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TOTALLY UMBILICAL SURFACES IN
NORMAL CONTACT RIEMANNIAN MANIFOLDS

By Yosiisko WATANABE

Introduction. It is well known that any complete hypersurface of Euclidean
space is isometric with a spherc if it is umbilical and has non-vanishing mean
curvature. Recently, Okumura [4, 5] has studicd totally umbilical surfaces in a
Kaehlerian manifold, and in a locally product space. lle proved that they are iso-
metric with a sphere under some additional conditions. In this paper, we shall
study surfaces in a normal contact manifold by devices similar to those used in [4]
and [5].

We recall in §1 the fundamental propertics of normal contact manifolds. We
oblain §2 some formulas for surfaces in those manifolds. We mention in §3 some
properties of infinitesimal concircular transformations and state Obata’s theorem for
the later use. §4 is mainly devoted to prove theorem 4.3, that is, the fact that in
a normal contact manifold a complete and connected hypersurface is isometric with
a sphere if it is totally umbilical and is of constant mean curvature. We prove in
§5 theorem 5.7, that is, the fact that in a normal contact manifold a complete and
connected surface of codimension 2 is isometric with a sphere if it satisfies some
special conditions. Finally, in §6, non-existence of totally umbilical surfaces in a
certain normal contact manifold will be proved.

§1. Normal contact Riemannian manifolds.

In a differentiable manifold of # dimensions, a set (¢, &, ) of three tensor fields
¢, & and 7 of type (1,1), (1,0) and (0, 1) respectively is called an almost contact
structure (cf. [8, 9]) if it satisfies the following conditions:

(1‘ 1) 517]1:1’ ¢1t$1:0y ¢vat:0) ¢1K¢v12 —5f+77.ft,

where ¢," is of rank n—1.
When a manifold admits an almost contact structure, it is called an almost

contact manifold and is necessarily odd-dimensional. As is proved in [8], there
exists in any almost contact manifold a Riemannian metric G;, such that
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1) For a tensor field, say, T of type (1, 2), we denote by 73" its components with
respect to local coordinates {X*} defined in each coordinate neighborhood of the manifold,
where the indices &, 4, g, --+ run over the range (1, 2, .-, #). The so-called Einsteun’s sum-
mation convention 1s used with respect to this system of indices.
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(]-' 2) Gz:"fl:%, Gl/:¢,ux¢u‘:G/w_EpEw

and such a Riemannian metric G,, is called a Riemannian wmetrvic associated with
the given almost contact structure (¢,&,7). An almost contact manifold is called
an almost contact Riemannian manifold when it is endowed with an associated
Riemannian metric G;..

An almost contact Riemannian manifold is said to be normal if a certain tensor
field constructed from the structure (¢,&,7, G) vanishes (cf. [9]). However, an
almost contact Riemannian manifold is normal if and only if the conditions

1.3)
Vu¢lx:$1(;xv_s:x("lw ¢Ah;(;xu¢lvy

are satisfied (cf. [1, 10]).
We know the following theorem, due to Okumura [6]:

TuEoREM A. Let M be a (2n—1)-dimensional Riemannian manifold with
Riemannian metvic Ga. If M admits a Killing vector field V. of constant length

satisfying
CZVIV,; Vy: V;:Glu_ Vlel’

then the metric G of M is homothetic to the associated Riemannian metric of a@
normal contact Riemannian manifold.

§2. Surfaces in normal contact Riemannian manifolds.

We first of all study hypersurfaces in a normal contact Riemannian manifold
M. Let M be a hypersurface differentiably immersed in M. We suppose that M
is represented by equations

Xi=X(a?)

in each coordinate neighborhood U of _M, where {X?*} are local coordinates in U,
and {x*} are local coordinates in MNU.» If we put

Bj=0,X"

then, B,* define, for each fixed index 3, a local vector field in U and 2% vector fields

B,* span the tangent plane of M at each point of U, where 9, denotes the operator
defined 9,=4d/dx’. On putting

