k] = 0\}.$$

Then we have

$$d_k = (n+1)(2n+1) - (k+1)(2n+1) + \frac{k(k+1)}{2}$$

and hence

$$\sum_{k=0}^{2n-1} d_k = \frac{2}{3} n(n+1)(2n+1).$$

On the other hand, since $g^{(1)} \cong \mathfrak{sp}(n)^{(1)} + \mathfrak{g}$, we have

dim
$$g^{(1)} = \frac{1}{3}(n+1)(2n+1)(2n+3)$$
.

Therefore

²⁾ Indices i, j, k, ... run over the range 1, 2, ..., n.

$$\dim \mathfrak{g}^{(1)} = \dim \mathfrak{g} + \sum_{k=0}^{2n-1} d_k.$$

This implies that g is involutive. (Q.E.D.)

A diffeomorphism $f: U \rightarrow U'$, where U and U' are open subsets of $\mathbb{R}^{2^{n+1}}$, is called a *contact transformation* if it satisfies

$$f*\alpha=\lambda\alpha$$
,

where λ is a non-zero function on U. The collection, Γ , of all such contact transformations forms an infinite, continuous pseudogroup.

Let M be a differentiable manifold of dimension 2n+1. A Γ -structure on M is called a *contact structure*. Giving a contact structure on M is the same as giving a 1-form ω up to a scalar factor on M which satisfies

$$\omega \wedge (d\omega)^n \neq 0$$
.

The theorem of Darboux states that a 1-form ω satisfying $\omega \wedge (d\omega)^n = 0$ can locally be written as

$$\omega = dx^{0} - \frac{1}{2} \sum (x^{i+n} dx^{i} - x^{i} dx^{i+n}).$$

A local coordinate system in which the form ω can be written as above will be called an *admissible* coordinate.

Let Γ_0 be the subset of Γ consisting of the elements which leave the origin 0 invariant. Let j: $\Gamma_0 \rightarrow GL(2n+1, \mathbb{R})$ be defined as follows: for $f \in \Gamma_0$, j(f) is the 1-jet determined by f.

Let $G=j(\Gamma_0)$. Then G is a subgroup of $GL(2n+1,\mathbb{R})$ whose Lie algebra is \mathfrak{g} , the linear isotropy algebra of $\mathcal{L}(0)$.

Let M be a differentiable manifold of dimension 2n+1. An almost contact structure on M is, by definition, a reduction of the bundle of linear frames F(M) to G, that is, a G-structure $P_G(M)$ on M.

Given a G-structure $P_G(M)$ on M, we can define, up to scalar factors, a pair of a 1-form $\{\omega\}$ and a 2-form $\{\Omega\}$ which satisfy $\{\omega\} \wedge \{\Omega\}^n \neq 0$. In fact, for each $x \in M$, let u be a point of $P_G(M)$ with $\pi(u) = x$. For any tangent vectors X and Y at x, set

$$\omega_x(X) = \rho \cdot \alpha_0(u^{-1}X)$$

$$\Omega_x(X, Y) = \sigma \cdot (d\alpha)_0(u^{-1}X, u^{-1}Y),$$

where α_0 and $(d\alpha)_0$ denote, respectively, the values of α and $d\alpha$ at the origin $0 \in \mathbb{R}^{2^{n+1}}$, and ρ and σ are scalars. From the properties of G, this definition is independent of the choice of u.

Conversely, given, up to scalar factors, a pair of a 1-form $\{\omega\}$ and a 2-form $\{\Omega\}$, let $P_{\mathcal{G}}(M)$ be the set of all linear frames u satisfying

$$\{\omega\}_x(X) = \alpha_0(u^{-1}X),$$

 $\{\Omega\}_x(X, Y) = (d\alpha)_0(u^{-1}X, u^{-1}Y)$

for any vectors X and Y at $x = \pi(u)$. Then $P_G(M)$ is a G-structure on M.

Thus giving a G-structure on M is the same as giving a pair of a 1-form up to a scalar factor $\{\omega\}$ and a 2-form up to a scale factor $\{\Omega\}$ which satisfy $\{\omega\} \wedge \{\Omega\}^n \neq 0$ at every point of M.

Let M_0 be a manifold with a contact structure. Since every Γ -structure gives rise canonically to an almost Γ -structure, M_0 has a G-structure $P_G(M_0)$, an almost contact structure.

