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TOTALLY UMBILICAL SURFACES IN
NORMAL CONTACT RIEMANNIAN MANIFOLDS

BY YosiiiKo WATAMABI ;

Introduction. It is well known that any complete hypcrsurface of Euclidean
space is isometric with a sphere if it is umbilical and has non-vanishing mean
curvature. Recently, Okumura [4, 5] has studied totally umbilical surfaces in a
Kaehlerian manifold, and in a locally product space. He proved that they are iso-
metric with a sphere under some additional conditions. In this paper, we shall
study surfaces in a normal contact manifold by devices similar to those used m [4]
and [5].

We recall in § 1 the fundamental properties of normal contact manifolds. We
obtain § 2 some formulas for surfaces in those manifolds. We mention in § 3 some
properties of infinitesimal concircular transformations and state Obata's theorem for
the later use. § 4 is mainly devoted to prove theorem 4.3, that is, the fact that in
a normal contact manifold a complete and connected hypersurface is isometric with
a sphere if it is totally umbilical and is of constant mean curvature. We prove in
§ 5 theorem 5.7, that is, the fact that in a normal contact manifold a complete and
connected surface of codimension 2 is isometric with a sphere if it satisfies some
special conditions. Finally, in § 6, non-existence of totally umbilical surfaces in a
certain normal contact manifold will be proved.

§ 1. Normal contact Riemannian manifolds.

In a differentiate manifold of n dimensions, a set (ψ, ξ, η} of three tensor fields
φ, ξ and η of type (1, 1), (1, 0) and (0,1) respectively is called an almost contact
structure (cf. [8, 9]) if it satisfies the following conditions:^

(1.1) f^=l, &'£2=0, &β?.=0, φSφ^-δ +^ξ',

where φλ" is of rank n—l.
When a manifold admits an almost contact structure, it is called an almost

contact manifold and is necessarily odd-dimensional. As is proved in [8], there
exists in any almost contact manifold a Riemannian metric G^ such that

Received May 18, 1967.
1) For a tensor field, say, T of type (1, 2), we denote by Tλκ

ίl its components with
respect to local coordinates {Xκ} defined in each coordinate neighborhood of the manifold,
where the indices K, λ, μ, ••• run over the range (1, 2, ••-, n). The so-called Einstein's sum-
mation convention is used with respect to this system of indices.
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(1. 2) Gλ£
λ = ηf, Gλκφμ

λφv

κ = Gμv-ξμξv1

and such a Riemannian metric G^ is called a Riemannian metric associated with
the given almost contact structure (ψ, ζ, η). An almost contact manifold is called
an almost contact Riemannian manifold when it is endowed with an associated
Riemannian metric G^.

An almost contact Riemannian manifold is said to be normal if a certain tensor
field constructed from the structure (φ, ξ, η, G) vanishes (cf. [9]). However, an
almost contact Riemannian manifold is normal if and only if the conditions

v£.=Φι*,
(1.3)

Ϋvφλκ — ζλGκv — ςκGλv, φλt — Gtvφi,

are satisfied (cf. [1, 10]).
We know the following theorem, due to Okumura [6]:

THEOREM A. Let M be a (2n— V)- dimensional Riemannian manifold with
Riemannian metric Gκλ. If M admits a Killing vector field Vκ of constant length
satisfying

then the metric Gκλ of M is homothetic to the associated Riemannian metric of a
normal contact Riemannian manifold.

§ 2. Surfaces in normal contact Riemannian manifolds.

We first of all study hypersurfaces in a normal contact Riemannian manifold
M. Let M be a hypersurface differentiably immersed in M. We suppose that M
is represented by equations

in each coordinate neighborhood 0 of _M, where { X λ } are local coordinates in U,
and {#*} are local coordinates in Mn£/.2) If we put

then, B/ define, for each fixed index j , a local vector field in U and 2n vector fields
B3

λ span the tangent plane of M at each point of 0, where dj denotes the operator
defined dj — d/dx'. On putting

2) The indices h,i,jtk, run over the range (1, 2, •••, 2w) and the so-called Einstein's
summation convention is used with respect to this system of indices.
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we see that g^ define in M a Riemannian metric which is called the induced
metric.