(/ji:GleleiAy

2) ’ﬁle mdlcesh,z, j, k, run over the range (1, 2, ---, 2») and the so-called Einstein’s
summation convention 1s used with respect to this system of indices.
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we see that ¢;; define in M a Riemannian metric which is called the nduced

metric.
As is well known [2], a contact manifold is always orientable. We assume

that the hypersurface M is also orientable and 2z tangent vectors B,* are chosen
in such a way that B, -+, Bz,* form a frame of positive orientation in M. Then
we can choose a globally defined field of unit normal vectors C* in such a way
that 2n-+1 vectors C# Bj?, -+, By,* form a frame of positive orientation in M. Then

we find

G B*C* =0, C'G=1,
2.1
BB, =03, BuB,) =d,—C,C,
where we have put 57.=GBig?, (971 =(g;) ", Ce=GuC4 Therefore, we can put
2. 2) & Bi=fiB, "+ f.C", $Cl=—["B,
f% being defined by f*=¢¥f,. Taking account of (2. 1), we find
2. 93) Jid=B'$"B*,  [f,=C.;" B;?
by virtue of (2.2). Furthermore we introduce following tensors for the later use:
2. 4) a=C¢E",
(2.5) u,=13&,.
We then get equations
2. 6) fuft=1—a?, u,f=0, w'u,=1—a", S =af,

because of (2. 1), (2.4) and skew symmetry of ¢;,.
We denote by {,%} the Christoffel symbols constructed from the given Riemannian

metric G;, in M and by {;%} those constructed from the metric ¢;; induced in the
hypersurface M. Denote by Hj; the second fundamental tensor of the hypersurface
M and put H?=g¢*Hy,. Then, the Gauss and the Weingarten equations for M are

given respectively by
@7 V;Bi=H;C*  V;,C*=—H"B}
where we have put
V;Bi=0;Bi+{,%} By B — {;"} Bn’,
ViCi=0a,C*-{, A} B,"C".

Differentiating covariantly the both sides of (2.3), (2.4) and (2.5), and taking
account of (1. 3), (2. 3), (2.4), (2.5) and (2. 7), we have



TOTALLY UMBILICAL SURFACES 477
V,fi=—ag;—H,f,
2.8 Vjui=f+aHy;,
Via=fi—uHj,

by virtue of skew-symmetry of ¢., where V,f,, V;u;, V,a etc. denote the covariant
derivatives of fi, u;, @ etc., respectively, with respect to {;%}. In the sequel, we
denote by F, the covariant derivative with respect to {,*.} in M.

Next, we shall study surfaces of codimension 2 in a normal contact Riemannian
manifold M. Let M be a surface of codimension 2 which is differentiably immersed
in M. We suppose that M is represented by equation

Xi=XX(a")

in each coordinate neighborhood U of M, {X*} being coordinates defined in U, and
{z*} local coordinates defined in MNU.” If we put

Bi#=0.X?4,

then B.* define, for each fixed index ¢, a local vector field in U and 2n—1 vector
fields B.* span the tangent plane of M at each point of U, where d, denotes the
operator d.=4d/dx°. On putting

9as=G1Ba* By,

we see that g, define in M a Riemannian metric which is called the induced
metric.

The contact manifold M being orientable, we assume that the surface M is also
orientable and that B, -+, Ben_1® are chosen in such a way that they form a frame
of positive orientation. We then choose two local fields of mutually orthogonal unit
vectors C* and D* in such a way that C?* D?* B, -+, Be,_1* form a frame of posi-
tive orientation in M. If ‘C* and ’D* are another set of normals satisfying the
same condition, then we have

2.9 'C*=cos §C*—sin 8 D?, ’D?*=sin § C*-+cos 6 DA
Then we find
GuBo'C =GB D*=G,,C*'D*=0,
(2.10) G.C'C* =G, DD =1,
B By*=0¢, B%;B,"=d;—C,C*—D,D".

Therefore, we can put

3) The indices @, b, ¢, d run over the range (1, 2, ---, 2n—1) and the so-called Einstein
summation convention is also used with respect to this system of indices.
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¢1‘Ba.1 = abBb‘ ‘l‘fact ‘{_gaD‘;
0,°C*=—f*By"+rD", ¢, D*=—¢*B,"—rC",

2. 11)
J¢ and ¢ being defined by f*=g¢**f; and ¢“=¢, respectively. By virtue of (2. 10),
we find
j‘ub:BbK¢x‘Ba2’ fub:Bbr¢1KBﬂxy
fa:C;:SZSz‘Baly Jo= Dx¢2xBal, Y= DK¢1KC/1’

(2.12)

as consequence of (2.11). Furthermore we introduce following tensors for the
later use:

(2. 13) o= Rulfh
(2. 14) a=E&C,, b=E&D,.