Theorem 2.1. Let $P_G(M_0)$ be the almost contact structure associated with a contact structure on M_0 . Then the first order structure tensor c has the following representative:³⁾

$$(c_{n,\beta}^{0}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & I_{n} \\ 0 & -I_{n} & 0 \end{pmatrix},$$
$$(c_{n,\beta}^{1}) = (c_{n,\beta}^{1}) = 0,^{4}$$

Proof. A representative of c is given by the torsion tensor of a G-connection. Let Π be a connection and ∇ the covariant differentiation with respect to Π . Then Π is a G-connection if and only if

(*)
$$\nabla \omega = 0.$$

Let T be the torsion tensor of Π and $T^{\alpha}_{\beta \gamma}$ the components of T with respect to an admissible coordinate system $(x^0, x^1, \dots, x^{2n})$. Then the equation (*) implies

$$\begin{split} &T_{j0}^{0} - \frac{1}{2} \sum x^{i+n} T_{j0}^{i} + \frac{1}{2} \sum x^{i} T_{j0}^{i+n} = 0, \\ &T_{j+n,0}^{0} - \frac{1}{2} \sum x^{i+n} T_{j+n,0}^{i} + \frac{1}{2} \sum x^{i} T_{j+n,0}^{i+n} = 0, \\ &T_{jk}^{0} - \frac{1}{2} \sum x^{i+n} T_{jk}^{i} + \frac{1}{2} \sum x^{i} T_{jk}^{i+n} = 0, \\ &T_{j+n,k+n}^{0} - \frac{1}{2} \sum x^{i+n} T_{j+n,k+n}^{i} + \frac{1}{2} \sum x^{i} T_{j+n,k+n}^{i+n} = 0, \end{split}$$

³⁾ Since the cohomology class c is an element of $\operatorname{Hom}(\mathbb{R}^{2n+1} \wedge \mathbb{R}^{2n+1}, \mathbb{R}^{2n+1})/\partial \operatorname{Hom}(\mathbb{R}^{2n+1}, \mathfrak{g})$, a representative of c is in $\operatorname{Hom}(\mathbb{R}^{2n+1} \wedge \mathbb{R}^{2n+1}, \mathbb{R}^{2n+1})$. In other words, a representative of c is a *torsion-type* tensor.

⁴⁾ Indices α , β , γ , \cdots run over the range 0, 1, 2, \cdots , 2n.

$$\delta_{jk} + T^{\scriptscriptstyle 0}_{\scriptscriptstyle J+n,k} - \frac{1}{2} \sum x^{\imath+n} T^{i}_{\scriptscriptstyle J+n,k} + \frac{1}{2} \sum x^{\imath} T^{i+n}_{\scriptscriptstyle J+n,k} = 0.$$

We can take T as follows:

$$T^0_{j+n,k} = -\delta_{jk}$$

and the other components are all zero.

Since the first order structure tensor c is independent of the choice of a G-connection, our assertion is now clear. (Q.E.D.)

§ 3. The integrability problem for almost contact structures.

Let M be a differentiable manifold of dimension 2n+1 and $P_G(M)$ a G-structure, an almost contact structure, on M. $P_G(M)$ is said to be *integrable* if it determines a contact structure on M.

Theorem 3.1. Let c_0 be the structure lensor of the almost contact structure associated with a contact structure and c the structure tensor of $P_G(M)$. Then $P_G(M)$ is integrable if and only if $c=c_0$ at every point.

Proof. The necessity is clear. We shall prove the sufficiency.

Since \mathfrak{g} is reductive, there is an invariant complement C to ∂ Hom $(\mathbb{R}^{2n+1},\mathfrak{g})$ in Hom $(\mathbb{R}^{2n+1}\wedge\mathbb{R}^{2n+1},\mathbb{R}^{2n+1})^{.5}$ Let \tilde{c} be the element in C which corresponds to c under the isomorphism Hom $(\mathbb{R}^{2n+1}\wedge\mathbb{R}^{2n+1},\mathbb{R}^{2n+1})/\partial$ Hom $(\mathbb{R}^{2n+1},\mathfrak{g})\cong C$. Then there exists a G-connection Π on $P_G(M)$ whose torsion is \tilde{c} . More precisely, let τ be an element of Hom $(\mathbb{R}^{2n+1}\wedge\mathbb{R}^{2n+1})$ whose components $(\tau_{\mathfrak{g}}^r)$ are given by

$$(au_{\alpha\beta}^{\circ}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & I_n \\ 0 & -I_n & 0 \end{pmatrix},$$

$$(\tau_{\alpha\beta}^{\imath})=(\tau_{\alpha\beta}^{\imath+n})=0.$$

Then it is easily seen that τ belongs to C. This, together with Theorem 2.1, implies that τ is just \tilde{c} .