As is well known [2], a contact manifold is always orientable. We assume
that the hypersurface M is also orientable and 2n tangent vectors B/ are chosen
in such a way that Bιλ, -,B2n

λ form a frame of positive orientation in M. Then
we can choose a globally defined field of unit normal vectors Cλ in such a way
that 2n+l vectors Cλ,Bι*, ,BZn

λ form a frame of positive orientation in M. Then
we find

where we have put BJ

κ^GλκBiλcf\ (gji)^(gjiYl, Cι~GλkC
λ. Therefore, we can put

(2. 2) ΦιBi*=fJB;+f£', φSC^-fΉt',

f ' L being defined by fl—gτ3fj. Taking account of (2. 1), we find

(2. 3) fi3=E^κφλ

κBi\ f^^Cκψλ

κBi*

by virtue of (2. 2). Furthermore we introduce following tensors for the later use:

(2. 4) «=C.£ ,

(2.5) u^Bfξ,.

We then get equations

(2.6) Λ/*=l-tf2, «t/*=0, «l«t=l-ύr2, fjiUJ= ctfL,

because of (2. 1), (2. 4) and skew symmetry of ^e.
We denote by {μ\} the Christoffel symbols constructed from the given Riemanniaι\

metric Gλκ in M and by {j\} those constructed from the metric gμ induced in the
hypersurface M. Denote by Hμ the second fundamental tensor of the hypersurface
M and put Hl

3=gikHk3. Then, the Gauss and the Weingarten equations for M are
given respectively by

(2. 7) ViBt=Hs&, V£*= -HW,

where we have put

Differentiating covariantly the both sides of (2. 3), (2. 4) and (2. 5), and taking-
account of (1. 3), (2. 3), (2. 4), (2. 5) and (2. 7), we have
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(2. 8)

by virtue of skew-symmetry of φλκ, where V 3f%, PjUi, V ft etc. denote the covariant
derivatives of Λ, uit a etc., respectively, with respect to {j\}. In the sequel, we
denote by V 3 the covariant derivative with respect to { j \ } in M.

Next, we shall study surfaces of codimension 2 in a normal contact Riemannian
manifold M. Let M be a surface of codimension 2 which is differentiably immersed
in M. We suppose that M is represented by equation

in each coordinate neighborhood U of M, { X λ } being coordinates defined in £7, and
{xα} local coordinates defined in M Π ί/.8) If we put

then Bc

λ define, for each fixed index c, a local vector field in U and 2n—l vector
fields Bc

λ span the tangent plane of M at each point of £7, where dc denotes the
operator dc=d/dxc. On putting

we see that gα& define in M a Riemannian metric which is called the induced
metric.

The contact manifold M being orientable, we assume that the surface M is also
orientable and that Bι*, ,BZn-ι* are chosen in such a way that they form a frame
of positive orientation. We then choose two local fields of mutually orthogonal unit
vectors Cλ and Dλ in such a way that Cλ, Dλ, Bιλ, •••, B2n-ιλ form a frame of posi-
tive orientation in M. If fCλ and 'Dλ are another set of normals satisfying the
same condition, then we have

(2. 9) 'C^cos #C;-sin ΘD2, 'ZM=sin ΘC*+cos ΘD*.

Then we find

GλκBα*Cκ=GλκBα

λDκ=GλκC
λDκ=0,

(2. 10) GλκC*Cκ=GλκD
λDκ=l,

BαιB>*=3s, Bα

λBα

κ=dl-CλC
κ-DλD

κ.

Therefore, we can put

3) The indices α, b, c, d run over the range (1, 2, •••, 2n—1) and the so-called Einstein
summation convention is also used with respect to this system of indices.
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ΦiB^fJBf+faC +gjy,
(2. 11)

fa and (ja being defined by fa=gabfb and ga=gabgb respectively. By virtue of (2. 10),
we find

(2. 12)
fa

as consequence of (2.11). Furthermore we introduce following tensors for the
later use:

(2.13) Ua=BJξh

(2. 14) a=ξlCλ, b=ξ*D1.