We denote by {;%} the Christoffel symbols constructed from the metric ¢as
induced in the surface M. Denote by I1,, and K, the second fundamental tensors
of the surface M and by L, the third fundamental tensor of the surface M with
respect to the normals C* and D? and put [/%=¢“Il;, K*%=9"“K.. Then, the
Gauss and the Weingarten equations for M arc given respectively by

pa];br:[[ubcr‘f‘[(ab])x,
(2.15)
VP.Cr=—H B+ L, VD ——K"%Bf—L.C*,
where we have put
Vo' =0,By*+ {4} By’ By — {0} B,
Vacx — aacx+ {ﬂzv}Bqu /1, ‘7(‘])1 — ,‘)aDz + {ll/lv } ]))auDh.

Differentiating covariantly the both sides of (2. 12), (2. 13) and (2. 14), and taking
account of (1. 3), (2.12), (2.13), (2.14) and (2. 15), we find

Vafbc:Hacfb+Kacgb+gacub_(Habfc+Kabgc+gabuc)

Vafb:Hcafcb‘{‘Lagb_agab_‘VKab, Vags=K afeo—LaJv—bgar -+,

(2.16)
Va,?’:Kba,fb—Hbagb, Vaub:aHab+bKab+faby

Vad:fa_Hbaub+bLa) Vab:ga_Kbaub_aLa;

by virtue of skew symmetry of ¢, where Vqfse, Vafs, --- etc. denote the covariant
derivatives of fue, fo, --+ etc., respectively, with respect to {,%}. In the sequel, we
denote by V, the covariant derivative with respect to {%} in M.

Then, we have the following

LEMMA 2.1. The scalar function v defined by (2.12) is determined inde-
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pendently of the choice of mutually orthogonal unit normal vectors C* and D* to
the surface M, consequently, v is a globally defined function in M.

Proof. Let 'C* and 'D* be mutually orthogonal unit normal vectors to the
manifold M at a point p. Then we find that between a pair of unit normal vectors
(C* DY and (“C?*’D?% chosen above at each point of M, the relations (2. 9) hold.
So we find

v ="D.p;"'C*=(sin 0 C.+cos 0 D,)¢;"(cos § C*—sin 0 D?)
= —sin? 0 C.$,"D*+-cos? 0 D,¢,"C*=(sin? 0+cos? 0)D.4;"C*=r,

which shows that # is independent of the choice of unit normal vectors C* and D?
and that 7 is a globally defined function. Q.E.D.

§ 3. Infinitesimal concircular transformations.

An infinitesimal conformal transformation is by definition an infinitesimal
transformation #" satisfying the equation

(3' ]) Vlux—"qul:’—zsbGln

where ¢ is a certain function. When an infinitesimal conformal transformation 2"
is a gradient vector field, i.e. #.=F,», where v is a certain function in M and
u.=G2t%, the cquation (3. 1) reduces to

3.2) Vil w+V 7 w—2¢G,,
which is equivalent to
(3. 3) VZVI:U:¢GZM

because of V,Fw=FFuw. When a function v satisfies (3.3), that is, when the
gradient vector field of a function » is an infinitesimal conformal transformation,
the transformation #*=G*#,» is called an infinitesimal concircular transformation
[12]. If the function appearing in (3.3) is of the form ¢=-—kv with positive
constant coefficient k, the infinitesimal concircular transformation 2" is called an
infinitesimal special concircular transformation [11]. As to a Riemannian manifold
admitting an infinitesimal special concircular transformation, we know the following
Obata’s theorem.

THEOREM B. [3] [11] Let M be a complete connected Riemannian wmanifold
of dimension n (=2). In order that M admits a non-trivial solution of the system
of differential equations

V.iV.¢+k¢Gi=0, k>0,

it is necessary and sufficient that M is isometvic with a sphere S™ of radius 1)k
in the Euclidean (n+1)-space.
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§4. Totally umbilical hypersurfaces in normal contact Riemannian manifolds.

When, at each point of the hypersurface M, the second fundamental tensor is
proportional to the first fundamental tensor of M, that is, when the relation

(4 1) [[]1=Hgﬂ

is always valid at each point, the hypersurface is called a totally umbilical hyper-
surface, the proportional factor /7 being the mean curvature of the hypersurface.
First of all, we shall prove

Lemma 4.1. If M is a totally umbilical hypersurface with constant mean
curvature in a normal contact Riemannian manifold M, then the scalar function «
defined by (2.4) is nol constanl in M.