Let $\sigma: U \rightarrow P_G(M)$, $u = \sigma(x)$, be a local cross section. If we set

$$\Theta_x(X, Y) = \tau(u^{-1}X, u^{-1}Y),$$

where $X, Y \in T_x(M)$, then Θ is a \mathbb{R}^{2n+1} -valued 2-form on M defined in U. Let $\tilde{\sigma} \colon U \to P_G(M)$, $\tilde{u} = \tilde{\sigma}(x)$, be an another local cross section and set

$$\widetilde{\Theta}_r(X, Y) = \tau(\widetilde{u}^{-1}X, \widetilde{u}^{-1}Y).$$

⁵⁾ C is a (1/3)n(2n-1)(2n+1)-dimensional subspace of $Hom(R^{2n+1} \wedge R^{2n+1}, R^{2n+1})$.

Then $\tilde{\Theta}$ diffrs from Θ by a scalar factor. Hence we have a global 2-form Θ up to a scalar factor.

Let T be a tensor field of type (1,2) on M determined by Θ . The dimension of the space of G-connections with torsion tensor T is equal to $\dim \mathfrak{g}^{(1)} = (1/3)(n+1)(2n+1)(2n+3)$. On the other hand, let α be a 1-form on M. Then the dimension of the space of G-connections satisfying $\nabla \alpha = 0$ is equal to $\dim \{t \in \operatorname{Hom}(\mathbb{R}^{2n+1},\mathfrak{g}) \mid \alpha \circ t = 0\} = 2n(n+1)(2n+1)$. Since $\dim \operatorname{Hom}(\mathbb{R}^{2n+1},\mathfrak{g}) = (n+1)(2n+1)^2$, there exists a G-connection, with torsion tensor T, which satisfies $\nabla \alpha = 0$.

Let $\{\omega\}$ and $\{\Omega\}$ be the classes of 1-forms and 2-forms on M determined by $P_G(M)$. Then we can find locally a 1-form ω in $\{\omega\}$ and a G-connection with torsion tensor T which satisfy

$$\nabla \omega = 0$$
.

The 1-form ω satisfies

$$2d\omega(X, Y) = \omega(T(X, Y))$$

for all X and Y. In fact, for all X and Y, we have

$$0 = (\nabla_X \omega)(Y) = X \cdot \omega(Y) - \omega(\nabla_X Y)$$

and

$$0 = (\nabla_Y \omega)(X) = Y \cdot \omega(X) - \omega(\nabla_Y X).$$

Hence we obtain

$$X \cdot \omega(Y) - Y \cdot \omega(X) - \omega([X, Y])$$

$$= \omega(\nabla_X Y) - \omega(\nabla_Y X) - \omega([X, Y]),$$

that is,

$$2d\omega(X, Y) = \omega(T(X, Y)).$$

If $X = \sum \xi^{\alpha} X_{\alpha}$ and $Y = \sum \eta^{\alpha} X_{\alpha}$, then

$$\begin{split} \omega(T(X,Y)) &= \rho \cdot \alpha_0(\Theta(X,Y)) \\ &= \rho \cdot \alpha_0(\tau(u^{-1}X,u^{-1}Y)) \\ &= \rho \cdot dy^0(\sum \tau_{\beta\gamma}^a(u^{-1}X)^\beta(u^{-1}Y)^\gamma e_a) \\ &= \rho \cdot \sum \tau_{\beta\gamma}^o(u^{-1}X)^\beta(u^{-1}Y)^\gamma \\ &= \rho \cdot \sum (Y_{\beta}^i Y_{\gamma}^{i+n} - Y_{\beta}^{i+n} Y_{\gamma}^i) \xi^\beta \eta^\gamma. \end{split}$$

On the other hand

$$\begin{split} & 2(d\alpha)_{0}(u^{-1}X, u^{-1}Y) \\ &= 2\sum (dy^{i} \wedge dy^{i+n})(u^{-1}X, u^{-1}Y) \\ &= \sum \{dy^{i}(u^{-1}X) \cdot dy^{i+n}(u^{-1}Y) - dy^{i}(u^{-1}Y) \cdot dy^{i+n}(u^{-1}X)\} \\ &= \sum (Y_{\beta}^{i} \xi^{\beta} \cdot Y_{\tau}^{i+n} \eta^{\tau} - Y_{\tau}^{i} \eta^{\tau} \cdot Y_{\beta}^{i+n} \xi^{\beta}) \\ &= \sum (Y_{\delta}^{i} Y_{\tau}^{i+n} - Y_{\delta}^{i+n} Y_{\delta}^{i}) \xi^{\beta} \eta^{\tau}. \end{split}$$

Therefore we have

$$d\omega(X, Y) = \rho \cdot (d\alpha)_0(u^{-1}X, u^{-1}Y).$$

This implies that $d\omega \in \{\Omega\}$ and hence ω satisfies

$$\omega \wedge (d\omega)^n \neq 0$$
.