We denote by {Λ} the Christoffel symbols constructed from the metric ga,ι>
induced in the surface M. Denote by Πab and Kab the second fundamental tensors
of the surface M and by La the third fundamental tensor of the surface M with
respect to the normals Cλ and Dλ and put IΓb=gacΠcb, Ka

b=gacKcb. Then, the
Gauss and the Weingarten equations for M are given respectively by

(2.15)
Vti

where we have put

Differentiating covariantly the both sides of (2. 12), (2. 13) and (2. 14), and taking
account of (1. 3), (2. 12), (2. 13), (2. 14) and (2. 15), we find

Pafbc = Hacfb + KacQb + QacUb — (Habfc

agb — agab — rKab, VaQb = Kc

afcb — Lafb — bgab

(2. 16)
ab +/α&,

Va,a =fa — Hb

aUb + bLa, Pab =ga— Kb

aUb — a La,

by virtue of skew symmetry of φif, where Fα/δc, Fα/&, ••• etc. denote the covariant
derivatives of /6c,/6, ••• etc., respectively, with respect to {Λ} In the sequel, we
denote by Fα the covariant derivative with respect to {Λ} in M

Then, we have the following

LEMMA 2. 1. The scalar function r defined by (2. 12) is determined inde-
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pendently of the choice of mutually orthogonal unit normal vectors Cλ and D2 to
the surface M, consequently, r is a globally defined function in M.

Proof. Let 'C* and 'Dλ be mutually orthogonal unit normal vectors to the
manifold M at a point p. Then we find that between a pair of unit normal vectors
(Cλ,Dλ) and ('C*,'Dλ) chosen above at each point of M, the relations (2.9) hold.
So we find

which shows that r is independent of the choice of unit normal vectors Cλ and Dλ

and that r is a globally defined function. Q.E.D.

§ 3. Infinitesimal concircular transformations.

An infinitesimal conformal transformation is by definition an infinitesimal
transformation u* satisfying the equation

(3.1) P&c+P.u^ZφGi,,

where φ is a certain function. When an infinitesimal conformal transformation uκ

is a gradient vector field, i.e. uκ—Vκv, where v is a certain function in M and
uκ=Gλκu

λ

y the equation (3. 1) reduces to

(3. 2) VJPfv+VfiV-2φGλtJ

which is equivalent to

(3. 3) P*Pκv^φGλκ,

because of P*Pκv=PκPλv. When a function v satisfies (3. 3), that is, when the
gradient vector field of a function v is an infinitesimal conformal transformation,
the transformation uκ=GκΨλv is called an infinitesimal concircular transformation
[12]. If the function appearing in (3.3) is of the form φ=~kv with positive
constant coefficient k, the infinitesimal concircular transformation uκ is called an
infinitesimal special concircular transformation [11]. As to a Riemannian manifold
admitting an infinitesimal special concircular transformation, we know the following
Obata's theorem.

THEOREM B. [3] [11] Let M be a complete connected Riemannian manifold
of dimension n (^2). In order that M admits a non-trivial solution of the system
of differential equations

it is necessary and sufficient that M is isometric with a sphere Sn of radius l/\/k
in the Euclidean (n+l)-space.
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§ 4. Totally umbilical hypersurfaces in normal contact Riemannian manifolds.

When, at each point of the hypersurface M, the second fundamental tensor is
proportional to the first fundamental tensor of M, that is, when the relation

(4. 1) Hji=ffgjt

is always valid at each point, the hypersurface is called a totally umbilical hyper-
surface, the proportional factor // being the mean curvature of the hypersurface.

First of all, we shall prove

LEMMA 4. 1. If M is a totally umbilical hypersurface ivith constant mean
curvature in a normal contact Riemannian manifold M, then the scalar function a
defined by (2. 4) is not constant in M.

Proof. Suppose that the function a is constant in M. Then we have

(4.2) fj=-lΐuh

because of the equation

(4.3) Vja-fj-Hu,

which is a direct consequence of the last equation in (2. 8) and (4. 1). Making use
of (2. 6), we have from (4. 2)

which implies

(4.4) /, = (),

(4. 5) l-a2=V.

Substituting (4. 4) and (4. 1) into the first equation in (2. 8), we get

(4. 6) agji+Hfji=Q,

from which, transvecting gji, we get easily a=0 because of skew symmetry of f^.
However this is contradictory to (4. 5). Thus a can not be constant in M. Q.E.D.