Proof. Suppose that the function « is constant in M. Then we have
4.2) S,=1Tu,,
because of the equation
4. 3) Via—=f;—Iu,

which is a direct consequence of the last equation in (2. 8) and (4.1). Making use
of (2.6), we have from (4. 2)

[y f?=1—a*=Hu, =0,
which implies
4.4 1:=0,
4.5) 1—a*=0.
Substituting (4. 4) and (4. 1) into the first equation in (2. 8), we get
4. 6) agji+Hf =0,

from which, transvecting g¢7?, we get easily ¢=0 because of skew symmetry of fj.
However this is contradictory to (4.5). Thus @ can not be constant in M. Q.E.D.

Next, we shall prove

THEOREM 4. 2. If M is a totally umbilical hypersurface with constant mean
curvature in @ novmal contact Riemannian manifold M, the gradient vector field of
the function a defined by (2.4) is in M an infinitesimal special concircular transfor-
mation.

Proof. Differentiating (4. 3) covariantly, and taking account of (2. 8) and (4. 1)
we have
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4.7 ViV ja+ 1+ H*agx,=0,

where 14+H? is a positive constant.
The function ¢ is non-trivial because of Lemma 4. 1. Thus the gradient vector
field of the function ¢ is an infinitesimal special concircular transformation. Q.E.D.

Combining Theorem B and Theorem 4. 2, we have

THEOREM 4. 3. Let M be a complete connected totally umbilical hypersurface
in a normal contact Riemannian manifold M. If M is of constant mean curvature
H, M is isometric with a sphere of vadius 1/N/1-FH? in the Euclidean space.

§5. Totally umbilical surfaces of codimension 2 in normal contact Riemannian
manifolds.

When, at each point of the surface M of codimension 2, the second fundamental
tensors are proportional to the first fundamental tensor of M, that is, when the
relations

(5 1) Haszgaby Kaszgab

are always valid at each point, the surface is called a totally umbilical surface, H
and K being given by (1/2n—1))g**Hes_and (1/(2n—1))g**Kas respectively. The
mean curvature vector field A* of M in M is given by

(5.2) H*=HC*+KD?,

which is independent of the choice of mutually orthogonal unit normal vectors C?
and D* to the surface M. Differentiating (5.2) covariantly and making use of
(2. 15), we have

VoH'=—(H*+K?* B,/ 4V H—KL)C*+ (¥ K+ HL,)D?,
which implies the following

LeEMMA 5.1. Let M be a (2n—1)-dimensional totally wumbilical surface in a
@2n+1)-dimensional Riemannian manifold M. In order that the covariant derivative
V. H* of the mean curvature vector field H* of M is tangent to M, it is necessary
and sufficient that

(5.3) ValH=KLa,  VoK=—HL,.

Next, we shall prove

THEOREM 5. 2. Let M be a (2n—1)-dimensional totally umbilical surface in a
(2n-+-1)-dimensional Riemannian manifold M. If the covariant derivative V,H* of
the mean curvature vector field H* of M is tangent to M, then M is of constant
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mean curvalure.

Proof. The mean curvature %~ of M is given by
=G H H".
Substituting (5. 2) in the equation above, we have
(5. 4) k=G (HC*+ KDY)HC 4+ KD")=I*+ K"
Differentiating (5. 4) covariantly and making use of Lemma 5.1, we have
Val?=2(HV H+ KV K)=2(HKLy—KHLq)=0,
which shows that the mean curvature of M is constant. Q.E.D.

As a consequence of equations (2. 16), we have

THEOREM 5. 3. Let M be a (2n—1)-dimensional totally wmbilical surface in a
n+1)-dimensional normal contact Riemannian manifold M. Suppose that the
covariant dervivative of the mean cuvvature vector of M is tangent to M, and that
the scalar function v defined by (2.12) is non-constant. Then the gradient of the
scalar function v is an infinitesimal special concircular transformation.

Proof. Differentiating the fourth equation in (2.16) covariantly under the
conditions (5. 1), and taking account of (2. 16) and (5. 3), we get

(5.5) VoV or={bH—aK—(K*+H*7}gap.
On the other hand, from (2. 16), (5.1) and (5. 3), we obtain

VobH—aK)=Hgo—Kfo=—Var,
which implies

r=—0OH—aK)+C,,

C, being a constant. Substituting this equation into (5. 5), we get
(5. 6) Vol sr={—Q+H*+K*r+Co}gas.
Furthermore putting

T IFHK®

C

which is constant, we see that (5. 6) reduces to
papur=—{1-+H*+K*(r—c)} ga,

or equivalently to
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Vol y(r—c)=—{(14+H*+ K —c)}gas.