Hence $\{\omega\}$ defines a contact structure on M. (Q.E.D.)

Appendix. Cosymplectic structures and almost cosymplectic structures.

Let y^0, y^1, \dots, y^{2n} be the natural coordinate system of \mathbb{R}^{2n+1} . Let

$$\alpha = dy^0$$
 and $\beta = \sum dy^i \wedge dy^{i+n}$.

Let \mathcal{L} be the sheaf of germs of all vector fields X on \mathbb{R}^{2n+1} which satisfy

$$L_X\alpha=0$$
 and $L_X\beta=0$.

Let $\mathcal{L}(0)$ be the stalk of \mathcal{L} at the origin 0. Then $\mathcal{L}(0)$ is a *flat* filtered Lie algebra of infinite dimensions. The linear isotropy algebra \mathfrak{g} of $\mathcal{L}(0)$ is

$$\left\{ \left(\begin{array}{c|c} 0 & 0 & \cdots & 0 \\ \hline 0 & & \\ \vdots & & A \end{array} \right) \middle| \quad A \in \operatorname{Sp}(n) \right\}.$$

 $\mathcal{L}(0)$ is isomorphic with

$$R^{2n+1} + \mathfrak{q} + \mathfrak{q}^{(1)} + \mathfrak{q}^{(2)} + \cdots$$

where $g^{(k)}$ denotes the k-th prolongation of g.

A local diffeomorphism f of \mathbb{R}^{2n+1} is called a cosymplectic transformation if it satisfies

$$f*\alpha=\alpha$$
, $f*\beta=\beta$.

The collection, Γ , of all such cosymplectic transformations forms an infinite, continuous pseudogroup.

Let M be a differentiable manifold of dimension 2n+1. A Γ -structure on M is called a *cosymplectic structure*. Giving a cosympletic structure is the same as giving a pair of a *closed* 1-form ω and a *closed* 2-form Ω which satisfy $\omega \wedge \Omega^n \neq 0$. Let M be a differentiable manifold of dimension 2n+1. Let G be a subgroup of $GL(2n+1,\mathbb{R})$ whose Lie algebra is \mathfrak{q} .

An almost cosymplectic structure on M is, by definition, a reduction of F(M) to G, that is, a G-structure $P_G(M)$ on M. Giving an almost cosymplectic structure on M is the same as giving a pair of a 1-form ω and a 2-form Ω on M which satisfy $\omega \wedge \Omega^n \neq 0$. The answer to the integrability problem for an almost cosymplectic structure is the following

Proposition. An almost cosymplectic structure whose structure tensor of the first order vanishes is cosymplectic.

Proof. Let $P_G(M)$ be an almost cosymplectic structure on M and (ω, Ω) the associated pair.

Let Π be a linear connection and ∇ the covariant differentiation with respect to Π . Then Π is a G-connection if and only if

$$\nabla \omega = 0$$
 and $\nabla \Omega = 0$.

Since the first order structure tensor of $P_G(M)$ vanishes, there exists a torsionfree G-connection.

In general, let Π be a torsionfree linear connection and η a differential form. Then

$$d\eta = \mathcal{A}(\nabla \eta)$$
,

where \mathcal{A} is the alternation operator. Hence, let Π be a torsionfree G-connection. Then we have $d\omega=0$ and $d\Omega=0$. This proves the Proposition. (Q.E.D.)

BIBLIOGRAPHY

- [1] Guillemin, V., and S. Sternberg, Deformation Theory of Pseudogroup Structures. Memoirs of Amer. Math. Soc., No. 64 (1966).
- [2] OGIUE, K., G-structures defined by tensor fields. To appear in Kōdai Math. Sem. Rep.
- [3] Sasaki, S., On differentiable manifolds with certain structures which are closely related to almost contact structure I. Tôhoku Math. J. 12 (1960), 459-476.
- [4] SINGER, I. M., AND S. STERNBERG, The infinite groups of Lie and Cartan. J. d'Analyse Math. 15 (1965), 1-114.

DEPARTMENT OF MATHEMATICS,
TOKYO INSTITUTE OF TECHNOLOGY