Next, we shall prove

THEOREM 4. 2. // M is a totally umbilical hypersurface with constant mean
curvature in a normal contact Riemannian manifold M, the gradient vector field of
the function a defined by (2. 4) is in M an infinitesimal special concircular transfor-
mation.

Proof. Differentiating (4. 3) covariantly, and taking account of (2. 8) and (4. 1)
we have
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(4.7) P*

where 1+H2 is a positive constant.
The function a is non-trivial because of Lemma 4. 1. Thus the gradient vector

field of the function a is an infinitesimal special concircular transformation. Q.E.D.

Combining Theorem B and Theorem 4. 2, we have

THEOREM 4. 3. Let M be a complete connected totally umbilical hypersurface
in a normal contact Riemannian manifold M. If M is of constant mean curvature
H, M is isometric with a sphere of radius l/\/l-\-H2 in the Euclidean space.

§ 5. Totally umbilical surfaces of codimension 2 in normal contact Riemannian
manifolds.

When, at each point of the surface M of codimension 2, the second fundamental
tensors are proportional to the first fundamental tensor of M, that is, when the
relations

(5. 1) Ffai) = ffgab, Kab = Kgab

are always valid at each point, the surface is called a totally umbilical surface, H
and K being given by (l/(2n— l))gαδ#αδ_and (l/(2n—l))gabKab respectively. The
mean curvature vector field Hλ of M in M is given by

(5.2) Hλ=HCλ+KDλ,

which is independent of the choice of mutually orthogonal unit normal vectors Cλ

and Dλ to the surface M. Differentiating (5. 2) covariantly and making use of
(2. 15), we have

which implies the following

LEMMA 5. 1. Let M be a (2n— T)- dimensional totally umbilical surface in a
(Zn+Y)- dimensional Riemannian manifold M. In order that the covariant derivative
P 'aff

λ of the mean curvature vector field Hλ of M is tangent to M, it is necessary
and sufficient that

(5.3) PaH=KLa, ί7aK=~HLa.

Next, we shall prove

THEOREM 5. 2. Let M be a (2n—Y)-dimensional totally umbilical surface in a
(2n+1) dimensional Riemannian manifold M. If the covariant derivative FaH

λ of
the mean curvature vector field Hλ of M is tangent to M, then M is of constant
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mean curvature.

Proof. The mean curvature h of M is given by

h?=GλκH
λHκ.

Substituting (5. 2) in the equation above, we have

(5. 4) h2=Gλκ(fICλ-i-KD*)(HCκ+KDκ)=H2+K2.

Differentiating (5. 4) covariantly and making use of Lemma 5. 1, we have

Pah2 - 2(HPaH+ MaK] = 2(HKLa -KHLa) - 0,

which shows that the mean curvature of M is constant. Q.E.D.

As a consequence of equations (2. 16), we have

THEOREM 5. 3. Let M be a (2n— V}- dimensional totally umbilical surface in a
(2^+1)- dimensional normal contact Riemannian manifold M. Suppose that the
covariant derivative of the mean curvature vector of M is tangent to M, and that
the scalar function r defined by (2. 12) is non-constant. Then the gradient of the
scalar function r is an infinitesimal special concircular transformation.

Proof. Differentiating the fourth equation in (2. 16) covariantly under the
conditions (5. 1), and taking account of (2. 16) and (5. 3), we get

(5. 5) VaVbr= {bH-aK-(K2+H2)r}gab.

On the other hand, from (2. 16), (5. 1) and (5. 3), we obtain

Va(bH-aK)=Hga-Kfa= -Fαr,

which implies

Co being a constant. Substituting this equation into (5. 5), we get

(5. 6) FJV={-(l+

Furthermore putting

Co

which is constant, we see that (5. 6) reduces to

Γa!7br= - {(l+Π2+K2)(r-c)}gab,

or equivalently to



TOTALLY UMBILICAL SURFACES 483

This equation shows that Par=Pa(r— c) is an infinitesimal special concircular trans-
formation, since l+H2-\-K2 is positive and constant. Q.E.D.