This equation shows that V,r=F,(r—c) is an infinitesimal special concircular trans-
formation, since 1+H?+K? is positive and constant. Q.E.D.

Taking account of Theorem 5.3 and Theorem B, we have

LeMmMA 5. 4. Let M be a (2n—1)-dimensional complete connected totally umbilical
surface in a (2n+1)-dimensional novmal contact Riemannian manifold M. Suppose
that the covariant derivative of the mean curvatuve vector field of M is tangent to
M, and that the scalar function v defined by (2.12) is non-constant. Then M is
isometric with a spheve of radius 1//1-+FH?*+K? in the Euclidean space, where
H2*+K? is the mean curvature of M.

Let us next consider the case in which the function 7 is constant. In this
case, taking account of (2.16) and (5.1) we get

6.7 Kfo—Hga=0.

Substituting (2. 12) into (5. 7), we obtain
KC.¢,*Bo*—HD,$," Bo*=(KC.— HD,)$:" Bs* =0,

equivalently

(5.8) 62 (KC*—HD?*)B,"=0.

On the other hand, by means of skew symmetry of ¢,., we have

5.9 ¢:2:(KC*— HD*)KC*—HD")=0.

Now, we have the identity

(5.10) Hy(KC*—HD*=(HC;+ KD;)(KC*—HD?*)=0.

These two equations (5. 8) and (5. 9) show that ¢, (KC*—HD?) is orthogonal to both
of B,* and (KC*—HD"). As a direct consequence of (5. 10) we see that H*=HC*+KD"
is orthogonal to both of (KC*—HD") and B,". Therefore ¢,(KC*—HD?" is pro-
portional to H, and hence we can put

(5.11) $:1(KC*—HD")=pH,,
with a certain function p. We shall prove

LEMMA. The function p given by (5.11) is non-zevo constant if the mean
curvature h*=H?+K? does not vanish.

Proof. 1If p=0, (5. 11) reduces to ¢;.(KC?*—HD*)=0, which implies
(5.12) KC*—HD*=cé&?,
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becaus of (1.1). Differentiating (5. 12) covariantly we have
0=F40)§*+0B4 "¢

Transvecting the equation above with &; and taking account of (1.1) we get V,o=0,
which implies

(5.13) 0. B, =0.

Now, ¢.*B." does not vanish because ¢, is of rank 2s. Suppose that ¢ is zero,
then we have H=K=0 because of (5.12). H=K=0 contradicts the assumption.
Therefore ¢ is not zero. This result that ¢,2B,* and ¢ are both not zero contradicts
(5.13). So, p is non-zero. Next, if we differentiate the both sides of (5.11) co-
variantly, we have

(5. 14) Vo(¢::(KC*— HD?))=(aK—bH)G,, By,
(5. 15) Va(prr):(Vap)Hx_p(H2+KZ)Baxv

because of (1.3), (2.15), (5.1) and (5.3). Comparing (5.14) with (5. 13), we have
Vop=0, which implies that ¢ is constant. Thus the proof is completed.
Transvecting (5. 11) with &, we get

HE =0

because the left hand side becomes zero by (1.1) and p is non-zero constant.
Substituting (5. 2) in the equation above, we have

(5. 16) (HC,+KD,)& =Ha+Kb=0.
On the other hand, since 7 is constant, (5.5) implies
(5.17) bH—aK=(H?*+K?)r.

Summing up, we get relations (5.16) and (5.17), when the function 7 is constant
and the mean curvature % does not vanish.
We now prove

LeMMA 5.5. Let M be a (2n—1)-dimensional totally mgbilical surface in a
@n+1)-dimensional normal contact Riemannian manifold M. Suppose that the
covariant devivative of the mean curvatuve vector field H* of M is tangent to M.
If the mean curvature h of M does not vanish and the function v defined by (2.12)
is comstant, then the vector field u, defined by (2.13) is a Killing vector field of
constant length and satisfies the following equation:

(5. 18) C WV ytte=1thpGac— teGan-

Proof. TFirst of all, we shall prove that the vector #® has constant length.
Making use of (2.13) and (2. 14), we have
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(5.19) o =1—(a’+b%.
On the other hand, from (5. 16) and (1.17) we get
a=—Kr, b=Hr,

it *=H*+K?x0. Accordingly we have a*+b?=(H?+K?7*. Therefore, the length
of #* which is given by (5.19) is constant, because 7 and H?+K? are constant by
virtue of Theorem 5. 2.