Taking account of Theorem 5. 3 and Theorem B, we have

LEMMA 5. 4. Let M be a (2n— V)- dimensional complete connected totally umbilical
surface in a (2n-\-T) dimensional normal contact Riemannian manifold M. Suppose
that the covariant derivative of the mean curvature vector field of M is tangent to
M, and that the scalar function r defined by (2. 12) is non-constant. Then M is
isometric with a sphere of radius l/\/l+H2-}-K2 in the Euclidean space, where
H2-\-K2 is the mean curvature of M.

Let us next consider the case in which the function r is constant. In this
case, taking account of (2. 16) and (5. 1) we get

(5. 7) Kfa-fίga=β.

Substituting (2. 12) into (5. 7), we obtain

KCκφλ

κBa*-HDκφλ

κBa* = (KCκ-HDκ)φλ

κBa* = 0,

equivalently

(5. 8) φλκ(KCλ-HD^Ba

κ=Q.

On the other hand, by means of skew symmetry of φzκ, we have

(5. 9) φλκ(KCλ-HDλ)(KCκ-HDκ)=Q.

Now, we have φe identity

(5. 10) Hλ(KC*-HD*)=(FICι+KDΛ(KC*-HD*)=Q.

These two equations (5. 8) and (5. 9) show that φλκ(KCλ-HDλ) is orthogonal to both
of Ba and (KCK-HDK). As a direct consequence of (5. 10) we see that HK=HCK+KDK

is orthogonal to both of (KCK-HDK) and Ba

κ. Therefore φλκ(KCλ-HDλ) is pro-
portional to Hκ and hence we can put

(5. 11) φλκ(KCλ-HD*)=PHκ,

with a certain function p. We shall prove

LEMMA. The function p given by (5. 11) is non-zero constant if the mean
curvature h2=H2jrK2 does not vanish.

Proof. If p=0, (5. 11) reduces to φ*κ(KC*-HDλ)=-Q, which implies

(5. 12) KC*-HDl=σξ\
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becaus of (1. 1). Differentiating (5. 12) covariantly we have

Transvecting the equation above with ξλ and taking account of (1. 1) we get Pασ=0,
which implies

(5. 13) σφf*Ba

g = 0.

Now, φκ

λBa does not vanish because φκ

λ is of rank 2n. Suppose that a is zero,
then we have H=K=0 because of (5.12). H=K=Q contradicts the assumption.
Therefore σ is not zero. This result that φκ

λBa

κ and a are both not zero contradicts
(5. 13). So, p is non-zero. Next, if we differentiate the both sides of (5. 11) co-
variantly, we have

(5. 14) Pa(Φικ(KCλ-HD*}}^(aK-bH)GκvBa

v,

(5. 15) ?a(pHκ)=(Pap)Hκ~p(H*+K*)Baκ,

because of (1. 3), (2. 15), (5. 1) and (5. 3). Comparing (5. 14) with (5. 13), we have
PαP=0, which implies that p is constant. Thus the proof is completed.

Transvecting (5. 11) with ξκ, we get

#,£'=0

because the left hand side becomes zero by (1. 1) and p is non-zero constant.
Substituting (5. 2) in the equation above, we have

(5. 16) (HCκ

J

ΓKDκ)ξκ=fIa-{-Kb=Q.

On the other hand, since r is constant, (5. 5) implies

(5. 17) bH~aK=(H2+K2)r.

Summing up, we get relations (5. 16) and (5. 17), when the function r is constant

and the mean curvature h does not vanish.
We now prove

LEMMA 5. 5. Let M be a (2n—Y)-dimensional totally umbilical surface in a
(2n+l)-dimensional normal contact Riemannian manifold M. Suppose that the
covariant derivative of the mean curvature vector field Hλ of M is tangent to M.
If the mean curvature h of M does not vanish and the function r defined by (2. 12)
is constant, then the vector field ua defined by (2. 13) is a Killing vector field of
constant length and satisfies the following equation'.

(5. 18) CΨαF6#c=ttδ0αc— Weί/αft.

Proof. First of all, we shall prove that the vector ua has constant length.
Making use of (2.13) and (2. 14), we have
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(5. 19) uaua=l-(a2+b2).