Substituting (5. 1) and (5. 16) into the fifth equation of (2. 16), we have

Vaub+l7bua:0

by virtue of skew symmetry of fa. This equation shows that #“ is a Killing
vector field.

Finally, differentiating the fifth equation of (2. 16) covariantly and taking account
of (5.1), (6.3) and (5. 16), we have

(5 20) VaVbuc=(Hfb‘l‘Kgb)gac_(ch+Kgc)gab+ubgac“ucgab-
On the other hand, by differentiating (5. 16) covariantly we have
ch+Kgc_(H2+Kz)%c=0

by virtue of (2.16) and (5. 3).
Substituting the equation above into (5. 20), we get

VoV yre= (1+H2+K2)Mbgac -1 +H2+K2)”cgab;
that is,

1

T Re o e =totae— et

Therefore u, satisfies the equation (5.18). Thus the proof is completed.
Taking account of Lemma 5.5 and Theorem A, we have

LEMMA 5.6. Let M be a (2n—1)-dimensional totally umbilical suvface in a
@n+1)-dimensional normal contact Riemannian manifold M. Suppose thai the
covariant derivative of the mean curvature vector H* of M is tangent to M. If the
mean curvature h of M does not vanish and the function v defined by (2.12) is
constant, then the induced Riemannian metvic gq of M is homothetic to the associ-
ated Riemannian metric of the novmal contact Riemannian manifold.

Combining Lemma 5.4 and Lemma 5. 6, we have

THEOREM 5.7. Let M be a (2un—1)-dimensional complete connected toz‘al{y
umbilical surface in a 2n+1)-dimensional normal contact Riemannian manifold M.
Suppose that the covariant devivative of the mean curvature vector field of M is
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tangent to M, and that the mean curvature h*=H*+K? of M does not vanish. Then
either of the following two cases occurs:
(1) M s isometric with a spheve of a radius 1N IFH *4+K? in the Euclidean

2n-space.
@) M s homothetic to a (u—1)-dimensional normal contact Riemannian

manifold.

§6. Totally umbilical hypersurfaces in certain normal contact Riemannian
manifolds.

Let M be a (2n+1)-dimensional normal contact Riemannian manifold whose
Ricci tensor has a special form

(6. 1) Rl,u:aGk/:_i_IgSZf,uy

where « and § are necessarily constant (cf. [7]).
Let M be a totally umbilical hypersurface in M.
The Codazzi equation of the hypersurface M is given by

6.2) ViHi—V iH =B, Bi* Bi’C* R, i

By transvecting ¢** to (6. 2), we have
ViH"\—V"Hj,=B,"(G"*—C"CHC"R,pa.=B;"C*R,..

Substituting (6. 1) into the equation above, we have

(6. 3) (m—1)W ;H=B,"C"(aG,,-ps.£.) = pau,,

since the hypersurface M is totally umbilical.
Differentiating (6. 3) covariantly, we have

6. 4) (n—=1W ¥ jH=B{(fi—wud)u;+a(f;-+ally:;)}.

Because the left hand side of (6.4) is symmetric with respect {o 7 and j, we get
6. 5) B(fjui—Ffarej+2af:)=0.

Transvecting #’ to (6.5), we have

(6. 6) BBat—1)/,—0,

by virtue of (2.6). Transvecting f7 to (6. 6), we have

6.7 BBa*—1)(1—a*=0,

which implies

I

6. 8) a 3 or a*=1,
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if Bx0. We assume now that the constant j is not zero. Then the function a? is
necessarily equal to a constant, i.e. equal to 1/3 or 1, since ¢ is continuous. When
a*=1/3, we have easily H=0 because of the last equation of (2.8) and (2.6). When
a*=1, we have by virtue of the third equation of (2. 6) #,=0, which means together
with (6. 3) that H is constant. However, the fact that ¢ and H are both constant
contradicts Lemma 4.1. Therefore we can conclude that 8 is zero. Thus we get

THEOREM 6.1. If, in a normal contact Riemannian manifold whose Ricci
tensor has the form of (6. 1), there exists a totally umbilical hypevsurface, the space
is nmecessarily an Einstein space.

COROLLARY 6.2. Let M be a normal contact Riemannian manifold whose Ricci
tensor has the form of (6.1). If M is not an Einstein space, then there is no
totally umbilical hypersurface.
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