On the other hand, from (5. 16) and (1. 17) we get

a=—Kr, b=Hr,

if h2=H2+K2*Q. Accordingly we have a2+b2=(H2+K2)r2. Therefore, the length
of ua which is given by (5. 19) is constant, because r and H2+K2 are constant by
virtue of Theorem 5. 2.

Substituting (5. 1) and (5. 16) into the fifth equation of (2. 16), we have

by virtue of skew symmetry of /α&. This equation shows that ua is a Killing
vector field.

Finally, differentiating the fifth equation of (2. 16) covariantly and taking account
of (5. 1), (5. 3) and (5. 16), we have

(5.20) ^a^bUc

On the other hand, by differentiating (5. 16) covariantly we have

by virtue of (2. 16) and (5. 3).
Substituting the equation above into (5. 20), we get

that is,

-i i ΓΓ9 i IX"? u" υ"vc wυvuv ""cyuυ
1+/I +A

Therefore ^α satisfies the equation (5.18). Thus the proof is completed.

Taking account of Lemma 5. 5 and Theorem A, we have

LEMMA 5. 6. Let M be a (2n—V)-dimensional totally umbilical surface in a
(2w+l) dimensional normal contact Riemannian manifold M. Suppose that the
covariant derivative of the mean curvature vector Hλ of M is tangent to M. If the
mean curvature h of M does not vanish and the function r defined by (2. 12) is
constant, then the induced Riemannian metric gab of M is homothetic to the associ-
ated Riemannian metric of the normal contact Riemannian manifold.

Combining Lemma 5. 4 and Lemma 5. 6, we have

THEOREM 5.7. Let M be a (2n—l)-dimensional complete connected totally
umbilical surface in a (2«+l)-dimensional normal contact Riemannian manifold M.
Suppose that the covariant derivative of the mean curvature vector field of M is



486 YOSHIKO WATANABE

tangent to M, and that the mean curvature h2 = H2jrK2 of M does not vanish. Then
either of the following two cases occurs:

(1) M is isometric with a sphere of a radius l/\/lJrH2-i-K2 in the Euclidean
2n-space.

(2) M is homothetic to a (2n— V}- dimensional normal contact Riemannian
manifold.

§ 6. Totally umbilical hypersurf aces in certain normal contact Riemannian
manifolds.

Let M be a (2^+l)-dimensional normal contact Riemannian manifold whose
Ricci tensor has a special form

(6. 1) Riμ=aGiμ+βξλξμ,

where a and β are necessarily constant (cf. [7]).
Let M be a totally umbilical hypersurface in M.
The Codazzi equation of the hypersurface M is given by

(6. 2) rjffto-riHj^BSBSBSC'R^.

By transvecting gίh to (6. 2), we have

Substituting (6. 1) into the equation above, we have

(6. 3) (n-lWjff=BjvC\aGvk+βξvξ

since the hypersurface M is totally umbilical.
Differentiating (6. 3) covariantly, we have

(6.4) (n-lWιPj

Because the left hand side of (6. 4) is symmetric with respect to i and j, we get

(6. 5) β(fjui-fiuj+2afjύ=0.

Transvecting u3 to (6. 5), we have

(6.6) /3(3tf2-l)Λ-0,

by virtue of (2. 6). Transvecting /* to (6. 6), we have

(6.7)

which implies

(6.8)
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if β^O. We assume now that the constant β is not zero. Then the function a2 is
necessarily equal to a constant, i.e. equal to 1/3 or 1, since a is continuous. When
a2=1/3, we have easily H=0 because of the last equation of (2. 8) and (2. 6). When
a2=l, we have by virtue of the third equation of (2. 6) Uj=Q, which means together
with (6. 3) that H is constant. However, the fact that a and H are both constant
contradicts Lemma 4.1. Therefore we can conclude that β is zero. Thus we get

THEOREM 6. 1. //, in a normal contact Riemannίan manifold whose Ricci
tensor has the form of (6. 1), there exists a totally umbilical hypersurface, the space
is necessarily an Einstein space.

COROLLARY 6. 2. Let M be a normal contact Riemannian manifold whose Ricci
tensor has the form of (6.1). // M is not an Einstein space, then there is no
totally umbilical hypersurface.
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